Перевод: со всех языков на английский

с английского на все языки

design+wing+area

  • 21 Cierva, Juan de la

    SUBJECT AREA: Aerospace
    [br]
    b. 21 September 1895 Murcia, Spain
    d. 9 December 1936 Croydon, England
    [br]
    Spanish engineer who played a major part in developing the autogiro in the 1920s and 1930s.
    [br]
    At the age of 17, Cierva and some of his friends built a successful two-seater biplane, the BCD-1 (C for Cierva). By 1919 he had designed a large three-engined biplane bomber, the C 3, which unfortunately crashed when its wing stalled (list its lift) during a slow-speed turn. Cierva turned all his energies to designing a flying machine which could not stall: his answer was the autogiro. Although an autogiro looks like a helicopter, its rotor blades are not driven by an engine, but free-wheel like a windmill. Forward speed is provided by a conventional engine and propeller, and even if this engine fails, the autogiro's rotors continue to free-wheel and it descends safely. Cierva patented his autogiro design in 1920, but it took him three years to put theory into practice. By 1925, after further improvements, he had produced a practical rotary-winged flying machine.
    He moved to England and in 1926 established the Cierva Autogiro Company Ltd. The Air Ministry showed great interest and a year later the British company Avro was commissioned to manufacture the C 6A Autogiro under licence. Probably the most significant of Cierva's autogiros was the C 30A, or Avro Rota, which served in the Royal Air Force from 1935 until 1945. Several other manufacturers in France, Germany, Japan and the USA built Cierva autogiros under licence, but only in small numbers and they never really rivalled fixed-wing aircraft. The death of Cierva in an airliner crash in 1936, together with the emergence of successful helicopters, all but extinguished interest in the autogiro.
    [br]
    Principal Honours and Distinctions
    Daniel Guggenheim Medal. Royal Aeronautical Society Silver Medal, Gold Medal (posthumously) 1937.
    Bibliography
    1931, Wings of To-morrow: The Story of the Autogiro, New York (an early account of his work).
    He read a paper on his latest achievements at the Royal Aeronautical Society on 15 March 1935.
    Further Reading
    P.W.Brooks, 1988, Cierva Autogiros: The Development of Rotary Wing Flight, Washington, DC (contains a full account of Cierva's work).
    Jose Warleta. 1977, Autogiro: Juan de la Cierva y su obra, Madrid (a detailed account of his work in Spain).
    Oliver Stewart, 1966, Aviation: The Creative Ideas, London (contains a chapter on Cierva).
    JDS

    Biographical history of technology > Cierva, Juan de la

  • 22 Dunne, John William

    SUBJECT AREA: Aerospace
    [br]
    b. 2 December 1875 Co. Kildare, Ireland
    d. 24 August 1949 Oxfordshire, England
    [br]
    Irish inventor who pioneered tailless aircraft designed to be inherently stable.
    [br]
    After serving in the British Army during the Boer War. Dunne returned home convinced that aeroplanes would be more suitable than balloons for reconnaissance work. He built models to test his ideas for a tailless design based on the winged seed of a Javanese climbing plant. In 1906 Dunne joined the staff of the Balloon Factory at Farnborough, where the Superintendent, Colonel J.E.Capper, was also interested in manned kites and aeroplanes. Since 1904 the colourful American "Colonel" S.F. Cody had been experimenting at Farnborough with manned kites, and in 1908 his "British Army Dirigible No. 1" made the first powered flight in Britain. Dunne's first swept-wing tailless glider was ready to fly in the spring of 1907, but it was deemed to be a military secret and flying it at Farnborough would be too public. Dunne, Colonel Capper and a team of army engineers took the glider to a remote site at Blair Atholl in Scotland for its test flights. It was not a great success, although it attracted snoopers, with the result that it was camouflaged. Powered versions made short hops in 1908, but then the War Office withdrew its support. Dunne and his associates set up a syndicate to continue the development of a new tailless aeroplane, the D 5; this was built by Short Brothers (see Short, Hugh Oswald) and flew successfully in 1910. It had combined elevators and ailerons on the wing tips (or elevons as they are now called when fitted to modern delta-winged aircraft). In 1913 an improved version of the D 5 was demonstrated in France, where the pilot left his cockpit and walked along the wing in flight. Dunne had proved his point and designed a stable aircraft, but his health was suffering and he retired. During the First World War, however, it was soon learned that military aircraft needed to be manoeuvrable rather than stable.
    [br]
    Bibliography
    1913, "The theory of the Dunne aeroplane", Journal of the Royal Aeronautical Society (April).
    After he left aviation, Dunne became well known for his writings on the nature of the universe and the interpretation of dreams. His best known-work was An Experiment
    With Time (1927; and reprints).
    Further Reading
    P.B.Walker, 1971, Early Aviation at Farnborough, Vol. I, London; 1974, Vol. II (provides a detailed account of Dunne's early work; Vol. II is the more relevant).
    P.Lewis, 1962, British Air craft 1809–1914, London (for details of Dunne's aircraft).
    JDS

    Biographical history of technology > Dunne, John William

  • 23 нагрузка

    асимметричная нагрузка
    unsymmetrical load
    аэродинамическая нагрузка
    aerodynamic load
    безопасная нагрузка
    1. fail-safe load
    2. safe load боковая нагрузка
    side load
    боковая полоса безопасности, способная нести нагрузку
    bearing shoulder
    (от воздушного судна) весовая отдача по полезной нагрузке
    useful-to-takeoff load ratio
    ветровая нагрузка
    wind effect
    вибрационная нагрузка
    vibratory load
    внешняя нагрузка
    external load
    выдерживать нагрузку
    withstand the load
    гидродинамическая нагрузка
    water load
    гироскопическая нагрузка
    gyroscopic load
    динамическая нагрузка
    dynamic load
    допустимая нагрузка
    allowable load
    имитатор аэродинамических нагрузок
    air-load simulator
    инерционная нагрузка
    inertia load
    испытание на ударную нагрузку
    1. shock test
    2. impact test испытания воздушного судна на переменные нагрузки
    aircraft alternate-stress tests
    испытания по замеру нагрузки в полете
    flight stress measurement tests
    классификационный номер степени нагрузки
    load classification number
    коэффициент полезной нагрузки
    useful load factor
    кривая частоты нагрузки
    frequency weighting curve
    маневренная нагрузка
    manoeuvring load
    нагрузка в полете
    flight load
    нагрузка в полете от поверхности управления
    flight control load
    нагрузка на единицу площади
    load per unit area
    нагрузка на колесо
    wheel load
    нагрузка на крыло
    wing load
    нагрузка на поверхность управления
    control surface load
    нагрузка от сопротивления
    resisting load
    нагрузка при рулении
    taxiing load
    нагрузка при скручивании
    torsional load
    нагрузка при стоянке на земле
    ground load
    нервюра, воспринимающая нагрузку на сжатие
    compression rib
    нести нагрузку
    1. carry stress
    2. carry load несущий нагрузку
    load-bearing
    нормальная эксплуатационная нагрузка
    normal operating load
    общая нагрузка пилота
    pilot's workland
    передавать нагрузку
    transmit load
    переменная нагрузка
    1. alternate load
    2. varying load поверхность, не несущая нагрузки
    nonload-bearing surface
    поверхность, несущая нагрузку
    load-bearing surface
    повторные нагрузки
    repeated loads
    подавать нагрузку
    activate load
    под нагрузкой
    under load
    покрытие, несущее нагрузку
    load-bearing pavement
    полезная нагрузка воздушного судна
    aircraft useful load
    посадочная нагрузка
    landing load
    превышение нормативных нагрузок планера
    airframe overstressing
    превышение установленных нагрузок
    overstressing
    предел нагрузки
    stress limit
    предельная нагрузка
    1. ultimate load
    2. maximum load 3. limit load предельная разрушающая нагрузка
    ultimate breaking load
    предельная эксплуатационная нагрузка
    limit operating load
    прикладывать нагрузку
    apply load
    работать без нагрузки
    run unloaded
    рабочая нагрузка
    1. workload
    2. service load равномерная нагрузка
    uniform load
    разрушающая нагрузка
    failure load
    разрушение вследствие повышенных нагрузок
    overstress failure
    распределение аэродинамической нагрузки
    air-load distribution
    распределение нагрузки
    load distribution
    распределенная нагрузка
    distributed load
    расчет нагрузки
    weight
    расчетная нагрузка
    1. design load
    2. proof load расчетный предел нагрузки воздушного судна
    aircraft design load
    расчет удельной нагрузки на поверхность
    area density calculation
    режим работы с полной нагрузкой
    full-load conditions
    сжимающая нагрузка
    compressive load
    создавать нагрузку
    1. create load
    2. impose load сосредоточенная нагрузка
    concentrated load
    средняя нагрузка на одно колесо
    equivalent wheel load
    статическая нагрузка
    static load
    стойкость к ударным нагрузкам
    crashworthiness
    ток нагрузки
    load current
    ударная нагрузка
    impact load
    уравновешивающая нагрузка
    balancing load
    усталостная нагрузка
    fatigue load
    цепь нагрузки
    load circuit
    шина распределения нагрузки
    load distribution bus

    Русско-английский авиационный словарь > нагрузка

  • 24 Flettner, Anton

    SUBJECT AREA: Aerospace
    [br]
    b. 1 November 1885 Eddersheim-am-Main, Germany
    d. 29 December 1961 New York, USA
    [br]
    German engineer and inventor who produced a practical helicopter for the German navy in 1940.
    [br]
    Anton Flettner was an engineer with a great interest in hydraulics and aerodynamics. At the beginning of the First World War Flettner was recruited by Zeppelin to investigate the possibility of radio-controlled airships as guided missiles. In 1915 he constructed a small radio-controlled tank equipped to cut barbed-wire defences; the military experts rejected it, but he was engaged to investigate radio-controlled pilotless aircraft and he invented a servo-control device to assist their control systems. These servo-controls, or trim tabs, were used on large German bombers towards the end of the war. In 1924 he invented a sailing ship powered by rotating cylinders, but although one of these crossed the Atlantic they were never a commercial success. He also invented a windmill and a marine rudder. In the late 1920s Flettner turned his attention to rotating-wing aircraft, and in 1931 he built a helicopter with small engines mounted on the rotor blades. Progress was slow and it was abandoned after being damaged during testing in 1934. An autogiro followed in 1936, but it caught fire on a test flight and was destroyed. Undeterred, Flettner continued his development work on helicopters and in 1937 produced the Fl 185, which had a single rotor to provide lift and two propellers on outriggers to combat the torque and provide forward thrust. This arrangement was not a great success, so he turned to twin contra-rotating rotors, as used by his rival Focke, but broke new ground by using intermeshing rotors to make a more compact machine. The Fl 265 with its "egg-beater" rotors was ordered by the German navy in 1938 and flew the following year. After exhaustive testing, Flettner improved his design and produced the two-seater Fl 282 Kolibri, which flew in 1940 and became the only helicopter to be used operationally during the Second World War.
    After the war, Flettner moved to the United States where his intermeshing-rotor idea was developed by the Kaman Aircraft Corporation.
    [br]
    Bibliography
    1926, Mein Weg zum Rotor, Leipzig; also published as The Story of the Rotor, New York (describes his early work with rotors—i.e. cylinders).
    Further Reading
    W.Gunston and J.Batchelor, 1977, Helicopters 1900–1960, London.
    R.N.Liptrot, 1948, Rotating Wing Activities in Germany during the Period 1939–45, London.
    K.von Gersdorff and K.Knobling, 1982, Hubschrauber und Tragschrauber, Munich (a more recent publication, in German).
    JDS

    Biographical history of technology > Flettner, Anton

  • 25 Marey, Etienne-Jules

    [br]
    b. 5 March 1830 Beaune, France
    d. 15 May 1904 Paris, France
    [br]
    French physiologist and pioneer of chronophotography.
    [br]
    At the age of 19 Marey went to Paris to study medicine, becoming particularly interested in the problems of the circulation of the blood. In an early communication to the Académie des Sciences he described a much improved device for recording the pulse, the sphygmograph, in which the beats were recorded on a smoked plate. Most of his subsequent work was concerned with methods of recording movement: to study the movement of the horse, he used pneumatic sensors on each hoof to record traces on a smoked drum; this device became known as the Marey recording tambour. His attempts to study the wing movements of a bird in flight in the same way met with limited success since the recording system interfered with free movement. Reading in 1878 of Muybridge's work in America using sequence photography to study animal movement, Marey considered the use of photography himself. In 1882 he developed an idea first used by the astronomer Janssen: a camera in which a series of exposures could be made on a circular photographic plate. Marey's "photographic gun" was rifle shaped and could expose twelve pictures in approximately one second on a circular plate. With this device he was able to study wing movements of birds in free flight. The camera was limited in that it could record only a small number of images, and in the summer of 1882 he developed a new camera, when the French government gave him a grant to set up a physiological research station on land provided by the Parisian authorities near the Porte d'Auteuil. The new design used a fixed plate, on which a series of images were recorded through a rotating shutter. Looking rather like the results provided by a modern stroboscope flash device, the images were partially superimposed if the subject was slow moving, or separated if it was fast. His human subjects were dressed all in white and moved against a black background. An alternative was to dress the subject in black, with highly reflective strips and points along limbs and at joints, to produce a graphic record of the relationships of the parts of the body during action. A one-second-sweep timing clock was included in the scene to enable the precise interval between exposures to be assessed. The fixed-plate cameras were used with considerable success, but the number of individual records on each plate was still limited. With the appearance of Eastman's Kodak roll-film camera in France in September 1888, Marey designed a new camera to use the long rolls of paper film. He described the new apparatus to the Académie des Sciences on 8 October 1888, and three weeks later showed a band of images taken with it at the rate of 20 per second. This camera and its subsequent improvements were the first true cinematographic cameras. The arrival of Eastman's celluloid film late in 1889 made Marey's camera even more practical, and for over a decade the Physiological Research Station made hundreds of sequence studies of animals and humans in motion, at rates of up to 100 pictures per second. Marey pioneered the scientific study of movement using film cameras, introducing techniques of time-lapse, frame-by-frame and slow-motion analysis, macro-and micro-cinematography, superimposed timing clocks, studies of airflow using smoke streams, and other methods still in use in the 1990s. Appointed Professor of Natural History at the Collège de France in 1870, he headed the Institut Marey founded in 1898 to continue these studies. After Marey's death in 1904, the research continued under the direction of his associate Lucien Bull, who developed many new techniques, notably ultra-high-speed cinematography.
    [br]
    Principal Honours and Distinctions
    Foreign member of the Royal Society 1898. President, Académie des Sciences 1895.
    Bibliography
    1860–1904, Comptes rendus de l'Académie des Sciences de Paris.
    1873, La Machine animale, Paris 1874, Animal Mechanism, London.
    1893, Die Chronophotographie, Berlin. 1894, Le Mouvement, Paris.
    1895, Movement, London.
    1899, La Chronophotographie, Paris.
    Further Reading
    ——1992, Muybridge and the Chronophotographers, London. Jacques Deslandes, 1966, Histoire comparée du cinéma, Vol. I, Paris.
    BC / MG

    Biographical history of technology > Marey, Etienne-Jules

  • 26 Stringfellow, John

    SUBJECT AREA: Aerospace
    [br]
    b. 6 December 1799 Sheffield, England
    d. 13 December 1883 Chard, England
    [br]
    English inventor and builder of a series of experimental model aeroplanes.
    [br]
    After serving an apprenticeship in the lace industry, Stringfellow left Nottingham in about 1820 and moved to Chard in Somerset, where he set up his own business. He had wide interests such as photography, politics, and the use of electricity for medical treatment. Stringfellow met William Samuel Henson, who also lived in Chard and was involved in lacemaking, and became interested in his "aerial steam carriage" of 1842–3. When support for this project foundered, Henson and Stringfellow drew up an agreement "Whereas it is intended to construct a model of an Aerial Machine". They built a large model with a wing span of 20 ft (6 m) and powered by a steam engine, which was probably the work of Stringfellow. The model was tested on a hillside near Chard, often at night to avoid publicity, but despite many attempts it never made a successful flight. At this point Henson emigrated to the United States. From 1848 Stringfellow continued to experiment with models of his own design, starting with one with a wing span of 10 ft (3m). He decided to test it in a disused lace factory, rather than in the open air. Stringfellow fitted a horizontal wire which supported the model as it gained speed prior to free flight. Unfortunately, neither this nor later models made a sustained flight, despite Stringfellow's efficient lightweight steam engine. For many years Stringfellow abandoned his aeronautical experiments, then in 1866 when the (Royal) Aeronautical Society was founded, his interest was revived. He built a steam-powered triplane, which was demonstrated "flying" along a wire at the world's first Aeronautical Exhibition, held at Crystal Palace, London, in 1868. Stringfellow also received a cash prize for one of his engines, which was the lightest practical power unit at the Exhibition. Although Stringfellow's models never achieved a really successful flight, his designs showed the way for others to follow. Several of his models are preserved in the Science Museum in London.
    [br]
    Principal Honours and Distinctions
    Member of the (Royal) Aeronautical Society 1868.
    Bibliography
    Many of Stringfellow's letters and papers are held by the Royal Aeronautical Society, London.
    Further Reading
    Harald Penrose, 1988, An Ancient Air: A Biography of John Stringfellow, Shrewsbury. A.M.Balantyne and J.Laurence Pritchard, 1956, "The lives and work of William Samuel Henson and John Stringfellow", Journal of the Royal Aeronautical Society (June) (an attempt to analyse conflicting evidence).
    M.J.B.Davy, 1931, Henson and Stringfellow, London (an earlier work with excellent drawings from Henson's patent).
    "The aeronautical work of John Stringfellow, with some account of W.S.Henson", Aeronau-tical Classics No. 5 (written by John Stringfellow's son and held by the Royal Aeronautical Society in London).
    JDS

    Biographical history of technology > Stringfellow, John

  • 27 MacCready, Paul

    SUBJECT AREA: Aerospace
    [br]
    b. 29 September 1925 New Haven, Connecticut, USA
    [br]
    American designer of man-powered aeroplanes, one of which flew across the English Channel in 1979.
    [br]
    As a boy, Paul MacCready was an enthusiastic builder of flying model aeroplanes; he became US National Junior Champion in 1941. He learned to fly and became a pilot with the US Navy in 1943. he developed an interest in gliding in 1945 and became National Soaring Champion in 1948 and 1949. After graduating from the California Institute of Technology (Cal Tech) as a meteorologist, he set up Meteorological Research Inc. In 1953 MacCready became the first American to win the World Gliding Championship. When hang-gliders became popular in the early 1970s MacCready studied their performance and compared them with soaring birds: he came to the conclusion that man-powered flight was a possibility. In an effort to generate an interest in man-powered flight, a cash prize had been offered in Britain by Henry Kremer, a wealthy industrialist and fitness enthusiast. A man-powered aircraft had to complete a one-mile (1.6km) figure-of-eight course in order to win. However, the figure-of-eight proved to be a major obstacle and the prize money was increased over the years to £50,000. In 1976 MacCready and his friend Dr Peter Lissaman set to work on their computer and came up with their optimum design for a man-powered aircraft. The Gossamer Condor had a wing span of 96 ft (27.4 m), about the same as a Douglas DC-9 airliner, yet it weighed just 70 lb (32 kg). It was a tail-first design with a pedaldriven pusher propeller just behind the pilot. Bryan Allen, a biologist, pilot and racing cyclist, joined the team to provide the muscle-power. After over two hundred flights they were ready to make an attempt on the prize, and on 23 August 1977 they succeeded where many had failed, in 7 minutes. Kremer then offered £100,000 for the first manpowered flight across the English Channel. Many thought this would be impossible, but MacCready and his team set about the task of designing a new machine based on their Condor, which they called the Gossamer Albatross. Bryan Allen also had a major task: getting fit for a flight which might take three hours of pedalling. The weather was more of a problem than in California, and after a long delay the Gossamer Albatross took off, on 12 June 1979. After pedalling for 2 hours 49 minutes, Bryan Allen landed in France: it was seventy years since Blériot's flight, although Blériot was much quicker.
    [br]
    Principal Honours and Distinctions
    World Gliding Champion 1953.
    Bibliography
    1979, "The Channel crossing and the future", Man Powered Aircraft Symposium, London: Royal Aeronautical Society.
    Further Reading
    M.Grosser, 1981, Gossamer Odyssey, London (provides a brief biography and detailed accounts of the two aircraft).
    M.F.Jerram, 1980, Incredible Flying Machines, London (a short survey of pedal planes).
    Articles by Ron Moulton on the Gossamer Albatross appeared in Aerospace (Royal Aeronautical Society) London, August/September 1979, and the Aeromodeller, London, September 1979.
    JDS

    Biographical history of technology > MacCready, Paul

  • 28 Sikorsky, Igor Ivanovich

    SUBJECT AREA: Aerospace
    [br]
    b. 25 May 1889 Kiev, Ukraine
    d. 26 October 1972 Easton, Connecticut, USA
    [br]
    Russian/American pioneer of large aeroplanes, flying boats, and helicopters.
    [br]
    Sikorsky trained as an engineer but developed an interest in aviation at the age of 19 when he was allowed to spend several months in Paris to meet French aviators. He bought an Anzani aero-engine and took it back to Russia, where he designed and built a helicopter. In his own words, "It had one minor technical problem—it would not fly—but otherwise it was a good helicopter".
    Sikorsky turned to aeroplanes and built a series of biplanes: by 1911 the 5–5 was capable of flights lasting an hour. Following this success, the Russian-Baltic Railroad Car Company commissioned Sikorsky to build a large aeroplane. On 13 May 1913 Sikorsky took off in the Grand, the world's first four-engined aeroplane. With a wing span of 28 m (92 ft) it was also the world's largest, and was unique in that the crew were in an enclosed cabin with dual controls. The even larger Ilia Mourometz flew the following year and established many records, including the carriage of sixteen people. During the First World War many of these aircraft were built and served as heavy bombers.
    Following the revolution in Russia during 1917, Sikorsky emigrated first to France and then the United States, where he founded his own company. After building the successful S-38 passenger-carrying amphibian, the Sikorsky Aviation Corporation became part of the United Aircraft Corporation and went on to produce several large flying boats. Of these, the four-engined S-42 was probably the best known, for its service to Hawaii in 1935 and trial flights across the Atlantic in 1937.
    In the late 1930s Sikorsky once again turned his attention to helicopters, and on 14 September 1939 his VS-300 made its first tentative hop, with Sikorsky at the controls. Many improvements were made and on 6 May 1941 Sikorsky made a record-breaking flight of over 1½ hours. The Sikorsky design of a single main lifting rotor combined with a small tail rotor to balance the torque effect has dominated helicopter design to this day. Sikorsky produced a long series of outstanding helicopter designs which are in service throughout the world.
    [br]
    Principal Honours and Distinctions
    Chevalier de la Légion d'honneur 1960. Presidential Certificate of Merit 1948. Aeronautical Society Silver Medal 1949.
    Bibliography
    1971, "Sixty years in flying", Aeronautical Journal (Royal Aeronautical Society) (November) (interesting and amusing).
    1938, The Story of the Winged S., New York; 1967, rev. edn.
    Further Reading
    D.Cochrane et al., 1990, The Aviation Careers of Igor Sikorsky, Seattle.
    K.N.Finne, 1988, Igor Sikorsky: The Russian Years, ed. C.J.Bobrow and V.Hardisty, Shrewsbury; orig. pub. in Russian, 1930.
    F.J.Delear, 1969, Igor Sikorsky: His Three Careers in Aviation, New York.
    JDS

    Biographical history of technology > Sikorsky, Igor Ivanovich

  • 29 высота

    высота сущ
    1. altitude
    2. height барометрическая высота
    1. barometric height
    2. barometric altitude безопасная высота
    1. safe height
    2. safe altitude безопасная высота местности
    safe terrain clearance
    безопасная высота пролета порога
    clearance over the threshold
    безопасная высота пролета препятствий
    clearance of obstacles
    вертикальный набор высоты
    vertical climb
    взлет с крутым набором высоты
    climbing takeoff
    воздушное судно для полетов на большой высоте
    high-altitude aircraft
    время набора заданной высоты
    time to climb to
    выбранная высота захода на посадку
    selected approach altitude
    выдерживание высоты
    altitude hold
    выдерживание высоты полета автопилотом
    autopilot altitude hold
    выдерживание заданной высоты полета
    preselected altitude hold
    выдерживание постоянной высоты
    constant altitude control
    выдерживать заданную высоту
    1. keep the altitude
    2. maintain the altitude выполнять набор высоты
    make a climb
    высота аэродрома
    1. aerodrome altitude
    2. aerodrome level высота в зоне ожидания
    holding altitude
    высота в кабине
    cabin pressure
    высота выравнивания
    flare-out altitude
    высота над уровнем моря
    altitude above sea level
    высота начала снижения
    descent top
    высота начала уборки
    height at start of retraction
    высота начального этапа захода на посадку
    initial approach altitude
    высота нижней границы облаков
    1. cloud base height
    2. cloud ceiling 3. minimum ceiling высота нулевой изотермы
    freezing level
    высота облачности
    1. cloud level
    2. cloud height высота опорной точки
    reference datum height
    высота оптимального расхода топлива
    fuel efficient altitude
    высота относительно начала координат
    height above reference zero
    высота отсчета
    reference altitude
    высота перехода
    1. transition height
    2. transition altitude высота перехода к визуальному полету
    break-off height
    высота плоскости ограничения препятствий в зоне взлета
    takeoff surface level
    высота повторного двигателя
    restarting altitude
    высота по давлению
    pressure altitude
    высота полета
    flight altitude
    высота полета вертолета
    helicopter overflight height
    высота полета вертолета при заходе на посадку
    helicopter approach height
    высота полета в зоне ожидания
    holding flight level
    высота полета по маршруту
    en-route altitude
    высота по радиовысотомеру
    radio height
    высота порога
    stepdown
    (выхода из воздушного судна) высота порога аварийного выхода
    1. emergency exit stepup
    (над полом кабины пассажиров) 2. emergency exit stepdown (над обшивкой крыла) высота при заходе на посадку
    approach height
    высота принятия решения
    1. decision altitude
    2. decision height высота пролета порога ВПП
    threshold crossing height
    высота пролета препятствий
    1. obstacle clearance
    2. obstacle clearance altitude 3. obstacle clearance height высота разворота на посадочную прямую
    final approach altitude
    высота траектории начала захода на посадку
    approach ceiling
    высота уменьшения тяги
    cutback height
    высота установленная заданием на полет
    specified altitude
    высота установленного маршрута движения
    traffic pattern altitude
    высота хода поршня на такте всасывания
    suction head
    выходить на заданную высоту
    take up the position
    гипсометрическая цветная шкала высот
    hypsometric tint guide
    граница высот повторного запуска в полете
    inflight restart envelope
    график набора высоты
    climb schedule
    дальность полета на предельно малой высоте
    on-the-deck range
    датчик высоты
    altitude sensor
    диапазон высот
    altitude range
    докладывать о занятии заданной высоты
    report reaching the altitude
    допуск на максимальную высоту препятствия
    dominant obstacle allowance
    допустимая высота местности
    terrain clearance
    допустимый запас высоты от колес до порога ВПП
    threshold wheel clearance
    зависать на высоте
    hover at the height of
    заданная высота
    specified height
    задатчик высоты
    1. altitude selector
    2. altitude controller задатчик высоты в кабине
    cabin altitude selector
    занимать заданную высоту
    reach the altitude
    запас высоты
    1. altitude margin
    2. clearance margin 3. vertical clearance запас высоты законцовки крыла
    wing tip clearance
    затенение руля высоты
    elevator shading
    зона набора высоты при взлете
    takeoff flight path area
    зона начального этапа набора высоты
    climb-out area
    измерение высоты нижней границы облаков
    ceiling measurement
    измеритель высоты облачности
    ceilometer
    индикатор барометрической высоты
    density altitude display
    истинная высота
    1. actual height
    2. true altitude 3. absolute altitude исходная высота полета при заходе на посадку
    reference approach height
    карта планирования полетов на малых высотах
    low altitude flight planning chart
    код высоты
    altitude code
    колонка руля высоты
    elevator control stand
    конечная высота захвата
    final intercept altitude
    конечный участок набора высоты
    top of climb
    коридор для набора высоты
    climb corridor
    крейсерская высота
    1. cruising level
    2. cruising altitude кривая изменения высоты полета
    altitude curve
    летать на заданной высоте
    fly at the altitude
    лонжерон руля высоты
    elevator spar
    маршрутная карта полетов на малых высотах
    low altitude en-route chart
    масса при начальном наборе высоты
    climbout weight
    механизм стопорения руля высоты
    1. elevator locking mechanism
    2. elevator gust lock минимальная безопасная высота
    1. minimum safe height
    2. minimum safe минимальная высота
    1. minimum altitude
    2. critical height минимальная высота полета по кругу
    minimum circling procedure height
    минимальная высота по маршруту
    minimum en-route altitude
    минимальная высота пролета препятствий
    obstacle clearance limit
    минимальная высота снижения
    1. minimum descent altitude
    2. minimum descent height минимальная крейсерская высота полета
    minimum cruising level
    минимальная разрешенная высота
    minimum authorized altitude
    многоступенчатый набор высоты
    multistep climb
    мощность, необходимая для набора высоты
    climbing power
    набирать высоту
    1. ascend
    2. drift up 3. move upwards набирать высоту при полете по курсу
    climb on the course
    набирать заданную высоту
    1. gain the altitude
    2. get the height набор высоты
    1. in climb
    2. ascent набор высоты в крейсерском режиме
    cruise climb
    набор высоты до крейсерского режима
    climb to cruise operation
    набор высоты до потолка
    climb to ceiling
    набор высоты на маршруте
    en-route climb
    набор высоты на начальном участке установленной траектории
    normal initial climb operation
    набор высоты по крутой траектории
    steep climb
    набор высоты после прерванного захода на посадку
    discontinued approach climb
    набор высоты по установившейся схеме
    proper climb
    набор высоты при взлете
    takeoff climb
    набор высоты при всех работающих двигателях
    all-engine-operating climb
    набор высоты с убранными закрылками
    flap-up climb
    набор высоты с ускорением
    acceleration climb
    навеска руля высоты
    elevator hinge fitting
    на установленной высоте
    at appropriate altitude
    начальный этап набора высоты
    initial climb
    начальный этап стандартного набора высоты
    normal initial climb
    начальный этап установившегося набора высоты
    first constant climb
    неправильно оценивать высоту
    misjudge an altitude
    неправильно оценивать запас высоты
    misjudge clearance
    непроизвольное увеличение высоты полета
    altitude gain
    неустановившийся режим набора высоты
    nonsteady climb
    нижняя кромка облаков переменной высоты
    variable cloud base
    обеспечивать запас высоты
    ensure clearance
    облака переменной высоты
    variable clouds
    оборудование для измерения высоты облачности
    ceiling measurement equipment
    ограничение высоты препятствий
    obstacle restriction
    одноступенчатый набор высоты
    one-step climb
    оптимальный угол набора высоты
    best climb angle
    отключение привода руля высоты
    elevator servo disengagement
    откорректированная высота
    corrected altitude
    отметка высоты
    bench mark
    оценивать высоту
    assess a height
    оценка высоты препятствия
    obstacle assessment
    ошибочно выбранный запас высоты
    misjudged clearance
    передача сведений о барометрической высоте
    pressure-altitude transmission
    переходить в режим набора высоты
    entry into climb
    переходить к скорости набора высоты
    transit to the climb speed
    поверхность высоты пролета препятствий
    obstacle free surface
    погрешность выдерживания высоты полета
    height-keeping error
    полет на малой высоте
    low flying operation
    полет на малых высотах
    low flight
    полет с набором высоты
    1. climbing flight
    2. nose-up flying полеты на малых высотах
    low flying
    поправка к высоте Полярной звезды
    q-correction
    поправка на высоту
    altitude correction
    порядок набора высоты
    climb technique
    порядок набора высоты на крейсерском режиме
    cruise climb technique
    потеря высоты
    altitude loss
    превышение по высоте
    gain in altitude
    предварительно выбранная высота
    preselected altitude
    предупреждение о минимальной безопасной высоте
    minimum safe altitude warning
    приборная высота
    1. indicated altitude
    2. altimetric altitude проведение работ по снижению высоты препятствий для полетов
    obstacle clearing
    прогноз по высоте
    height forecast
    процесс набора высоты
    ascending
    рабочая высота
    operating altitude
    радиовысотомер малых высот
    low-range radio altimeter
    разброс ошибок выдерживания высоты
    height-keeping error distribution
    разворот с набором высоты
    climbing turn
    разрешенные полеты на малой высоте
    authorized low flying
    распределение высот
    altitude assignment
    расчетная высота
    1. rated altitude
    2. design altitude 3. net height регистратор высоты
    altitude recorder
    регулировать по высоте
    adjust for height
    режим стабилизации на заданной высоте
    height-lock mode
    резкий набор высоты
    zoom
    руль высоты
    elevator
    световой сигнализатор опасной высоты
    altitude alert light
    сигнализация самопроизвольного ухода с заданной высоты
    altitude alert warning
    сигнал опасной высоты
    altitude alert signal
    система предупреждения о сдвиге ветра на малых высотах
    low level wind-shear alert system
    система сигнализации опасной высоты
    altitude alert system
    скорость изменения высоты
    altitude rate
    скорость набора высоты
    ascensional rate
    скорость набора высоты при выходе из зоны
    climb-out speed
    скорость набора высоты при полете по маршруту
    en-route climb speed
    скорость набора высоты с убранными закрылками
    1. flaps-up climb speed
    2. no-flap climb speed 3. flaps-up climbing speed скорость на начальном участке набора высоты при взлете
    speed at takeoff climb
    скорость первоначального этапа набора высоты
    initial climb speed
    с набором высоты
    with increase in the altitude
    снижать высоту полета воздушного судна
    push the aircraft down
    со снижением высоты
    with decrease in the altitude
    сохранять запас высоты
    preserve the clearance
    средняя высота
    mean height
    ступенчатый набор высоты
    step climb
    схема набора высоты после взлета
    after takeoff procedure
    схема ускоренного набора высоты
    accelerating climb procedure
    с целью набора высоты
    in order to climb
    таблица для пересчета высоты
    altitude-conversion table
    табло сигнализации опасной высоты
    altitude alert annunciator
    терять высоту
    lose the altitude
    топливо расходуемое на выбор высоты
    climb fuel
    точность выдерживания высоты
    height-keeping accuracy
    траектория набора высоты
    1. climb path
    2. climb curve траектория начального этапа набора высоты
    departure path
    требования по ограничению высоты препятствий
    obstacle limitation requirements
    триммер руля высоты
    elevator trim tab
    увеличивать высоту
    increase an altitude
    угол набора высоты
    1. angle of approach light
    2. angle of climb 3. angle of ascent угол начального участка установившегося режима набора высоты
    first constant climb angle
    угол установившегося режима набора высоты
    constant climb angle
    указатель высоты
    1. height indicator
    2. altitude indicator указатель высоты в кабине
    cabin altitude indicator
    указатель высоты перепада давления
    differential pressure indicator
    указатель высоты пролета местности
    terrain clearance indicator
    указатель минимальной высоты
    minimum altitude reminder
    указатель предельной высоты
    altitude-limit indicator
    указатель скорости набора высоты
    variometer
    управление рулем высоты
    elevator control
    ускорение при наборе высоты
    climb acceleration
    устанавливать режим набора высоты
    establish climb
    установившаяся скорость набора высоты
    steady rate of climb
    установившийся режим набора высоты
    constant climb
    устройство кодирования информации о высоте
    altitude encoder
    уточненная высота
    calibrated altitude
    уходить с заданной высоты
    leave the altitude
    уходить с набором высоты
    1. climb away
    2. climb out уход с набором высоты
    climbaway
    участок маршрута с набором высоты
    upward leg
    участок набора высоты
    climb segment
    фактическое увеличение высоты
    net increase in altitude
    характеристика выдерживания высоты
    height-keeping performance
    характеристика набора высоты при полете по маршруту
    en-route climb performance
    четко указывать высоту
    express the altitude
    эквивалентная высота
    equivalent altitude
    этап набора высоты
    climb element
    эшелонировать по высоте
    stack up

    Русско-английский авиационный словарь > высота

  • 30 момент

    instance, moment, ( времени) point
    * * *
    моме́нт м.
    1. физ., мех. moment
    моме́нт возника́ет в, напр. пло́скости — moment occurs in, e. g., a plane
    моме́нт возника́ет в, напр. сече́нии — moment occurs in [at], e. g., a cross-section
    затя́гивать (болт, гайку) [m2]с моме́нтом … кг м — torque (a nut, bolt) to … kg m
    моме́нт, напр. ли́нии или пове́рхности относи́тельно оси́ — moment, e. g., of a line or surface with respect to an axis
    моме́нт относи́тельно, напр. це́нтра или оси́ — a moment about, e. g., the origin or axis
    прикла́дывать моме́нт к оси́ — apply a torque about an axis
    развива́ть (враща́ющий) моме́нт — develop a torque
    уравнове́шивать моме́нт — balance a moment
    уравнове́шивать моме́нты — place moments in equilibrium
    2. ( время) moment, instant, time
    абсолю́тный моме́нт — absolute moment
    аэродинами́ческий моме́нт — aerodynamic [air] moment
    ба́лочный моме́нт — girder moment
    ветрово́й моме́нт — wind moment
    моме́нт в коло́нне — column moment
    возмуща́ющий моме́нт — disturbing [exciting] moment
    восстана́вливающий моме́нт — restoring [righting, stabilizing] moment
    моме́нт в пролё́те — moment of span
    враща́ющий моме́нт — torque
    моме́нт вре́мени, нача́льный — zero time
    моме́нт выгора́ния то́плива — burn-out time
    моме́нт вы́зова тлф.call moment
    моме́нт выключе́ния дви́гателя — cut-off time
    гироскопи́ческий моме́нт — gyroscopic moment
    демпфи́рующий моме́нт — damping moment
    дестабилизи́рующий моме́нт — destabilizing [disturbing] moment
    дипо́льный моме́нт — dipole moment
    дифференту́ющий моме́нт — trimming moment
    дополни́тельный моме́нт — excess torque
    моме́нт жё́сткости — moment of stiffness
    моме́нт зажига́ния двс. — firing point, firing position
    замедля́ющий моме́нт — retarding moment
    моме́нт затуха́ния — damping moment
    моме́нт затя́жки (напр. винта, гайки) — tightening torque
    изгиба́ющий моме́нт — bending moment
    изгиба́ющий моме́нт в консо́ли — cantilever bending moment
    изгиба́ющий, волново́й моме́нт — wave bending moment
    изгиба́ющий моме́нт на ти́хой воде́ — still water bending moment
    изгиба́ющий, приведё́нный моме́нт — equivalent bending moment
    моме́нт и́мпульса — angular momentum, moment of momentum
    моме́нт ине́рции — moment of inertia
    моме́нт ине́рции, гла́вный — principal moment of inertia
    моме́нт ине́рции, осево́й — centroidal moment of inertia
    моме́нт ине́рции относи́тельно норма́льной оси́ — directional moment of inertia, inertia yawing moment
    моме́нт ине́рции относи́тельно попере́чной оси́ — longitudinal moment of inertia, inertia pitching moment
    моме́нт ине́рции относи́тельно продо́льной оси́ — lateral moment of inertia, inertia rolling moment
    моме́нт ине́рции, поля́рный — polar moment of inertia
    моме́нт ине́рции, приведё́нный — equivalent moment of inertia
    моме́нт ине́рции, сме́шанный — product of inertia
    моме́нт ине́рции, центробе́жный — product of inertia
    квадрупо́льный моме́нт — quadrupole moment
    кинети́ческий моме́нт — angular momentum, moment of momentum
    моме́нт коли́чества движе́ния — angular momentum, moment of momentum
    моме́нт коли́чества движе́ния, со́бственный — intrinsic angular momentum, spin
    концево́й моме́нт — end moment
    моме́нт корре́кции ( в гироскопических приборах) — slaving torque
    моме́нт кре́на ав.roll(ing) moment
    креня́щий моме́нт мор.heeling moment
    крити́ческий моме́нт — critical moment
    крутя́щий моме́нт — torque
    крутя́щий моме́нт дви́гателя — engine torque
    крутя́щий моме́нт несу́щего винта́ ав.rotor torque
    крутя́щий, пи́ковый моме́нт — maximum [peak] torque
    крутя́щий, пусково́й моме́нт — starting torque
    моме́нт круче́ния — torsional moment
    моме́нт крыла́ — wing moment
    магни́тный моме́нт — magnetic moment
    моме́нт нагру́зки — load moment, load torque
    неуравнове́шенный моме́нт — unbalanced [unstable] moment
    обра́тный моме́нт — back moment
    одноо́сный моме́нт — single-axis torque
    опо́рный моме́нт — moment of a support
    опроки́дывающий моме́нт
    1. tilting [overturning] moment; pull-out torque
    2. мор. capsizing [overturning] moment
    3. ав. disturbing moment
    орбита́льный моме́нт — orbital moment
    моме́нт осто́йчивости — stability moment
    моме́нт осто́йчивости ма́ссы — weight-stability moment
    моме́нт осто́йчивости фо́рмы — form-stability moment
    моме́нт относи́тельно пере́дней кро́мки ав.leading-edge moment
    моме́нт относи́тельно середи́ны хо́рды ав.half-chord moment
    моме́нт отпира́ния — запира́ния ( в функциональных преобразователях) вчт., элк.breakpoint
    моме́нт от постоя́нной нагру́зки — dead-load moment
    моме́нт отсе́чки дви́гателя косм.cut-off time
    моме́нт от со́бственного ве́са — dead-load moment
    моме́нт отце́пки косм.time of release
    моме́нт па́ры сил — moment of a couple (of forces)
    перехо́дный моме́нт — transient torque
    моме́нт пло́щади, стати́ческий — area-moment ratio
    моме́нт по што́пору ав.prospin(ning) moment
    моме́нт прока́тки — rolling torque
    противоде́йствующий моме́нт — countertorque, restoring torque
    моме́нт про́тив што́пора ав.antispin(ning) moment
    пусково́й моме́нт — starting torque
    разруша́ющий моме́нт — breaking moment, moment of rupture
    моме́нт распределе́ния вероя́тности — moment of a frequency distribution
    расчё́тный моме́нт — design moment
    реакти́вный моме́нт — reactive moment; reactive torque
    результи́рующий моме́нт — net [resulting] moment
    моме́нт руля́ высоты́ — elevator moment
    моме́нт руля́ направле́ния — rudder moment
    моме́нт ры́скания ав.yawing moment
    сва́ливающий моме́нт ав.stalling moment
    моме́нт си́лы — moment of force
    синхронизи́рующий моме́нт — synchronizing torque
    скру́чивающий моме́нт — twisting moment
    сме́шанный моме́нт ( в теории вероятностей) — product moment
    моме́нт сно́са ав.drifting moment
    со́бственный моме́нт — intrinsic moment
    моме́нт сопротивле́ния — moment of resistance
    моме́нт сопротивле́ния враще́нию — antitorque moment
    моме́нт сопротивле́ния попере́чного сече́ния — section modulus
    спи́новый магни́тный моме́нт — spin magnetic moment
    моме́нт сре́за — moment of shearing
    моме́нт сры́ва — break-away torque
    стабилизи́рующий моме́нт — stabilizing moment
    стати́ческий моме́нт — static moment
    моме́нт стра́гивания на ли́нии ста́рта ав.starting point
    моме́нт тангажа́ — pitching moment
    моме́нт те́ла, магни́тный — magnetic moment of a body
    моме́нт те́ла, электри́ческий — electric moment of a body
    тормозно́й моме́нт — braking [drag, retarding] torque
    моме́нт тре́ния — friction(al) torque
    моме́нт тро́гания ( электродвигателя) — break-away torque, жарг. kick-off torque
    моме́нт тя́ги — thrust moment
    моме́нт упру́гости — moment of elasticity
    ускоря́ющий моме́нт — accelerating moment
    моме́нт успокое́ния — damping torque
    моме́нт усто́йчивости — moment of stability
    моме́нт центробе́жной па́ры — centrifugal couple moment
    моме́нт центробе́жной си́лы — centrifugal moment
    шарни́рный моме́нт — hinge moment
    электри́ческий моме́нт — electric (dipole) moment
    моме́нт ядра́ — nuclear spin; nuclear magnetic moment

    Русско-английский политехнический словарь > момент

  • 31 Blériot, Louis

    SUBJECT AREA: Aerospace
    [br]
    b. 1 July 1872 Cambrai, France
    d. 2 August 1936 Paris, France
    [br]
    French aircraft manufacturer and pilot who in 1909 made the first flight across the English Channel in an aeroplane.
    [br]
    Having made a fortune with his patented automobile lamp, Blériot started experimenting with model aircraft in about 1900. He tried a flapping-wing layout which, surprisingly, did fly, but a full-size version was a failure. Blériot tried out a wide variety of designs: a biplane float-glider built with Gabriel Voisin; a powered float-plane with ellipsoidal biplane wings; a canard (tail-first) monoplane; a tandem monoplane; and in 1907 a monoplane of conventional layout. This last was not an immediate success, but it led to the Type XI in which Blériot made history by flying from France to England on 25 July 1909.
    Without a doubt, Blériot was an accomplished pilot and a successful manufacturer of aircraft, but he sometimes employed others as designers (a fact not made known at the time). It is now accepted that much of the credit for the design of the Type XI should go to Raymond Saulnier, who later made his name with the Morane-Saulnier Company.
    Blériot-Aéronautique became one of the leading manufacturers of aircraft and by the outbreak of war in 1914 some eight hundred aircraft had been produced. By 1918, aircraft were being built at the rate of eighteen per day. The Blériot company continued to produce aircraft until it was nationalized in 1937.
    [br]
    Principal Honours and Distinctions
    Commandeur de la Légion d'honneur. Daily Mail £1,000 prize for the first cross-Channel aeroplane flight.
    Further Reading
    C.H.Gibbs-Smith, 1965, The Invention of the Aeroplane 1799–1909, London (contains a list of all Blériot's early aircraft).
    J.Stroud, 1966, European Transport Aircraft since 1920, London (for information about Blériot's later aircraft).
    For information relating to the cross-Channel flight, see: C.Fontaine, 1913, Comment Blériota traversé la, Manche, Paris.
    T.D.Crouch, 1982, Blériot XI, the Story of a Classic Aircraft, Washington, DC: National Air \& Space Museum.
    JDS

    Biographical history of technology > Blériot, Louis

  • 32 Dassault (Bloch), Marcel

    SUBJECT AREA: Aerospace
    [br]
    b. 22 January 1892 Paris, France
    d. 18 April 1986 Paris, France
    [br]
    French aircraft designer and manufacturer, best known for his jet fighters the Mystère and Mirage.
    [br]
    During the First World War, Marcel Bloch (he later changed his name to Dassault) worked on French military aircraft and developed a very successful propeller. With his associate, Henri Potez, he set up a company to produce their Eclair wooden propeller in a furniture workshop in Paris. In 1917 they produced a two-seater aircraft which was ordered but then cancelled when the war ended. Potez continued to built aircraft under his own name, but Bloch turned to property speculation, at which he was very successful. In 1930 Bloch returned to the aviation business with an unsuccessful bomber followed by several moderately effective airliners, including the Bloch 220 of 1935, which was similar to the DC-3. He was involved in the design of a four-engined airliner, the SNCASE Languedoc, which flew in September 1939. During the Second World War, Bloch and his brothers became important figures in the French Resistance Movement. Marcel Bloch was eventually captured but survived; however, one of his brothers was executed, and after the war Bloch changed his name to Dassault, which had been his brother's code name in the Resistance. During the 1950s, Avions Marcel Dassault rapidly grew to become Europe's foremost producer of jet fighters. The Ouragon was followed by the Mystère, Etendard and then the outstanding Mirage series. The basic delta-winged Mirage III, with a speed of Mach 2, was soon serving in twenty countries around the world. From this evolved a variable geometry version, a vertical-take-off aircraft, an enlarged light bomber capable of carrying a nuclear bomb, and a swept-wing version for the 1970s. Dassault also produced a successful series of jet airliners starting with the Fan Jet Falcon of 1963. When the Dassault and Breguet companies merged in 1971, Marcel Dassault was still a force to be reckoned with.
    [br]
    Principal Honours and Distinctions
    Guggenheim Medal. Deputy, Assemblée nationale 1951–5 and 1958–86.
    Bibliography
    1971, Le Talisman, Paris: Editions J'ai lu (autobiography).
    Further Reading
    1976, "The Mirage Maker", Sunday Times Magazine (1 June).
    Jane's All the World's Aircraft, London: Jane's (details of Bloch and Dassault aircraft can be found in various years' editions).
    JDS

    Biographical history of technology > Dassault (Bloch), Marcel

  • 33 Fokker, Anthony Herman Gerard

    SUBJECT AREA: Aerospace
    [br]
    b. 6 April 1890 Kediri, Java, Dutch East Indies (now Indonesia)
    d. 23 December 1939 New York, USA
    [br]
    Dutch designer of German fighter aircraft during the First World War and of many successful airliners during the 1920s and 1930s.
    [br]
    Anthony Fokker was born in Java, where his Dutch father had a coffee plantation. The family returned to the Netherlands and, after schooling, young Anthony went to Germany to study aeronautics. With the aid of a friend he built his first aeroplane, the Spin, in 1910: this was a monoplane capable of short hops. By 1911 Fokker had improved the Spin and gained a pilot's licence. In 1912 he set up a company called Fokker Aeroplanbau at Johannistal, outside Berlin, and a series of monoplanes followed.
    When war broke out in 1914 Fokker offered his designs to both sides, and the Germans accepted them. His E I monoplane of 1915 caused a sensation with its manoeuvrability and forward-firing machine gun. Fokker and his collaborators improved on the French deflector system introduced by Raymond Saulnier by fitting an interrupter gear which synchronized the machine gun to fire between the blades of the rotating propeller. The Fokker Dr I triplane and D VII biplane were also outstanding German fighters of the First World War. Fokker's designs were often the work of an employee who received little credit: nevertheless, Fokker was a gifted pilot and a great organizer. After the war, Fokker moved back to the Netherlands and set up the Fokker Aircraft Works in Amsterdam. In 1922, however, he emigrated to the USA and established the Atlantic Aircraft Corporation in New Jersey. His first significant success there came the following year when one of his T-2 monoplanes became the first aircraft to fly non-stop across the USA, from New York to San Diego. He developed a series of civil aircraft using the well-proven method of construction he used for his fighters: fuselages made from steel tubes and thick, robust wooden wings. Of these, probably the most famous was the F VII/3m, a high-wing monoplane with three engines and capable of carrying about ten passengers. From 1925 the F VII/3m airliner was used worldwide and made many record-breaking flights, such as Lieutenant-Commander Richard Byrd's first flight over the North Pole in 1926 and Charles Kingsford-Smith's first transpacific flight in 1928. By this time Fokker had lost interest in military aircraft and had begun to see flight as a means of speeding up global communications and bringing people together. His last years were spent in realizing this dream, and this was reflected in his concentration on the design and production of passenger aircraft.
    [br]
    Principal Honours and Distinctions
    Royal Netherlands Aeronautical Society Gold Medal 1932.
    Bibliography
    1931, The Flying Dutchman: The Life of Anthony Fokker, London: Routledge \& Sons (an interesting, if rather biased, autobiography).
    Further Reading
    A.R.Weyl, 1965, Fokker: The Creative Years, London; reprinted 1988 (a very detailed account of Fokker's early work).
    Thijs Postma, 1979, Fokker: Aircraft Builders to the World, Holland; 1980, English edn, London (a well-illustrated history of Fokker and the company).
    Henri Hegener, 1961, Fokker: The Man and His Aircraft, Letchworth, Herts.
    JDS / CM

    Biographical history of technology > Fokker, Anthony Herman Gerard

  • 34 Saulnier, Raymond

    SUBJECT AREA: Aerospace
    [br]
    b. late eighteenth century France
    d. mid-twentieth century
    [br]
    French designer of aircraft, associated with Louis Blériot and later the Morane- Saulnier company.
    [br]
    When Louis Blériot made his historic flight across the English Channel in 1909, the credit for the success of the flight naturally went to the pilot. Few people thought about the designer of the successful aeroplane, and those who did assumed it was Blériot himself. Blériot did design several of the aeroplanes bearing his name, but the cross- Channel No. XI was mainly designed by his friend Raymond Saulnier, a fact not; broadcast at the time.
    In 1911 the Morane-Saulnier company was founded in Paris by Léon (1885–1918) and Robert (1886–1968) Morane and Raymond Saulnier, who became Chief Designer. Flying a Morane-Saulnier, Roland Garros made a recordbreaking flight to a height of 5,611 m (18,405 ft) in 1912, and the following year he made the first non-stop flight across the Mediterranean. Morane-Saulnier built a series of "parasol" monoplanes which were very widely used during the early years of the First World War. With the wing placed above the fuselage, the pilot had an excellent downward view for observation purposes, but the propeller ruled out a forward-firing machine gun. During 1913–4, Raymond Saulnier was working on an idea for a synchronized machine gun to fire between the blades of the propeller. He could not overcome certain technical problems, so he devised a simple alternative: metal deflector plates were fitted to the propeller, so if a bullet hit the blade it did no harm. Roland Garros, flying a Type L Parasol, tested the device in action during April 1915 and was immediately successful. This opened the era of the true fighter aircraft. Unfortunately, Garros was shot down and the Germans discovered his secret weapon: they improved on the idea with a fully synchronized machine gun fitted to the Fokker E 1 monoplane. The Morane-Saulnier company continued in business until 1963, when it was taken over by the Potez Group.
    [br]
    Further Reading
    Jane's Fighting Aircraft of World War I, 1990, London: Jane's (reprint) (provides plans and details of 1914–18 Morane-Saulnier aeroplanes).
    JDS

    Biographical history of technology > Saulnier, Raymond

  • 35 Wright, Wilbur

    SUBJECT AREA: Aerospace
    [br]
    b. 16 April 1867 Millville, Indiana, USA
    d. 30 May 1912 Dayton, Ohio, USA
    [br]
    American co-inventor, with his brother Orville Wright (b. 19 August 1871 Dayton, Ohio, USA; d. 30 January 1948 Dayton, Ohio, USA), of the first powered aeroplane capable of sustained, controlled flight.
    [br]
    Wilbur and Orville designed and built bicycles in Dayton, Ohio. In the 1890s they developed an interest in flying which led them to study the experiments of gliding pioneers such as Otto Lilienthal in Germany, and their fellow American Octave Chanute. The Wrights were very methodical and tackled the many problems stage by stage. First, they developed a method of controlling a glider using movable control surfaces, instead of weight-shifting as used in the early hand-gliders. They built a wind tunnel to test their wing sections and by 1902 they had produced a controllable glider. Next they needed a petrol engine, and when they could not find one to suit their needs they designed and built one themselves.
    On 17 December 1903 their Flyer was ready and Orville made the first short flight of 12 seconds; Wilbur followed with a 59-second flight covering 853 ft (260 m). An improved design, Flyer II, followed in 1904 and made about eighty flights, including circuits and simple ma-noeuvres. In 1905 Flyer III made several long flights, including one of 38 minutes covering 24½ miles (39 km). Most of the Wrights' flying was carried out in secret to protect their patents, so their achievements received little publicity. For a period of two and a half years they did not fly, but they worked to improve their Flyer and to negotiate terms for the sale of their invention to various governments and commercial syndi-cates.
    In 1908 the Wright Model A appeared, and when Wilbur demonstrated it in France he astounded the European aviators by making several flights lasting more than one hour and one of 2 hours 20 minutes. Considerable numbers of the Model A were built, but the European designers rapidly caught up and overtook the Wrights. The Wright brothers became involved in several legal battles to protect their patents: one of these, with Glenn Curtiss, went on for many years. Wilbur died of typhoid fever in 1912. Orville sold his interest in the Wright Company in 1915, but retained an interest in aeronautical research and lived on to see an aeroplane fly faster than the speed of sound.
    [br]
    Principal Honours and Distinctions
    Royal Aeronautical Society (London) Gold Medal (awarded to both Wilbur and Orville) May 1909. Medals from the Aero Club of America, Congress, Ohio State and the City of Dayton.
    Bibliography
    1951, Miracle at Kitty Hawk. The Letters of Wilbur \& Orville Wright, ed. F.C.Kelly, New York.
    1953, The Papers of Wilbur and Orville Wright, ed. Marvin W.McFarland, 2 vols, New York.
    Orville Wright, 1953, How We Invented the Aeroplane, ed. F.C.Kelly, New York.
    Further Reading
    A.G.Renstrom, 1968, Wilbur \& Orville Wright. A Bibliography, Washington, DC (with 2,055 entries).
    C.H.Gibbs-Smith, 1963, The Wright Brothers, London (reprint) (a concise account).
    J.L.Pritchard, 1953, The Wright Brothers', Journal of the Royal Aeronautical Society (December) (includes much documentary material).
    F.C.Kelly, 1943, The Wright Brothers, New York (reprint) (authorized by Orville Wright).
    H.B.Combs with M.Caidin, 1980, Kill Devil Hill, London (contains more technical information).
    T.D.Crouch, 1989, The Bishop's Boys: A Life of Wilbur \& Orville Wright, New York (perhaps the best of various subsequent biographies).
    JDS

    Biographical history of technology > Wright, Wilbur

  • 36 схема

    схема сущ
    chart
    аэродинамическая схема
    aerodynamic design
    вертолет поперечной схемы
    side-by-side rotor helicopter
    вертолет продольной схемы
    tandem-rotor helicopter
    вертолет соосной схемы
    coaxial-rotor helicopter
    визуальный заход на посадку по упрощенной схеме
    abbreviated visual approach
    воздушное судно, загруженное не по установленной схеме
    improperly loaded aircraft
    воздушное судно обычной схемы взлета и посадки
    conventional takeoff and landing aircraft
    воздушное судно с фюзеляжем типовой схемы
    regular-body aircraft
    воздушное судно схемы летающее крыло
    1. all-wing aircraft
    2. tailless aircraft воздушное судно схемы утка
    canard aircraft
    воздушный винт двусторонней схемы
    doubleacting propeller
    заход на посадку по обычной схеме
    normal approach
    заход на посадку по полной схеме
    long approach
    заход на посадку по сегментно-криволинейной схеме
    segmented approach
    заход на посадку по укороченной схеме
    short approach
    заход на посадку по упрощенной схеме
    simple approach
    исходная схема полета
    reference flight procedure
    контрольный ориентир схемы ожидания
    holding fix
    линия пути по схеме с двумя спаренными разворотами
    race track
    линия пути установленной схемы
    procedure track
    монтажная схема
    wiring diagram
    набор высоты по установившейся схеме
    proper climb
    не выполнять установленную схему
    fail to follow the procedure
    обратная схема
    reversal procedure
    основная схема маркировки
    basic marking pattern
    печатная схема
    printed circuit
    разворот по стандартной схеме
    standard rate turn
    разворот по установленной схеме
    procedure turn
    разрабатывать схему
    construct the procedure
    стандартная схема вылета по приборам
    standard instrument departure
    стандартная схема посадки по приборам
    standard instrument arrival
    схема аварийной эвакуации
    emergency evacuation diagram
    схема аэродрома
    1. aerodrome chart
    2. aerodrome layout схема взлета
    1. takeoff procedure
    2. takeoff pattern схема взлета без остановки
    rolling takeoff procedure
    схема в зоне ожидания
    holding pattern
    схема визуального захода на посадку
    visual approach streamline
    схема визуального полета по кругу
    visual circling procedure
    схема воздушного движения
    air traffic pattern
    схема воздушного поиска
    aerial search pattern
    схема воздушной обстановки
    air plot
    схема возможного столкновения
    collision risk model
    схема входа
    inbound procedure
    схема входа в диспетчерскую зону
    entry procedure
    схема входа в зону ожидания
    holding entry procedure
    схема вылета
    departure procedure
    схема выхода
    outbound procedure
    схема движения
    traffic pattern
    схема движения в зоне аэродрома
    aerodrome traffic pattern
    схема загрузки
    loading chart
    схема загрузки воздушного судна
    1. aircraft loading diagram
    2. aircraft loading chart схема захода на посадку
    1. approach pattern
    2. approach procedure 3. approach chart схема захода на посадку без применения радиолокационных средств
    nonprecision approach procedure
    схема захода на посадку по командам с земли
    ground-controlled approach procedure
    схема захода на посадку по коробочке
    rectangular approach traffic pattern
    схема захода на посадку по приборам
    1. instrument approach procedure
    2. instrument approach chart схема зоны аэродрома
    terminal area streamline
    схема курса
    course structure
    (полета) схема курсов
    heading bug
    схема летного поля
    runway strip pattern
    схема набора высоты после взлета
    after takeoff procedure
    схема обнаружения и устранения неисправностей
    troubleshooting streamline
    схема обслуживания воздушного движения
    air traffic service chart
    схема ожидания типа ипподром
    1. race-track holding pattern
    2. race-track holding procedure схема осмотра
    inspection procedure
    схема поиска
    search circuit
    схема полета
    flight procedure
    схема полета в зоне ожидания
    holding procedure
    схема полета по кругу
    1. circuit pattern
    2. circling procedure схема полета по маршруту
    en-route procedure
    схема полета по приборам
    instrument flight procedure
    схема полета по приборам в зоне ожидания
    instrument holding procedure
    схема полета с минимальным расходом топлива
    fuel savings procedure
    схема полетов
    bug
    схема полетов по кругу
    traffic circuit
    схема посадки
    1. landing procedure
    2. landing pattern 3. landing chart 4. to-land procedure схема последовательности работы
    sequence-of-operation diagram
    схема разворота на посадочный круг
    base turn procedure
    схема размещения наземных средств и оборудования
    facility chart
    схема размещения радиосредств
    radio facility chart
    схема размещения снаряжения
    rigging chart
    схема расположения
    arrangement diagram
    схема расположения ВПП
    runway pattern
    схема распространения шумов
    noise map
    схема руления
    1. taxi pattern
    2. taxi streamline схема руления по аэродрому
    aerodrome taxi circuit
    схема с минимальным расходом топлива
    economic pattern
    схема снижения
    let-down procedure
    схема стоянки
    parking chart
    схема технологических разъемов
    production breakdown diagram
    схема точного захода на посадку
    precision approach procedure
    схема ускоренного набора высоты
    accelerating climb procedure
    схема установки
    installation diagram
    схема ухода на второй круг
    1. overshoot procedure
    2. missed approach procedure типовая схема взлета
    normal takeoff procedure
    установленная схема вылета по приборам
    standard instrument departure chart
    установленная схема полета по кругу
    fixed circuit
    установленная схема ухода на второй круг по приборам
    instrument missed procedure
    уходить на второй круг по заданной схеме
    take a missed-approach procedure
    шаблон схемы зоны ожидания
    holding template
    шаблон схемы разворота на посадочный курс
    base turn template
    шаблон схемы стандартного разворота
    procedure turn template
    шаблон схемы типа ипподром
    racetrack template

    Русско-английский авиационный словарь > схема

См. также в других словарях:

  • Wing configuration — For aircraft configurations in general, including fuselage, tail and powerplant configuration, see Aircraft. For rotary winged aircraft types, see Rotorcraft. For direct lift and compound or hybrid types, see Powered lift. Fixed wing aircraft,… …   Wikipedia

  • Wing loading — In aerodynamics, wing loading is the loaded weight of the aircraft divided by the area of the wing. [Thom, 1988. p. 6.] It is broadly reflective of the aircraft s lift to mass ratio, which affects its rate of climb, load carrying ability, and… …   Wikipedia

  • Wing Derringer — NOTOC Infobox Aircraft name=Derringer caption= type=Light twin engined touring monoplane manufacturer=Wing Aircraft designer=John Thorp first flight=1962 introduced= retired= status= primary user= more users= produced= number built=12 variants… …   Wikipedia

  • Design U — Genre Design Created by Tim Alp Starring Maureen Ross Neilson, Ernst Hupel, Melanie Martin, Baron Bryant, Christina Maureen Rice, William Mood, Blair Varden, Penny Southam, Ramón Robleto, Tyler Hamilton, Jeff Palmer, Lucie Soulard Theme music… …   Wikipedia

  • Area rule — The Whitcomb area rule, also called the transonic area rule, is a design technique used to reduce an aircraft s drag at transonic and supersonic speeds, particularly between Mach 0.75 and 1.2. This is one of the most important operating speed… …   Wikipedia

  • Area 51 — This article is about the U.S. Air Force installation in Nevada. For other uses, see Area 51 (disambiguation). Area 51 …   Wikipedia

  • Wing — A wing is a surface used to produce lift for flight through the air or another gaseous medium. The wing shape is usually an airfoil. The word originally referred only to the foremost limbs of birds, but has been extended to include the wings of… …   Wikipedia

  • Wing, Rutland — Coordinates: 52°37′12″N 0°40′55″W / 52.620°N 0.682°W / 52.620; 0.682 …   Wikipedia

  • area rule — A prescribed method of design for obtaining minimum zero lift drag for a given aerodynamic configuration, such as a wing body configuration, at a given speed. For a transonic body, the area rule is applied by subtracting from, or adding to, its… …   Aviation dictionary

  • Delta wing — HAL Tejas has a tailless delta wing configuration …   Wikipedia

  • interior design — 1. the design and coordination of the decorative elements of the interior of a house, apartment, office, or other structural space, including color schemes, fittings, furnishings, and sometimes architectural features. 2. the art, business, or… …   Universalium

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»