Перевод: со всех языков на английский

с английского на все языки

design+letters

  • 41 Morland, Sir Samuel

    [br]
    b. 1625 Sulhampton, near Reading, Berkshire, England
    d. 26 December 1695 Hammersmith, near London, England
    [br]
    English mathematician and inventor.
    [br]
    Morland was one of several sons of the Revd Thomas Morland and was probably initially educated by his father. He went to Winchester School from 1639 to 1644 and then to Magdalene College, Cambridge, where he graduated BA in 1648 and MA in 1652. He was appointed a tutor there in 1650. In 1653 he went to Sweden in the ambassadorial staff of Bulstrode Whitelocke and remained there until 1654. In that year he was appointed Clerk to Mr Secretary Thurloe, and in 1655 he was accredited by Oliver Cromwell to the Duke of Savoy to appeal for the Waldenses. In 1657 he married Susanne de Milleville of Boissy, France, with whom he had three children. In 1660 he went over to the Royalists, meeting King Charles at Breda, Holland. On 20 May, the King knighted him, creating him baron, for revealing a conspiracy against the king's life. He was also granted a pension of£500 per year. In 1661, at the age of 36, he decided to devote himself to mathematics and invention. He devised a mechanical calculator, probably based on the pattern of Blaise Pascal, for adding and subtracting: this was followed in 1666 by one for multiplying and other functions. A Perpetual Calendar or Almanack followed; he toyed with the idea of a "gunpowder engine" for raising water; he developed a range of speaking trum-pets, said to have a range of 1/2 to 1 mile (0.8–1.6 km) or more; also iron stoves for use on board ships, and improvements to barometers.
    By 1675 he had started selling a range of pumps for private houses, for mines or deep wells, for ships, for emptying ponds or draining low ground as well as to quench fire or wet the sails of ships. The pumps cost from £5 to £63, and the great novelty was that he used, instead of packing around the cylinder sealing against the bore of the cylinder, a neck-gland or seal around the outside diameter of the piston or piston-rod. This revolutionary step avoided the necessity of accurately boring the cylinder, replacing it with the need to machine accurately the outside diameter of the piston or rod, a much easier operation. Twenty-seven variations of size and materials were included in his schedule of'Pumps or Water Engines of Isaac Thompson of Great Russel Street', the maker of Morland's design. In 1681 the King made him "Magister mechanicorum", or Master of Machines. In that year he sailed for France to advise Louis XIV on the waterworks being built at Marly to supply the Palace of Versailles. About this time he had shown King Charles plans for a pumping engine "worked by fire alone". He petitioned for a patent for this, but did not pursue the matter.
    In 1692 he went blind. In all, he married five times. While working for Cromwell he became an expert in ciphers, in opening sealed letters and in their rapid copying.
    [br]
    Principal Honours and Distinctions
    Knighted 1660.
    Bibliography
    Further Reading
    H.W.Dickinson, 1970, Sir Samuel Morland: Diplomat and Inventor, Cambridge: Newcomen Society/Heffers.
    IMcN

    Biographical history of technology > Morland, Sir Samuel

  • 42 Morse, Samuel Finley Breeze

    SUBJECT AREA: Telecommunications
    [br]
    b. 27 April 1791 Charlestown, Massachusetts, USA
    d. 2 April 1872 New York City, New York, USA
    [br]
    American portrait painter and inventor, b est known for his invention of the telegraph and so-called Morse code.
    [br]
    Following early education at Phillips Academy, Andover, at the age of 14 years Morse went to Yale College, where he developed interests in painting and electricity. Upon graduating in 1810 he became a clerk to a Washington publisher and a pupil of Washington Allston, a well-known American painter. The following year he travelled to Europe and entered the London studio of another American artist, Benjamin West, successfully exhibiting at the Royal Academy as well as winning a prize and medal for his sculpture. Returning to Boston and finding little success as a "historical-style" painter, he built up a thriving portrait business, moving in 1818 to Charleston, South Carolina, where three years later he established the (now defunct) South Carolina Academy of Fine Arts. In 1825 he was back in New York, but following the death of his wife and both of his parents that year, he embarked on an extended tour of European art galleries. In 1832, on the boat back to America, he met Charles T.Jackson, who told him of the discovery of the electromagnet and fired his interest in telegraphy to the extent that Morse immediately began to make suggestions for electrical communications and, apparently, devised a form of printing telegraph. Although he returned to his painting and in 1835 was appointed the first Professor of the Literature of Art and Design at the University of New York City, he began to spend more and more time experimenting in telegraphy. In 1836 he invented a relay as a means of extending the cable distance over which telegraph signals could be sent. At this time he became acquainted with Alfred Vail, and the following year, when the US government published the requirements for a national telegraph service, they set out to produce a workable system, with finance provided by Vail's father (who, usefully, owned an ironworks). A patent was filed on 6 October 1837 and a successful demonstration using the so-called Morse code was given on 6 January 1838; the work was, in fact, almost certainly largely that of Vail. As a result of the demonstration a Bill was put forward to Congress for $30,000 for an experimental line between Washington and Baltimore. This was eventually passed and the line was completed, and on 24 May 1844 the first message, "What hath God wrought", was sent between the two cities. In the meantime Morse also worked on the insulation of submarine cables by means of pitch tar and indiarubber.
    With success achieved, Morse offered his invention to the Government for $100,000, but this was declined, so the invention remained in private hands. To exploit it, Morse founded the Magnetic Telephone Company in 1845, amalgamating the following year with the telegraph company of a Henry O'Reilly to form Western Union. Having failed to obtain patents in Europe, he now found himself in litigation with others in the USA, but eventually, in 1854, the US Supreme Court decided in his favour and he soon became very wealthy. In 1857 a proposal was made for a telegraph service across the whole of the USA; this was completed in just over four months in 1861. Four years later work began on a link to Europe via Canada, Alaska, the Aleutian Islands and Russia, but it was abandoned with the completion of the transatlantic cable, a venture in which he also had some involvement. Showered with honours, Morse became a generous philanthropist in his later years. By 1883 the company he had created was worth $80 million and had a virtual monopoly in the USA.
    [br]
    Principal Honours and Distinctions
    LLD, Yale 1846. Fellow of the Academy of Arts and Sciences 1849. Celebratory Banquet, New York, 1869. Statue in New York Central Park 1871. Austrian Gold Medal of Scientific Merit. Danish Knight of the Danneborg. French Légion d'honneur. Italian Knight of St Lazaro and Mauritio. Portuguese Knight of the Tower and Sword. Turkish Order of Glory.
    Bibliography
    E.L.Morse (ed.), 1975, Letters and Journals, New York: Da Capo Press (facsimile of a 1914 edition).
    Further Reading
    J.Munro, 1891, Heroes of the Telegraph (discusses his telegraphic work and its context).
    C.Mabee, 1943, The American Leonardo: A Life of Samuel Morse; reprinted 1969 (a detailed biography).
    KF

    Biographical history of technology > Morse, Samuel Finley Breeze

  • 43 Sauerbrun, Charles de, Baron von Drais

    SUBJECT AREA: Land transport
    [br]
    b. 1785
    d. 1851
    [br]
    German popularizer of the first form of manumotive vehicle, the hobby-horse.
    [br]
    An engineer and agriculturalist who had to travel long distances over rough country, he evolved an improved design of velocipede. The original device appears to have been first shown in the gardens of the Palais Royal by the comte de Sivrac in 1791, a small wooden "horse" fitted with two wheels and propelled by the rider's legs thrusting alternately against the ground. It was not possible to turn the front wheel to steer the machine, a small variation from the straight being obtained by the rider leaning sideways. It is not known if de Sivrac was the inventor of the machine: it is likely that it had been in existence, probably as a child's toy, for a number of years. Its original name was the celerifière, but it was renamed the velocifère in 1793. The Baron's Draisienne was an improvement on this primitive machine; it had a triangulated wooden frame, an upholstered seat, a rear luggage seat and an armrest which took the thrust of the rider as he or she pushed against the ground. Furthermore, it was steerable. In some models there was a cordoperated brake and a prop stand, and the seat height could be adjusted. At least one machine was fitted with a milometer. Drais began limited manufacture and launched a long marketing and patenting campaign, part of which involved sending advertising letters to leading figures, including a number of kings.
    The Draisienne was first shown in public in April 1817: a ladies' version became available in 1819. Von Drais took out a patent in Baden on 12 January 1818 and followed with a French patent on 17 February. Three-and four-wheeled versions became available so the two men could take the ladies for a jaunt.
    Drais left his agricultural and forestry work and devoted his full time to the "Running Machine" business. Soon copies were being made and sold in Italy, Germany and Austria. In London, a Denis Johnson took out a patent in December 1818 for a "pedestrian curricle" which was soon nicknamed the dandy horse.
    [br]
    Further Reading
    C.A.Caunter, 1955, Cycles: History and Development, London: Science Museum and HMSO.
    IMcN

    Biographical history of technology > Sauerbrun, Charles de, Baron von Drais

  • 44 Stringfellow, John

    SUBJECT AREA: Aerospace
    [br]
    b. 6 December 1799 Sheffield, England
    d. 13 December 1883 Chard, England
    [br]
    English inventor and builder of a series of experimental model aeroplanes.
    [br]
    After serving an apprenticeship in the lace industry, Stringfellow left Nottingham in about 1820 and moved to Chard in Somerset, where he set up his own business. He had wide interests such as photography, politics, and the use of electricity for medical treatment. Stringfellow met William Samuel Henson, who also lived in Chard and was involved in lacemaking, and became interested in his "aerial steam carriage" of 1842–3. When support for this project foundered, Henson and Stringfellow drew up an agreement "Whereas it is intended to construct a model of an Aerial Machine". They built a large model with a wing span of 20 ft (6 m) and powered by a steam engine, which was probably the work of Stringfellow. The model was tested on a hillside near Chard, often at night to avoid publicity, but despite many attempts it never made a successful flight. At this point Henson emigrated to the United States. From 1848 Stringfellow continued to experiment with models of his own design, starting with one with a wing span of 10 ft (3m). He decided to test it in a disused lace factory, rather than in the open air. Stringfellow fitted a horizontal wire which supported the model as it gained speed prior to free flight. Unfortunately, neither this nor later models made a sustained flight, despite Stringfellow's efficient lightweight steam engine. For many years Stringfellow abandoned his aeronautical experiments, then in 1866 when the (Royal) Aeronautical Society was founded, his interest was revived. He built a steam-powered triplane, which was demonstrated "flying" along a wire at the world's first Aeronautical Exhibition, held at Crystal Palace, London, in 1868. Stringfellow also received a cash prize for one of his engines, which was the lightest practical power unit at the Exhibition. Although Stringfellow's models never achieved a really successful flight, his designs showed the way for others to follow. Several of his models are preserved in the Science Museum in London.
    [br]
    Principal Honours and Distinctions
    Member of the (Royal) Aeronautical Society 1868.
    Bibliography
    Many of Stringfellow's letters and papers are held by the Royal Aeronautical Society, London.
    Further Reading
    Harald Penrose, 1988, An Ancient Air: A Biography of John Stringfellow, Shrewsbury. A.M.Balantyne and J.Laurence Pritchard, 1956, "The lives and work of William Samuel Henson and John Stringfellow", Journal of the Royal Aeronautical Society (June) (an attempt to analyse conflicting evidence).
    M.J.B.Davy, 1931, Henson and Stringfellow, London (an earlier work with excellent drawings from Henson's patent).
    "The aeronautical work of John Stringfellow, with some account of W.S.Henson", Aeronau-tical Classics No. 5 (written by John Stringfellow's son and held by the Royal Aeronautical Society in London).
    JDS

    Biographical history of technology > Stringfellow, John

  • 45 Wright, Wilbur

    SUBJECT AREA: Aerospace
    [br]
    b. 16 April 1867 Millville, Indiana, USA
    d. 30 May 1912 Dayton, Ohio, USA
    [br]
    American co-inventor, with his brother Orville Wright (b. 19 August 1871 Dayton, Ohio, USA; d. 30 January 1948 Dayton, Ohio, USA), of the first powered aeroplane capable of sustained, controlled flight.
    [br]
    Wilbur and Orville designed and built bicycles in Dayton, Ohio. In the 1890s they developed an interest in flying which led them to study the experiments of gliding pioneers such as Otto Lilienthal in Germany, and their fellow American Octave Chanute. The Wrights were very methodical and tackled the many problems stage by stage. First, they developed a method of controlling a glider using movable control surfaces, instead of weight-shifting as used in the early hand-gliders. They built a wind tunnel to test their wing sections and by 1902 they had produced a controllable glider. Next they needed a petrol engine, and when they could not find one to suit their needs they designed and built one themselves.
    On 17 December 1903 their Flyer was ready and Orville made the first short flight of 12 seconds; Wilbur followed with a 59-second flight covering 853 ft (260 m). An improved design, Flyer II, followed in 1904 and made about eighty flights, including circuits and simple ma-noeuvres. In 1905 Flyer III made several long flights, including one of 38 minutes covering 24½ miles (39 km). Most of the Wrights' flying was carried out in secret to protect their patents, so their achievements received little publicity. For a period of two and a half years they did not fly, but they worked to improve their Flyer and to negotiate terms for the sale of their invention to various governments and commercial syndi-cates.
    In 1908 the Wright Model A appeared, and when Wilbur demonstrated it in France he astounded the European aviators by making several flights lasting more than one hour and one of 2 hours 20 minutes. Considerable numbers of the Model A were built, but the European designers rapidly caught up and overtook the Wrights. The Wright brothers became involved in several legal battles to protect their patents: one of these, with Glenn Curtiss, went on for many years. Wilbur died of typhoid fever in 1912. Orville sold his interest in the Wright Company in 1915, but retained an interest in aeronautical research and lived on to see an aeroplane fly faster than the speed of sound.
    [br]
    Principal Honours and Distinctions
    Royal Aeronautical Society (London) Gold Medal (awarded to both Wilbur and Orville) May 1909. Medals from the Aero Club of America, Congress, Ohio State and the City of Dayton.
    Bibliography
    1951, Miracle at Kitty Hawk. The Letters of Wilbur \& Orville Wright, ed. F.C.Kelly, New York.
    1953, The Papers of Wilbur and Orville Wright, ed. Marvin W.McFarland, 2 vols, New York.
    Orville Wright, 1953, How We Invented the Aeroplane, ed. F.C.Kelly, New York.
    Further Reading
    A.G.Renstrom, 1968, Wilbur \& Orville Wright. A Bibliography, Washington, DC (with 2,055 entries).
    C.H.Gibbs-Smith, 1963, The Wright Brothers, London (reprint) (a concise account).
    J.L.Pritchard, 1953, The Wright Brothers', Journal of the Royal Aeronautical Society (December) (includes much documentary material).
    F.C.Kelly, 1943, The Wright Brothers, New York (reprint) (authorized by Orville Wright).
    H.B.Combs with M.Caidin, 1980, Kill Devil Hill, London (contains more technical information).
    T.D.Crouch, 1989, The Bishop's Boys: A Life of Wilbur \& Orville Wright, New York (perhaps the best of various subsequent biographies).
    JDS

    Biographical history of technology > Wright, Wilbur

  • 46 τύπος

    τύπος, ου, ὁ (Aeschyl., Hdt.+; ins in var. senses: New Docs 4, 41f; loanw. in rabb.).
    a mark made as the result of a blow or pressure, mark, trace (Posidon.: 169 Fgm. 1 Jac.; Anth. Pal. 6, 57, 5 ὀδόντων; Athen. 13, 49, 585c τῶν πληγῶν; Diog. L. 7, 45; 50 of a seal-ring; ViJer 13 [p. 73, 10 Sch.]; Philo, Mos. 1, 119; Jos., Bell. 3, 420; PGM 4, 1429; 5, 307.—ὁ ἐκ τῆς αἰσθήσεως τ. ἐν διανοίᾳ γινόμενος Did., Gen. 217, 19) τῶν ἥλων J 20:25ab (v.l. τὸν τόπον).—This may be the place for οἱ τύποι τῶν λίθων Hs 9, 10, 1f (taking a stone out of the ground leaves a hole that bears the contours of the stone, but in effect the stone has made the impression; s. KLake, Apost. Fathers II, 1917; MDibelius, Hdb. But s. 4 below).
    embodiment of characteristics or function of a model, copy, image (cp. Artem. 2, 85 the children are τύπ. of their parents.—Cp. ὁ γὰρ ἥλιος ἐν τύπῳ θεοῦ ἐστιν Theoph. Ant. 2, 15 [p. 138, 8]) the master is a τύπος θεοῦ image of God to the slave B 19:7; D 4:11. The supervisor/bishop is τύπος τοῦ πατρός ITr 3:1; cp. IMg 6:1ab (in both instances here, τύπον is Zahn’s conjecture, favored by Lghtf., for τόπον, which is unanimously read by Gk. and Lat. mss., and which can be retained, with Funk, Hilgenfeld, Krüger, Bihlmeyer).
    an object formed to resemble some entity, image, statue of any kind of material (Hdt. 3, 88,3 τύπ. λίθινος. Of images of the gods Herodian 5, 5, 6; Jos., Ant. 1, 311 τ. τύπους τῶν θεῶν; 15, 329; SibOr 3, 14) Ac 7:43 (Am 5:26).
    a kind, class, or thing that suggests a model or pattern, form, figure, pattern (Aeschyl. et al.; Pla., Rep. 387c; 397c) ἐποίησεν ἡμᾶς ἄλλον τύπον he has made us people of a different stamp B 6:11. τύπος διδαχῆς pattern of teaching Ro 6:17 (cp. διδαχή 2; Iambl., Vi. Pyth. 23, 105 τὸν τύπον τῆς διδασκαλίας.—The use of τύπος for the imperial ‘rescripts’ [e.g. OGI 521, 5; s. note 4, esp. the reff. for θεῖος τύπος] appears too late to merit serious consideration.—JKürzinger, Biblica 39, ’58, 156–76; ELee, NTS 8, ’61/62, 166–73 [‘mold’]). Of the form (of expression) (Dionys. Hal., Ad Pomp. 4, 2 Rad.; PLips 121, 28 [II A.D.]; POxy 1460, 12) γράψας ἐπιστολὴν ἔχουσαν τὸν τύπον τοῦτον (cp. EpArist 34 ἐπιστολὴ τὸν τύπον ἔχουσα τοῦτον) somewhat as follows, after this manner, to this effect (so numerous versions) Ac 23:25, but s. next.—On τοὺς τύπους τῶν λίθων ἀναπληροῦν Hs 9, 10, 1 s. ἀναπληρόω 3 and 1 above.
    the content of a document, text, content (Iambl., Vi. Pyth. 35, 259 τύπος τ. γεγραμμένων; 3 Macc 3:30; PFlor 278 II, 20 [III A.D.] τῷ αὐτῷ τύπῳ κ. χρόνῳ=of the same content and date) Ac 23:25 (EpArist 34 ἐπιστολὴ τὸν τύπον ἔχουσα τοῦτον). Cp. POxy 3366, 28 (of a copy of a letter), 32 (the original). S. New Docs 1, 77f (with caution against confusing rhetorical practice in composition of speeches and the inclusion of letters whose value lay in their verbatim expression). For a difft. view s. 4 above; more ambivalently Hemer, Acts 347f.
    an archetype serving as a model, type, pattern, model (Pla., Rep. 379a περὶ θεολογίας)
    technically design, pattern (Diod S 14, 41, 4) Ac 7:44; Hb 8:5 (cp. on both Ex 25:40).
    in the moral life example, pattern (OGI 383, 212 [I B.C.] τ. εὐσεβείας; SibOr 1, 380; Did., Gen. 125, 27; in a pejorative sense 4 Macc 6:19 ἀσεβείας τύπ.) τύπος γίνου τῶν πιστῶν 1 Ti 4:12.—Phil 3:17; 1 Th 1:7; 2 Th 3:9; Tit 2:7; 1 Pt 5:3; IMg 6:2.—S. ESelwyn, 1 Pt ’46, 298f.
    of the types given by God as an indication of the future, in the form of persons or things (cp. Philo, Op. M. 157; Iren. 1, 6, 4 [Harv. I 74, 3]); of Adam: τύπος τοῦ μέλλοντος (Ἀδάμ) a type of the Adam to come (i.e. of Christ) Ro 5:14. Cp. 1 Cor 10:6, 11 v.l.; B 7:3, 7, 10f; 8:1; 12:2, 5f, 10; 13:5. χριστὸς Ἰησοῦς … ἑαυτὸν τύπον ἔδειξε Jesus Christ showed himself as the prime exemplar of the resurrection AcPlCor 2:6 (cp. Just., D. 40, 1 τύπος ἦν τοῦ χριστοῦ). Also of the pictorial symbols that Hermas sees, and their deeper meaning Hv 3, 11, 4. The vision serves εἰς τύπον τῆς θλίψεως τῆς ἐπερχομένης as a symbol or foreshadowing of the tribulation to come 4, 1, 1; cp. 4, 2, 5; 4, 3, 6. The two trees are to be εἰς τύπον τοῖς δούλοις τοῦ θεοῦ Hs 2:2a; cp. b.—ἐν τύπῳ χωρίου Ῥωμαίων IRo ins is a conjecture by Zahn for ἐν τόπῳ χ. Ῥ., which is read by all mss. and makes good sense.—AvBlumenthal, Τύπος u. παράδειγμα: Her 63, 1928, 391–414; LGoppelt, Typos. D. typolog. Deutung des AT im Neuen ’39; RBultmann, TLZ 75, ’50, cols. 205–12; AFridrichsen et al., The Root of the Vine (typology) ’53; GLampe and KWoollcombe, Essays in Typology, ’57; KOstmeyer, NTS 46, ’00, 112–31.—New Docs 1, 77f; 4, 41. DELG s.v. τύπτω B. M-M. EDNT. TW. Spicq. Sv.

    Ελληνικά-Αγγλικά παλαιοχριστιανική Λογοτεχνία > τύπος

  • 47 Artificial Intelligence

       In my opinion, none of [these programs] does even remote justice to the complexity of human mental processes. Unlike men, "artificially intelligent" programs tend to be single minded, undistractable, and unemotional. (Neisser, 1967, p. 9)
       Future progress in [artificial intelligence] will depend on the development of both practical and theoretical knowledge.... As regards theoretical knowledge, some have sought a unified theory of artificial intelligence. My view is that artificial intelligence is (or soon will be) an engineering discipline since its primary goal is to build things. (Nilsson, 1971, pp. vii-viii)
       Most workers in AI [artificial intelligence] research and in related fields confess to a pronounced feeling of disappointment in what has been achieved in the last 25 years. Workers entered the field around 1950, and even around 1960, with high hopes that are very far from being realized in 1972. In no part of the field have the discoveries made so far produced the major impact that was then promised.... In the meantime, claims and predictions regarding the potential results of AI research had been publicized which went even farther than the expectations of the majority of workers in the field, whose embarrassments have been added to by the lamentable failure of such inflated predictions....
       When able and respected scientists write in letters to the present author that AI, the major goal of computing science, represents "another step in the general process of evolution"; that possibilities in the 1980s include an all-purpose intelligence on a human-scale knowledge base; that awe-inspiring possibilities suggest themselves based on machine intelligence exceeding human intelligence by the year 2000 [one has the right to be skeptical]. (Lighthill, 1972, p. 17)
       4) Just as Astronomy Succeeded Astrology, the Discovery of Intellectual Processes in Machines Should Lead to a Science, Eventually
       Just as astronomy succeeded astrology, following Kepler's discovery of planetary regularities, the discoveries of these many principles in empirical explorations on intellectual processes in machines should lead to a science, eventually. (Minsky & Papert, 1973, p. 11)
       Many problems arise in experiments on machine intelligence because things obvious to any person are not represented in any program. One can pull with a string, but one cannot push with one.... Simple facts like these caused serious problems when Charniak attempted to extend Bobrow's "Student" program to more realistic applications, and they have not been faced up to until now. (Minsky & Papert, 1973, p. 77)
       What do we mean by [a symbolic] "description"? We do not mean to suggest that our descriptions must be made of strings of ordinary language words (although they might be). The simplest kind of description is a structure in which some features of a situation are represented by single ("primitive") symbols, and relations between those features are represented by other symbols-or by other features of the way the description is put together. (Minsky & Papert, 1973, p. 11)
       [AI is] the use of computer programs and programming techniques to cast light on the principles of intelligence in general and human thought in particular. (Boden, 1977, p. 5)
       The word you look for and hardly ever see in the early AI literature is the word knowledge. They didn't believe you have to know anything, you could always rework it all.... In fact 1967 is the turning point in my mind when there was enough feeling that the old ideas of general principles had to go.... I came up with an argument for what I called the primacy of expertise, and at the time I called the other guys the generalists. (Moses, quoted in McCorduck, 1979, pp. 228-229)
       9) Artificial Intelligence Is Psychology in a Particularly Pure and Abstract Form
       The basic idea of cognitive science is that intelligent beings are semantic engines-in other words, automatic formal systems with interpretations under which they consistently make sense. We can now see why this includes psychology and artificial intelligence on a more or less equal footing: people and intelligent computers (if and when there are any) turn out to be merely different manifestations of the same underlying phenomenon. Moreover, with universal hardware, any semantic engine can in principle be formally imitated by a computer if only the right program can be found. And that will guarantee semantic imitation as well, since (given the appropriate formal behavior) the semantics is "taking care of itself" anyway. Thus we also see why, from this perspective, artificial intelligence can be regarded as psychology in a particularly pure and abstract form. The same fundamental structures are under investigation, but in AI, all the relevant parameters are under direct experimental control (in the programming), without any messy physiology or ethics to get in the way. (Haugeland, 1981b, p. 31)
       There are many different kinds of reasoning one might imagine:
        Formal reasoning involves the syntactic manipulation of data structures to deduce new ones following prespecified rules of inference. Mathematical logic is the archetypical formal representation. Procedural reasoning uses simulation to answer questions and solve problems. When we use a program to answer What is the sum of 3 and 4? it uses, or "runs," a procedural model of arithmetic. Reasoning by analogy seems to be a very natural mode of thought for humans but, so far, difficult to accomplish in AI programs. The idea is that when you ask the question Can robins fly? the system might reason that "robins are like sparrows, and I know that sparrows can fly, so robins probably can fly."
        Generalization and abstraction are also natural reasoning process for humans that are difficult to pin down well enough to implement in a program. If one knows that Robins have wings, that Sparrows have wings, and that Blue jays have wings, eventually one will believe that All birds have wings. This capability may be at the core of most human learning, but it has not yet become a useful technique in AI.... Meta- level reasoning is demonstrated by the way one answers the question What is Paul Newman's telephone number? You might reason that "if I knew Paul Newman's number, I would know that I knew it, because it is a notable fact." This involves using "knowledge about what you know," in particular, about the extent of your knowledge and about the importance of certain facts. Recent research in psychology and AI indicates that meta-level reasoning may play a central role in human cognitive processing. (Barr & Feigenbaum, 1981, pp. 146-147)
       Suffice it to say that programs already exist that can do things-or, at the very least, appear to be beginning to do things-which ill-informed critics have asserted a priori to be impossible. Examples include: perceiving in a holistic as opposed to an atomistic way; using language creatively; translating sensibly from one language to another by way of a language-neutral semantic representation; planning acts in a broad and sketchy fashion, the details being decided only in execution; distinguishing between different species of emotional reaction according to the psychological context of the subject. (Boden, 1981, p. 33)
       Can the synthesis of Man and Machine ever be stable, or will the purely organic component become such a hindrance that it has to be discarded? If this eventually happens-and I have... good reasons for thinking that it must-we have nothing to regret and certainly nothing to fear. (Clarke, 1984, p. 243)
       The thesis of GOFAI... is not that the processes underlying intelligence can be described symbolically... but that they are symbolic. (Haugeland, 1985, p. 113)
        14) Artificial Intelligence Provides a Useful Approach to Psychological and Psychiatric Theory Formation
       It is all very well formulating psychological and psychiatric theories verbally but, when using natural language (even technical jargon), it is difficult to recognise when a theory is complete; oversights are all too easily made, gaps too readily left. This is a point which is generally recognised to be true and it is for precisely this reason that the behavioural sciences attempt to follow the natural sciences in using "classical" mathematics as a more rigorous descriptive language. However, it is an unfortunate fact that, with a few notable exceptions, there has been a marked lack of success in this application. It is my belief that a different approach-a different mathematics-is needed, and that AI provides just this approach. (Hand, quoted in Hand, 1985, pp. 6-7)
       We might distinguish among four kinds of AI.
       Research of this kind involves building and programming computers to perform tasks which, to paraphrase Marvin Minsky, would require intelligence if they were done by us. Researchers in nonpsychological AI make no claims whatsoever about the psychological realism of their programs or the devices they build, that is, about whether or not computers perform tasks as humans do.
       Research here is guided by the view that the computer is a useful tool in the study of mind. In particular, we can write computer programs or build devices that simulate alleged psychological processes in humans and then test our predictions about how the alleged processes work. We can weave these programs and devices together with other programs and devices that simulate different alleged mental processes and thereby test the degree to which the AI system as a whole simulates human mentality. According to weak psychological AI, working with computer models is a way of refining and testing hypotheses about processes that are allegedly realized in human minds.
    ... According to this view, our minds are computers and therefore can be duplicated by other computers. Sherry Turkle writes that the "real ambition is of mythic proportions, making a general purpose intelligence, a mind." (Turkle, 1984, p. 240) The authors of a major text announce that "the ultimate goal of AI research is to build a person or, more humbly, an animal." (Charniak & McDermott, 1985, p. 7)
       Research in this field, like strong psychological AI, takes seriously the functionalist view that mentality can be realized in many different types of physical devices. Suprapsychological AI, however, accuses strong psychological AI of being chauvinisticof being only interested in human intelligence! Suprapsychological AI claims to be interested in all the conceivable ways intelligence can be realized. (Flanagan, 1991, pp. 241-242)
        16) Determination of Relevance of Rules in Particular Contexts
       Even if the [rules] were stored in a context-free form the computer still couldn't use them. To do that the computer requires rules enabling it to draw on just those [ rules] which are relevant in each particular context. Determination of relevance will have to be based on further facts and rules, but the question will again arise as to which facts and rules are relevant for making each particular determination. One could always invoke further facts and rules to answer this question, but of course these must be only the relevant ones. And so it goes. It seems that AI workers will never be able to get started here unless they can settle the problem of relevance beforehand by cataloguing types of context and listing just those facts which are relevant in each. (Dreyfus & Dreyfus, 1986, p. 80)
       Perhaps the single most important idea to artificial intelligence is that there is no fundamental difference between form and content, that meaning can be captured in a set of symbols such as a semantic net. (G. Johnson, 1986, p. 250)
        18) The Assumption That the Mind Is a Formal System
       Artificial intelligence is based on the assumption that the mind can be described as some kind of formal system manipulating symbols that stand for things in the world. Thus it doesn't matter what the brain is made of, or what it uses for tokens in the great game of thinking. Using an equivalent set of tokens and rules, we can do thinking with a digital computer, just as we can play chess using cups, salt and pepper shakers, knives, forks, and spoons. Using the right software, one system (the mind) can be mapped into the other (the computer). (G. Johnson, 1986, p. 250)
        19) A Statement of the Primary and Secondary Purposes of Artificial Intelligence
       The primary goal of Artificial Intelligence is to make machines smarter.
       The secondary goals of Artificial Intelligence are to understand what intelligence is (the Nobel laureate purpose) and to make machines more useful (the entrepreneurial purpose). (Winston, 1987, p. 1)
       The theoretical ideas of older branches of engineering are captured in the language of mathematics. We contend that mathematical logic provides the basis for theory in AI. Although many computer scientists already count logic as fundamental to computer science in general, we put forward an even stronger form of the logic-is-important argument....
       AI deals mainly with the problem of representing and using declarative (as opposed to procedural) knowledge. Declarative knowledge is the kind that is expressed as sentences, and AI needs a language in which to state these sentences. Because the languages in which this knowledge usually is originally captured (natural languages such as English) are not suitable for computer representations, some other language with the appropriate properties must be used. It turns out, we think, that the appropriate properties include at least those that have been uppermost in the minds of logicians in their development of logical languages such as the predicate calculus. Thus, we think that any language for expressing knowledge in AI systems must be at least as expressive as the first-order predicate calculus. (Genesereth & Nilsson, 1987, p. viii)
        21) Perceptual Structures Can Be Represented as Lists of Elementary Propositions
       In artificial intelligence studies, perceptual structures are represented as assemblages of description lists, the elementary components of which are propositions asserting that certain relations hold among elements. (Chase & Simon, 1988, p. 490)
       Artificial intelligence (AI) is sometimes defined as the study of how to build and/or program computers to enable them to do the sorts of things that minds can do. Some of these things are commonly regarded as requiring intelligence: offering a medical diagnosis and/or prescription, giving legal or scientific advice, proving theorems in logic or mathematics. Others are not, because they can be done by all normal adults irrespective of educational background (and sometimes by non-human animals too), and typically involve no conscious control: seeing things in sunlight and shadows, finding a path through cluttered terrain, fitting pegs into holes, speaking one's own native tongue, and using one's common sense. Because it covers AI research dealing with both these classes of mental capacity, this definition is preferable to one describing AI as making computers do "things that would require intelligence if done by people." However, it presupposes that computers could do what minds can do, that they might really diagnose, advise, infer, and understand. One could avoid this problematic assumption (and also side-step questions about whether computers do things in the same way as we do) by defining AI instead as "the development of computers whose observable performance has features which in humans we would attribute to mental processes." This bland characterization would be acceptable to some AI workers, especially amongst those focusing on the production of technological tools for commercial purposes. But many others would favour a more controversial definition, seeing AI as the science of intelligence in general-or, more accurately, as the intellectual core of cognitive science. As such, its goal is to provide a systematic theory that can explain (and perhaps enable us to replicate) both the general categories of intentionality and the diverse psychological capacities grounded in them. (Boden, 1990b, pp. 1-2)
       Because the ability to store data somewhat corresponds to what we call memory in human beings, and because the ability to follow logical procedures somewhat corresponds to what we call reasoning in human beings, many members of the cult have concluded that what computers do somewhat corresponds to what we call thinking. It is no great difficulty to persuade the general public of that conclusion since computers process data very fast in small spaces well below the level of visibility; they do not look like other machines when they are at work. They seem to be running along as smoothly and silently as the brain does when it remembers and reasons and thinks. On the other hand, those who design and build computers know exactly how the machines are working down in the hidden depths of their semiconductors. Computers can be taken apart, scrutinized, and put back together. Their activities can be tracked, analyzed, measured, and thus clearly understood-which is far from possible with the brain. This gives rise to the tempting assumption on the part of the builders and designers that computers can tell us something about brains, indeed, that the computer can serve as a model of the mind, which then comes to be seen as some manner of information processing machine, and possibly not as good at the job as the machine. (Roszak, 1994, pp. xiv-xv)
       The inner workings of the human mind are far more intricate than the most complicated systems of modern technology. Researchers in the field of artificial intelligence have been attempting to develop programs that will enable computers to display intelligent behavior. Although this field has been an active one for more than thirty-five years and has had many notable successes, AI researchers still do not know how to create a program that matches human intelligence. No existing program can recall facts, solve problems, reason, learn, and process language with human facility. This lack of success has occurred not because computers are inferior to human brains but rather because we do not yet know in sufficient detail how intelligence is organized in the brain. (Anderson, 1995, p. 2)

    Historical dictionary of quotations in cognitive science > Artificial Intelligence

  • 48 Reading

       1) The Discovery of Truth Depends on the Thoughtful Reading of Authoritative Texts
       For the Middle Ages, all discovery of truth was first reception of traditional authorities, then later-in the thirteenth century-rational reconciliation of authoritative texts. A comprehension of the world was not regarded as a creative function but as an assimilation and retracing of given facts; the symbolic expression of this being reading. The goal and the accomplishment of the thinker is to connect all these facts together in the form of the "summa." Dante's cosmic poem is such a summa too. (Curtius, 1973, p. 326)
       The readers of books... extend or concentrate a function common to us all. Reading letters on a page is only one of its many guises. The astronomer reading a map of stars that no longer exist; the Japanese architect reading the land on which a house is to be built so as to guard it from evil forces; the zoologist reading the spoor of animals in the forest; the card-player reading her partner's gestures before playing the winning card; the dancer reading the choreographer's notations, and the public reading the dancer's movements on the stage; the weaver reading the intricate design of a carpet being woven; the organ-player reading various simultaneous strands of music orchestrated on the page; the parent reading the baby's face for signs of joy or fright, or wonder; the Chinese fortune-teller reading the ancient marks on the shell of a tortoise; the lover blindly reading the loved one's body at night, under the sheets; the psychiatrist helping patients read their own bewildering dreams; the Hawaiian fisherman reading the ocean currents by plunging a hand into the water; the farmer reading the weather in the sky-all these share with book-readers the craft of deciphering and translating signs....
       We all read ourselves and the world around us in order to glimpse what and where we are. We read to understand, or to begin to understand. We cannot do but read. Reading, almost as much as breathing, is our essential function. (Manguel, 1996, pp. 6-7)
       There is a pitched battle between those theorists and modellers who embrace the primacy of syntax and those who embrace the primacy of semantics in language processing. At times both schools have committed various excesses. For example, some of the former have relied foolishly on context-free mathematical-combinatory models, while some of the latter have flirted with versions of the "direct-access hypothesis," the idea that skilled readers process printed language directly into meaning without phonological or even syntactic processing. The problems with the first excess are patent. Those with the second are more complex and demand more research. Unskilled readers apparently do rely more on phonological processing than do skilled ones; hence their spoken dialects may interfere with their reading-and writing-habits. But the extent to which phonological processing is absent in the skilled reader has not been established, and the contention that syntactic processing is suspended in the skilled reader is surely wrong and not supported by empirical evidence-though blood-flow patterns in the brain are curiously different during speaking, oral reading, and silent reading. (M. L. Johnson, 1988, pp. 101-102)

    Historical dictionary of quotations in cognitive science > Reading

См. также в других словарях:

  • Letters to a Philosophical Unbeliever — (1780) is a multi volume series of books on metaphysics by eighteenth century British polymath Joseph Priestley.Priestley wrote a series of important metaphysics works during the years he spent serving as Lord Shelburne s assistant and companion …   Wikipedia

  • Letters Patent — A legal instrument that grants the exclusive rights of an invention to an individual or a corporation. A letters patent is granted by the government to an individual, giving him or her the rights to authorship or to a patent for a new invention… …   Investment dictionary

  • Design features of language — The Design Features of Language was a phrase coined in the 1960s by the American linguist Charles Hockett. Hockett believed that there existed 16 features of human language that distinguished human communication from that of animals. Charles… …   Wikipedia

  • Design Features of Language — The Design Features of Language was a phrase coined in the 1960 s by the American linguist Charles Hockett. Hockett believed that there existed 16 features of human language that distinguished human communication from that of animals. Charles… …   Wikipedia

  • graphic design — the art or profession of visual communication that combines images, words, and ideas to convey information to an audience, esp. to produce a specific effect. * * * The art and profession of selecting and arranging visual elements such as… …   Universalium

  • Intelligent design — This article is about intelligent design as promulgated by the Discovery Institute. For other uses, see Intelligent design (disambiguation). For the philosophical argument from design , see Teleological argument …   Wikipedia

  • Labeling (map design) — Cartographic labeling is a form of typography and strongly deals with form, style, weight and size of type on a map. Essentially, labeling denotes the correct way to label features (points, arcs, or polygons). Form In type, form describes… …   Wikipedia

  • College of Arts and Letters (James Madison University) — The College of Arts and Letters is one of the academic college at James Madison University in Harrisonburg, Virginia. It includes the Schools of Communication, Information, and Media, the School of Liberal Arts, and the School of Public and… …   Wikipedia

  • Intelligent design in politics — The intelligent design movement has conducted a far reaching organized campaign largely in the United States that promotes a Neo Creationist religious agenda calling for broad social, academic and political changes centering around intelligent… …   Wikipedia

  • Arts & Letters Daily — ( [http://www.aldaily.com/ www.aldaily.com] ) is a web portal owned by The Chronicle of Higher Education. It features links to a diverse array of high quality news stories, features and reviews from throughout the online Anglosphere. In this, it… …   Wikipedia

  • Book design — is the art of incorporating the content, , format, design, and sequence of the various components of a book into a coherent whole.In the words of Jan Tschichold, book design [...] though largely forgotten today, methods and rules upon which it is …   Wikipedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»