Перевод: со всех языков на все языки

со всех языков на все языки

cylinder+method

  • 101 Bourn, Daniel

    SUBJECT AREA: Textiles
    [br]
    fl. 1744 Lancashire, England
    [br]
    English inventor of a machine with cylinders for carding cotton.
    [br]
    Daniel Bourn may well have been a native of Lancashire. He set up a fourth Paul-Wyatt cotton-spinning mill at Leominster, Herefordshire, possibly in 1744, although the earliest mention of it is in 1748. His only known partner in this mill was Henry Morris, a yarn dealer who in 1743 had bought a grant of spindles from Paul at the low rate of 30 shillings or 40 shillings per spindle when the current price was £3 or £4. When Bourn patented his carding engine in 1748, he asked Wyatt for a grant of spindles, to which Wyatt agreed because £100 was offered immedi-ately. The mill, which was probably the only one outside the control of Paul and his backers, was destroyed by fire in 1754 and was not rebuilt, although Bourn and his partners had considerable hopes for it. Bourn was said to have lost over £1,600 in the venture.
    Daniel Bourn described himself as a wool and cotton dealer of Leominster in his patent of 1748 for his carding engine. The significance of this invention is the use of rotating cylinders covered with wire clothing. The patent drawing shows four cylinders, one following the other to tease out the wool, but Bourn was unable to discover a satisfactory method of removing the fibres from the last cylinder. It is possible that Robert Peel in Lancashire obtained one of these engines through Morris, and that James Hargreaves tried to improve it; if so, then some of the early carding engines in the cotton industry were derived from Bourn's.
    [br]
    Bibliography
    1748, British patent no. 628 (carding engine).
    Further Reading
    A.P.Wadsworth and J.de Lacy Mann, 1931, The Cotton Trade and Industrial Lancashire 1600–1780, Manchester (the most significant reference to Bourn).
    R.L.Hills, 1970, Power in the Industrial Revolution, Manchester (provides an examination of the carding patent).
    R.S.Fitton, 1989, The Arkwrights, Spinners of Fortune, Manchester (mentions Bourn in his survey of the textile scene before Arkwright).
    R.Jenkins, 1936–7, "Industries of Herefordshire in Bygone Times", Transactions of the Newcomen Society 17 (includes a reference to Bourn's mill).
    C.Singer (ed.), 1957, A History of Technology, Vol. III, Oxford: Clarendon Press; ibid., 1958, Vol, IV (brief mentions of Bourn's work).
    RLH

    Biographical history of technology > Bourn, Daniel

  • 102 Brayton, George Bailey

    [br]
    b. 1839 Rhode Island, USA
    d. 1892 Leeds, England
    [br]
    American engineer, inventor of gas and oil engines.
    [br]
    During the thirty years prior to his death, Brayton devoted considerable effort to the development of internal-combustion engines. He designed the first commercial gas engine of American origin in 1872. An oil-burning engine was produced in 1875. An aptitude for mechanical innovation became apparent whilst he was employed at the Exeter Machine Works, New Hampshire, where he developed a successful steam generator for use in domestic and industrial heating systems. Brayton engines were distinguished by the method of combustion. A pressurized air-fuel mixture from a reservoir was ignited as it entered the working cylinder—a precursor of the constant-pressure cycle. A further feature of these early engines was a rocking beam. There exist accounts of Brayton engines fitted into river craft, and of one in a carriage which operated for a few months in 1872–3. However, the appearance of the four-stroke Otto engine in 1876, together with technical problems associated with backfiring into the fuel reservoir, prevented large-scale acceptance of the Brayton engine. Although Thompson Sterne \& Co. of Glasgow became licensees, the engine failed to gain usage in Britain. A working model of Brayton's gas engine is exhibited in the Museum of History and Technology in Washington, DC.
    [br]
    Bibliography
    1872, US patent no. 125,166 (Brayton gas engine).
    July 1890, British patent no. 11,062 (oil engine; under patent agent W.R.Lake).
    Further Reading
    D.Clerk, 1895, The Gas and Oil Engine, 6th edn, London, pp. 152–62 (includes a description and report of tests carried out on a Brayton engine).
    KAB

    Biographical history of technology > Brayton, George Bailey

  • 103 Goulding, John

    SUBJECT AREA: Textiles
    [br]
    b. 1791 Massachusetts, USA d. 1877
    [br]
    American inventor of an early form of condenser carding machine.
    [br]
    The condenser method of spinning was developed chiefly by manufacturers and machine makers in eastern Massachusetts between 1824 and 1826. John Goulding, a machinist from Dedham in Massachusetts, combined the ring doffer, patented by Ezekiel Hale in 1825, and the revolving twist tube, patented by George Danforth in 1824; with the addition of twisting keys in the tubes, the carded woollen sliver could be divided and then completely and continuously twisted. He divided the carded web longitudinally with the ring doffer and twisted these strips to consolidate them into slubbings. The dividing was carried out by covering the periphery of the doffer cylinder with separate rings of card clothing and spacing these rings apart by rings of leather, so that instead of width-way detached strips leaving the card, the strips were continuous and did not require piecing. The strips were passed through rotating tubes and wound on bobbins, and although the twist was false it sufficed to compress the fibres together ready for spinning. Goulding patented his invention in both Britain and the USA in 1826, but while his condensers were very successful and within twenty years had been adopted by a high proportion of woollen mills in America, they were not adopted in Britain until much later. Goulding also worked on other improvements to woollen machinery: he developed friction drums, on which the spools of roving from the condenser cards were placed to help transform the woollen jenny into the woollen mule or jack.
    [br]
    Bibliography
    1826, British patent no. 5,355 (condenser carding machine).
    Further Reading
    D.J.Jeremy, 1981, Transatlantic Industrial Revolution. The Diffusion of Textile Technologies Between Britain and America, 1790–1830s, Oxford (provides a good explanation of the development of the condenser card).
    W.English, 1969, The Textile Industry, London (a brief account).
    C.Singer (ed.), 1958, A History of Technology, Vol. IV, Oxford: Clarendon Press (a brief account).
    RLH

    Biographical history of technology > Goulding, John

  • 104 Hancock, Walter

    [br]
    b. 16 June 1799 Marlborough, Wiltshire, England d. 14 May 1852
    [br]
    English engineer and promoter of steam locomotion on common roads.
    [br]
    He was the sixth son of James Hancock, a cabinet-maker and merchant of Marlborough, Wiltshire. Initially Walter was apprenticed to a watchmaker and jeweller in London, but he soon turned his attention to engineering. In 1824 he invented a steam engine in which the cylinder and piston were replaced by two flexible bags of several layers of canvas and rubber solution, which were alternately filled with steam. The engine worked satisfactorily at Hancock's works in Stratford and its simplicity and lightness suggested its suitability for road carriages. Initial experiments were not very successful, but Hancock continued to experiment. After many trials in and around London, the Infant began a regular run between Stratford and London in February 1831. The following year he built the Era for the London and Brighton Steam Carriage Company. The Enterprise was next put on the road, by the London and Paddington Steam Carriage Company in April 1833. The Autopsy started to run from Finsbury Square to Pentonville in October of the same year and ran alternately with the Erin between the City and Paddington. Hancock's interest in steam road locomotion continued until about 1840, by which time he had built ten carriages. But by then public interest had declined and most of the companies involved had failed. Later, he turned his attention to indiarubber, working with his brother Thomas Hancock. In 1843 he obtained a patent for cutting rubber into sheets and for a method of preparing a solution of rubber.
    [br]
    Bibliography
    1838, Narrative of Twelve Years of Experiments (1824–1836) Demonstrative of the Practicability and Advantages of Employing Steam Carriages on Common Roads, London.
    IMcN

    Biographical history of technology > Hancock, Walter

  • 105 Heilmann, Josué (Joshua)

    SUBJECT AREA: Textiles
    [br]
    b. 1796 Alsace
    d. 1848
    [br]
    Alsatian inventor of the first machine for combing cotton.
    [br]
    Josué Heilmann, of Mulhouse, was awarded 5,000 francs offered by the cotton spinners of Alsace for a machine that would comb cotton. It was a process not hitherto applied to this fibre and, when perfected, enabled finer, smoother and more lustrous yarns to be spun. The important feature of Heilmann's method was to use a grip or nip to hold the end of the sliver that was being combed. Two or more combs passed through the protruding fibres to comb them thoroughly, and a brush cylinder and knife cleared away the noils. The combed section was passed forward so that the part held in the nip could then be combed. The combed fibres were joined up with the length already finished. Heilmann obtained a British patent in 1846, but no machines were put to work until 1851. Six firms of cotton spinners in Lancashire paid £30,000 for the cotton-combing rights and Marshall's of Leeds paid £20,000 for the rights to comb flax. Heilmann's machine was used on the European continent for combing silk as well as flax, wool and cotton, so it proved to be very versatile. Priority of his patent was challenged in England because Lister had patented a combing machine with a gripper or nip in 1843; in 1852 the parties went to litigation and cross-suits were instituted. While Heilmann obtained a verdict of infringement against Lister for certain things, Lister also obtained one against Heilmann for other matters. After this outcome, Heilmann's patent was bought on speculation by Messrs Akroyd and Titus Salt for £30,000, but was afterwards resold to Lister for the same amount. In this way Lister was able to exploit his own patent through suppressing Heilmann's.
    [br]
    Bibliography
    1846, British patent no. 11,103 (cotton-combing machine).
    Further Reading
    For descriptions of his combing machine see: W.English, 1969, The Textile Industry, London; T.K.Derry and T.I.Williams, 1960, A Short History of Technology from the Earliest Times to AD 1900, Oxford; and C.Singer (ed.), 1958, A History of Technology, Vol.
    IV, Oxford: Clarendon Press.
    RLH

    Biographical history of technology > Heilmann, Josué (Joshua)

  • 106 Houldsworth, Henry

    SUBJECT AREA: Textiles
    [br]
    b. 1797 Manchester (?), England
    d. 1868 Manchester (?), England
    [br]
    English cotton spinner who introduced the differential gear to roving frames in Britain.
    [br]
    There are two claimants for the person who originated the differential gear as applied to roving frames: one is J.Green, a tinsmith of Mansfield, in his patent of 1823; the other is Arnold, who had applied it in America and patented it in early 1823. This latter was the source for Houldsworth's patent in 1826. It seems that Arnold's gearing was secretly communicated to Houldsworth by Charles Richmond, possibly when Houldsworth visited the United States in 1822–3, but more probably in 1825 when Richmond went to England. In return, Richmond received information about parts of a cylinder printing machine from Houldsworth. In the working of the roving frame, as the rovings were wound onto their bobbins and the diameter of the bobbins increased, the bobbin speed had to be reduced to keep the winding on at the same speed while the flyers and drawing rollers had to maintain their initial speed. Although this could be achieved by moving the driving belt along coned pulleys, this method did not provide enough power and slippage occurred. The differential gear combined the direct drive from the main shaft of the roving frame with that from the cone drive, so that only the latter provided the dif-ference between flyer and bobbin speeds, i.e. the winding speeds, thus taking away most of the power from that belt. Henry Houldsworth Senior (1774–1853) was living in Manchester when his son Henry was born, but by 1800 had moved to Glasgow. He built several mills, including a massive one at Anderston, Scotland, in which a Boulton \& Watt steam engine was installed. Henry Houldsworth Junior was probably back in Manchester by 1826, where he was to become an influential cotton spinner as chief partner in his mills, which he moved out to Reddish in 1863–5. He was also a prominent landowner in Cheetham. When William Fairbairn was considering establishing the Association for the Prevention of Steam Boiler Explosions in 1854, he wanted to find an influential manufacturer and mill-owner and he made a happy choice when he turned to Henry Houldsworth for assistance.
    [br]
    Bibliography
    1826, British patent no. 5,316 (differential gear for roving frames).
    Further Reading
    Details about Henry Houldsworth Junior are very sparse. The best account of his acquisition of the differential gear is given by D.J.Jeremy, 1981, Transatlantic Industrial Revolution. The Diffusion of Textile Technologies Between Britain and America, 1790–1830, Oxford.
    W.English, 1969, The Textile Industry, London (an explanation of the mechanisms of the roving frame).
    W.Pole, 1877, The Life of Sir William Fairbairn, Bart., London (provides an account of the beginning of the Manchester Steam Users' Association for the Prevention of Steam-boiler Explosions).
    RLH

    Biographical history of technology > Houldsworth, Henry

  • 107 Perkins, Jacob

    [br]
    b. 9 July 1766 Newburyport, Massachusetts, USA
    d. 30 July 1849 London, England
    [br]
    American inventor of a nail-making machine and a method of printing banknotes, investigator of the use of steam at very high pressures.
    [br]
    Perkins's occupation was that of a gold-and silversmith; while he does not seem to have followed this after 1800, however, it gave him the skills in working metals which he would continue to employ in his inventions. He had been working in America for four years before he patented his nail-making machine in 1796. At the time there was a great shortage of nails because only hand-forged ones were available. By 1800, other people had followed his example and produced automatic nail-making machines, but in 1811 Perkins' improved machines were introduced to England by J.C. Dyer. Eventually Perkins had twenty-one American patents for a range of inventions in his name.
    In 1799 Perkins invented a system of engraving steel plates for printing banknotes, which became the foundation of modern siderographic work. It discouraged forging and was adopted by many banking houses, including the Federal Government when the Second United States Bank was inaugurated in 1816. This led Perkins to move to Philadelphia. In the intervening years, Perkins had improved his nail-making machine, invented a machine for graining morocco leather in 1809, a fire-engine in 1812, a letter-lock for bank vaults and improved methods of rolling out spoons in 1813, and improved armament and equipment for naval ships from 1812 to 1815.
    It was in Philadelphia that Perkins became interested in the steam engine, when he met Oliver Evans, who had pioneered the use of high-pressure steam. He became a member of the American Philosophical Society and conducted experiments on the compressibility of water before a committee of that society. Perkins claimed to have liquified air during his experiments in 1822 and, if so, was the real discoverer of the liquification of gases. In 1819 he came to England to demonstrate his forgery-proof system of printing banknotes, but the Bank of England was the only one which did not adopt his system.
    While in London, Perkins began to experiment with the highest steam pressures used up to that time and in 1822 took out his first of nineteen British patents. This was followed by another in 1823 for a 10 hp (7.5 kW) engine with only 2 in. (51 mm) bore, 12 in. (305 mm) stroke but a pressure of 500 psi (35 kg/cm2), for which he claimed exceptional economy. After 1826, Perkins abandoned his drum boiler for iron tubes and steam pressures of 1,500 psi (105 kg/cm2), but the materials would not withstand such pressures or temperatures for long. It was in that same year that he patented a form of uniflow cylinder that was later taken up by L.J. Todd. One of his engines ran for five days, continuously pumping water at St Katherine's docks, but Perkins could not raise more finance to continue his experiments.
    In 1823 one his high-pressure hot-water systems was installed to heat the Duke of Wellington's house at Stratfield Saye and it acquired a considerable vogue, being used by Sir John Soane, among others. In 1834 Perkins patented a compression ice-making apparatus, but it did not succeed commercially because ice was imported more cheaply from Norway as ballast for sailing ships. Perkins was often dubbed "the American inventor" because his inquisitive personality allied to his inventive ingenuity enabled him to solve so many mechanical challenges.
    [br]
    Further Reading
    Historical Society of Pennsylvania, 1943, biography which appeared previously as a shortened version in the Transactions of the Newcomen Society 24.
    D.Bathe and G.Bathe, 1943–5, "The contribution of Jacob Perkins to science and engineering", Transactions of the Newcomen Society 24.
    D.S.L.Cardwell, 1971, From Watt to Clausius. The Rise of Thermodynamics in the Early Industrial Age, London: Heinemann (includes comments on the importance of Perkins's steam engine).
    A.F.Dufton, 1940–1, "Early application of engineering to warming of buildings", Transactions of the Newcomen Society 21 (includes a note on Perkins's application of a high-pressure hot-water heating system).
    RLH

    Biographical history of technology > Perkins, Jacob

  • 108 assembly

    assembly n
    агрегат
    abutment sleeve assembly
    регулируемая распорная втулка
    accessory drive assembly
    коробка приводов агрегатов
    aircraft assembly jig
    сборочный стапель воздушного судна
    assembly cycle
    сборочный цикл
    assembly drawing
    сборочный чертеж
    assembly line
    линия сборки
    assembly method
    технология сборки
    assembly procedure
    технология сборки
    assembly shop
    сборочный цех
    assembly step
    этап сборки
    brake rotor and stator assembly
    пакет тормозных дисков колеса шасси
    cascade-vane assembly
    блок решетки лопаток реверсивного устройства
    centrifugal flyweight assembly
    центробежный датчик регулятора
    combustion assembly
    блок камеры сгорания
    cowl flap actuation assembly
    блок управления створками капота двигателя
    cylinder assembly
    блок цилиндров
    emergency extension assembly
    механизм аварийного выпуска шасси
    European Air carries Assembly
    Ассамблея европейских авиаперевозчиков
    follow-up assembly
    блок согласования компасов
    fuel-control assembly
    командно-топливный агрегат
    fuselage assembly
    сборка частей фюзеляжа
    fusible plug assembly
    плавкий термоуказатель перегрева тормозного колеса
    gear assembly
    редуктор
    guide vane assembly
    блок входного направляющего аппарата двигателя
    housing assembly
    корпус агрегата
    limit switch assembly
    блок концевых выключателей
    mixture control assembly
    высотный корректор двигателя
    oil cooler actuating assembly
    механизм управления масляным радиатором
    passenger assembly area
    место сбора пассажиров
    ram air assembly
    заборник воздуха для надува топливных баков от скоростного напора
    ready for assembly
    готовый к сборке
    reduction gear assembly
    блок редуктора
    retraction assembly
    механизм уборки
    rotor clutch assembly
    муфта сцепления двигателя с несущим винтом вертолета
    shutters assembly
    блок заслонок
    sleeve assembly
    распорная втулка
    tailwheel assembly
    узел хвостового колеса
    throttle valve assembly
    узел дозирующей иглы командно-топливного агрегата

    English-Russian aviation dictionary > assembly

  • 109 logical block addressing

    "A method used with SCSI and IDE disk drives to translate the cylinder, head, and sector specifications of the drive into addresses that can be used by an enhanced BIOS. LBA is used with drives that are larger than 528MB."

    English-Arabic terms dictionary > logical block addressing

  • 110 LBA

    "A method used with SCSI and IDE disk drives to translate the cylinder, head, and sector specifications of the drive into addresses that can be used by an enhanced BIOS. LBA is used with drives that are larger than 528MB."

    English-Arabic terms dictionary > LBA

См. также в других словарях:

  • Cylinder blown sheet glass — Cylinder blown sheet is a type of hand blown window glass. It is created with a similar process to broad sheet, but larger cylinders are produced by swinging the cylinder in a trench. The glass is then allowed to cool before the cylinder is cut.… …   Wikipedia

  • Cylinder-head-sector — Cylinder head sector, also known as CHS, was an early method for giving addresses to each physical block of data on a hard disk drive. In the case of floppy drives, for which the same exact diskette medium can be truly low level formatted to… …   Wikipedia

  • Cylinder blown sheet — is a type of hand blown window glass. It is created with a similar process to broad sheet, but larger cylinders are produced by swinging the cylinder in a trench. The glass is then allowed to cool before the cylinder is cut. The glass is then re… …   Wikipedia

  • Cylinder unloaders — are a method of load control used mainly in commercial air conditioning systems. On a semi hermetic (or open) compressor, the heads can be fitted with unloaders which remove a portion of the load from the compressor so that it can run better when …   Wikipedia

  • Cylinder (firearms) — Close up of the cylinder on a Webley Mk VI service revolver In firearms terminology, the Cylinder refers to the cylindrical, rotating part of a revolver containing multiple cartridge chambers. The cylinder revolves around a central axis in the… …   Wikipedia

  • Method of exhaustion — This article is about the method of finding the area of a shape using limits. For the method of proof, see Proof by exhaustion. The method of exhaustion (methodus exhaustionibus, or méthode des anciens) is a method of finding the area of a shape… …   Wikipedia

  • cylinder numbering — In aircraft reciprocating engines, except rotary engines, the propeller shaft end of the engine is always the front end, and the accessory end is the rear end, irrespective of how the engine is mounted. An engine is referred to as right or left… …   Aviation dictionary

  • Cylinder glass — Glass Glass (gl[.a]s), n. [OE. glas, gles, AS. gl[ae]s; akin to D., G., Dan., & Sw. glas, Icel. glas, gler, Dan. glar; cf. AS. gl[ae]r amber, L. glaesum. Cf. {Glare}, n., {Glaze}, v. t.] [1913 Webster] 1. A hard, brittle, translucent, and… …   The Collaborative International Dictionary of English

  • method — The mode or manner or orderly sequence of events of a process or procedure. SEE ALSO: fixative, operation, procedure, stain, technique. [G. methodos; fr. meta, after, + hodos, way] Abell Kendall m. a …   Medical dictionary

  • The Method of Mechanical Theorems — is a work by Archimedes which contains the first attested explicit use of infinitesimals.[1] The work was originally thought to be lost, but was rediscovered in the celebrated Archimedes Palimpsest. The palimpsest includes Archimedes account of… …   Wikipedia

  • On the Sphere and Cylinder — is a work that was published by Archimedes in two volumes c. 225 BC.[1] It most notably details how to find the surface area of a sphere and the volume of the contained ball and the analogous values for a cylinder, and was the first to do so.[2]… …   Wikipedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»