Перевод: со всех языков на английский

с английского на все языки

corrosion-inhibiting+properties

  • 1 антикоррозионные свойства

    Русско-английский исловарь по машиностроению и автоматизации производства > антикоррозионные свойства

  • 2 Korrosionsschutzeigenschaften

    fpl < tribo> ■ corrosion-inhibiting properties pl ; corrosion preventing properties pl ; corrosion protection characteristics pl ; corrosion properties pl

    German-english technical dictionary > Korrosionsschutzeigenschaften

  • 3 Korrrosionsverhalten

    nsg < tribo> ■ corrosion-inhibiting properties pl ; corrosion preventing properties pl ; corrosion protection characteristics pl ; corrosion properties pl

    German-english technical dictionary > Korrrosionsverhalten

  • 4 антикоррозионные свойства

    Универсальный русско-английский словарь > антикоррозионные свойства

  • 5 Davy, Sir Humphry

    [br]
    b. 17 December 1778 Penzance, Cornwall, England
    d. 29 May 1829 Geneva, Switzerland
    [br]
    English chemist, discoverer of the alkali and alkaline earth metals and the halogens, inventor of the miner's safety lamp.
    [br]
    Educated at the Latin School at Penzance and from 1792 at Truro Grammar School, Davy was apprenticed to a surgeon in Penzance. In 1797 he began to teach himself chemistry by reading, among other works, Lavoisier's elementary treatise on chemistry. In 1798 Dr Thomas Beddoes of Bristol engaged him as assistant in setting up his Pneumatic Institution to pioneer the medical application of the newly discovered gases, especially oxygen.
    In 1799 he discovered the anaesthetic properties of nitrous oxide, discovered not long before by the chemist Joseph Priestley. He also noted its intoxicating qualities, on account of which it was dubbed "laughing-gas". Two years later Count Rumford, founder of the Royal Institution in 1800, appointed Davy Assistant Lecturer, and the following year Professor. His lecturing ability soon began to attract large audiences, making science both popular and fashionable.
    Davy was stimulated by Volta's invention of the voltaic pile, or electric battery, to construct one for himself in 1800. That enabled him to embark on the researches into electrochemistry by which is chiefly known. In 1807 he tried decomposing caustic soda and caustic potash, hitherto regarded as elements, by electrolysis and obtained the metals sodium and potassium. He went on to discover the metals barium, strontium, calcium and magnesium by the same means. Next, he turned his attention to chlorine, which was then regarded as an oxide in accordance with Lavoisier's theory that oxygen was the essential component of acids; Davy failed to decompose it, however, even with the aid of electricity and concluded that it was an element, thus disproving Lavoisier's view of the nature of acids. In 1812 Davy published his Elements of Chemical Philosophy, in which he presented his chemical ideas without, however, committing himself to the atomic theory, recently advanced by John Dalton.
    In 1813 Davy engaged Faraday as Assistant, perhaps his greatest service to science. In April 1815 Davy was asked to assist in the development of a miner's lamp which could be safely used in a firedamp (methane) laden atmosphere. The "Davy lamp", which emerged in January 1816, had its flame completely surrounded by a fine wire mesh; George Stephenson's lamp, based on a similar principle, had been introduced into the Northumberland pits several months earlier, and a bitter controversy as to priority of invention ensued, but it was Davy who was awarded the prize for inventing a successful safety lamp.
    In 1824 Davy was the first to suggest the possibility of conferring cathodic protection to the copper bottoms of naval vessels by the use of sacrificial electrodes. Zinc and iron were found to be equally effective in inhibiting corrosion, although the scheme was later abandoned when it was found that ships protected in this way were rapidly fouled by weeds and barnacles.
    [br]
    Principal Honours and Distinctions
    Knighted 1812. FRS 1803; President, Royal Society 1820. Royal Society Copley Medal 1805.
    Bibliography
    1812, Elements of Chemical Philosophy.
    1839–40, The Collected Works of Sir Humphry Davy, 9 vols, ed. John Davy, London.
    Further Reading
    J.Davy, 1836, Memoirs of the Life of Sir Humphry Davy, London (a classic biography). J.A.Paris, 1831, The Life of Sir Humphry Davy, London (a classic biography). H.Hartley, 1967, Humphry Davy, London (a more recent biography).
    J.Z.Fullmer, 1969, Cambridge, Mass, (a bibliography of Davy's works).
    ASD

    Biographical history of technology > Davy, Sir Humphry

См. также в других словарях:

  • Corrosion inhibitor — A corrosion inhibitor is a chemical compound that, when added to a liquid or gas, decreases the corrosion rate of a material, typically a metal or an alloy.[1] The effectiveness of a corrosion inhibitor depends on fluid composition, quantity of… …   Wikipedia

  • Etidronic acid — Systematic (IUPAC) name (1 hydroxyethan 1,1 diyl)bis(phosphonic acid) Clinical data AHFS/Drugs.com …   Wikipedia

  • Copper alloys in aquaculture — A copper alloy pen that has been deployed on a fish farm at depth of 14 feet for one year shows no signs of biofouling. Recently, copper alloys have become important netting materials in aquaculture (the farming of aquatic organisms including… …   Wikipedia

  • Copper wire and cable — Copper has been used in electric wiring since the invention of the electromagnet and the telegraph in the 1820s.[1][2] The invention of the telephone in 1876 proved to be another early boon for copper wire.[3] Today, despite competition from… …   Wikipedia

  • Antifreeze — is a freeze preventive used in internal combustion engines and other heat transfer applications, such as HVAC chillers and solar water heaters. The purpose of antifreeze is to prevent a rigid enclosure from undergoing catastrophic deformation due …   Wikipedia

  • Pearlescent coatings — Pearlescent or nacreous pigments have become very popular in the creation of luster effects in coatings. This has enabled the generation of new and unique color effects for automotive, industrial, cosmetic and pharmaceutical applications. The… …   Wikipedia

  • Zinc molybdate — Chembox new Name = Zinc molybdate OtherNames = Section1 = Chembox Identifiers CASNo = 13767 32 3 Section2 = Chembox Properties Formula = ZnMoO4 MolarMass = 225.33 g/mol Appearance = white crystals Density = 4.3 g/cm³, solid MeltingPt = >700°C… …   Wikipedia

  • Jotun (company) — Jotun is one of the world s leading producers of paints, coatings and powder coatings. The group has 71 companies and 40 production facilities on all continents. In addition, Jotun has agents, branch offices and distributors in more than 70… …   Wikipedia

  • metallurgy — metallurgic, metallurgical, adj. metallurgically, adv. metallurgist /met l err jist/ or, esp. Brit., /meuh tal euhr jist/, n. /met l err jee/ or, esp. Brit., /meuh tal euhr jee/, n. 1. the technique or science of working or heating metals so as… …   Universalium

  • steel — steellike, adj. /steel/, n. 1. any of various modified forms of iron, artificially produced, having a carbon content less than that of pig iron and more than that of wrought iron, and having qualities of hardness, elasticity, and strength varying …   Universalium

  • Motor oil — For the TV documentary focused on the Edmonton Oilers of the National Hockey League, see Oil Change (TV Series). Motor oil sample Motor oil or engine oil is an oil used for lubrication of various internal combustion engines. The main function is… …   Wikipedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»