Перевод: со всех языков на английский

с английского на все языки

core+plug

  • 41 кран

    2) Geology: dolly
    3) Naval: bibcock, cock (для пропуска жидкости, пара, газа), crane (подъёмный), lift, margin
    4) American: grasshopper
    5) Engineering: tap group, valve
    7) Automobile industry: faucet (водопроводный)
    8) Mining: alligator, crane (грузоподъёмный), tap (водопроводный или воздушный)
    10) Advertising: boom
    11) Drilling: lip
    12) Sakhalin energy glossary: plug valve
    13) Oil&Gas technology four-way valve
    14) Automation: (запорный) cock, (грузоподъёмный) crane
    16) Makarov: bibb (с резьбой для подсоединения шланга), cock (запорный), cock (напр. водопроводный), cock (трубная арматура), crane (для захватывания, подъема и перемещения грузов), crane (подъёмный)
    17) oil&gas: needle valve( Xmas)

    Универсальный русско-английский словарь > кран

  • 42 стержень клапана

    1) Automobile industry: valve plug (вставной)
    3) Oil&Gas technology valve plug
    4) Automation: (вставной) valve plug
    5) General subject: valve core

    Универсальный русско-английский словарь > стержень клапана

  • 43 модульный центр обработки данных (ЦОД)

    1. modular data center

     

    модульный центр обработки данных (ЦОД)
    -
    [Интент]

    Параллельные тексты EN-RU

    [ http://loosebolts.wordpress.com/2008/12/02/our-vision-for-generation-4-modular-data-centers-one-way-of-getting-it-just-right/]

    [ http://dcnt.ru/?p=9299#more-9299]

    Data Centers are a hot topic these days. No matter where you look, this once obscure aspect of infrastructure is getting a lot of attention. For years, there have been cost pressures on IT operations and this, when the need for modern capacity is greater than ever, has thrust data centers into the spotlight. Server and rack density continues to rise, placing DC professionals and businesses in tighter and tougher situations while they struggle to manage their IT environments. And now hyper-scale cloud infrastructure is taking traditional technologies to limits never explored before and focusing the imagination of the IT industry on new possibilities.

    В настоящее время центры обработки данных являются широко обсуждаемой темой. Куда ни посмотришь, этот некогда малоизвестный аспект инфраструктуры привлекает все больше внимания. Годами ИТ-отделы испытывали нехватку средств и это выдвинуло ЦОДы в центр внимания, в то время, когда необходимость в современных ЦОДах стала как никогда высокой. Плотность серверов и стоек продолжают расти, все больше усложняя ситуацию для специалистов в области охлаждения и организаций в их попытках управлять своими ИТ-средами. И теперь гипермасштабируемая облачная инфраструктура подвергает традиционные технологии невиданным ранее нагрузкам, и заставляет ИТ-индустрию искать новые возможности.

    At Microsoft, we have focused a lot of thought and research around how to best operate and maintain our global infrastructure and we want to share those learnings. While obviously there are some aspects that we keep to ourselves, we have shared how we operate facilities daily, our technologies and methodologies, and, most importantly, how we monitor and manage our facilities. Whether it’s speaking at industry events, inviting customers to our “Microsoft data center conferences” held in our data centers, or through other media like blogging and white papers, we believe sharing best practices is paramount and will drive the industry forward. So in that vein, we have some interesting news to share.

    В компании MicroSoft уделяют большое внимание изучению наилучших методов эксплуатации и технического обслуживания своей глобальной инфраструктуры и делятся результатами своих исследований. И хотя мы, конечно, не раскрываем некоторые аспекты своих исследований, мы делимся повседневным опытом эксплуатации дата-центров, своими технологиями и методологиями и, что важнее всего, методами контроля и управления своими объектами. Будь то доклады на отраслевых событиях, приглашение клиентов на наши конференции, которые посвящены центрам обработки данных MicroSoft, и проводятся в этих самых дата-центрах, или использование других средств, например, блоги и спецификации, мы уверены, что обмен передовым опытом имеет первостепенное значение и будет продвигать отрасль вперед.

    Today we are sharing our Generation 4 Modular Data Center plan. This is our vision and will be the foundation of our cloud data center infrastructure in the next five years. We believe it is one of the most revolutionary changes to happen to data centers in the last 30 years. Joining me, in writing this blog are Daniel Costello, my director of Data Center Research and Engineering and Christian Belady, principal power and cooling architect. I feel their voices will add significant value to driving understanding around the many benefits included in this new design paradigm.

    Сейчас мы хотим поделиться своим планом модульного дата-центра четвертого поколения. Это наше видение и оно будет основанием для инфраструктуры наших облачных дата-центров в ближайшие пять лет. Мы считаем, что это одно из самых революционных изменений в дата-центрах за последние 30 лет. Вместе со мной в написании этого блога участвовали Дэниел Костелло, директор по исследованиям и инжинирингу дата-центров, и Кристиан Белади, главный архитектор систем энергоснабжения и охлаждения. Мне кажется, что их авторитет придаст больше веса большому количеству преимуществ, включенных в эту новую парадигму проектирования.

    Our “Gen 4” modular data centers will take the flexibility of containerized servers—like those in our Chicago data center—and apply it across the entire facility. So what do we mean by modular? Think of it like “building blocks”, where the data center will be composed of modular units of prefabricated mechanical, electrical, security components, etc., in addition to containerized servers.

    Was there a key driver for the Generation 4 Data Center?

    Наши модульные дата-центры “Gen 4” будут гибкими с контейнерами серверов – как серверы в нашем чикагском дата-центре. И гибкость будет применяться ко всему ЦОД. Итак, что мы подразумеваем под модульностью? Мы думаем о ней как о “строительных блоках”, где дата-центр будет состоять из модульных блоков изготовленных в заводских условиях электрических систем и систем охлаждения, а также систем безопасности и т.п., в дополнение к контейнеризованным серверам.
    Был ли ключевой стимул для разработки дата-центра четвертого поколения?


    If we were to summarize the promise of our Gen 4 design into a single sentence it would be something like this: “A highly modular, scalable, efficient, just-in-time data center capacity program that can be delivered anywhere in the world very quickly and cheaply, while allowing for continued growth as required.” Sounds too good to be true, doesn’t it? Well, keep in mind that these concepts have been in initial development and prototyping for over a year and are based on cumulative knowledge of previous facility generations and the advances we have made since we began our investments in earnest on this new design.

    Если бы нам нужно было обобщить достоинства нашего проекта Gen 4 в одном предложении, это выглядело бы следующим образом: “Центр обработки данных с высоким уровнем модульности, расширяемости, и энергетической эффективности, а также возможностью постоянного расширения, в случае необходимости, который можно очень быстро и дешево развертывать в любом месте мира”. Звучит слишком хорошо для того чтобы быть правдой, не так ли? Ну, не забывайте, что эти концепции находились в процессе начальной разработки и создания опытного образца в течение более одного года и основываются на опыте, накопленном в ходе развития предыдущих поколений ЦОД, а также успехах, сделанных нами со времени, когда мы начали вкладывать серьезные средства в этот новый проект.

    One of the biggest challenges we’ve had at Microsoft is something Mike likes to call the ‘Goldilock’s Problem’. In a nutshell, the problem can be stated as:

    The worst thing we can do in delivering facilities for the business is not have enough capacity online, thus limiting the growth of our products and services.

    Одну из самых больших проблем, с которыми приходилось сталкиваться Майкрософт, Майк любит называть ‘Проблемой Лютика’. Вкратце, эту проблему можно выразить следующим образом:

    Самое худшее, что может быть при строительстве ЦОД для бизнеса, это не располагать достаточными производственными мощностями, и тем самым ограничивать рост наших продуктов и сервисов.

    The second worst thing we can do in delivering facilities for the business is to have too much capacity online.

    А вторым самым худшим моментом в этой сфере может слишком большое количество производственных мощностей.

    This has led to a focus on smart, intelligent growth for the business — refining our overall demand picture. It can’t be too hot. It can’t be too cold. It has to be ‘Just Right!’ The capital dollars of investment are too large to make without long term planning. As we struggled to master these interesting challenges, we had to ensure that our technological plan also included solutions for the business and operational challenges we faced as well.
    So let’s take a high level look at our Generation 4 design

    Это заставило нас сосредоточиваться на интеллектуальном росте для бизнеса — refining our overall demand picture. Это не должно быть слишком горячим. И это не должно быть слишком холодным. Это должно быть ‘как раз, таким как надо!’ Нельзя делать такие большие капиталовложения без долгосрочного планирования. Пока мы старались решить эти интересные проблемы, мы должны были гарантировать, что наш технологический план будет также включать решения для коммерческих и эксплуатационных проблем, с которыми нам также приходилось сталкиваться.
    Давайте рассмотрим наш проект дата-центра четвертого поколения

    Are you ready for some great visuals? Check out this video at Soapbox. Click here for the Microsoft 4th Gen Video.

    It’s a concept video that came out of my Data Center Research and Engineering team, under Daniel Costello, that will give you a view into what we think is the future.

    From a configuration, construct-ability and time to market perspective, our primary goals and objectives are to modularize the whole data center. Not just the server side (like the Chicago facility), but the mechanical and electrical space as well. This means using the same kind of parts in pre-manufactured modules, the ability to use containers, skids, or rack-based deployments and the ability to tailor the Redundancy and Reliability requirements to the application at a very specific level.


    Посмотрите это видео, перейдите по ссылке для просмотра видео о Microsoft 4th Gen:

    Это концептуальное видео, созданное командой отдела Data Center Research and Engineering, возглавляемого Дэниелом Костелло, которое даст вам наше представление о будущем.

    С точки зрения конфигурации, строительной технологичности и времени вывода на рынок, нашими главными целями и задачами агрегатирование всего дата-центра. Не только серверную часть, как дата-центр в Чикаго, но также системы охлаждения и электрические системы. Это означает применение деталей одного типа в сборных модулях, возможность использования контейнеров, салазок, или стоечных систем, а также возможность подстраивать требования избыточности и надежности для данного приложения на очень специфичном уровне.

    Our goals from a cost perspective were simple in concept but tough to deliver. First and foremost, we had to reduce the capital cost per critical Mega Watt by the class of use. Some applications can run with N-level redundancy in the infrastructure, others require a little more infrastructure for support. These different classes of infrastructure requirements meant that optimizing for all cost classes was paramount. At Microsoft, we are not a one trick pony and have many Online products and services (240+) that require different levels of operational support. We understand that and ensured that we addressed it in our design which will allow us to reduce capital costs by 20%-40% or greater depending upon class.


    Нашими целями в области затрат были концептуально простыми, но трудно реализуемыми. В первую очередь мы должны были снизить капитальные затраты в пересчете на один мегаватт, в зависимости от класса резервирования. Некоторые приложения могут вполне работать на базе инфраструктуры с резервированием на уровне N, то есть без резервирования, а для работы других приложений требуется больше инфраструктуры. Эти разные классы требований инфраструктуры подразумевали, что оптимизация всех классов затрат имеет преобладающее значение. В Майкрософт мы не ограничиваемся одним решением и располагаем большим количеством интерактивных продуктов и сервисов (240+), которым требуются разные уровни эксплуатационной поддержки. Мы понимаем это, и учитываем это в своем проекте, который позволит нам сокращать капитальные затраты на 20%-40% или более в зависимости от класса.

    For example, non-critical or geo redundant applications have low hardware reliability requirements on a location basis. As a result, Gen 4 can be configured to provide stripped down, low-cost infrastructure with little or no redundancy and/or temperature control. Let’s say an Online service team decides that due to the dramatically lower cost, they will simply use uncontrolled outside air with temperatures ranging 10-35 C and 20-80% RH. The reality is we are already spec-ing this for all of our servers today and working with server vendors to broaden that range even further as Gen 4 becomes a reality. For this class of infrastructure, we eliminate generators, chillers, UPSs, and possibly lower costs relative to traditional infrastructure.

    Например, некритичные или гео-избыточные системы имеют низкие требования к аппаратной надежности на основе местоположения. В результате этого, Gen 4 можно конфигурировать для упрощенной, недорогой инфраструктуры с низким уровнем (или вообще без резервирования) резервирования и / или температурного контроля. Скажем, команда интерактивного сервиса решает, что, в связи с намного меньшими затратами, они будут просто использовать некондиционированный наружный воздух с температурой 10-35°C и влажностью 20-80% RH. В реальности мы уже сегодня предъявляем эти требования к своим серверам и работаем с поставщиками серверов над еще большим расширением диапазона температур, так как наш модуль и подход Gen 4 становится реальностью. Для подобного класса инфраструктуры мы удаляем генераторы, чиллеры, ИБП, и, возможно, будем предлагать более низкие затраты, по сравнению с традиционной инфраструктурой.

    Applications that demand higher level of redundancy or temperature control will use configurations of Gen 4 to meet those needs, however, they will also cost more (but still less than traditional data centers). We see this cost difference driving engineering behavioral change in that we predict more applications will drive towards Geo redundancy to lower costs.

    Системы, которым требуется более высокий уровень резервирования или температурного контроля, будут использовать конфигурации Gen 4, отвечающие этим требованиям, однако, они будут также стоить больше. Но все равно они будут стоить меньше, чем традиционные дата-центры. Мы предвидим, что эти различия в затратах будут вызывать изменения в методах инжиниринга, и по нашим прогнозам, это будет выражаться в переходе все большего числа систем на гео-избыточность и меньшие затраты.

    Another cool thing about Gen 4 is that it allows us to deploy capacity when our demand dictates it. Once finalized, we will no longer need to make large upfront investments. Imagine driving capital costs more closely in-line with actual demand, thus greatly reducing time-to-market and adding the capacity Online inherent in the design. Also reduced is the amount of construction labor required to put these “building blocks” together. Since the entire platform requires pre-manufacture of its core components, on-site construction costs are lowered. This allows us to maximize our return on invested capital.

    Еще одно достоинство Gen 4 состоит в том, что он позволяет нам разворачивать дополнительные мощности, когда нам это необходимо. Как только мы закончим проект, нам больше не нужно будет делать большие начальные капиталовложения. Представьте себе возможность более точного согласования капитальных затрат с реальными требованиями, и тем самым значительного снижения времени вывода на рынок и интерактивного добавления мощностей, предусматриваемого проектом. Также снижен объем строительных работ, требуемых для сборки этих “строительных блоков”. Поскольку вся платформа требует предварительного изготовления ее базовых компонентов, затраты на сборку также снижены. Это позволит нам увеличить до максимума окупаемость своих капиталовложений.
    Мы все подвергаем сомнению

    In our design process, we questioned everything. You may notice there is no roof and some might be uncomfortable with this. We explored the need of one and throughout our research we got some surprising (positive) results that showed one wasn’t needed.

    В своем процессе проектирования мы все подвергаем сомнению. Вы, наверное, обратили внимание на отсутствие крыши, и некоторым специалистам это могло не понравиться. Мы изучили необходимость в крыше и в ходе своих исследований получили удивительные результаты, которые показали, что крыша не нужна.
    Серийное производство дата центров


    In short, we are striving to bring Henry Ford’s Model T factory to the data center. http://en.wikipedia.org/wiki/Henry_Ford#Model_T. Gen 4 will move data centers from a custom design and build model to a commoditized manufacturing approach. We intend to have our components built in factories and then assemble them in one location (the data center site) very quickly. Think about how a computer, car or plane is built today. Components are manufactured by different companies all over the world to a predefined spec and then integrated in one location based on demands and feature requirements. And just like Henry Ford’s assembly line drove the cost of building and the time-to-market down dramatically for the automobile industry, we expect Gen 4 to do the same for data centers. Everything will be pre-manufactured and assembled on the pad.

    Мы хотим применить модель автомобильной фабрики Генри Форда к дата-центру. Проект Gen 4 будет способствовать переходу от модели специализированного проектирования и строительства к товарно-производственному, серийному подходу. Мы намерены изготавливать свои компоненты на заводах, а затем очень быстро собирать их в одном месте, в месте строительства дата-центра. Подумайте о том, как сегодня изготавливается компьютер, автомобиль или самолет. Компоненты изготавливаются по заранее определенным спецификациям разными компаниями во всем мире, затем собираются в одном месте на основе спроса и требуемых характеристик. И точно так же как сборочный конвейер Генри Форда привел к значительному уменьшению затрат на производство и времени вывода на рынок в автомобильной промышленности, мы надеемся, что Gen 4 сделает то же самое для дата-центров. Все будет предварительно изготавливаться и собираться на месте.
    Невероятно энергоэффективный ЦОД


    And did we mention that this platform will be, overall, incredibly energy efficient? From a total energy perspective not only will we have remarkable PUE values, but the total cost of energy going into the facility will be greatly reduced as well. How much energy goes into making concrete? Will we need as much of it? How much energy goes into the fuel of the construction vehicles? This will also be greatly reduced! A key driver is our goal to achieve an average PUE at or below 1.125 by 2012 across our data centers. More than that, we are on a mission to reduce the overall amount of copper and water used in these facilities. We believe these will be the next areas of industry attention when and if the energy problem is solved. So we are asking today…“how can we build a data center with less building”?

    А мы упоминали, что эта платформа будет, в общем, невероятно энергоэффективной? С точки зрения общей энергии, мы получим не только поразительные значения PUE, но общая стоимость энергии, затраченной на объект будет также значительно снижена. Сколько энергии идет на производство бетона? Нам нужно будет столько энергии? Сколько энергии идет на питание инженерных строительных машин? Это тоже будет значительно снижено! Главным стимулом является достижение среднего PUE не больше 1.125 для всех наших дата-центров к 2012 году. Более того, у нас есть задача сокращения общего количества меди и воды в дата-центрах. Мы думаем, что эти задачи станут следующей заботой отрасли после того как будет решена энергетическая проблема. Итак, сегодня мы спрашиваем себя…“как можно построить дата-центр с меньшим объемом строительных работ”?
    Строительство дата центров без чиллеров

    We have talked openly and publicly about building chiller-less data centers and running our facilities using aggressive outside economization. Our sincerest hope is that Gen 4 will completely eliminate the use of water. Today’s data centers use massive amounts of water and we see water as the next scarce resource and have decided to take a proactive stance on making water conservation part of our plan.

    Мы открыто и публично говорили о строительстве дата-центров без чиллеров и активном использовании в наших центрах обработки данных технологий свободного охлаждения или фрикулинга. Мы искренне надеемся, что Gen 4 позволит полностью отказаться от использования воды. Современные дата-центры расходуют большие объемы воды и так как мы считаем воду следующим редким ресурсом, мы решили принять упреждающие меры и включить экономию воды в свой план.

    By sharing this with the industry, we believe everyone can benefit from our methodology. While this concept and approach may be intimidating (or downright frightening) to some in the industry, disclosure ultimately is better for all of us.

    Делясь этим опытом с отраслью, мы считаем, что каждый сможет извлечь выгоду из нашей методологией. Хотя эта концепция и подход могут показаться пугающими (или откровенно страшными) для некоторых отраслевых специалистов, раскрывая свои планы мы, в конечном счете, делаем лучше для всех нас.

    Gen 4 design (even more than just containers), could reduce the ‘religious’ debates in our industry. With the central spine infrastructure in place, containers or pre-manufactured server halls can be either AC or DC, air-side economized or water-side economized, or not economized at all (though the sanity of that might be questioned). Gen 4 will allow us to decommission, repair and upgrade quickly because everything is modular. No longer will we be governed by the initial decisions made when constructing the facility. We will have almost unlimited use and re-use of the facility and site. We will also be able to use power in an ultra-fluid fashion moving load from critical to non-critical as use and capacity requirements dictate.

    Проект Gen 4 позволит уменьшить ‘религиозные’ споры в нашей отрасли. Располагая базовой инфраструктурой, контейнеры или сборные серверные могут оборудоваться системами переменного или постоянного тока, воздушными или водяными экономайзерами, или вообще не использовать экономайзеры. Хотя можно подвергать сомнению разумность такого решения. Gen 4 позволит нам быстро выполнять работы по выводу из эксплуатации, ремонту и модернизации, поскольку все будет модульным. Мы больше не будем руководствоваться начальными решениями, принятыми во время строительства дата-центра. Мы сможем использовать этот дата-центр и инфраструктуру в течение почти неограниченного периода времени. Мы также сможем применять сверхгибкие методы использования электрической энергии, переводя оборудование в режимы критической или некритической нагрузки в соответствии с требуемой мощностью.
    Gen 4 – это стандартная платформа

    Finally, we believe this is a big game changer. Gen 4 will provide a standard platform that our industry can innovate around. For example, all modules in our Gen 4 will have common interfaces clearly defined by our specs and any vendor that meets these specifications will be able to plug into our infrastructure. Whether you are a computer vendor, UPS vendor, generator vendor, etc., you will be able to plug and play into our infrastructure. This means we can also source anyone, anywhere on the globe to minimize costs and maximize performance. We want to help motivate the industry to further innovate—with innovations from which everyone can reap the benefits.

    Наконец, мы уверены, что это будет фактором, который значительно изменит ситуацию. Gen 4 будет представлять собой стандартную платформу, которую отрасль сможет обновлять. Например, все модули в нашем Gen 4 будут иметь общепринятые интерфейсы, четко определяемые нашими спецификациями, и оборудование любого поставщика, которое отвечает этим спецификациям можно будет включать в нашу инфраструктуру. Независимо от того производите вы компьютеры, ИБП, генераторы и т.п., вы сможете включать свое оборудование нашу инфраструктуру. Это означает, что мы также сможем обеспечивать всех, в любом месте земного шара, тем самым сводя до минимума затраты и максимальной увеличивая производительность. Мы хотим создать в отрасли мотивацию для дальнейших инноваций – инноваций, от которых каждый сможет получать выгоду.
    Главные характеристики дата-центров четвертого поколения Gen4

    To summarize, the key characteristics of our Generation 4 data centers are:

    Scalable
    Plug-and-play spine infrastructure
    Factory pre-assembled: Pre-Assembled Containers (PACs) & Pre-Manufactured Buildings (PMBs)
    Rapid deployment
    De-mountable
    Reduce TTM
    Reduced construction
    Sustainable measures

    Ниже приведены главные характеристики дата-центров четвертого поколения Gen 4:

    Расширяемость;
    Готовая к использованию базовая инфраструктура;
    Изготовление в заводских условиях: сборные контейнеры (PAC) и сборные здания (PMB);
    Быстрота развертывания;
    Возможность демонтажа;
    Снижение времени вывода на рынок (TTM);
    Сокращение сроков строительства;
    Экологичность;

    Map applications to DC Class

    We hope you join us on this incredible journey of change and innovation!

    Long hours of research and engineering time are invested into this process. There are still some long days and nights ahead, but the vision is clear. Rest assured however, that we as refine Generation 4, the team will soon be looking to Generation 5 (even if it is a bit farther out). There is always room to get better.


    Использование систем электропитания постоянного тока.

    Мы надеемся, что вы присоединитесь к нам в этом невероятном путешествии по миру изменений и инноваций!

    На этот проект уже потрачены долгие часы исследований и проектирования. И еще предстоит потратить много дней и ночей, но мы имеем четкое представление о конечной цели. Однако будьте уверены, что как только мы доведем до конца проект модульного дата-центра четвертого поколения, мы вскоре начнем думать о проекте дата-центра пятого поколения. Всегда есть возможность для улучшений.

    So if you happen to come across Goldilocks in the forest, and you are curious as to why she is smiling you will know that she feels very good about getting very close to ‘JUST RIGHT’.

    Generations of Evolution – some background on our data center designs

    Так что, если вы встретите в лесу девочку по имени Лютик, и вам станет любопытно, почему она улыбается, вы будете знать, что она очень довольна тем, что очень близко подошла к ‘ОПИМАЛЬНОМУ РЕШЕНИЮ’.
    Поколения эволюции – история развития наших дата-центров

    We thought you might be interested in understanding what happened in the first three generations of our data center designs. When Ray Ozzie wrote his Software plus Services memo it posed a very interesting challenge to us. The winds of change were at ‘tornado’ proportions. That “plus Services” tag had some significant (and unstated) challenges inherent to it. The first was that Microsoft was going to evolve even further into an operations company. While we had been running large scale Internet services since 1995, this development lead us to an entirely new level. Additionally, these “services” would span across both Internet and Enterprise businesses. To those of you who have to operate “stuff”, you know that these are two very different worlds in operational models and challenges. It also meant that, to achieve the same level of reliability and performance required our infrastructure was going to have to scale globally and in a significant way.

    Мы подумали, что может быть вам будет интересно узнать историю первых трех поколений наших центров обработки данных. Когда Рэй Оззи написал свою памятную записку Software plus Services, он поставил перед нами очень интересную задачу. Ветра перемен двигались с ураганной скоростью. Это окончание “plus Services” скрывало в себе какие-то значительные и неопределенные задачи. Первая заключалась в том, что Майкрософт собиралась в еще большей степени стать операционной компанией. Несмотря на то, что мы управляли большими интернет-сервисами, начиная с 1995 г., эта разработка подняла нас на абсолютно новый уровень. Кроме того, эти “сервисы” охватывали интернет-компании и корпорации. Тем, кому приходится всем этим управлять, известно, что есть два очень разных мира в области операционных моделей и задач. Это также означало, что для достижения такого же уровня надежности и производительности требовалось, чтобы наша инфраструктура располагала значительными возможностями расширения в глобальных масштабах.

    It was that intense atmosphere of change that we first started re-evaluating data center technology and processes in general and our ideas began to reach farther than what was accepted by the industry at large. This was the era of Generation 1. As we look at where most of the world’s data centers are today (and where our facilities were), it represented all the known learning and design requirements that had been in place since IBM built the first purpose-built computer room. These facilities focused more around uptime, reliability and redundancy. Big infrastructure was held accountable to solve all potential environmental shortfalls. This is where the majority of infrastructure in the industry still is today.

    Именно в этой атмосфере серьезных изменений мы впервые начали переоценку ЦОД-технологий и технологий вообще, и наши идеи начали выходить за пределы общепринятых в отрасли представлений. Это была эпоха ЦОД первого поколения. Когда мы узнали, где сегодня располагается большинство мировых дата-центров и где находятся наши предприятия, это представляло весь опыт и навыки проектирования, накопленные со времени, когда IBM построила первую серверную. В этих ЦОД больше внимания уделялось бесперебойной работе, надежности и резервированию. Большая инфраструктура была призвана решать все потенциальные экологические проблемы. Сегодня большая часть инфраструктуры все еще находится на этом этапе своего развития.

    We soon realized that traditional data centers were quickly becoming outdated. They were not keeping up with the demands of what was happening technologically and environmentally. That’s when we kicked off our Generation 2 design. Gen 2 facilities started taking into account sustainability, energy efficiency, and really looking at the total cost of energy and operations.

    Очень быстро мы поняли, что стандартные дата-центры очень быстро становятся устаревшими. Они не поспевали за темпами изменений технологических и экологических требований. Именно тогда мы стали разрабатывать ЦОД второго поколения. В этих дата-центрах Gen 2 стали принимать во внимание такие факторы как устойчивое развитие, энергетическая эффективность, а также общие энергетические и эксплуатационные.

    No longer did we view data centers just for the upfront capital costs, but we took a hard look at the facility over the course of its life. Our Quincy, Washington and San Antonio, Texas facilities are examples of our Gen 2 data centers where we explored and implemented new ways to lessen the impact on the environment. These facilities are considered two leading industry examples, based on their energy efficiency and ability to run and operate at new levels of scale and performance by leveraging clean hydro power (Quincy) and recycled waste water (San Antonio) to cool the facility during peak cooling months.

    Мы больше не рассматривали дата-центры только с точки зрения начальных капитальных затрат, а внимательно следили за работой ЦОД на протяжении его срока службы. Наши объекты в Куинси, Вашингтоне, и Сан-Антонио, Техас, являются образцами наших ЦОД второго поколения, в которых мы изучали и применяли на практике новые способы снижения воздействия на окружающую среду. Эти объекты считаются двумя ведущими отраслевыми примерами, исходя из их энергетической эффективности и способности работать на новых уровнях производительности, основанных на использовании чистой энергии воды (Куинси) и рециклирования отработанной воды (Сан-Антонио) для охлаждения объекта в самых жарких месяцах.

    As we were delivering our Gen 2 facilities into steel and concrete, our Generation 3 facilities were rapidly driving the evolution of the program. The key concepts for our Gen 3 design are increased modularity and greater concentration around energy efficiency and scale. The Gen 3 facility will be best represented by the Chicago, Illinois facility currently under construction. This facility will seem very foreign compared to the traditional data center concepts most of the industry is comfortable with. In fact, if you ever sit around in our container hanger in Chicago it will look incredibly different from a traditional raised-floor data center. We anticipate this modularization will drive huge efficiencies in terms of cost and operations for our business. We will also introduce significant changes in the environmental systems used to run our facilities. These concepts and processes (where applicable) will help us gain even greater efficiencies in our existing footprint, allowing us to further maximize infrastructure investments.

    Так как наши ЦОД второго поколения строились из стали и бетона, наши центры обработки данных третьего поколения начали их быстро вытеснять. Главными концептуальными особенностями ЦОД третьего поколения Gen 3 являются повышенная модульность и большее внимание к энергетической эффективности и масштабированию. Дата-центры третьего поколения лучше всего представлены объектом, который в настоящее время строится в Чикаго, Иллинойс. Этот ЦОД будет выглядеть очень необычно, по сравнению с общепринятыми в отрасли представлениями о дата-центре. Действительно, если вам когда-либо удастся побывать в нашем контейнерном ангаре в Чикаго, он покажется вам совершенно непохожим на обычный дата-центр с фальшполом. Мы предполагаем, что этот модульный подход будет способствовать значительному повышению эффективности нашего бизнеса в отношении затрат и операций. Мы также внесем существенные изменения в климатические системы, используемые в наших ЦОД. Эти концепции и технологии, если применимо, позволят нам добиться еще большей эффективности наших существующих дата-центров, и тем самым еще больше увеличивать капиталовложения в инфраструктуру.

    This is definitely a journey, not a destination industry. In fact, our Generation 4 design has been under heavy engineering for viability and cost for over a year. While the demand of our commercial growth required us to make investments as we grew, we treated each step in the learning as a process for further innovation in data centers. The design for our future Gen 4 facilities enabled us to make visionary advances that addressed the challenges of building, running, and operating facilities all in one concerted effort.

    Это определенно путешествие, а не конечный пункт назначения. На самом деле, наш проект ЦОД четвертого поколения подвергался серьезным испытаниям на жизнеспособность и затраты на протяжении целого года. Хотя необходимость в коммерческом росте требовала от нас постоянных капиталовложений, мы рассматривали каждый этап своего развития как шаг к будущим инновациям в области дата-центров. Проект наших будущих ЦОД четвертого поколения Gen 4 позволил нам делать фантастические предположения, которые касались задач строительства, управления и эксплуатации объектов как единого упорядоченного процесса.


    Тематики

    Синонимы

    EN

    Русско-английский словарь нормативно-технической терминологии > модульный центр обработки данных (ЦОД)

  • 44 грунтовое ядро

    1) Engineering: Earth core (плотины)
    3) Sakhalin energy glossary: core fill, sand core

    Универсальный русско-английский словарь > грунтовое ядро

  • 45 Bohrkern

    m <tech.allg> (als Gesteinsprobe; z.B. Bodenprobe, Beton) ■ drill core; core pract ; center core rare ; center plug rare

    German-english technical dictionary > Bohrkern

  • 46 нож ротора

    Универсальный русско-английский словарь > нож ротора

  • 47 соляной шток

    1) Geology: salt core, salt plug
    2) Mining: salt wall
    3) Oil: salt stock
    4) Makarov: pore plug

    Универсальный русско-английский словарь > соляной шток

  • 48 цилиндр

    1) General subject: a chimney-pot hat, a high hat, a silk hat, a stove-pipe hat, a tall hat, a top hat, barrel, cylinder, drum, high hat, plug (шляпа), roll, silk hat, tall hat, tile (шляпа), top hat (шляпа)
    2) Medicine: barrel (шприца)
    3) Colloquial: chimney-pot hat (шляпа), topper (шляпа), stove-pipe hat (шляпа)
    5) Engineering: bowl (каландра), cup, cylinder arrangement, cylinder component, muff, ram (силовой)
    8) Mathematics: cyl (cylinder)
    10) Automobile industry: barrel (мера ёмкости: англ.=163,65 л; амер.=119 л; нефтяной= 159 л)
    12) Veterinary medicine: cast
    14) Polygraphy: couette, (вращающийся) roll, (вращающийся) roller
    16) Jargon: plug hat
    17) Information technology: cylinder (в ЗУ на дисках)
    19) Mechanic engineering: thimble
    21) Polymers: roller
    22) Automation: (силовой) ram
    23) Plastics: sleeve
    25) General subject: bore ( зд.)
    27) Combustion gas turbines: rod (геометрическое тело)
    28) Clothing: top hat

    Универсальный русско-английский словарь > цилиндр

  • 49 золотник

    1. м. slide valve
    2. м. control valve
    3. м. авто valve core, inner valve

    крановый золотник — cock plug; valve cock disk

    Русско-английский большой базовый словарь > золотник

  • 50 электрод


    electrode
    -, боковой (искровой свечи) — shell electrode
    - (искровой) свечи (рис. 63) — spark plug electrode
    -, центральный (искровой свечи — core electrode
    зазор между э. (искровой) свечи — spark-plug gap

    Русско-английский сборник авиационно-технических терминов > электрод

  • 51 буровая коронка

    1) Geology: alloy bit, drilling bit
    2) Engineering: bit (бура), boring crown, crown bit
    3) Construction: plug bit
    4) Mining: jackbit
    5) Polygraphy: point
    7) Drilling: sintered diamond coring bit (армированная синтетическими алмазами, термически впекаемыми в матрицу; предназначена для бурения наиболее плотных и абразивных пород)
    8) Makarov: gadder

    Универсальный русско-английский словарь > буровая коронка

  • 52 дроссель

    choke, butterfly governor, throttle governor, inductor, orifice plate ж.-д., orifice plug, reactor, (напр. сужение трубопровода) restrictor, strangler, throttle
    * * *
    дро́ссель м.
    1. двс. throttle (valve)
    прикрыва́ть дро́ссель — throttle back [down] the engine
    рабо́тать на по́лном дро́сселе — operate with the throttle fully [wide] open, operate at full [wide-open] throttle
    2. эл., радио choke, reactor
    3. мех. orifice (plate), constrictor, restrictor, pressure-differential producer
    до дро́сселя — upstream of a restrictor
    забо́р во́здуха произво́дится до дро́сселя — air is tapped upstream of the restrictor
    высокочасто́тный дро́ссель — radio-frequency [r.f.] choke
    гидравли́ческий дро́ссель — throttling valve
    гидравли́ческий, переме́нный дро́ссель — liquid-flow throttling valve
    гидравли́ческий, постоя́нный дро́ссель — liquid-flow throttling orifice, liquid-flow constrictor, liquid-flow restrictor, liquid-flow pressure-differential producer
    ламина́рный дро́ссель — laminar-flow orifice, laminar-flow constrictor, laminar-flow restrictor
    дро́ссель насыще́ния эл. — saturable (core) [saturated-core] reactor
    пневмати́ческий дро́ссель — air-flow constrictor, air-flow restrictor
    помехоподавля́ющий дро́ссель — interference-suppressing choke
    самонасыща́ющийся дро́ссель эл.self-saturating reactor
    дро́ссель сверхвысо́кой частоты́ радиоmicrowave choke
    дро́ссель ти́па сопло́-засло́нка — nozzle-flapper valve
    турбуле́нтный дро́ссель — turbulent-flow constrictor, turbulent-flow restrictor
    дро́ссель фи́льтра эл., радио — filter choke, filter inductor
    электри́ческий дро́ссель — choke, reactor
    * * *

    Русско-английский политехнический словарь > дроссель

  • 53 реактор

    kettle хим., reactor, ( гидротрансформатора) stator
    * * *
    реа́ктор м.
    reactor
    биологи́ческий реа́ктор — fermenter
    реа́ктор гидротрансформа́тора — stator of a fluid torque converter
    термоя́дерный реа́ктор — thermonuclear [fusion] reactor
    хими́ческий реа́ктор — reactor, reaction vessel
    включа́ть [вводи́ть] (хими́ческий) реа́ктор в проце́сс — put a reactor on stream
    выводи́ть (хими́ческий) реа́ктор из проце́сса — take a reactor off stream
    испо́льзовать (хими́ческий) реа́ктор в за́мкнутом ко́нтуре с (други́м аппара́том) — operate a reactor in a closed circuit with …
    масштаби́ровать (хими́ческий) реа́ктор — scale up a reactor
    разгоня́ть (хими́ческий) реа́ктор — start up a reactor
    хими́ческий, диффузио́нный реа́ктор — dispersion reactor
    хими́ческий реа́ктор идеа́льного вытесне́ния — plug-flow reactor
    хими́ческий реа́ктор идеа́льного смеше́ния — perfect-mixing reactor
    хими́ческий, плё́ночный реа́ктор — film reactor
    хими́ческий, прото́чный реа́ктор с меша́лкой — well-stirred continuous reactor, WSCR, continuous stirred tank reactor, CSTR
    хими́ческий, секциони́рованный реа́ктор — section reactor
    хими́ческий реа́ктор с комбини́рованной структу́рой пото́ка — hybrid reactor
    хими́ческий реа́ктор с меша́лкой — stirred reactor
    хими́ческий, теплообме́нный реа́ктор — thermal exchange reactor
    хими́ческий, яче́ечный реа́ктор — cascade reactor
    электри́ческий, ано́дный реа́ктор — брит. anode reactor; амер. plate reactor
    электри́ческий, бето́нный реа́ктор — cast-in(-concrete) reactor
    электри́ческий, заземля́ющий реа́ктор — брит. earthing reactor; амер. grounding reactor
    электри́ческий, защи́тный реа́ктор — protective reactor
    электри́ческий, пусково́й реа́ктор — starting reactor
    электри́ческий, разря́дный реа́ктор — discharge coil
    электри́ческий, регулиро́вочный реа́ктор — regulating inductor
    электри́ческий реа́ктор с возду́шным серде́чником — air(-core) reactor
    электри́ческий, сгла́живающий реа́ктор — smoothing reactor
    электри́ческий реа́ктор с желе́зным серде́чником — iron-core(d) reactor
    электри́ческий, токоограни́чивающий реа́ктор — current-limiting reactor
    электри́ческий, ши́нный реа́ктор — bus reactor
    электри́ческий, шунти́рующий реа́ктор — shunt reactor
    я́дерный реа́ктор — nuclear reactor
    обеспе́чивать (я́дерный) реа́ктор защи́той — safeguard a reactor
    остана́вливать (я́дерный) реа́ктор — shut down a (nuclear) reactor
    остана́вливать я́дерный реа́ктор автомати́чески в авари́йной ситуа́ции — scram a reactor
    пуска́ть (я́дерный) реа́ктор — start up a reactor
    регули́ровать (я́дерный) реа́ктор — control a reactor
    устана́вливать (я́дерный) реа́ктор в биозащи́ту — shield a reactor
    (я́дерный) реа́ктор вступа́ет в крити́ческий режи́м — the reactor goes critical
    я́дерный, бассе́йновый реа́ктор — pool-type reactor
    я́дерный реа́ктор без отража́теля — bare reactor
    я́дерный, бы́стрый реа́ктор жарг.fast reactor
    я́дерный, во́до-водяно́й реа́ктор — water-moderated [water-cooled] reactor
    я́дерный, гетероге́нный реа́ктор — heterogeneous reactor
    я́дерный, гомоге́нный реа́ктор — homogeneous reactor
    я́дерный реа́ктор для получе́ния я́дерного горю́чего — production [regenerative] reactor
    я́дерный, испыта́тельный реа́ктор — testing reactor
    я́дерный, иссле́довательский реа́ктор — research(-and-development) reactor
    я́дерный, ко́рпусный реа́ктор — shell-type reactor
    я́дерный реа́ктор на бы́стрых нейтро́нах — fast reactor
    я́дерный реа́ктор на ме́дленных нейтро́нах — thermal [slow] reactor
    я́дерный реа́ктор на обогащё́нном ура́не — enriched-uranium reactor
    я́дерный реа́ктор на тепловы́х нейтро́нах — thermal [slow] reactor
    я́дерный реа́ктор нулево́й мо́щности — zero-power reactor
    я́дерный реа́ктор о́бщего назначе́ния — general-purpose reactor
    я́дерный реа́ктор, охлажда́емый водо́й под давле́нием — pressurized water reactor
    я́дерный, промежу́точный реа́ктор — intermediate reactor
    я́дерный, регенерати́вный реа́ктор — regenerative reactor
    я́дерный реа́ктор с графи́товым замедли́телем — graphite-moderated reactor
    я́дерный реа́ктор с замедли́телем — moderated reactor
    я́дерный реа́ктор с кипя́щей водо́й — boiling water [water-boiler] reactor
    я́дерный, теплово́й реа́ктор — thermal [slow] reactor
    я́дерный, шла́мовый реа́ктор — slurry reactor
    я́дерный, энергети́ческий реа́ктор — power reactor

    Русско-английский политехнический словарь > реактор

  • 54 безвихревой поток

    1. физ. nonedding flow
    2. ав. clean flow

    Русско-английский большой базовый словарь > безвихревой поток

  • 55 соединение


    connection
    - (передаточная связь)coupling
    - (сопряжение систем для совместной работы) — interface. tracker-computer interface.

    vertical reference - star tracker interface.
    - (стык) (рис. 16) — joint
    - (химическое)compound
    - (электрическое)(electrical) connection
    - (эп. цепей, временное) — patching

    connecting two circuits together temporary by means of a patch cord.
    -, болтовое — bolted joint
    -, болтовое технологическое (перед клепкой) — service bolting
    для предотвращения взаимного смещения двух склепываемых листов при установке большого числа заклепок. болты вставляются временно с интервалом через нескопько отверстий под заклепки, — то prevent relative movement between the plates when closing а long line of rivets, the plates should be service bolted, i.e., temporary held together with bolts, spaced one in every (fourth) hole.
    - быстроразъемное — quick-release connection, quick disconnect coupling
    - валов

    @aft coupling
    - внахлестку (заклепочное или сварное) (рис. 156) — lap joint
    - встречно-последовательноеopposing-series connection
    - встыкbutt joint
    - встык с двусторонней накладкой (рис. 156) — double strap butt joint
    - встык с односторонней накладкой (заклепочное или сварное) (рис. 156) — single strap butt joint. where one flush surface and greater strength is required the single strap joint is used.
    - в (на) ус (рис. 16) — bias joint
    -, герметичное — sealed joint
    -, гибкое — flexible coupling
    - гидравлическое, шарнирное — swivel coupling
    -, дюритовое — hose coupling
    гибкое соединение трубопроводов с помощью дюритовогo шланга и затяжных хомутов. — used to couple two pipes with а piece of hose.
    -, дюритовое (шланг в сборе) — hose assembly
    -, дюритовое (для гидропроводки) — hydraulic hose assembly
    -, заклепочное (рис. 156) — riveted joint
    - (электрических обмоток) "звездой" — wye connection, y-connection а y-shaped winding connection.
    - "звездой", трехфазное (без заземления нулевой точки) — three phase wye connection (ungrounded)
    - "звездой", трехфазное,c заземлением нулевой точки) — (с three phase wye connection (grounded)
    - "звездой", трехфазное, с силовым выводом нулевой точки — three-phase wye connection (with neutral point output)
    -, карданное — universal joint
    - (контакт) кислорода с маcломoxygen contact with oil
    соединение кислорода (под давлением) с маслом - взрывоопасно. — an explosion will result if oxygen (under pressure) comes in contact with oil.
    -, клеевое — bonded joint
    - крыла с фюзеляжемwing-to-fuselage joint
    -, легкоразъемное — quick-release coupling
    -, легкоразъемное штепсельнoe — quick-disconnect connector
    -, межэлементное (мэс) (аккумулятора) — inter-cell connector
    -, межщеточное (эп. машины) — brush connector
    - на корпус объекта (электрическое на конструкцию ла)connection to aircraft structure
    -, неподвижное — fixed joint
    -, неразъемное (деталей, входящих в узел) — permanent joint
    - обжимом жилы провода в наконечнике — crimped-core joint. а permanent crimped mechanical joint between а cable core and a lug or ferrule.
    -, параппепьное (эп.) — parallel connection
    присоединение двух или болee элементов схемы на одну и ту же пару клемм. — connection of two or more parts of а circuit to the same pair of terminals.
    -, парное — pairing

    each gs channel is paired with a localizer channel.
    -, парное (эл. проводки) — soldered terminal connection
    -, поворотное (трубопроводов) — swivel coupling
    -, поворотное (коромысла тележки шасси) — (bogie beam) swivel joint
    -, подвижное шлицевое — splined slip joint
    -, последовательное (эл.) — series connection
    соединение элементов цепи один за другим. — а way of making connections so as to form a series circuit.
    -, разъемное (деталей, входящих в узел) — detachable joint
    - раструбом, раструбное (трубопровода) — bell-and-spigot joint, spigotand-socket joint
    -, резьбовое — threaded joint
    -, сварное — welded joint
    - сетей (бортовых электрических систем)systems tie
    - (эл.) сетей (при запуске bсу) — electrical systems tie (when starting the apu)
    - сильфонного типаbellows connection
    - системы астрокорректора и вычислительного устройства — star- tracker-computer interface. the computer commands and controls the star-tracker system, and the star tracker, in return, sends signals to the computer.
    - системы гировертикали и астрокорректора (для совместной работы)vertical reference-star tracker interface
    -, скользящее — slip joint
    -, ступенчатое (заклепочное или сварное) — lap joint
    -, стыковое — butt joint
    - сфера по конусу (трубопровода)ball-and-socket joint
    -, телескопическое — telescopic joint
    - типа "ласточкин хвост" — dovetail joint
    - (эл. обмоток) треугольником — delta connection
    - трубопроводовpipe coupling
    - трубопроводов, поворотное — swivel pipe coupling
    - трубопроводов, шарнирное — swivel pipe coupling
    -, фланцевое — flanged joint
    -, шарнирное — hinged joint
    - шарнирное, гидравлическое (гидрошарнир) — swivel coupling
    -, шаровое ("бутылочка") — ball-and-socket joint
    -, шаровое (патрубков) — ball joint
    -, шпицевое (с валом) — spline-coupling (to shaft)
    -, штепсельное — plug connection
    -, шомпольное (навеска) — piano-wire hinge

    Русско-английский сборник авиационно-технических терминов > соединение

  • 56 накатный патрон

    eng: Core of spool, plug, coil, reel
    deu: Rollenkern m
    ita: Mandrino m di una bobina, anima f di una bobina
    ---------------
    eng: Core of spool, coil, reel
    deu: Spulenkern m, spund
    ita: Anima f della bobina, mandrino m

    Russian-English dictionary of packaging machines and equipment > накатный патрон

  • 57 плоский быстросочленяемый соединитель

    1. slotted flat connector
    2. flat quick-connect termination
    3. flat push-on connector
    4. flat pluq-in connector
    5. blade connector

     

    плоский быстросоединяемый зажим 1)
    Электрическое соединение, состоящее из штыревого и гнездового наконечников, сочленяемых и расчленяемых с помощью или без помощи инструмента
    [ ГОСТ Р МЭК 61210-99]
    плоский быстросочленяемый зажим 1)
    -
    [IEV number 442-06-07]

    плоский втычной соединитель
    Конструкция, состоящая из вставки и гнезда, позволяющая соединять токопроводящую жилу или проводник с управляющим устройством, другой жилой или проводником.
    [ГОСТ IЕС 60730-1-2011]

    EN

    flat quick-connect termination
    an electrical connection consisting of a male tab and a female connector which can be inserted and withdrawn with or without the use of a tool
    [IEV number 442-06-07]

    flat push-on connector

    assembly of a tab and a receptacle enabling the connection, at will, of a core or conductor to a control or to another core or conductor
    [IEC 60730-1, ed. 5.0 (2013-11)]

    FR

    bornes plates à connexion rapide
    raccordement électrique comprenant une languette et un clip pouvant être accouplés et désaccouplés avec ou sans l'utilisation d'un outil
    [IEV number 442-06-07]

    connecteur à languette
    assemblage d'une languette et d'un réceptacle permettant de relier à volonté une âme conductrice ou un conducteur à un dispositif de commande, à une autre âme ou à un autre conducteur
    [IEC 60730-1, ed. 5.0 (2013-11)]

    1)   Правильнее было бы назвать плоский быстросочленяемый соединитель.

    Такой соединитель также называют соединитель (разъем) FASTON или AMP-FASTON
    (FASTON - зарегистрированная торговая марка компании AMP)

    [Интент]

    Параллельные тексты EN-RU

    0254

    Части плоского быстросочленяемого соединителя
    [http://www.kit-e.ru/articles/elcomp/2005_03_18.php]

    1. Гнездовая часть (розетка)
    2. Штыревая часть (вилка)
    3. Выемка (или отверстие) фиксатора
    4. Выступ фиксатора

    Faston connection is a solderless and non threaded plug type connector and gives reliable contact. The connection is crimped.
    [Tyco Electronics]

    Плоский быстросочленяемый соедитнитель предназначен для выполнения надежного беспаячного нерезьбового разъемного соединения проводников. Части соединителя закрепляются на проводниках опрессовкой.
    [Перевод Интент]

    Blade connector
    A blade connector is a type of single wire connection using a flat blade which is inserted into a blade receptacle. Usually both blade connector and blade receptacle have wires attached to them either through soldering of the wire to the blade or crimping of the blade to the wire. In some cases the blade is a manufactured part of a component (such as a switch or a speaker unit) and a blade receptacle is pushed onto the blade to form a connection.

    [http://en.wikipedia.org/wiki/Faston#Blade_connector]

    Плоский соединитель
    Плоский соединитель является устройством разъемного соединения одиночных проводов, состоящим из плоской штыревой части (вилки), которую вставляют в плоскую гнездовую часть (розетку). Как правило, вилку и розетку закрепляют на проводах пайкой или опрессовкой. Выпускаются различные компоненты (например, выключатели, громкоговорители) с вмонтированными вилками плоского разъема. В этом случае для подключения применяют провода с установленной на них розеткой плоского разъема.

    [Перевод Интент]

    Тематики

    Синонимы

    EN

    DE

    FR

    Русско-английский словарь нормативно-технической терминологии > плоский быстросочленяемый соединитель

  • 58 базовый

    1) General subject: base, primary (а тж. в знач. Syn: chief, main, basic, fundamental), backbone, standard, default
    2) Computers: baseline
    3) Military: land-based
    4) Mathematics: reference
    5) Automobile industry: datum
    6) Information technology: basic, basis, core, depot, foundation, generic, host
    7) Astronautics: baselined (документ, вариант)
    8) Oilfield: basestock
    9) Microelectronics: master
    10) Network technologies: home
    11) Programming: most crucial
    13) Makarov: base (о конструкции, модели автомобиля, станка), datum (исходный, принятый за начало отсчёта), locating, mainframe (contrasts with plug-in) (о приборе, в отличие от сменный), primitive
    14) Logistics: base-type, on-base

    Универсальный русско-английский словарь > базовый

  • 59 втулка

    1) General subject: bolster, box, bung, bush, collar, collet, faucet, hob, hub, insert, nave (колеса), peg, plug, quill, spile, spill, tampion, tap, vent peg, vent-peg, stub flange
    2) Aviation: (Goodrich) bushing
    3) Military: (колеса) hub, (колеса) spigot
    4) Engineering: boss (маховика), cartridge, electrode crate (из нерасплавившегося покрытия), liner, muff, sleeve, sleeving, socket (переходная), spigot (крана), spiking, stopper, thimble, sac, precast liner
    5) Agriculture: cup (подшипника)
    6) Construction: adapter socket, pad, saucer
    7) Railway term: journal box, sleeve joint
    8) Automobile industry: barrel, bush bearing, bushing, cartridge (в которой монтируются подшипники качения), pap, sleeve bearing, sleeve pipe, solid bearing, spool
    9) Forestry: boss (колеса), spigot (бочки), spile (бочки), spill (бочки)
    10) Metallurgy: (литниковая) bush, hollow bar
    13) Electronics: slug
    14) Oil: barrel (насоса), sub
    15) Dentistry: drill guide
    16) Mechanic engineering: back, chair (колеса), male connection
    17) Mechanics: muft
    18) Power engineering: culvert (подшипника)
    20) Oilfield: bush sleeve
    21) Polymers: grommet, tube
    23) Robots: hub (колеса), spacer
    24) Arms production: adapter
    28) oil&gas: liner (насоса), substitute
    29) Combustion gas turbines: boss (диска), rabbit
    30) Electrical engineering: slug (реле)

    Универсальный русско-английский словарь > втулка

  • 60 вытяжной шип

    1) Engineering: draw piece, loose plug

    Универсальный русско-английский словарь > вытяжной шип

См. также в других словарях:

  • Core plug — A core plug that has been corroded from improper engine maintenance. Core plugs, sometimes wrongly called freeze plugs or frost plugs, are plugs that fill the core holes found on water cooled internal combustion engines. The sand casting cores… …   Wikipedia

  • core plug — A metal plug located in the sides of the engine block which can pop out because of excessive pressure or freezing and prevent the engine block from cracking. These plugs are located in the water jacket and can sometimes leak and should then be… …   Dictionary of automotive terms

  • core plug — /ˈkɔ plʌg/ (say kaw plug) noun → welch plug …  

  • Core (manufacturing) — A core is a device used in casting and molding processes to produce internal cavities and reentrant angles. The core is normally a disposable item that is destroyed to get it out of the piece.[1] They are most commonly used in sand casting, but… …   Wikipedia

  • core hole plug — See core plug freeze plug …   Dictionary of automotive terms

  • core hole plugs — See core plug …   Dictionary of automotive terms

  • core plugs — See core plug …   Dictionary of automotive terms

  • plug — A removable cork or stopper which fills a hole. See blanking plug coil glow plug cold plug core hole plug core plugs drain plug drain plug key drain plug spanner drain plug wrench …   Dictionary of automotive terms

  • plug — pluggable, adj. pluggingly, adv. plugless, adj. pluglike, adj. /plug/, n., v., plugged, plugging. n. 1. a piece of wood or other material used to stop up a hole or aperture, to fill a gap, or to act as a wedge. 2. a core or interior segment taken …   Universalium

  • plug — [[t]plʌg[/t]] n. v. plugged, plug•ging 1) a piece of wood or other material used to stop up a hole or aperture 2) cvb a core or interior segment taken from a larger matrix 3) elm an attachment at the end of an electrical cord that allows its… …   From formal English to slang

  • Plug-in (computing) — A plug in (plugin, addin, add in, addon, add on, snap in or snapin ; but see extension) is a computer program that interacts with a host application (a web browser or an email client, for example) to provide a certain, usually very specific,… …   Wikipedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»