Перевод: с русского на английский

с английского на русский

control+density

  • 41 маршрут

    маршрут сущ
    itinerary
    автоматическая прокладка маршрута
    self-routing
    близость маршрутов
    routes proximity
    ветер на определенном участке маршрута
    stage wind
    восходящий поток воздуха на маршруте полета
    en-route updraft
    время полета по маршруту
    trip time
    вспомогательный маршрут полета
    side trip
    выбирать маршрут полета
    select the flight route
    выбор маршрута
    routing
    выбор непрямого маршрута
    indirect routing
    вынужденное изменение маршрута
    involuntary rerouting
    высота полета по маршруту
    en-route altitude
    высота установленного маршрута движения
    traffic pattern altitude
    географическая долгота точки маршрута
    flight longitude
    дальность полета по замкнутому маршруту
    closed-circuit range
    дозаправлять топливом на промежуточной посадке по маршруту
    refuel en-route
    заданный маршрут
    1. assigned track
    2. designated route задержка на маршруте
    delay en-route
    замкнутый маршрут полета
    circle trip
    запасной маршрут
    reserved route
    запасной маршрут полета
    alternate air route
    зона маршрута
    en-route area
    изменение маршрута по желанию пассажира
    voluntary rerouting
    изменение маршрута полета
    flight diversion
    изменение промежуточного пункта маршрута
    waypoint change
    изменение эшелона на маршруте
    en-route change of level
    измерять маршрут полета
    replan the flight
    инструктаж по условиям полета по маршруту
    route briefing
    информационное обслуживание авиационных маршрутов
    aeronautical en-route information service
    искривленный маршрут
    bent course
    канал связи на маршруте
    on-course channel
    кодирование названия маршрута
    name-code of the route
    комбинированный маршрут
    composite track
    конечный маршрут
    terminal route
    контролируемый маршрут
    controlled route
    контрольная точка на маршруте
    en-route fix
    конфигурация при полете на маршруте
    en-route configuration
    кратчайший маршрут
    least-time track
    круговой маршрут
    closed-loop
    круговой маршрут полета
    round trip
    летать по маршруту
    fly en-route
    линия маршрута
    routing line
    маршрут большой протяженности
    long-stage route
    маршрут верхнего воздушного пространства
    upper air route
    маршрут вне воздушной трассы
    off-airway route
    маршрут вылета
    departure route
    маршрут вылета с радиолокационным обеспечением
    radar departure route
    маршрут высокой интенсивности
    high-density route
    маршрут захода на посадку
    procedure approach track
    маршрут зональной навигации
    area navigation route
    маршрут консультативного обслуживания
    advisory route
    маршрут малой протяженности
    short-haul route
    маршрут местной авиалинии
    feederline route
    маршрут минимального времени полета
    minimum time track
    маршрут нижнего воздушного пространства
    low air route
    маршрут, обслуживаемый службой воздушного движения
    air traffic service route
    маршрут околозвукового торможения
    transonic deceleration route
    маршрут осмотра
    walk-around
    маршрут перегонки воздушных судов
    air ferry route
    маршрут перехода в эшелона на участок захода на посадку
    feeder route
    маршрут полета
    1. flight route
    2. flight lane маршрут полета в направлении от вторичных радиосредств
    track from secondary radio facility
    маршрут прибытия
    1. arrival track
    2. arrival route 3. inbound route маршрут прилета с радиолокационным обеспечением
    radar arrival route
    маршрут с минимальным уровнем шума
    minimum noise route
    маршрут управления воздушным движением
    ATC route
    маршрут ухода на второй круг
    missed approach procedure track
    маршрут эвакуации
    escape route
    маршрут эвакуации пассажиров при возникновении пожара
    fire rescue path
    международный транзитный маршрут
    international transit route
    метеообслуживание на маршруте
    en-route meteorological service
    метеоусловия на маршруте
    en-route weather
    минимальная высота по маршруту
    minimum en-route altitude
    набор высоты на маршруте
    en-route climb
    на маршруте
    1. en-route
    2. on route намеченный маршрут полета
    the route to be flown
    на участке маршрута в восточном направлении
    on the eastbound leg
    незамкнутый круговой маршрут
    open-jaw route
    незамкнутый маршрут
    open-loop
    незамкнутый маршрут полета
    open-jaw trip
    неконтролируемый маршрут
    uncontrolled route
    обозначение маршрута
    route designator
    обратный маршрут полета
    return trip
    обходной маршрут
    1. diversionary route
    2. circuitous route односторонний маршрут
    single direction route
    односторонний маршрут полета
    single trip
    описание маршрута полета
    route description
    осевая линия маршрута
    route centerline
    особые явления погоды на маршруте полета
    en-route weather phenomena
    остановка на маршруте полета
    en-route stop
    перечень утвержденных маршрутов
    routing list
    плотность движения на маршруте
    route traffic density
    полет вне установленного маршрута
    off-airway flight
    полет в режиме ожидания на маршруте
    holding en-route operation
    полет на среднем участке маршрута
    mid-course flight
    полет по дополнительному маршруту
    extra section flight
    полет по заданному маршруту
    desired track flight
    полет по замкнутому маршруту
    round-trip
    полет по круговому маршруту
    1. circling
    2. round-trip flight полет по маршруту
    1. en-route operation
    2. en-route flight полет по полному маршруту
    entire flight
    полет по размеченному маршруту
    point-to-point flight
    посадка на маршруте полета
    intermediate landing
    предписанный маршрут полета
    prescribed flight track
    предпочтительный по уровню шума маршрут
    noise preferential route
    пробегать по полному маршруту
    cover the route
    проверка обеспечения полетов на маршруте
    route-proving trial
    прогноз по маршруту
    air route forecast
    прокладка маршрута вне установленной авиатрассы
    off-airway routing
    прокладка маршрута в районе аэродрома
    terminal routing
    прокладка маршрута полета
    flight routing
    прокладка маршрута полета согласно указанию службы управления движением
    air traffic control routing
    прокладка маршрута по угловым координатам
    angle tracking
    прокладка маршрута прибытия
    inbound routing
    прокладка маршрута с помощью бортовых средств навигации
    aircraft self routing
    прокладка транзитных маршрутов
    transit routing
    прокладывать маршрут
    1. plot a course
    2. lay the route прокладывать на карте маршрут
    chart a course
    промежуточный пункт маршрута
    waypoint
    прямой маршрут
    direct route
    пункт поворота маршрута
    mileage break
    радиопеленг на маршруте
    en-route radio fix
    разрешение в процессе полета по маршруту
    en-route clearance
    район прохождения маршрута
    routing area
    распределение расходов по маршрутам
    cost allocation to routes
    региональный маршрут
    regional route
    связь на маршруте
    en-route communication
    сектор маршрута
    route sector
    система организованных маршрутов
    organized track system
    система предписанных маршрутов
    predetermined track structure
    скорость набора высоты при полете по маршруту
    en-route climb speed
    служба обеспечения прогнозами по маршруту
    route forecast service
    составной маршрут
    multisector route
    справочник маршрутов
    routing directory
    стандартный маршрут
    standard arrival route
    стыковка рейсов на полный маршрут
    end-to-end connection
    схема полета по маршруту
    en-route procedure
    тариф кругового маршрута
    circle trip fare
    тариф по незамкнутому круговому маршруту
    open-jaw fare
    тариф прямого маршрута
    direct fare
    текущий участок маршрута
    current leg
    траектория полета по маршруту
    en-route flight path
    указатель маршрута
    route identifier
    указатель отклонения от маршрута
    off-track indicator
    указатель утвержденных маршрутов полета
    routing indicator
    условия на маршруте
    en-route environment
    условия по заданному маршруту
    conditions on the route
    установленный маршрут
    1. predetermined route
    2. specified route установленный маршрут полета
    the route to be followed
    утвержденный маршрут
    approved route
    участок маршрута
    1. route segment
    (полета) 2. leg участок маршрута между вторым и третьим разворотами
    down-wind leg
    участок маршрута между первым и вторым разворотами
    cross-wind leg
    участок маршрута между третьим и четвертым разворотами
    base leg
    участок маршрута полета
    1. air leg
    2. airborne segment участок маршрута с набором высоты
    upward leg
    участок маршрута с обратным курсом
    back leg
    участок маршрута со снижением
    down leg
    фиксировать точку маршрута
    store waypoint
    характеристика набора высоты при полете по маршруту
    en-route climb performance
    чартерный рейс по незамкнутому маршруту
    open-jaw charter
    чартерный рейс по установленному маршруту
    on-route charter
    частота на маршруте полета
    en-route frequency
    этап маршрута
    route stage
    (полета) этап полета по маршруту
    en-route flight phase
    эффективность маршрута
    profitability over the route

    Русско-английский авиационный словарь > маршрут

  • 42 дорожка

    * * *
    доро́жка ж. ( на носителе записи)
    track
    испо́льзовать доро́жку совме́стно — share a track
    переполня́ть доро́жку — overflow a track
    бегова́я доро́жка подши́пника — race
    бегова́я доро́жка проте́ктора — tyre tread
    вихрева́я доро́жка — vortex trail, vortex street
    диэлектри́ческая доро́жка — rubber blanket
    закро́мочная доро́жка — wake
    доро́жка за́писи — (recording) track
    доро́жка за́писи изображе́ния — video track
    звукова́я доро́жка — sound track
    звукова́я доро́жка переме́нной пло́тности — variable-density sound track
    доро́жка информа́ции — information [storage] track
    доро́жка каче́ния ( в подшипнике) — raceway
    ко́довая доро́жка — code track
    контро́льная доро́жка — control track
    направля́ющая доро́жка клю́ва узловяза́теля — knotter hook jaw cam
    направля́ющая доро́жка шпи́ндельного аппара́та хлопкоубо́рочной маши́ны — picker bar cam
    опо́рная центра́льная доро́жка — central load-carrying rib (on a tyre)
    проводя́щая доро́жка ( дефект изоляционных материалов) — conducting track
    доро́жка режиссё́рских указа́ний ( в видеомагнитофоне) — cueing track
    рулё́жная доро́жка — taxi track, taxiway
    синхронизи́рующая доро́жка — clock [reference, timing] track
    та́ктовая доро́жка — clock track
    управля́ющая доро́жка — control track
    цифрова́я доро́жка — digital track
    * * *

    Русско-английский политехнический словарь > дорожка

  • 43 поверхность

    area, (напр. лакокрасочного покрытия) finish, surface
    * * *
    пове́рхность ж.
    surface; ( площадь) area; ( плоскость) plane, face
    выступа́ть на пове́рхности (в ви́де пя́тен) — bloom to the surface
    прижима́ть по всей пове́рхности — press smth. down to an even bearing
    проходи́ть по пове́рхности щё́ткой — go over a surface with a brush
    разрыва́ть пове́рхность — disrupt the surface
    с мати́рованной пове́рхностью — rough-surfaced
    с мати́рованной боково́й пове́рхностью — rough-sided
    абляцио́нная пове́рхность — ablation surface
    абрази́вная пове́рхность — abrasive surface
    акти́вная пове́рхность — active surface
    пове́рхность анте́нны, де́йствующая — effective surface of an antenna
    аэродинами́ческая пове́рхность — airfoil [aerodynamic] surface
    ба́зовая пове́рхность маш. — location [datum] surface
    бегова́я пове́рхность ( шины) — running surface
    пове́рхность безразли́чия — indifference surface
    винтова́я пове́рхность мат. — helical [screw] surface
    вихрева́я пове́рхность аргд.vortex sheath
    во́дная пове́рхность — water surface
    пове́рхность враще́ния — surface of revolution
    пове́рхность второ́го поря́дка мат. — surface of the second order, quadric (surface), second-degree surface
    вы́ровненная пове́рхность — true surface
    гла́дкая пове́рхность — smooth surface
    гладкотру́бная пове́рхность — bare tube surface
    глисси́рующая пове́рхность ( днища летающей лодки или глиссера) — planing bottom
    пове́рхность горе́ния — combustion [burning] surface
    грани́чная пове́рхность — boundary surface
    пове́рхность деформа́ции — strain surface
    диффу́зно отража́ющая пове́рхность — diffusively reflecting surface
    пове́рхность забо́я, обнажё́нная — face end
    заса́сывающая пове́рхность ( гребного винта) — suction face, suction surface
    пове́рхность зацепле́ния зубча́той переда́чи — surface of action
    зерка́льная пове́рхность — mirror surface
    пове́рхность зу́ба, бокова́я — tooth surface, flank
    пове́рхность зу́ба, факти́ческая рабо́чая — active tooth surface
    пове́рхность изло́ма — surface of a fracture
    изобари́ческая пове́рхность — constant-pressure [isobaric] surface
    изосте́рная пове́рхность — surface of equal specific volume
    изотерми́ческая пове́рхность — isothermal surface
    изоэнергети́ческая пове́рхность физ.constant-energy surface
    изоэнтропи́ческая пове́рхность — isentropic surface
    ионообме́нная пове́рхность — ion-exchange surface
    пове́рхность испаре́ния — evaporation surface
    истира́ющая пове́рхность — abrasive [abrading] surface
    пове́рхность каса́ния — contact surface
    пове́рхность ката́ния — roll surface
    каусти́ческая пове́рхность — caustic surface
    пове́рхность ко́жи, лицева́я — grain (side)
    конденси́рующая пове́рхность — condensing surface
    кони́ческая пове́рхность — taper(ed) [conic(al) ] surface
    конта́ктная пове́рхность — contact surface
    пове́рхность кристаллиза́ции — crystallization surface
    лине́йчатая пове́рхность мат.ruled surface
    лине́йчатая, неразвё́ртывающаяся пове́рхность мат.warped surface
    лицева́я пове́рхность ( строительного камня) — face
    лобова́я пове́рхность — frontal surface
    пове́рхность ло́пасти — blade face
    лучевоспринима́ющая пове́рхность — radiant beat absorbing surface
    лучеиспуска́ющая пове́рхность — radiating surface
    ма́товая пове́рхность
    1. ( дефект поверхности) метал.-об. dull surface
    2. ( краски) flat [low-gloss] finish
    дава́ть ма́товую пове́рхность при высыха́нии — dry to a flat [low-gloss] finish
    межфа́зовая пове́рхность — interface
    нагнета́ющая пове́рхность ( гребного винта) — pressure face, pressure surface
    пове́рхность нагре́ва — beat transfer [heating] surface
    пове́рхность нагре́ва, дрени́руемая — drainable heating surface
    пове́рхность нагре́ва, змеевико́вая — coil heating surface
    пове́рхность нагре́ва, испари́тельная — evaporating heating surface
    пове́рхность нагре́ва, кипяти́льная — evaporating heating surface
    пове́рхность нагре́ва, конвекти́вная — convection heating surface
    пове́рхность нагре́ва, недрени́руемая — nondrainable heating surface
    пове́рхность нагре́ва, парообразу́ющая — steam generating heating surface
    пове́рхность нагре́ва, полурадиацио́нная — radiant-convective heating surface
    пове́рхность нагре́ва, попере́чно-обтека́емая — cross-flow heating surface
    пове́рхность нагре́ва, продо́льно-обтека́емая — longitudinal-flow heating surface
    пове́рхность нагре́ва, рабо́тающая под давле́нием — pressure heating surface
    пове́рхность нагре́ва, радиацио́нная — radiant beating surface
    пове́рхность нагре́ва, самообдува́ющаяся — self-cleaning beating surface
    пове́рхность наиме́ньшего искаже́ния опт.surface of least confusion
    пове́рхность напряже́ний — stress surface
    нелине́йчатая крива́я пове́рхность мат.double-curved surface
    ненесу́щая пове́рхность ав.nonlifting surface
    несу́щая пове́рхность ав.lifting surface
    несу́щая пове́рхность голо́вки ре́льса — bearing surface of the rail
    ограни́чивающая пове́рхность — bounding surface
    пове́рхность одина́ковой фа́зы — equiphase surface
    односвя́зная пове́рхность — simply connected surface
    опо́рная пове́рхность — base [bearing, supporting] surface
    опо́рная пове́рхность кла́пана — valve-seat face, valve-seat area
    опти́чески пло́ская пове́рхность опт., элк.optical flat
    оребрё́нная пове́рхность — finned surface
    пове́рхность о́тклика — response surface
    отража́ющая пове́рхность — reflecting surface
    отража́ющая, эффекти́вная пове́рхность рлк. — (target) echo area, scattering cross-section (of a target)
    оформля́ющая пове́рхность пласт.moulding surface
    пове́рхность охлажде́ния — cooling surface
    парогенери́рующая пове́рхность — steam generating surface
    печа́тающая пове́рхность полигр.printing surface
    поглоща́ющая пове́рхность — absorption surface
    подстила́ющая пове́рхность — underlying surface
    поса́дочная пове́рхность
    1. ( у детали) mounting surface
    2. ав. landing surface
    поса́дочная пове́рхность — ско́льзкая — the landing surface is slippery
    посыпа́ть поса́дочную пове́рхность песко́м — strew the landing surface with sand
    потенциа́льная пове́рхность — potential surface
    пове́рхность прока́та — rolled surface, surface of rolled products
    зачища́ть пове́рхность прока́та — condition the surface of the rolled products
    пьезометри́ческая пове́рхность — piezometric surface
    пове́рхность пя́того поря́дка мат.quintic (surface)
    рабо́чая пове́рхность вкла́дыша подши́пника — bearing surface, shell lining
    рабо́чая пове́рхность накова́льни — face of an anvil
    рабо́чая пове́рхность подши́пника — bearing surface
    рабо́чая пове́рхность по́ршня — working surface of a piston
    рабо́чая пове́рхность толка́теля — wear surface of a tappet
    рабо́чая пове́рхность тормозо́в — braking surface, braking area, brake friction area
    пове́рхность ра́вной пло́тности — surface of equal density
    равнофа́зная пове́рхность — equiphase surface
    пове́рхность, развё́ртываемая в пло́скость картогр.developable surface
    развита́я пове́рхность — developed [extended] surface
    пове́рхность разде́ла фаз — interface
    пове́рхность разры́ва аргд.discontinuity surface
    пове́рхность разъё́ма — joint [parting] plane
    пове́рхность распи́ла — sawn face
    рулева́я пове́рхность — control surface
    светочувстви́тельная пове́рхность — photosurface, light-sensitive [photosensitive] surface
    свобо́дная пове́рхность — free surface
    пове́рхность скольже́ния — sliding surface, slide face
    смо́ченная пове́рхность — wetted surface, wetted area
    смя́тая пове́рхность ( дефект поверхности) метал.-об.rumpled surface
    сопряжё́нная пове́рхность — mated surface
    пове́рхность спа́йности — cleavage plane, cleavage face
    среди́нная пове́рхность — median surface
    пове́рхность сры́ва пото́ка — separation surface
    теорети́ческая пове́рхность ( корпуса судна) — moulded surface
    тепловоспринима́ющая пове́рхность — beat absorbing surface
    теплообме́нная пове́рхность — beat exchange surface
    теплоотдаю́щая пове́рхность — beat-release surface
    пове́рхность теплопереда́чи — beat-transfer surface
    теплопоглоща́ющая пове́рхность — beat-absorbing surface
    тормозя́щая пове́рхность — braking surface
    торцо́вая пове́рхность — (end) face
    пове́рхность тре́ния — friction surface
    узлова́я пове́рхность — nodal surface
    пове́рхность управле́ния ав.control surface
    у́ровенная пове́рхность — datum [reference] level, datum plane, reference surface
    фасо́нная пове́рхность — contoured surface
    пове́рхность Ферми́ — Fermi surface
    фотометри́ческая пове́рхность — photometric surface
    характеристи́ческая пове́рхность — characteristic surface
    пове́рхность четвё́ртого поря́дка мат.quartic (surface)
    шерохова́тая пове́рхность — rough surface
    ши́рмовая пове́рхность — platen surface
    пове́рхность штукату́рки — coat of plaster
    выра́внивать пове́рхность штукату́рки — finish a coat of plaster to a true surface
    эквипотенциа́льная пове́рхность — equipotential surface
    эквифа́зная пове́рхность — equiphase surface
    экра́нная пове́рхность — water-cooled [water-wall] surface

    Русско-английский политехнический словарь > поверхность

  • 44 дорожка

    ж. track

    синхронизирующая дорожка; синхродорожкаtiming track

    Синонимический ряд:
    тропинка (сущ.) стежка; тропа; тропинка; тропка

    Русско-английский большой базовый словарь > дорожка

  • 45 полет


    flight
    движение объекта (ла) в атмосфере под воздействием аэродинамических, аэростатических или реактивных сил. — the movement of an object through the atmosphere sustained by aerodynamic, aerostatic, or reaction forces.
    - без кренаwings-level flight
    -, беспосадочный — nonstop flight
    -, бреющий — low-level flight
    - вверх колесамиinverted fligtit
    - в зоне ожидания, продолжительный — prolonged holding
    -, визуальный — contact flight
    при визуальном полете контроль положения и траектория движения самолета осуществляется визуально, наблюдением пролетаемой земной поверхности. — contact flight is flight of aircraft in which the attitude of the aircraft and its flight path can at all times be controlled by means of visual reference to the ground or water.
    - в спокойном воздухеstill-air flight
    - в условиях "оболтанки" — bumpy-air flight
    - в условиях плохой видимостиlow visibility flight
    - в усповии стандартной плотности воздухаflight in air that is equivalent to standard air density
    - ' высотныйhigh-altitude flight
    -, гиперзвуковой — hypersonic flight
    -, горизонтальный (ла) — leval /horizontal/ flight
    -, групповой — formation flight
    -, дальний — long-distance flight
    -, директорный (управление самолетом вручную по указаниям директорных приборов) — flight with flight director (fd) commands
    -, длительный — prolonged /extended/ flight
    уменьшить градиент набора высоты на 55 % для выполнения длительного полета в условиях обледенения. — decrease climb gradient 55 % for prolonged flight in icing conditions.
    -, дневной — day flight
    -, заводской испытательный — factory test flight
    -, испытательный — test flight
    -, контрольный — check flight
    полет с целью проверки самолета на эксплуатационных режимах после ремонта, замены двигателей, агрегатов, ипи для проверки квалификации летчика. — flight.to test the aircraft after repair, engine's) or accesseries replacement. а flight in which а pilot is tested ог examined for proficiency.
    -, контрольный (для проверки характеристик ла) — check flight. а flight made to check or test the performance of an ai rcraft.
    -, крейсерский — cruising flight
    -, криволинейный — curvilinear flight
    -, медленный (на минимальной эволютивной скорости) — slow flight flight at minimum controllable airspeed.
    - на авиалиниях малой (средней, большой) протяженности — short-(medium-, long-) haul service
    - на боевом курсе (заход на цель)run-in
    - на больших высотахhigh-altitude flight
    - на восток (и т.п.) — east-bound flight
    - на дальность — long range cruise /flight/
    - на (двух) двигателяхflight on (two) engines
    - на буксире (планера)aero-tow flight
    - над водным пространством, (длительный) — (extended) overwater flight
    - над высотой переходаflight above transition altitude
    - над облакамиover-the-top flight

    flight made above an overcart, usually a cloud formation.
    - над погодойoverweather flight
    - на (расстояние)... км — flying over distance of... km
    - на заданную дальность — flying over the desired range /distance/
    - на критическом угле атакиstall flight
    - на максимальную дальностьlong range cruise (lrc)
    - на малой скоростиlow-speed flight
    - на малых высотахlow-altitude flight
    - на полном газеfull-throttle flight
    - на приводhoming
    полет на источник радиоволн, с использованием направленной (рамочной) антонны. — following а path of radio waves by means of а directional antenna to the point of transmission.
    - на продолжительностьendurance flight
    - на радиостанцию — flight towards the station, flight inbound the station
    - на режиме висения (верт.) — hovering flight
    - на режиме максимальной мощностиmaximum power flight
    - на режиме наибольшей дальности, крейсерский — long range cruise (lrc)
    - на режиме наибольшей продолжитепьности, крейсерский — high-endurance cruise (hrc)
    - на эшелоне 10.000 м — 10.000 (m)-level flight
    - на эшелоне 37000 футов370-level flight
    -, ночной — night flight
    -, обратный — return flight
    во время обратного полета ла подвергся сильному обледенению. — on return flight the aircraft was subjected to severe icing.
    -, ознакомительный — familiarization flight
    - от радиостанции — flight outbound /rom/ the static п
    -, парящий — soaring flight
    -, патрульный — patrol flight
    -, первый (опытного образца ла) — maiden flight. the first airbus took off on its maiden flight on october 1972.
    -, перевернутый — inverted flight
    -, перегоночный — ferry flight
    - планера, буксируемого самолетом — aero-tow flight
    -, планирующий — gliding flight
    - по заданной траекторииdesired flight path flying
    - no 3k (заданному курсу)along-heading flight
    - no заданному маршрутуdesired track flying
    - no замкнутому кругуclosed-circuit flight
    -, показательный — demonstration flight
    - no командным стрелкам директорных приборов — flight by using display of command bars, flight by satisfying the command bars commands
    - no "коробочке" — rectangular approach traffic pattern flight
    - no кругу — circuit flight /flying/, circular /circling/ flight
    - no кругу (левосторонний)(left-hand) traffic circuit flying
    полет, выполняемый над аэродромом по установленму замкнутому маршруту
    - по курсу — flight on heading /course/
    - по лзп (линии заданного пути)along-track flight
    - по линии пути (60о) (по сигналам) станции vor, в направлении от (к) станции — flying on (60о) outbound (inbound) vor radial
    - по маршрутуenroute flight
    - по маякам vorvor course flight
    - по маякам vor, автоматический — vor course automatic flight
    - no обратному лучу (маяка ils) — back locali2er course flying, localizer back beam ffying (b/l)
    - no (наземным) ориентирамflight by reference to ground objects
    - no ортодромии (рис. 111) — great circle flying
    полет на большое расстояние e использованием метода счисления пути по ортодромическому курсу от пункта вылета до пункта назначения. — the method of flying by dead reckoning over great distances and following а оgreat circleп track from the point of departure to the destination.
    - no параллельной линии пути (рис. 124) — parallel track flying, procedure to fly parallel track
    - no параллельным трассам (рис. 124) — flight on parallel tracks, procedure to f'ly parallel track
    - no 9-ти запрограммированным ппмflight (plan) with 9 wpts stored
    - по правилам визуального полета (в условиях хорошей видимости) — flight under visual flight rules, flight under vfr conditions, vfr flight
    - no правилам полета по приборам (в условиях плохой видимости) — flight under instrument flight rules, flight under ifr conditions, ifr flight
    при данном полете погодные условия ниже минимума, позвопяющего выполнять полет no правилам визуального полета. — "ifr conditions" means weather conditions below the minimum for flight under visual flight rules.
    - no приборамinstrument flight
    - no приборам в условиях плохой видимостиifr flight
    - по прямойstraight flight
    - по прямому лучу (маяка илс) — front localizer course flying, localizer front beam flying
    - no сигналам системы директорного управления (сду)flight with response to fd commands
    -, поступательный (вертолета) — forward flight
    - по условным меридианамgrid flight

    during а grid flight the free gyro direction will slowly drift from grid north.
    -, приемно-сдаточный — acceptance flight
    -, продолжительный — prolonged /extended/ flight

    prolonged flight at high nose-up attitude.
    -, прямолинейный — straight flight
    режим полета самолета, при котором его цт движется по прямолинейной траектории горизонтально или под углом к горизонту. — ап aircraft flying along straight level or slant flight path.
    -, прямолинейный горизонтальный — straight and level flight. the adjustment and maintenance of an aircraft in three planes: vertical, lateral, and horizontal.
    -, равномерный (без ускорения — unaccelerated flight
    -, рейсовый — scheduled flight
    -, рекордный — record flight
    -, самостоятельный — solo flight
    лицо, выполняющее самостоятепьный полет, является единственным лицом на борту ла, управляющим nолетом ла. — а person is engaged in solo flight when he is the sole operator of the controls and is in command of aircraft in flight.
    - с большим углом кабрированияflight at high nose-up attitude
    - с брошенной ручкойstick-free flight
    - с брошенным управлениемcontrols free flight
    - с визуальной ориентацией — vfr flight, flight under visual flight rules
    - с визуапьной ориентацией в зоне с управляемым воздушным движением при неблагоприятных метеоусловиях — special vfr flight. а vfr flight authorized' by air traffic control to operate within а control zone under meteorological conditions below the visual meteorological conditions (vmc).
    - с выключенным двигателемpower-off flight
    - с гиперзвуковой скоростьюhypersonic flight
    - с дозвуковой скоростьюsubsonic flight
    - с 9-ю запрограммированными ппмflight (plan) with 9 wpts stored
    - с использованием кислорода при подсосе воздухаflight on deluted oxygen
    -, слепой — instrument flight
    - с набором высотыascent
    - со снижениемdescent
    - с работающим двигателемpower-on flight
    - строемformation flying
    - с ускорениемaccelerated flight
    -, тарировочный — calibration flight
    -, транзитный — transit flight
    -, тренировочный — practice tlight
    -, установившийся — steady flight
    -, учебно-тренировочный — training flight
    -, учебный — training flight
    -, фигурный — acrobatic /acrobatic/ flight
    no п. (вид) — looking forward
    при п. — in flight, when flying
    против п. (вид) — looking aft
    выполнять п. — fly
    выполнять п. по кругу — circle
    летать на бреющем п. — fly at а low level
    прекращать п. по (данным) приборам (ввиду их отказа или неуверенности в правильности показаний) — disregard the (instrument) display
    продолжать п. на двигателях — continue flight on engines
    совершать п. — fly
    устанавливать режим п. — establish flight condition

    Русско-английский сборник авиационно-технических терминов > полет

  • 46 нагрузка

    асимметричная нагрузка
    unsymmetrical load
    аэродинамическая нагрузка
    aerodynamic load
    безопасная нагрузка
    1. fail-safe load
    2. safe load боковая нагрузка
    side load
    боковая полоса безопасности, способная нести нагрузку
    bearing shoulder
    (от воздушного судна) весовая отдача по полезной нагрузке
    useful-to-takeoff load ratio
    ветровая нагрузка
    wind effect
    вибрационная нагрузка
    vibratory load
    внешняя нагрузка
    external load
    выдерживать нагрузку
    withstand the load
    гидродинамическая нагрузка
    water load
    гироскопическая нагрузка
    gyroscopic load
    динамическая нагрузка
    dynamic load
    допустимая нагрузка
    allowable load
    имитатор аэродинамических нагрузок
    air-load simulator
    инерционная нагрузка
    inertia load
    испытание на ударную нагрузку
    1. shock test
    2. impact test испытания воздушного судна на переменные нагрузки
    aircraft alternate-stress tests
    испытания по замеру нагрузки в полете
    flight stress measurement tests
    классификационный номер степени нагрузки
    load classification number
    коэффициент полезной нагрузки
    useful load factor
    кривая частоты нагрузки
    frequency weighting curve
    маневренная нагрузка
    manoeuvring load
    нагрузка в полете
    flight load
    нагрузка в полете от поверхности управления
    flight control load
    нагрузка на единицу площади
    load per unit area
    нагрузка на колесо
    wheel load
    нагрузка на крыло
    wing load
    нагрузка на поверхность управления
    control surface load
    нагрузка от сопротивления
    resisting load
    нагрузка при рулении
    taxiing load
    нагрузка при скручивании
    torsional load
    нагрузка при стоянке на земле
    ground load
    нервюра, воспринимающая нагрузку на сжатие
    compression rib
    нести нагрузку
    1. carry stress
    2. carry load несущий нагрузку
    load-bearing
    нормальная эксплуатационная нагрузка
    normal operating load
    общая нагрузка пилота
    pilot's workland
    передавать нагрузку
    transmit load
    переменная нагрузка
    1. alternate load
    2. varying load поверхность, не несущая нагрузки
    nonload-bearing surface
    поверхность, несущая нагрузку
    load-bearing surface
    повторные нагрузки
    repeated loads
    подавать нагрузку
    activate load
    под нагрузкой
    under load
    покрытие, несущее нагрузку
    load-bearing pavement
    полезная нагрузка воздушного судна
    aircraft useful load
    посадочная нагрузка
    landing load
    превышение нормативных нагрузок планера
    airframe overstressing
    превышение установленных нагрузок
    overstressing
    предел нагрузки
    stress limit
    предельная нагрузка
    1. ultimate load
    2. maximum load 3. limit load предельная разрушающая нагрузка
    ultimate breaking load
    предельная эксплуатационная нагрузка
    limit operating load
    прикладывать нагрузку
    apply load
    работать без нагрузки
    run unloaded
    рабочая нагрузка
    1. workload
    2. service load равномерная нагрузка
    uniform load
    разрушающая нагрузка
    failure load
    разрушение вследствие повышенных нагрузок
    overstress failure
    распределение аэродинамической нагрузки
    air-load distribution
    распределение нагрузки
    load distribution
    распределенная нагрузка
    distributed load
    расчет нагрузки
    weight
    расчетная нагрузка
    1. design load
    2. proof load расчетный предел нагрузки воздушного судна
    aircraft design load
    расчет удельной нагрузки на поверхность
    area density calculation
    режим работы с полной нагрузкой
    full-load conditions
    сжимающая нагрузка
    compressive load
    создавать нагрузку
    1. create load
    2. impose load сосредоточенная нагрузка
    concentrated load
    средняя нагрузка на одно колесо
    equivalent wheel load
    статическая нагрузка
    static load
    стойкость к ударным нагрузкам
    crashworthiness
    ток нагрузки
    load current
    ударная нагрузка
    impact load
    уравновешивающая нагрузка
    balancing load
    усталостная нагрузка
    fatigue load
    цепь нагрузки
    load circuit
    шина распределения нагрузки
    load distribution bus

    Русско-английский авиационный словарь > нагрузка

  • 47 уровень

    автоматическое управление уровнем
    automatic level control
    безопасный уровень
    safe level
    боковой фактический уровень шума
    actual sideline noise level
    величина уровня шума
    noise level value
    высота над уровнем моря
    altitude above sea level
    выходной уровень
    output level
    годность по уровню шума
    noiseworthiness
    давление над уровнем моря
    mean sea level pressure
    доводить до уровня годности к полетам
    render airworthy
    допустимый уровень безопасности
    margin of safety
    допустимый уровень шума
    permissible noise level
    заданный уровень безопасности полетов
    target level of safety
    замер уровня бокового шума
    sideline measurement
    запрет полетов из-за превышения допустимого уровня шума
    noise curfew
    излучение шума определенного уровня
    noise level radiation
    измерение фактического уровня шума
    actual noise level measurement
    исходный акустический уровень
    acoustic reference level
    исходный уровень тарифа
    reference fare level
    карта замера уровня звука
    sound level history
    комплексный показатель уровня шума
    composite noise rating
    контрольное окно уровня масла
    oil level hole
    контроль уровня шума
    noise control
    контур равного уровня шума
    equal noise contour
    контур уровня шума
    noise dose contour
    контур уровня шума в районе аэропорта
    airport noise contour
    кривая снижения уровня шума
    noise level attenuation curve
    линия уровня глаз
    eye level path
    максимально допустимый уровень шума
    maximum permissible noise level
    маршрут с минимальным уровнем шума
    minimum noise route
    модификация со сниженным уровнем шума
    noise reduction modification
    над уровнем земной поверхности
    above ground level
    над уровнем моря
    above mean sea level
    наклон кривой уровня
    slope of level
    (шумов) на уровне земли
    at the ground level
    нормативный уровень шума
    standard noise level
    оценка уровня шума
    noise evaluation
    пиковый уровень воспринимаемого шума
    peak perceived noise level
    плотность воздуха на уровне моря
    sea level atmospheric density
    предохранительный щиток уровня
    safety level
    предпочтительная по уровню шума ВПП
    noise preferential runway
    предпочтительный по уровню шума маршрут
    noise preferential route
    проверка уровня квалификации
    competency check
    проверка уровня подготовки
    qualification trial
    проверка уровня профессиональной подготовки
    proficiency check
    расчетный уровень шума
    design noise level
    сертификационный уровень шума
    certificated noise level
    сигнализатор уровня
    level switch
    (напр. топлива) среднесуточный уровень шума
    day-night sound level
    средний уровень моря
    mean sea level
    стандартный отраслевой уровень тарифов
    standard industry fare level
    стандартный уровень зарубежных тарифов
    standard foreign fare level
    суммарный уровень звукового давления
    overall sound pressure level
    температура на уровне моря
    sea-level temperature
    трубка уровня
    sight gage
    указатель уровня
    level gage
    указатель уровня в баке
    tank level indicator
    уменьшать уровень шума
    reduce noise level
    уровень аварийности
    1. fatality rate
    2. accident rate уровень авиационной подготовки
    aeronautical proficiency
    уровень безопасности
    1. safety rate
    2. level of safety 3. factor of safety уровень безопасности полетов воздушного судна
    aircraft safety factor
    уровень ВПП
    runway level
    уровень девиации
    deviation factor
    уровень доходов
    revenue yield
    уровень записи
    recording level
    уровень звукового воздействия
    sound exposure level
    уровень звукового давления
    1. noise pressure level
    2. sound pressure level уровень земной поверхности
    ground level
    уровень квалификации
    1. skill level
    2. degree of skill уровень квалификации пилота
    pilot ability level
    уровень летной годности
    level of airworthiness
    уровень летной подготовки
    pilot experience level
    уровень международной стандартной атмосферы
    international standard atmosphere level
    уровень моря
    sea level
    уровень непрерывно воспринимаемого шума
    continuous perceived noise level
    уровень окружающего шума
    ambient noise level
    уровень освещенности
    illumination level
    уровень полетного шума
    flyover noise level
    уровень положения глаз над антенной
    eye-to-aerial height
    уровень положения глаз над колесами шасси
    eye-to-wheel height
    уровень положения глаз над порогом ВПП
    eye height over the threshold
    уровень помех речевой связи
    level of speech interference
    уровень превышения порога ВПП
    threshold level
    уровень расхода топлива
    fuel consumption rate
    уровень регулярности
    regularity rate
    уровень тарифов
    fare level
    уровень технического обслуживания
    maintenance competency
    уровень фона
    background level
    уровень шума
    1. noise floor
    2. noise level уровень шума в населенном пункте
    community noise level
    уровень шума при заходе на посадку
    approach noise level
    уровень шумового фона в кабине экипажа
    flight deck aural environment
    уровень шумового фона в районе аэропорта
    acoustic airport environment
    уровень электролита в аккумуляторе
    battery electrolyte level
    устройство для снижения уровня шума
    noise abatement device
    характеристики уровня безопасности
    safe features
    штраф за превышение установленного уровня шума
    noise charge

    Русско-английский авиационный словарь > уровень

  • 48 модульный центр обработки данных (ЦОД)

    1. modular data center

     

    модульный центр обработки данных (ЦОД)
    -
    [Интент]

    Параллельные тексты EN-RU

    [ http://loosebolts.wordpress.com/2008/12/02/our-vision-for-generation-4-modular-data-centers-one-way-of-getting-it-just-right/]

    [ http://dcnt.ru/?p=9299#more-9299]

    Data Centers are a hot topic these days. No matter where you look, this once obscure aspect of infrastructure is getting a lot of attention. For years, there have been cost pressures on IT operations and this, when the need for modern capacity is greater than ever, has thrust data centers into the spotlight. Server and rack density continues to rise, placing DC professionals and businesses in tighter and tougher situations while they struggle to manage their IT environments. And now hyper-scale cloud infrastructure is taking traditional technologies to limits never explored before and focusing the imagination of the IT industry on new possibilities.

    В настоящее время центры обработки данных являются широко обсуждаемой темой. Куда ни посмотришь, этот некогда малоизвестный аспект инфраструктуры привлекает все больше внимания. Годами ИТ-отделы испытывали нехватку средств и это выдвинуло ЦОДы в центр внимания, в то время, когда необходимость в современных ЦОДах стала как никогда высокой. Плотность серверов и стоек продолжают расти, все больше усложняя ситуацию для специалистов в области охлаждения и организаций в их попытках управлять своими ИТ-средами. И теперь гипермасштабируемая облачная инфраструктура подвергает традиционные технологии невиданным ранее нагрузкам, и заставляет ИТ-индустрию искать новые возможности.

    At Microsoft, we have focused a lot of thought and research around how to best operate and maintain our global infrastructure and we want to share those learnings. While obviously there are some aspects that we keep to ourselves, we have shared how we operate facilities daily, our technologies and methodologies, and, most importantly, how we monitor and manage our facilities. Whether it’s speaking at industry events, inviting customers to our “Microsoft data center conferences” held in our data centers, or through other media like blogging and white papers, we believe sharing best practices is paramount and will drive the industry forward. So in that vein, we have some interesting news to share.

    В компании MicroSoft уделяют большое внимание изучению наилучших методов эксплуатации и технического обслуживания своей глобальной инфраструктуры и делятся результатами своих исследований. И хотя мы, конечно, не раскрываем некоторые аспекты своих исследований, мы делимся повседневным опытом эксплуатации дата-центров, своими технологиями и методологиями и, что важнее всего, методами контроля и управления своими объектами. Будь то доклады на отраслевых событиях, приглашение клиентов на наши конференции, которые посвящены центрам обработки данных MicroSoft, и проводятся в этих самых дата-центрах, или использование других средств, например, блоги и спецификации, мы уверены, что обмен передовым опытом имеет первостепенное значение и будет продвигать отрасль вперед.

    Today we are sharing our Generation 4 Modular Data Center plan. This is our vision and will be the foundation of our cloud data center infrastructure in the next five years. We believe it is one of the most revolutionary changes to happen to data centers in the last 30 years. Joining me, in writing this blog are Daniel Costello, my director of Data Center Research and Engineering and Christian Belady, principal power and cooling architect. I feel their voices will add significant value to driving understanding around the many benefits included in this new design paradigm.

    Сейчас мы хотим поделиться своим планом модульного дата-центра четвертого поколения. Это наше видение и оно будет основанием для инфраструктуры наших облачных дата-центров в ближайшие пять лет. Мы считаем, что это одно из самых революционных изменений в дата-центрах за последние 30 лет. Вместе со мной в написании этого блога участвовали Дэниел Костелло, директор по исследованиям и инжинирингу дата-центров, и Кристиан Белади, главный архитектор систем энергоснабжения и охлаждения. Мне кажется, что их авторитет придаст больше веса большому количеству преимуществ, включенных в эту новую парадигму проектирования.

    Our “Gen 4” modular data centers will take the flexibility of containerized servers—like those in our Chicago data center—and apply it across the entire facility. So what do we mean by modular? Think of it like “building blocks”, where the data center will be composed of modular units of prefabricated mechanical, electrical, security components, etc., in addition to containerized servers.

    Was there a key driver for the Generation 4 Data Center?

    Наши модульные дата-центры “Gen 4” будут гибкими с контейнерами серверов – как серверы в нашем чикагском дата-центре. И гибкость будет применяться ко всему ЦОД. Итак, что мы подразумеваем под модульностью? Мы думаем о ней как о “строительных блоках”, где дата-центр будет состоять из модульных блоков изготовленных в заводских условиях электрических систем и систем охлаждения, а также систем безопасности и т.п., в дополнение к контейнеризованным серверам.
    Был ли ключевой стимул для разработки дата-центра четвертого поколения?


    If we were to summarize the promise of our Gen 4 design into a single sentence it would be something like this: “A highly modular, scalable, efficient, just-in-time data center capacity program that can be delivered anywhere in the world very quickly and cheaply, while allowing for continued growth as required.” Sounds too good to be true, doesn’t it? Well, keep in mind that these concepts have been in initial development and prototyping for over a year and are based on cumulative knowledge of previous facility generations and the advances we have made since we began our investments in earnest on this new design.

    Если бы нам нужно было обобщить достоинства нашего проекта Gen 4 в одном предложении, это выглядело бы следующим образом: “Центр обработки данных с высоким уровнем модульности, расширяемости, и энергетической эффективности, а также возможностью постоянного расширения, в случае необходимости, который можно очень быстро и дешево развертывать в любом месте мира”. Звучит слишком хорошо для того чтобы быть правдой, не так ли? Ну, не забывайте, что эти концепции находились в процессе начальной разработки и создания опытного образца в течение более одного года и основываются на опыте, накопленном в ходе развития предыдущих поколений ЦОД, а также успехах, сделанных нами со времени, когда мы начали вкладывать серьезные средства в этот новый проект.

    One of the biggest challenges we’ve had at Microsoft is something Mike likes to call the ‘Goldilock’s Problem’. In a nutshell, the problem can be stated as:

    The worst thing we can do in delivering facilities for the business is not have enough capacity online, thus limiting the growth of our products and services.

    Одну из самых больших проблем, с которыми приходилось сталкиваться Майкрософт, Майк любит называть ‘Проблемой Лютика’. Вкратце, эту проблему можно выразить следующим образом:

    Самое худшее, что может быть при строительстве ЦОД для бизнеса, это не располагать достаточными производственными мощностями, и тем самым ограничивать рост наших продуктов и сервисов.

    The second worst thing we can do in delivering facilities for the business is to have too much capacity online.

    А вторым самым худшим моментом в этой сфере может слишком большое количество производственных мощностей.

    This has led to a focus on smart, intelligent growth for the business — refining our overall demand picture. It can’t be too hot. It can’t be too cold. It has to be ‘Just Right!’ The capital dollars of investment are too large to make without long term planning. As we struggled to master these interesting challenges, we had to ensure that our technological plan also included solutions for the business and operational challenges we faced as well.
    So let’s take a high level look at our Generation 4 design

    Это заставило нас сосредоточиваться на интеллектуальном росте для бизнеса — refining our overall demand picture. Это не должно быть слишком горячим. И это не должно быть слишком холодным. Это должно быть ‘как раз, таким как надо!’ Нельзя делать такие большие капиталовложения без долгосрочного планирования. Пока мы старались решить эти интересные проблемы, мы должны были гарантировать, что наш технологический план будет также включать решения для коммерческих и эксплуатационных проблем, с которыми нам также приходилось сталкиваться.
    Давайте рассмотрим наш проект дата-центра четвертого поколения

    Are you ready for some great visuals? Check out this video at Soapbox. Click here for the Microsoft 4th Gen Video.

    It’s a concept video that came out of my Data Center Research and Engineering team, under Daniel Costello, that will give you a view into what we think is the future.

    From a configuration, construct-ability and time to market perspective, our primary goals and objectives are to modularize the whole data center. Not just the server side (like the Chicago facility), but the mechanical and electrical space as well. This means using the same kind of parts in pre-manufactured modules, the ability to use containers, skids, or rack-based deployments and the ability to tailor the Redundancy and Reliability requirements to the application at a very specific level.


    Посмотрите это видео, перейдите по ссылке для просмотра видео о Microsoft 4th Gen:

    Это концептуальное видео, созданное командой отдела Data Center Research and Engineering, возглавляемого Дэниелом Костелло, которое даст вам наше представление о будущем.

    С точки зрения конфигурации, строительной технологичности и времени вывода на рынок, нашими главными целями и задачами агрегатирование всего дата-центра. Не только серверную часть, как дата-центр в Чикаго, но также системы охлаждения и электрические системы. Это означает применение деталей одного типа в сборных модулях, возможность использования контейнеров, салазок, или стоечных систем, а также возможность подстраивать требования избыточности и надежности для данного приложения на очень специфичном уровне.

    Our goals from a cost perspective were simple in concept but tough to deliver. First and foremost, we had to reduce the capital cost per critical Mega Watt by the class of use. Some applications can run with N-level redundancy in the infrastructure, others require a little more infrastructure for support. These different classes of infrastructure requirements meant that optimizing for all cost classes was paramount. At Microsoft, we are not a one trick pony and have many Online products and services (240+) that require different levels of operational support. We understand that and ensured that we addressed it in our design which will allow us to reduce capital costs by 20%-40% or greater depending upon class.


    Нашими целями в области затрат были концептуально простыми, но трудно реализуемыми. В первую очередь мы должны были снизить капитальные затраты в пересчете на один мегаватт, в зависимости от класса резервирования. Некоторые приложения могут вполне работать на базе инфраструктуры с резервированием на уровне N, то есть без резервирования, а для работы других приложений требуется больше инфраструктуры. Эти разные классы требований инфраструктуры подразумевали, что оптимизация всех классов затрат имеет преобладающее значение. В Майкрософт мы не ограничиваемся одним решением и располагаем большим количеством интерактивных продуктов и сервисов (240+), которым требуются разные уровни эксплуатационной поддержки. Мы понимаем это, и учитываем это в своем проекте, который позволит нам сокращать капитальные затраты на 20%-40% или более в зависимости от класса.

    For example, non-critical or geo redundant applications have low hardware reliability requirements on a location basis. As a result, Gen 4 can be configured to provide stripped down, low-cost infrastructure with little or no redundancy and/or temperature control. Let’s say an Online service team decides that due to the dramatically lower cost, they will simply use uncontrolled outside air with temperatures ranging 10-35 C and 20-80% RH. The reality is we are already spec-ing this for all of our servers today and working with server vendors to broaden that range even further as Gen 4 becomes a reality. For this class of infrastructure, we eliminate generators, chillers, UPSs, and possibly lower costs relative to traditional infrastructure.

    Например, некритичные или гео-избыточные системы имеют низкие требования к аппаратной надежности на основе местоположения. В результате этого, Gen 4 можно конфигурировать для упрощенной, недорогой инфраструктуры с низким уровнем (или вообще без резервирования) резервирования и / или температурного контроля. Скажем, команда интерактивного сервиса решает, что, в связи с намного меньшими затратами, они будут просто использовать некондиционированный наружный воздух с температурой 10-35°C и влажностью 20-80% RH. В реальности мы уже сегодня предъявляем эти требования к своим серверам и работаем с поставщиками серверов над еще большим расширением диапазона температур, так как наш модуль и подход Gen 4 становится реальностью. Для подобного класса инфраструктуры мы удаляем генераторы, чиллеры, ИБП, и, возможно, будем предлагать более низкие затраты, по сравнению с традиционной инфраструктурой.

    Applications that demand higher level of redundancy or temperature control will use configurations of Gen 4 to meet those needs, however, they will also cost more (but still less than traditional data centers). We see this cost difference driving engineering behavioral change in that we predict more applications will drive towards Geo redundancy to lower costs.

    Системы, которым требуется более высокий уровень резервирования или температурного контроля, будут использовать конфигурации Gen 4, отвечающие этим требованиям, однако, они будут также стоить больше. Но все равно они будут стоить меньше, чем традиционные дата-центры. Мы предвидим, что эти различия в затратах будут вызывать изменения в методах инжиниринга, и по нашим прогнозам, это будет выражаться в переходе все большего числа систем на гео-избыточность и меньшие затраты.

    Another cool thing about Gen 4 is that it allows us to deploy capacity when our demand dictates it. Once finalized, we will no longer need to make large upfront investments. Imagine driving capital costs more closely in-line with actual demand, thus greatly reducing time-to-market and adding the capacity Online inherent in the design. Also reduced is the amount of construction labor required to put these “building blocks” together. Since the entire platform requires pre-manufacture of its core components, on-site construction costs are lowered. This allows us to maximize our return on invested capital.

    Еще одно достоинство Gen 4 состоит в том, что он позволяет нам разворачивать дополнительные мощности, когда нам это необходимо. Как только мы закончим проект, нам больше не нужно будет делать большие начальные капиталовложения. Представьте себе возможность более точного согласования капитальных затрат с реальными требованиями, и тем самым значительного снижения времени вывода на рынок и интерактивного добавления мощностей, предусматриваемого проектом. Также снижен объем строительных работ, требуемых для сборки этих “строительных блоков”. Поскольку вся платформа требует предварительного изготовления ее базовых компонентов, затраты на сборку также снижены. Это позволит нам увеличить до максимума окупаемость своих капиталовложений.
    Мы все подвергаем сомнению

    In our design process, we questioned everything. You may notice there is no roof and some might be uncomfortable with this. We explored the need of one and throughout our research we got some surprising (positive) results that showed one wasn’t needed.

    В своем процессе проектирования мы все подвергаем сомнению. Вы, наверное, обратили внимание на отсутствие крыши, и некоторым специалистам это могло не понравиться. Мы изучили необходимость в крыше и в ходе своих исследований получили удивительные результаты, которые показали, что крыша не нужна.
    Серийное производство дата центров


    In short, we are striving to bring Henry Ford’s Model T factory to the data center. http://en.wikipedia.org/wiki/Henry_Ford#Model_T. Gen 4 will move data centers from a custom design and build model to a commoditized manufacturing approach. We intend to have our components built in factories and then assemble them in one location (the data center site) very quickly. Think about how a computer, car or plane is built today. Components are manufactured by different companies all over the world to a predefined spec and then integrated in one location based on demands and feature requirements. And just like Henry Ford’s assembly line drove the cost of building and the time-to-market down dramatically for the automobile industry, we expect Gen 4 to do the same for data centers. Everything will be pre-manufactured and assembled on the pad.

    Мы хотим применить модель автомобильной фабрики Генри Форда к дата-центру. Проект Gen 4 будет способствовать переходу от модели специализированного проектирования и строительства к товарно-производственному, серийному подходу. Мы намерены изготавливать свои компоненты на заводах, а затем очень быстро собирать их в одном месте, в месте строительства дата-центра. Подумайте о том, как сегодня изготавливается компьютер, автомобиль или самолет. Компоненты изготавливаются по заранее определенным спецификациям разными компаниями во всем мире, затем собираются в одном месте на основе спроса и требуемых характеристик. И точно так же как сборочный конвейер Генри Форда привел к значительному уменьшению затрат на производство и времени вывода на рынок в автомобильной промышленности, мы надеемся, что Gen 4 сделает то же самое для дата-центров. Все будет предварительно изготавливаться и собираться на месте.
    Невероятно энергоэффективный ЦОД


    And did we mention that this platform will be, overall, incredibly energy efficient? From a total energy perspective not only will we have remarkable PUE values, but the total cost of energy going into the facility will be greatly reduced as well. How much energy goes into making concrete? Will we need as much of it? How much energy goes into the fuel of the construction vehicles? This will also be greatly reduced! A key driver is our goal to achieve an average PUE at or below 1.125 by 2012 across our data centers. More than that, we are on a mission to reduce the overall amount of copper and water used in these facilities. We believe these will be the next areas of industry attention when and if the energy problem is solved. So we are asking today…“how can we build a data center with less building”?

    А мы упоминали, что эта платформа будет, в общем, невероятно энергоэффективной? С точки зрения общей энергии, мы получим не только поразительные значения PUE, но общая стоимость энергии, затраченной на объект будет также значительно снижена. Сколько энергии идет на производство бетона? Нам нужно будет столько энергии? Сколько энергии идет на питание инженерных строительных машин? Это тоже будет значительно снижено! Главным стимулом является достижение среднего PUE не больше 1.125 для всех наших дата-центров к 2012 году. Более того, у нас есть задача сокращения общего количества меди и воды в дата-центрах. Мы думаем, что эти задачи станут следующей заботой отрасли после того как будет решена энергетическая проблема. Итак, сегодня мы спрашиваем себя…“как можно построить дата-центр с меньшим объемом строительных работ”?
    Строительство дата центров без чиллеров

    We have talked openly and publicly about building chiller-less data centers and running our facilities using aggressive outside economization. Our sincerest hope is that Gen 4 will completely eliminate the use of water. Today’s data centers use massive amounts of water and we see water as the next scarce resource and have decided to take a proactive stance on making water conservation part of our plan.

    Мы открыто и публично говорили о строительстве дата-центров без чиллеров и активном использовании в наших центрах обработки данных технологий свободного охлаждения или фрикулинга. Мы искренне надеемся, что Gen 4 позволит полностью отказаться от использования воды. Современные дата-центры расходуют большие объемы воды и так как мы считаем воду следующим редким ресурсом, мы решили принять упреждающие меры и включить экономию воды в свой план.

    By sharing this with the industry, we believe everyone can benefit from our methodology. While this concept and approach may be intimidating (or downright frightening) to some in the industry, disclosure ultimately is better for all of us.

    Делясь этим опытом с отраслью, мы считаем, что каждый сможет извлечь выгоду из нашей методологией. Хотя эта концепция и подход могут показаться пугающими (или откровенно страшными) для некоторых отраслевых специалистов, раскрывая свои планы мы, в конечном счете, делаем лучше для всех нас.

    Gen 4 design (even more than just containers), could reduce the ‘religious’ debates in our industry. With the central spine infrastructure in place, containers or pre-manufactured server halls can be either AC or DC, air-side economized or water-side economized, or not economized at all (though the sanity of that might be questioned). Gen 4 will allow us to decommission, repair and upgrade quickly because everything is modular. No longer will we be governed by the initial decisions made when constructing the facility. We will have almost unlimited use and re-use of the facility and site. We will also be able to use power in an ultra-fluid fashion moving load from critical to non-critical as use and capacity requirements dictate.

    Проект Gen 4 позволит уменьшить ‘религиозные’ споры в нашей отрасли. Располагая базовой инфраструктурой, контейнеры или сборные серверные могут оборудоваться системами переменного или постоянного тока, воздушными или водяными экономайзерами, или вообще не использовать экономайзеры. Хотя можно подвергать сомнению разумность такого решения. Gen 4 позволит нам быстро выполнять работы по выводу из эксплуатации, ремонту и модернизации, поскольку все будет модульным. Мы больше не будем руководствоваться начальными решениями, принятыми во время строительства дата-центра. Мы сможем использовать этот дата-центр и инфраструктуру в течение почти неограниченного периода времени. Мы также сможем применять сверхгибкие методы использования электрической энергии, переводя оборудование в режимы критической или некритической нагрузки в соответствии с требуемой мощностью.
    Gen 4 – это стандартная платформа

    Finally, we believe this is a big game changer. Gen 4 will provide a standard platform that our industry can innovate around. For example, all modules in our Gen 4 will have common interfaces clearly defined by our specs and any vendor that meets these specifications will be able to plug into our infrastructure. Whether you are a computer vendor, UPS vendor, generator vendor, etc., you will be able to plug and play into our infrastructure. This means we can also source anyone, anywhere on the globe to minimize costs and maximize performance. We want to help motivate the industry to further innovate—with innovations from which everyone can reap the benefits.

    Наконец, мы уверены, что это будет фактором, который значительно изменит ситуацию. Gen 4 будет представлять собой стандартную платформу, которую отрасль сможет обновлять. Например, все модули в нашем Gen 4 будут иметь общепринятые интерфейсы, четко определяемые нашими спецификациями, и оборудование любого поставщика, которое отвечает этим спецификациям можно будет включать в нашу инфраструктуру. Независимо от того производите вы компьютеры, ИБП, генераторы и т.п., вы сможете включать свое оборудование нашу инфраструктуру. Это означает, что мы также сможем обеспечивать всех, в любом месте земного шара, тем самым сводя до минимума затраты и максимальной увеличивая производительность. Мы хотим создать в отрасли мотивацию для дальнейших инноваций – инноваций, от которых каждый сможет получать выгоду.
    Главные характеристики дата-центров четвертого поколения Gen4

    To summarize, the key characteristics of our Generation 4 data centers are:

    Scalable
    Plug-and-play spine infrastructure
    Factory pre-assembled: Pre-Assembled Containers (PACs) & Pre-Manufactured Buildings (PMBs)
    Rapid deployment
    De-mountable
    Reduce TTM
    Reduced construction
    Sustainable measures

    Ниже приведены главные характеристики дата-центров четвертого поколения Gen 4:

    Расширяемость;
    Готовая к использованию базовая инфраструктура;
    Изготовление в заводских условиях: сборные контейнеры (PAC) и сборные здания (PMB);
    Быстрота развертывания;
    Возможность демонтажа;
    Снижение времени вывода на рынок (TTM);
    Сокращение сроков строительства;
    Экологичность;

    Map applications to DC Class

    We hope you join us on this incredible journey of change and innovation!

    Long hours of research and engineering time are invested into this process. There are still some long days and nights ahead, but the vision is clear. Rest assured however, that we as refine Generation 4, the team will soon be looking to Generation 5 (even if it is a bit farther out). There is always room to get better.


    Использование систем электропитания постоянного тока.

    Мы надеемся, что вы присоединитесь к нам в этом невероятном путешествии по миру изменений и инноваций!

    На этот проект уже потрачены долгие часы исследований и проектирования. И еще предстоит потратить много дней и ночей, но мы имеем четкое представление о конечной цели. Однако будьте уверены, что как только мы доведем до конца проект модульного дата-центра четвертого поколения, мы вскоре начнем думать о проекте дата-центра пятого поколения. Всегда есть возможность для улучшений.

    So if you happen to come across Goldilocks in the forest, and you are curious as to why she is smiling you will know that she feels very good about getting very close to ‘JUST RIGHT’.

    Generations of Evolution – some background on our data center designs

    Так что, если вы встретите в лесу девочку по имени Лютик, и вам станет любопытно, почему она улыбается, вы будете знать, что она очень довольна тем, что очень близко подошла к ‘ОПИМАЛЬНОМУ РЕШЕНИЮ’.
    Поколения эволюции – история развития наших дата-центров

    We thought you might be interested in understanding what happened in the first three generations of our data center designs. When Ray Ozzie wrote his Software plus Services memo it posed a very interesting challenge to us. The winds of change were at ‘tornado’ proportions. That “plus Services” tag had some significant (and unstated) challenges inherent to it. The first was that Microsoft was going to evolve even further into an operations company. While we had been running large scale Internet services since 1995, this development lead us to an entirely new level. Additionally, these “services” would span across both Internet and Enterprise businesses. To those of you who have to operate “stuff”, you know that these are two very different worlds in operational models and challenges. It also meant that, to achieve the same level of reliability and performance required our infrastructure was going to have to scale globally and in a significant way.

    Мы подумали, что может быть вам будет интересно узнать историю первых трех поколений наших центров обработки данных. Когда Рэй Оззи написал свою памятную записку Software plus Services, он поставил перед нами очень интересную задачу. Ветра перемен двигались с ураганной скоростью. Это окончание “plus Services” скрывало в себе какие-то значительные и неопределенные задачи. Первая заключалась в том, что Майкрософт собиралась в еще большей степени стать операционной компанией. Несмотря на то, что мы управляли большими интернет-сервисами, начиная с 1995 г., эта разработка подняла нас на абсолютно новый уровень. Кроме того, эти “сервисы” охватывали интернет-компании и корпорации. Тем, кому приходится всем этим управлять, известно, что есть два очень разных мира в области операционных моделей и задач. Это также означало, что для достижения такого же уровня надежности и производительности требовалось, чтобы наша инфраструктура располагала значительными возможностями расширения в глобальных масштабах.

    It was that intense atmosphere of change that we first started re-evaluating data center technology and processes in general and our ideas began to reach farther than what was accepted by the industry at large. This was the era of Generation 1. As we look at where most of the world’s data centers are today (and where our facilities were), it represented all the known learning and design requirements that had been in place since IBM built the first purpose-built computer room. These facilities focused more around uptime, reliability and redundancy. Big infrastructure was held accountable to solve all potential environmental shortfalls. This is where the majority of infrastructure in the industry still is today.

    Именно в этой атмосфере серьезных изменений мы впервые начали переоценку ЦОД-технологий и технологий вообще, и наши идеи начали выходить за пределы общепринятых в отрасли представлений. Это была эпоха ЦОД первого поколения. Когда мы узнали, где сегодня располагается большинство мировых дата-центров и где находятся наши предприятия, это представляло весь опыт и навыки проектирования, накопленные со времени, когда IBM построила первую серверную. В этих ЦОД больше внимания уделялось бесперебойной работе, надежности и резервированию. Большая инфраструктура была призвана решать все потенциальные экологические проблемы. Сегодня большая часть инфраструктуры все еще находится на этом этапе своего развития.

    We soon realized that traditional data centers were quickly becoming outdated. They were not keeping up with the demands of what was happening technologically and environmentally. That’s when we kicked off our Generation 2 design. Gen 2 facilities started taking into account sustainability, energy efficiency, and really looking at the total cost of energy and operations.

    Очень быстро мы поняли, что стандартные дата-центры очень быстро становятся устаревшими. Они не поспевали за темпами изменений технологических и экологических требований. Именно тогда мы стали разрабатывать ЦОД второго поколения. В этих дата-центрах Gen 2 стали принимать во внимание такие факторы как устойчивое развитие, энергетическая эффективность, а также общие энергетические и эксплуатационные.

    No longer did we view data centers just for the upfront capital costs, but we took a hard look at the facility over the course of its life. Our Quincy, Washington and San Antonio, Texas facilities are examples of our Gen 2 data centers where we explored and implemented new ways to lessen the impact on the environment. These facilities are considered two leading industry examples, based on their energy efficiency and ability to run and operate at new levels of scale and performance by leveraging clean hydro power (Quincy) and recycled waste water (San Antonio) to cool the facility during peak cooling months.

    Мы больше не рассматривали дата-центры только с точки зрения начальных капитальных затрат, а внимательно следили за работой ЦОД на протяжении его срока службы. Наши объекты в Куинси, Вашингтоне, и Сан-Антонио, Техас, являются образцами наших ЦОД второго поколения, в которых мы изучали и применяли на практике новые способы снижения воздействия на окружающую среду. Эти объекты считаются двумя ведущими отраслевыми примерами, исходя из их энергетической эффективности и способности работать на новых уровнях производительности, основанных на использовании чистой энергии воды (Куинси) и рециклирования отработанной воды (Сан-Антонио) для охлаждения объекта в самых жарких месяцах.

    As we were delivering our Gen 2 facilities into steel and concrete, our Generation 3 facilities were rapidly driving the evolution of the program. The key concepts for our Gen 3 design are increased modularity and greater concentration around energy efficiency and scale. The Gen 3 facility will be best represented by the Chicago, Illinois facility currently under construction. This facility will seem very foreign compared to the traditional data center concepts most of the industry is comfortable with. In fact, if you ever sit around in our container hanger in Chicago it will look incredibly different from a traditional raised-floor data center. We anticipate this modularization will drive huge efficiencies in terms of cost and operations for our business. We will also introduce significant changes in the environmental systems used to run our facilities. These concepts and processes (where applicable) will help us gain even greater efficiencies in our existing footprint, allowing us to further maximize infrastructure investments.

    Так как наши ЦОД второго поколения строились из стали и бетона, наши центры обработки данных третьего поколения начали их быстро вытеснять. Главными концептуальными особенностями ЦОД третьего поколения Gen 3 являются повышенная модульность и большее внимание к энергетической эффективности и масштабированию. Дата-центры третьего поколения лучше всего представлены объектом, который в настоящее время строится в Чикаго, Иллинойс. Этот ЦОД будет выглядеть очень необычно, по сравнению с общепринятыми в отрасли представлениями о дата-центре. Действительно, если вам когда-либо удастся побывать в нашем контейнерном ангаре в Чикаго, он покажется вам совершенно непохожим на обычный дата-центр с фальшполом. Мы предполагаем, что этот модульный подход будет способствовать значительному повышению эффективности нашего бизнеса в отношении затрат и операций. Мы также внесем существенные изменения в климатические системы, используемые в наших ЦОД. Эти концепции и технологии, если применимо, позволят нам добиться еще большей эффективности наших существующих дата-центров, и тем самым еще больше увеличивать капиталовложения в инфраструктуру.

    This is definitely a journey, not a destination industry. In fact, our Generation 4 design has been under heavy engineering for viability and cost for over a year. While the demand of our commercial growth required us to make investments as we grew, we treated each step in the learning as a process for further innovation in data centers. The design for our future Gen 4 facilities enabled us to make visionary advances that addressed the challenges of building, running, and operating facilities all in one concerted effort.

    Это определенно путешествие, а не конечный пункт назначения. На самом деле, наш проект ЦОД четвертого поколения подвергался серьезным испытаниям на жизнеспособность и затраты на протяжении целого года. Хотя необходимость в коммерческом росте требовала от нас постоянных капиталовложений, мы рассматривали каждый этап своего развития как шаг к будущим инновациям в области дата-центров. Проект наших будущих ЦОД четвертого поколения Gen 4 позволил нам делать фантастические предположения, которые касались задач строительства, управления и эксплуатации объектов как единого упорядоченного процесса.


    Тематики

    Синонимы

    EN

    Русско-английский словарь нормативно-технической терминологии > модульный центр обработки данных (ЦОД)

  • 49 точек

    Русско-английский технический словарь > точек

  • 50 вследствие

    In consequence of these features the axial pump has a distinct advantage for variable-speed services.

    As a consequence (or result) of its change in speed, a light ray passing obliquely from a vacuum to a material medium is refracted.

    The body loses heat by radiation.

    * * *
    Вследствие -- as a consequence of, as a result of, because of, due to, owing to, on account of, through, by reason of
     Thermal stresses may limit tube lifetime as a consequence of thermal fatigue.
     Because of the low mass of the inner wall, the inner wall may be rapidly returned to the initial temperature condition.
     Owing to the narrowing of the cross section due to the blockage, the flow separates from the duct walls.
     The blade suction to pressure face migration is very large at mid-pitch on account of the low meridional velocity.
     Figs.... and... also demonstrate the effect of changes in the tangential velocity component through radial displacement of the flow on the wall pressure distribution.
     Noise reduction over the piston engine is expected by reason of balanced direct rotary motion.

    Русско-английский научно-технический словарь переводчика > вследствие

  • 51 вследствие

    In consequence of these features the axial pump has a distinct advantage for variable-speed services.

    As a consequence (or result) of its change in speed, a light ray passing obliquely from a vacuum to a material medium is refracted.

    The body loses heat by radiation.

    Русско-английский научно-технический словарь переводчика > вследствие

  • 52 умноженный на

    Force equals mass times acceleration.

    The output of the control potentiometer is represented as its output voltage times the factor /w.

    Русско-английский научно-технический словарь переводчика > умноженный на

  • 53 Система автоматического регулирования плотности

    Oil&Gas technology ADC System (automatic density control (ADC) system)

    Универсальный русско-английский словарь > Система автоматического регулирования плотности

  • 54 автоматическая система контроля плотности

    Универсальный русско-английский словарь > автоматическая система контроля плотности

  • 55 автоматический регулятор плотности жидкости

    Универсальный русско-английский словарь > автоматический регулятор плотности жидкости

  • 56 анализатор плотности вероятностей

    Универсальный русско-английский словарь > анализатор плотности вероятностей

  • 57 априорная плотность распределения

    Quality control: prior density

    Универсальный русско-английский словарь > априорная плотность распределения

  • 58 асимметричная плотность распределения

    Quality control: skew density

    Универсальный русско-английский словарь > асимметричная плотность распределения

  • 59 безусловная плотность вероятности

    Универсальный русско-английский словарь > безусловная плотность вероятности

  • 60 безусловная плотность распределения

    Универсальный русско-английский словарь > безусловная плотность распределения

См. также в других словарях:

  • Control chart — One of the Seven Basic Tools of Quality First described by Walter A. Shewhart …   Wikipedia

  • Control rod — PWR control rod assembly, above fuel element A control rod is a rod made of chemical elements capable of absorbing many neutrons without fissioning themselves. They are used in nuclear reactors to control the rate of fission of uranium and… …   Wikipedia

  • quality control — Synonyms and related words: bit weight control, color control, density control, dimension control, diverse control, end point control, examination, flavor control, flow control, fragrance control, hold control, humidity control, inspection, limit …   Moby Thesaurus

  • Oil well control — is the management of the dangerous effects caused by unexpected high pressures upon surface equipment of oil or gas drilling rigs. Technically, oil well control involves preventing Formation fluid, usually referred to as kick, from entering into… …   Wikipedia

  • Biological pest control — Biological control of pests in agriculture is a method of controlling pests (including insects, mites, weeds and plant diseases) that relies on predation, parasitism, herbivory, or other natural mechanisms. It can be an important component of… …   Wikipedia

  • Population control — is the practice of limiting population increase, usually by reducing the birth rate. The practice has sometimes been voluntary, as a response to poverty, environmental concerns, or out of religious ideology, but in some times and places it has… …   Wikipedia

  • Centralized traffic control — (CTC) is a signalling system used by railroads. The system consists of a centralized train dispatcher s office that controls railroad switches in the CTC territory and the signals that railroad engineers must obey in order to keep the traffic… …   Wikipedia

  • Air Movement and Control Association — The Air Movement and Control Association International, Inc. (AMCA; pronounced Am Cah ) is a nonprofit organization that creates standards for, tests, and rates Heating, Ventilating, and Air Conditioning (HVAC) equipment. It is best known for its …   Wikipedia

  • high-density airspace control zone — Airspace designated in an airspace control plan or airspace control order, in which there is a concentrated employment of numerous and varied weapons and airspace users. A high density airspace control zone has defined dimensions which usually… …   Military dictionary

  • Quality control — This article is about the project management process. For other uses, see Quality control (disambiguation). Maintenance check of electronic equipment on a U.S. Navy aircraft …   Wikipedia

  • Population density — (people per km2) by country, 2006 …   Wikipedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»