Перевод: с английского на все языки

со всех языков на английский

construction+methods

  • 81 Ayrton, William Edward

    [br]
    b. 14 September 1847 London, England
    d. 8 November 1908 London, England
    [br]
    English physicist, inventor and pioneer in technical education.
    [br]
    After graduating from University College, London, Ayrton became for a short time a pupil of Sir William Thomson in Glasgow. For five years he was employed in the Indian Telegraph Service, eventually as Superintendent, where he assisted in revolutionizing the system, devising methods of fault detection and elimination. In 1873 he was invited by the Japanese Government to assist as Professor of Physics and Telegraphy in founding the Imperial College of Engineering in Tokyo. There he created a teaching laboratory that served as a model for those he was later to organize in England and which were copied elsewhere. It was in Tokyo that his joint researches with Professor John Perry began, an association that continued after their return to England. In 1879 he became Professor of Technical Physics at the City and Guilds Institute in Finsbury, London, and later was appointed Professor of Physics at the Central Institution in South Kensington.
    The inventions of Avrton and Perrv included an electric tricycle in 1882, the first practicable portable ammeter and other electrical measuring instruments. By 1890, when the research partnership ended, they had published nearly seventy papers in their joint names, the emphasis being on a mathematical treatment of subjects including electric motor design, construction of electrical measuring instruments, thermodynamics and the economical use of electric conductors. Ayrton was then employed as a consulting engineer by government departments and acted as an expert witness in many important patent cases.
    [br]
    Principal Honours and Distinctions
    FRS 1881. President, Physical Society 1890–2. President, Institution of Electrical Engineers 1892. Royal Society Royal Medal 1901.
    Bibliography
    28 April 1883, British patent no. 2,156 (Ayrton and Perry's ammeter and voltmeter). 1887, Practical Electricity, London (based on his early laboratory courses; 7 edns followed during his lifetime).
    1892, "Electrotechnics", Journal of the Institution of Electrical Engineers 21, 5–36 (for a survey of technical education).
    Further Reading
    D.W.Jordan, 1985, "The cry for useless knowledge: education for a new Victorian technology", Proceedings of the Institution of Electrical Engineers, 132 (Part A): 587– 601.
    G.Gooday, 1991, History of Technology, 13: 73–111 (for an account of Ayrton and the teaching laboratory).
    GW

    Biographical history of technology > Ayrton, William Edward

  • 82 Barry, Sir Charles

    [br]
    b. 23 May 1795 Westminster, London, England
    d. 12 May 1860 Clapham, London, England
    [br]
    English architect who was a leader in the field between the years 1830 and 1860.
    [br]
    Barry was typical of the outstanding architects of this time. His work was eclectic, and he suited the style—whether Gothic or classical—to the commission and utilized the then-traditional materials and methods of construction. He is best known as architect of the new Palace of Westminster; he won the competition to rebuild it after the disastrous fire of the old palace in 1834. Bearing this in mind in the rebuilding, Barry utilized that characteristic nineteenth-century material, iron for joists and roofing plates.
    [br]
    Principal Honours and Distinctions
    Knighted 1852. Member of the Royal Academy; the Royal Society; the Academies of St Luke, Rome; St Petersburg (and others); and the American Institute of Architects. RIBA Gold Medal 1850.
    Further Reading
    Marcus Whiffen, The Architecture of Sir Charles Barry in Manchester and Neighbourhood, Royal Manchester Institution.
    H.M.Port (ed.), 1976, The Houses of Parliament, Yale University Press.
    H.M.Colvin (ed.), The History of the King's Works, Vol. 6, HMSO.
    DY

    Biographical history of technology > Barry, Sir Charles

  • 83 Born, Ignaz Edler von

    [br]
    b. 26 December 1742 Karlsburg, Transylvania (now Alba lulia, Romania)
    d. 24 July 1791 Vienna, Austria
    [br]
    Austrian metallurgical and mining expert, inventor of the modern amalgamation process.
    [br]
    At the University of Prague he studied law, but thereafter turned to mineralogy, physics and different aspects of mining. In 1769–70 he worked with the mining administration in Schemnitz (now Banská Stiavnica, Slovakia) and Prague and later continued travelling to many parts of Europe, with special interests in the mining districts. In 1776, he was charged to enlarge and systematically to reshape the natural-history collection in Vienna. Three years later he was appointed Wirklicher Hofrat at the mining and monetary administration of the Austrian court.
    Born, who had been at a Jesuit college in his youth, was an active freemason in Vienna and exercised remarkable social communication. The intensity of his academic exchange was outstanding, and he was a member of more than a dozen learned societies throughout Europe. When with the construction of a new metallurgic plant at Joachimsthal (now Jáchymov, Czech Republic) the methods of extracting silver and gold from ores by the means of quicksilver demanded acute consideration, it was this form of scientific intercourse that induced him in 1786 to invite many of his colleagues from several countries to meet in Schemnitz in order to discuss his ideas. Since the beginnings of the 1780s Born had developed the amalgamation process as had first been applied in Mexico in 1557, by mixing the roasted and chlorinated ores with water, ingredients of iron and quicksilver in drums and having the quicksilver refined from the amalgam in the next step. The meeting led to the founding of the Societät der Bergbaukunde, the first internationally structured society of scientists in the world. He died as the result of severe injuries suffered in an accident while he was studying fire-setting in a Slovakian mine in 1770.
    [br]
    Bibliography
    1774 (ed.), Briefe an J.J.Ferber über mineralogische Gegenstände, Frankfurt and Leipzig.
    1775–84, Abhandlungen einer Privatgesellschaft in Böhmen, zur Aufnahme der
    Mathematik, der vaterländischen Geschichte und der Naturgeschichte, 6 vols, Prague. 1786, Über das Anquicken der gold-und silberhaltigen Erze, Rohsteine, Schwarzkupfer
    und Hüttenspeise, Vienna.
    1789–90, co-edited with F.W.H.von Trebra, Bergbaukunde, 2 vols, Leipzig.
    Further Reading
    C.von Wurzbach, 1857, Biographisches Lexikon des Kaiserthums Österreich, Vol. II, pp. 71–4.
    L.Molnár and A Weiß, 1986, Ignaz Edler von Born und die Societät der Bergbaukunde 1786, Vienna: Bundesministerium für Handel, Gewerbe und Industrie (provides a very detailed description of his life, the amalgamation process and the society of 1786). G.B.Fettweis, and G.Hamann (eds), 1989, Über Ignaz von Born und die Societät der
    Bergbaukunde, Vienna: Verlag der Österreichischen Akademie der Wissenschaft (provides a very detailed description).
    WK

    Biographical history of technology > Born, Ignaz Edler von

  • 84 Denny, William

    SUBJECT AREA: Ports and shipping
    [br]
    b. 25 May 1847 Dumbarton, Scotland
    d. 17 March 1887 Buenos Aires, Argentina
    [br]
    Scottish naval architect and partner in the leading British scientific shipbuilding company.
    [br]
    From 1844 until 1962, the Clyde shipyard of William Denny and Brothers, Dumbarton, produced over 1,500 ships, trained innumerable students of all nationalities in shipbuilding and marine engineering, and for the seventy-plus years of their existence were accepted worldwide as the leaders in the application of science to ship design and construction. Until the closure of the yard members of the Denny family were among the partners and later directors of the firm: they included men as distinguished as Dr Peter Denny (1821(?)–95), Sir Archibald Denny (1860–1936) and Sir Maurice Denny (1886– 1955), the main collaborator in the design of the Denny-Brown ship stabilizer.
    One of the most influential of this shipbuilding family was William Denny, now referred to as William 3! His early education was at Dumbarton, then on Jersey and finally at the Royal High School, Edinburgh, before he commenced an apprenticeship at his father's shipyard. From the outset he not only showed great aptitude for learning and hard work but also displayed an ability to create good relationships with all he came into contact with. At the early age of 21 he was admitted a partner of the shipbuilding business of William Denny and Brothers, and some years later also of the associated engineering firm of Denny \& Co. His deep-felt interest in what is now known as industrial relations led him in 1871 to set up a piecework system of payment in the shipyard. In this he was helped by the Yard Manager, Richard Ramage, who later was to found the Leith shipyard, which produced the world's most elegant steam yachts. This research was published later as a pamphlet called The Worth of Wages, an unusual and forward-looking action for the 1860s, when Denny maintained that an absentee employer should earn as much contempt and disapproval as an absentee landlord! In 1880 he initiated an awards scheme for all company employees, with grants and awards for inventions and production improvements. William Denny was not slow to impose new methods and to research naval architecture, a special interest being progressive ship trials with a view to predicting effective horsepower. In time this led to his proposal to the partners to build a ship model testing tank beside the Dumbarton shipyard; this scheme was completed in 1883 and was to the third in the world (after the Admiralty tank at Torquay, managed by William Froude and the Royal Netherlands Navy facility at Amsterdam, under B.J. Tideman. In 1876 the Denny Shipyard started work with mild-quality shipbuilding steel on hulls for the Irrawaddy Flotilla Company, and in 1879 the world's first two ships of any size using this weight-saving material were produced: they were the Rotomahana for the Union Steamship Company of New Zealand and the Buenos Ayrean for the Allan Line of Glasgow. On the naval-architecture side he was involved in Denny's proposals for standard cross curves of stability for all ships, which had far-reaching effects and are now accepted worldwide. He served on the committee working on improvements to the Load Line regulations and many other similar public bodies. After a severe bout of typhoid and an almost unacceptable burden of work, he left the United Kingdom for South America in June 1886 to attend to business with La Platense Flotilla Company, an associate company of William Denny and Brothers. In March the following year, while in Buenos Aires, he died by his own hand, a death that caused great and genuine sadness in the West of Scotland and elsewhere.
    [br]
    Principal Honours and Distinctions
    President, Institution of Engineers and Shipbuilders in Scotland 1886. FRS Edinburgh 1879.
    Bibliography
    William Denny presented many papers to various bodies, the most important being to the Institution of Naval Architects and to the Institution of Engineers and Shipbuilders in Scotland. The subjects include: trials results, the relation of ship speed to power, Lloyd's Numerals, tonnage measurement, layout of shipyards, steel in shipbuilding, cross curves of stability, etc.
    Further Reading
    A.B.Bruce, 1889, The Life of William Denny, Shipbuilder, London: Hodder \& Stoughton.
    Denny Dumbarton 1844–1932 (a souvenir hard-back produced for private circulation by the shipyard).
    Fred M.Walker, 1984, Song of the Clyde. A History of Clyde Shipbuilding, Cambridge: PSL.
    FMW

    Biographical history of technology > Denny, William

  • 85 Doane, Thomas

    [br]
    b. 20 September 1821 Orleans, Massachusetts, USA
    d. 22 October 1897 West Townsend, Massachusetts, USA
    [br]
    American mechanical engineer.
    [br]
    The son of a lawyer, he entered an academy in Cape Cod and, at the age of 19, the English Academy at Andover, Massachusetts, for five terms. He was then in the employ of Samuel L. Fenton of Charlestown, Massachusetts. He served a three-year apprenticeship, then went to the Windsor White River Division of the Vermont Central Railroad. He was Resident Engineer of the Cheshire Railroad at Walpote, New Hampshire, from 1847 to 1849, and then worked in independent practice as a civil engineer and surveyor until his death. He was involved with nearly all the railroads running out of Boston, especially the Boston \& Maine. In April 1863 he was appointed Chief Engineer of the Hoosac Tunnel, which was already being built. He introduced new engineering methods, relocated the line of the tunnel and achieved great accuracy in the meeting of the borings. He was largely responsible for the development in the USA of the advanced system of tunnelling with machinery and explosives, and pioneered the use of compressed air in the USA. In 1869 he was Chief Engineer of the Burlington \& Missouri River Railroad in Nebraska, laying down some 240 miles (386 km) of track in four years. During this period he became interested in the building of a Congregational College at Crete, Nebraska, for which he gave the land and which was named after him. In 1873 he returned to Charlestown and was again appointed Chief Engineer of the Hoosac Tunnel. At the final opening of the tunnel on 9 February 1875 he drove the first engine through. He remained in charge of construction for a further two years.
    [br]
    Principal Honours and Distinctions
    President, School of Civil Engineers.
    Further Reading
    Duncan Malone (ed.), 1932–3, Dictionary of American Biography, New York: Charles Scribner.
    IMcN

    Biographical history of technology > Doane, Thomas

  • 86 Kettering, Charles Franklin

    [br]
    b. 29 August 1876 near Londonsville, Ohio, USA
    d. 25 November 1958 Dayton, Ohio, USA
    [br]
    American engineer and inventor.
    [br]
    Kettering gained degrees in mechanical and electrical engineering from Ohio State University. He was employed by the National Construction Register (NCR) of Dayton, Ohio, where he devised an electric motor for use in cash registers. He became Head of the Inventions Department of that company but left in 1909 to form, with the former Works Manager of NCR, Edward A. Deeds, the Dayton Engineering Laboratories (later called Delco), to develop improved lighting and ignition systems for automobiles. In the first two years of the new company he produced not only these but also the first self-starter, both of which were fitted to the Cadillac, America's leading luxury car. In 1914 he founded Dayton Metal Products and the Dayton Wright Airplane Company. Two years later Delco was bought by General Motors. In 1925 the independent research facilities of Delco were moved to Detroit and merged with General Motors' laboratories to form General Motors Research Corporation, of which Kettering was President and General Manager. (He had been Vice-President of General Motors since 1920.) In that position he headed investigations into methods of achieving maximum engine performance as well as into the nature of friction and combustion. Many other developments in the automobile field were made under his leadership, such as engine coolers, variable-speed transmissions, balancing machines, the two-way shock absorber, high-octane fuel, leaded petrol or gasoline, fast-drying lacquers, crank-case ventilators, chrome plating, and the high-compression automobile engine. Among his other activities were the establishment of the Charles Franklin Kettering Foundation for the Study of Chlorophyll and Photosynthesis at Antioch College, and the founding of the Sloan- Kettering Institute for Cancer Research in New York City. He sponsored the Fever Therapy Research Project at Miami Valley Hospital at Dayton, which developed the hypertherm, or artificial fever machine, for use in the treatment of disease. He resigned from General Motors in 1947.
    IMcN

    Biographical history of technology > Kettering, Charles Franklin

  • 87 Krylov, Alexei Nicolaevitch

    SUBJECT AREA: Ports and shipping
    [br]
    b. 15 August 1863 Visyoger, Siberia
    d. 26 October 1945 Leningrad (now St Petersburg), Russia
    [br]
    Russian academician and naval architect) exponent of a rigorous mathematical approach to the study of ship motions.
    [br]
    After schooling in France and Germany, Krylov returned to St Petersburg (as it then was) and in 1878 entered the Naval College. Upon graduating, he started work with the Naval Hydrographic Department; the combination of his genius and breadth of interest became apparent, and from 1888 until 1890 he undertook simultaneously a two-year university course in mathematics and a naval architecture course at his old college. On completion of his formal studies, Krylov commenced fifty years of service to the academic bodies of St Petersburg, including eight years as Superintendent of the Russian Admiralty Ship Model Experiment Tank. For many years he was Professor of Naval Architecture in the city, reorganizing the methods of teaching of his profession in Russia. It was during this period that he laid the foundations of his remarkable research and published the first of his many books destined to become internationally accepted in the fields of waves, rolling, ship motion and vibration. Practical work was not overlooked: he was responsible for the design of many vessels for the Imperial Russian Navy, including the battleships Sevastopol and Petropavlovsk, and went on, as Director of Naval Construction, to test anti-rolling tanks aboard military vessels in the North Atlantic in 1913. Following the Revolution, Krylov was employed by the Soviet Union to re-establish scientific links with other European countries, and on several occasions he acted as Superintendent in the procurement of important technical material from overseas. In 1919 he was appointed Head of the Marine Academy, and from then on participated in many scientific conferences and commissions, mainly in the shipbuilding field, and served on the Editorial Board of the well-respected Russian periodical Sudostroenie (Shipbuilding). The breadth of his personal research was demonstrated by the notable contributions he made to the Russian development of the gyro compass.
    [br]
    Principal Honours and Distinctions
    Member, Russian Academy of Science 1814. Royal Institution of Naval Architects Gold Medal 1898. State Prize of the Soviet Union (first degree). Stalin Premium for work on compass deviation.
    Bibliography
    Krylov published more than 500 books, papers and articles; these have been collected and published in twelve volumes by the Academy of Sciences of the USSR. 1942, My Memories (autobiography).
    AK / FMW

    Biographical history of technology > Krylov, Alexei Nicolaevitch

  • 88 Marton, Ladislaus (Laslo)

    [br]
    b. 15 August 1901 Budapest Hungary
    [br]
    Hungarian physicist, pioneer of the development and practical application of the electron microscope.
    [br]
    He studied and obtained his degree at Zurich in 1924 and undertook research there until 1925, when he moved to Budapest to work at the Tungsram Lamp Company. He moved to the University of Brussels in 1928, and during the ensuing ten years was involved in the construction and development of a focusing electron microscope. With the second of these he was able to take micrographs of cells in 1932 and of a bacterium in 1937.
    In 1941 he moved to the USA to work with Radio Corporation of America (RCA).
    [br]
    Principal Honours and Distinctions
    International Union Against Cancer Medal 1938. Verhagen Medical, Brussels 1947. US Department of Commerce Gold Medal 1955.
    Bibliography
    1947, Advances in Electronics and Electron Physics.
    1957, Methods of Experimental Physics.
    1968, Early History of the Electron Microscope.
    Further Reading
    Watt, 1984, Principles and Practice of Electron Microscopy, Cambridge. M.Hayat, 1973–80, Principles and Techniques of Electron Microscopy.
    MG

    Biographical history of technology > Marton, Ladislaus (Laslo)

  • 89 Napier (Neper), John

    [br]
    b. 1550 Merchiston Castle, Edinburgh, Scotland
    d. 4 April 1617 Merchiston Castle, Edinburgh, Scotland
    [br]
    Scottish mathematician and theological writer noted for his discovery of logarithms, a powerful aid to mathematical calculations.
    [br]
    Born into a family of Scottish landowners, at the early age of 13 years Napier went to the University of St Andrews in Fife, but he apparently left before taking his degree. An extreme Protestant, he was active in the struggles with the Roman Catholic Church and in 1594 he dedicated to James VI of Scotland his Plaine Discovery of the Whole Revelation of St John, an attempt to promote the Protestant case in the guise of a learned study. About this time, as well as being involved in the development of military equipment, he devoted much of his time to finding methods of simplifying the tedious calculations involved in astronomy. Eventually he realized that by representing numbers in terms of the power to which a "base" number needed to be raised to produce them, it was possible to perform multiplication and division and to find roots, by the simpler processes of addition, substraction and integer division, respectively.
    A description of the principle of his "logarithms" (from the Gk. logos, reckoning, and arithmos, number), how he arrived at the idea and how they could be used was published in 1614 under the title Mirifici Logarithmorum Canonis Descriptio. Two years after his death his Mirifici Logarithmorum Canonis Constructio appeared, in which he explained how to calculate the logarithms of numbers and gave tables of them to eight significant figures, a novel feature being the use of the decimal point to distinguish the integral and fractional parts of the logarithm. As originally conceived, Napier's tables of logarithms were calculated using the natural number e(=2.71828…) as the base, not directly, but in effect according to the formula: Naperian logx= 107(log e 107-log e x) so that the original Naperian logarithm of a number decreased as the number increased. However, prior to his death he had readily acceded to a suggestion by Henry Briggs that it would greatly facilitate their use if logarithms were simply defined as the value to which the decimal base 10 needed to be raised to realize the number in question. He was almost certainly also aware of the work of Joost Burgi.
    No doubt as an extension of his ideas of logarithms, Napier also devised a means of manually performing multiplication and division by means of a system of rods known as Napier's Bones, a forerunner of the modern slide-rule, which evolved as a result of successive developments by Edmund Gunther, William Oughtred and others. Other contributions to mathematics by Napier include important simplifying discoveries in spherical trigonometry. However, his discovery of logarithms was undoubtedly his greatest achievement.
    [br]
    Bibliography
    Napier's "Descriptio" and his "Constructio" were published in English translation as Description of the Marvelous Canon of Logarithms (1857) and W.R.MacDonald's Construction of the Marvelous Canon of Logarithms (1889), which also catalogues all his works. His Rabdologiae, seu Numerationis per Virgulas Libri Duo (1617) was published in English as Divining Rods, or Two Books of Numbering by Means of Rods (1667).
    Further Reading
    D.Stewart and W.Minto, 1787, An Account of the Life Writings and Inventions of John Napier of Merchiston (an early account of Napier's work).
    C.G.Knott (ed.), 1915, Napier Tercentenary Memorial Volume (the fullest account of Napier's work).
    KF

    Biographical history of technology > Napier (Neper), John

  • 90 Preece, Sir William Henry

    [br]
    b. 15 February 1834 Bryn Helen, Gwynedd, Wales
    d. 6 November 1913 Penrhos, Gwynedd, Wales
    [br]
    Welsh electrical engineer who greatly furthered the development and use of wireless telegraphy and the telephone in Britain, dominating British Post Office engineering during the last two decades of the nineteenth century.
    [br]
    After education at King's College, London, in 1852 Preece entered the office of Edwin Clark with the intention of becoming a civil engineer, but graduate studies at the Royal Institution under Faraday fired his enthusiasm for things electrical. His earliest work, as connected with telegraphy and in particular its application for securing the safe working of railways; in 1853 he obtained an appointment with the Electric and National Telegraph Company. In 1856 he became Superintendent of that company's southern district, but four years later he moved to telegraph work with the London and South West Railway. From 1858 to 1862 he was also Engineer to the Channel Islands Telegraph Company. When the various telegraph companies in Britain were transferred to the State in 1870, Preece became a Divisional Engineer in the General Post Office (GPO). Promotion followed in 1877, when he was appointed Chief Electrician to the Post Office. One of the first specimens of Bell's telephone was brought to England by Preece and exhibited at the British Association meeting in 1877. From 1892 to 1899 he served as Engineer-in-Chief to the Post Office. During this time he made a number of important contributions to telegraphy, including the use of water as part of telegraph circuits across the Solent (1882) and the Bristol Channel (1888). He also discovered the existence of inductive effects between parallel wires, and with Fleming showed that a current (thermionic) flowed between the hot filament and a cold conductor in an incandescent lamp.
    Preece was distinguished by his administrative ability, some scientific insight, considerable engineering intuition and immense energy. He held erroneous views about telephone transmission and, not accepting the work of Oliver Heaviside, made many errors when planning trunk circuits. Prior to the successful use of Hertzian waves for wireless communication Preece carried out experiments, often on a large scale, in attempts at wireless communication by inductive methods. These became of historic interest only when the work of Maxwell and Hertz was developed by Guglielmo Marconi. It is to Preece that credit should be given for encouraging Marconi in 1896 and collaborating with him in his early experimental work on radio telegraphy.
    While still employed by the Post Office, Preece contributed to the development of numerous early public electricity schemes, acting as Consultant and often supervising their construction. At Worcester he was responsible for Britain's largest nineteenth-century public hydro-electric station. He received a knighthood on his retirement in 1899, after which he continued his consulting practice in association with his two sons and Major Philip Cardew. Preece contributed some 136 papers and printed lectures to scientific journals, ninety-nine during the period 1877 to 1894.
    [br]
    Principal Honours and Distinctions
    CB 1894. Knighted (KCB) 1899. FRS 1881. President, Society of Telegraph Engineers, 1880. President, Institution of Electrical Engineers 1880, 1893. President, Institution of Civil Engineers 1898–9. Chairman, Royal Society of Arts 1901–2.
    Bibliography
    Preece produced numerous papers on telegraphy and telephony that were presented as Royal Institution Lectures (see Royal Institution Library of Science, 1974) or as British Association reports.
    1862–3, "Railway telegraphs and the application of electricity to the signaling and working of trains", Proceedings of the ICE 22:167–93.
    Eleven editions of Telegraphy (with J.Sivewright), London, 1870, were published by 1895.
    1883, "Molecular radiation in incandescent lamps", Proceedings of the Physical Society 5: 283.
    1885. "Molecular shadows in incandescent lamps". Proceedings of the Physical Society 7: 178.
    1886. "Electric induction between wires and wires", British Association Report. 1889, with J.Maier, The Telephone.
    1894, "Electric signalling without wires", RSA Journal.
    Further Reading
    J.J.Fahie, 1899, History of Wireless Telegraphy 1838–1899, Edinburgh: Blackwood. E.Hawkes, 1927, Pioneers of Wireless, London: Methuen.
    E.C.Baker, 1976, Sir William Preece, F.R.S. Victorian Engineer Extraordinary, London (a detailed biography with an appended list of his patents, principal lectures and publications).
    D.G.Tucker, 1981–2, "Sir William Preece (1834–1913)", Transactions of the Newcomen Society 53:119–36 (a critical review with a summary of his consultancies).
    GW / KF

    Biographical history of technology > Preece, Sir William Henry

  • 91 Wright, Frank Lloyd

    [br]
    b. 8 June 1869 Richland Center, Wisconsin, USA
    d. 9 April 1959 Phoenix, Arizona, USA
    [br]
    American architect who, in an unparalleled career spanning almost seventy years, became the most important figure on the modern architectural scene both in his own country and far further afield.
    [br]
    Wright began his career in 1887 working in the Chicago offices of Adler \& Sullivan. He conceived a great admiration for Sullivan, who was then concentrating upon large commercial projects in modern mode, producing functional yet decorative buildings which took all possible advantage of new structural methods. Wright was responsible for many of the domestic commissions.
    In 1893 Wright left the firm in order to set up practice on his own, thus initiating a career which was to develop into three distinct phases. In the first of these, up until the First World War, he was chiefly designing houses in a concept in which he envisaged "the house as a shelter". These buildings displayed his deeply held opinion that detached houses in country areas should be designed as an integral part of the landscape, a view later to be evidenced strongly in the work of modern Finnish architects. Wright's designs were called "prairie houses" because so many of them were built in the MidWest of America, which Wright described as a "prairie". These were low and spreading, with gently sloping rooflines, very plain and clean lined, built of traditional materials in warm rural colours, blending softly into their settings. Typical was W.W.Willit's house of 1902 in Highland Park, Illinois.
    In the second phase of his career Wright began to build more extensively in modern materials, utilizing advanced means of construction. A notable example was his remarkable Imperial Hotel in Tokyo, carefully designed and built in 1916–22 (now demolished), with special foundations and structure to withstand (successfully) strong earthquake tremors. He also became interested in the possibilities of reinforced concrete; in 1906 he built his church at Oak Park, Illinois, entirely of this material. In the 1920s, in California, he abandoned his use of traditional materials for house building in favour of precast concrete blocks, which were intended to provide an "organic" continuity between structure and decorative surfacing. In his continued exploration of the possibilities of concrete as a building material, he created the dramatic concept of'Falling Water', a house built in 1935–7 at Bear Run in Pennsylvania in which he projected massive reinforced-concrete terraces cantilevered from a cliff over a waterfall in the woodlands. In the later 1930s an extraordinary run of original concepts came from Wright, then nearing 70 years of age, ranging from his own winter residence and studio, Taliesin West in Arizona, to the administration block for Johnson Wax (1936–9) in Racine, Wisconsin, where the main interior ceiling was supported by Minoan-style, inversely tapered concrete columns rising to spreading circular capitals which contained lighting tubes of Pyrex glass.
    Frank Lloyd Wright continued to work until four days before his death at the age of 91. One of his most important and certainly controversial commissions was the Solomon R.Guggenheim Museum in New York. This had been proposed in 1943 but was not finally built until 1956–9; in this striking design the museum's exhibition areas are ranged along a gradually mounting spiral ramp lit effectively from above. Controversy stemmed from the unusual and original design of exterior banding and interior descending spiral for wall-display of paintings: some critics strongly approved, while others, equally strongly, did not.
    [br]
    Principal Honours and Distinctions
    RIBA Royal Gold Medal 1941.
    Bibliography
    1945, An Autobiography, Faber \& Faber.
    Further Reading
    E.Kaufmann (ed.), 1957, Frank Lloyd Wright: an American Architect, New York: Horizon Press.
    H.Russell Hitchcock, 1973, In the Nature of Materials, New York: Da Capo.
    T.A.Heinz, 1982, Frank Lloyd Wright, New York: St Martin's.
    DY

    Biographical history of technology > Wright, Frank Lloyd

  • 92 principles of safety integration

    1. принципы комплексной безопасности

     

    принципы комплексной безопасности
    -
    [Директива 98/37/ЕЭС по машинному оборудованию]

    Параллельные тексты EN-RU

    1.2.2. Principles of safety integration

    (a) Machinery must be so constructed that it is fitted for its function, and can be adjusted and maintained without putting persons at risk when these operations are carried out under the conditions foreseen by the manufacturer.
    The aim of measures taken must be to eliminate any risk of accident throughout the foreseeable lifetime of the machinery, including the phases of assembly and dismantling, even where risks of accident arise from foreseeable abnormal situations.

    (b) In selecting the most appropriate methods, the manufacturer must apply the following principles, in the order given:
    — eliminate or reduce risks as far as possible (inherently safe machinery design and construction),
    — take the necessary protection measures in relation to risks that cannot be eliminated,
    — inform users of the residual risks due to any shortcomings of the protection measures adopted, indicate whether any particular training is required and specify any need to provide personal protection equipment.

    (c) When designing and constructing machinery, and when drafting the instructions, the manufacturer must envisage not only the normal use of the machinery but also uses which could reasonably be expected.

    The machinery must be designed to prevent abnormal use if such use would engender a risk.In other cases the instructions must draw the user’s attention to ways — which experience has shown might occur — in which the machinery should not be used.

    (d) Under the intended conditions of use, the discomfort, fatigue and psychological stress faced by the operator must be reduced to the minimum possible taking ergonomic principles into account.

    (e) When designing and constructing machinery, the manufacturer must take account of the constraints to which the operator is subject as a result of the necessary or foreseeable use of personal protection equipment (such as footwear, gloves, etc.).

    (f) Machinery must be supplied with all the essential special equipment and accessories to enable it to be adjusted, maintained and used without risk.
    [DIRECTIVE 98/37/EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL]

    1.1.2. Принципы комплексной безопасности.

    (a) Машинное оборудование должно конструироваться так, чтобы оно выполняло заранее предусмотренные функции, и чтобы была возможность производить их наладку и техническое обслуживание, не подвергая персонал риску во время осуществления этих операций в условиях, предусмотренных изготовителем.
    Целью принимаемых мер является устранение любого риска несчастного случая в течение прогнозируемого периода срока службы машинного оборудования, включая фазы сборки и демонтажа, а также когда несчастный случай может произойти вследствие возникновения чрезвычайных обстоятельств, которые невозможно было предвидеть заранее.

    (b) Выбирая наиболее подходящие меры, изготовитель должен применять следующие принципы в указанном порядке:
    - по возможности устранить или сократить риски (сделать изначально безопасными как конструкцию, так и собранное машинное оборудование);
    - принять все необходимые меры защиты против рисков, которые не могут быть устранены;
    - информировать пользователей о возможных остаточных рисках, которые могут иметь место из-за недостаточности принятых мер защиты, с описанием всей необходимой специальной подготовки персонала и всех средств личной защиты, которыми его необходимо снабдить.

    (c) При конструировании и производстве машинного оборудования, а также при составлении инструкций изготовитель должен предусмотреть не только обычное использование машинного оборудования, но и потенциальное его использование.
    Машинное оборудование должно быть сконструировано таким образом, чтобы предотвратить ненадлежащее его использование, если оно повлечет за собой возникновение риска. В прочих случаях инструкции должны обратить внимание пользователя на то, каким образом машинное оборудование не следует использовать (на основании уже имеющегося опыта).

    (d) При надлежащих условиях использования необходимо сократить до минимума всевозможные неудобства, чувство усталости и психологического стресса, которые испытывает оператор, принимая при этом в расчет принципы эргономики.

    (e) При конструировании и производстве машинного оборудования изготовитель обязан принимать во внимание скованность и ограниченность движений оператора, которые являются следствием необходимых или предусмотренных средств личной защиты (таких как специальная обувь, перчатки и т.п.).

    (f) Машинное оборудование должно быть снабжено всем основным специальным оборудованием, необходимым для пуска, текущего обслуживания и безопасного использования.

    [Официальный перевод]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > principles of safety integration

См. также в других словарях:

  • Construction methods for private pools — There are several distinct construction methods for private (home) swimming pools, which are typically called concrete , vinyl liner , and fiberglass . The term vinyl liner pool describes the method of lining the interior, not the construction… …   Wikipedia

  • Construction bidding — is the process of submitting a proposal (tender) to undertake, or manage the undertaking of a construction project. The process starts with a construction estimate from blueprints and take offs. The tender is treated as an offer to do the work… …   Wikipedia

  • Construction estimating software — is computer software designed for contractors to estimate construction costs for a specific project. An estimator will typically use estimating software to estimate their bid price for a project, which will ultimately become part of a resulting… …   Wikipedia

  • Construction management — A two level retail store under construction in Canada (2011). Construction Project Management is the overall planning, coordination and control of a project from inception to completion aimed at meeting a client’s requirements in order to produce …   Wikipedia

  • Construction industry of Japan — In Japan, the mainstay of infrastructure development is the construction industry, which employed 9.4 percent of the labor force in 1990 and contributed some 8.5 percent of GDP. After the two oil crises (1973 and 1979) in the 1970s, construction… …   Wikipedia

  • Construction field computing — is the use of handheld devices that augment the construction superintendent s ability to manage the operations on a construction site. These information appliances (IA) must be portable devices which can be carried or worn by the user, and have… …   Wikipedia

  • Construction Field Computing — is the use of handheld devices that augment the construction superintendent s ability to manage the operations on a construction site. These information appliances (IA) must be portable devices which can be carried or worn by the user, and have… …   Wikipedia

  • Construction (psychoanalysis) — Construction, also referred as construction/reconstruction is a widely used, yet vaguely defined topic of modern psychoanalysis. According to its proponents, Freud in his later writings had already distinguished between construction and… …   Wikipedia

  • Construction Law Journal — Type Ten Times Per Year Format Journal Owner LexisNexis Editor Nicholas Barrett …   Wikipedia

  • Construction engineers — Builder of Choice Type Private Industry Construction Founded 1978 Headquarters Grand Forks, North Dakota, USA …   Wikipedia

  • Construction and Analysis of Distributed Processes — Developer(s) the INRIA VASY team Initial release 1986, 24–25 years ago Stable release …   Wikipedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»