Перевод: со всех языков на все языки

со всех языков на все языки

construction+abroad

  • 41 Diesel, Rudolph Christian Karl

    [br]
    b. 1858 Paris, France
    d. 1913 at sea, in the English Channel
    [br]
    German inventor of the Diesel or Compression Ignition engine.
    [br]
    A German born in Paris, he was educated in Augsburg and later in Munich, where he graduated first in his class. There he took some courses under Professor Karl von Linde, pioneer of mechanical refrigeration and an authority on thermodynamics, who pointed out the low efficiency of the steam engine. He went to work for the Linde Ice Machine Company as an engineer and later as Manager; there he conceived a new basic cycle and worked out its thermodynamics, which he published in 1893 as "The theory and construction of a rational heat motor". Compressing air adiabatically to one-sixteenth of its volume caused the temperature to rise to 1,000°F (540°C). Injected fuel would then ignite automatically without any electrical system. He obtained permission to use the laboratories of the Augsburg-Nuremburg Engine Works to build a single-cylinder prototype. On test it blew up, nearly killing Diesel. He proved his principle, however, and obtained financial support from the firm of Alfred Krupp. The design was refined until successful and in 1898 an engine was put on display in Munich with the result that many business people invested in Diesel and his engine and its worldwide production. Diesel made over a million dollars out of the invention. The heart of the engine is the fuel-injection pump, which operates at a pressure of c.500 psi (35 kg/cm). The first English patent for the engine was in 1892. The firms in Augsburg sent him abroad to sell his engine; he persuaded the French to adopt it for submarines, Germany having refused this. Diesel died in 1913 in mysterious circumstances, vanishing from the Harwich-Antwerp ferry.
    [br]
    Further Reading
    E.Diesel, 1937, Diesel, derMensch, das Werk, das Schicksal, Hamburg. J.S.Crowther, 1959, Six Great Engineers, London.
    John F.Sandfort, 1964, Heat Engines.
    IMcN

    Biographical history of technology > Diesel, Rudolph Christian Karl

  • 42 Hammond, Robert

    [br]
    b. 19 January 1850 Waltham Cross, England
    d. 5 August 1915 London, England
    [br]
    English engineer who established many of the earliest public electricity-supply systems in Britain.
    [br]
    After an education at Nunhead Grammar School, Hammond founded engineering businesses in Middlesbrough and London. Obtaining the first concession from the Anglo- American Brush Company for the exploitation of their system in Britain, he was instrumental in popularizing the Brush arc-lighting generator. Schemes using this system, which he established at Chesterfield, Brighton, Eastbourne and Hastings in 1881–2, were the earliest public electricity-supply ventures in Britain. On the invention of the incandescent lamp, high-voltage Brush dynamos were employed to operate both arc and incandescent lamps. The limitations of this arrangement led Hammond to become the sole agent for the Ferranti alternator, introduced in 1882. Commencing practice as a consulting engineer, Hammond was responsible for the construction of many electricity works in the United Kingdom, of which the most notable were those at Leeds, Hackney (London) and Dublin, in addition to many abroad. Appreciating the need for trained engineers for the new electrical industry and profession then being created, in 1882 he established the Hammond Electrical Engineering College. Later, in association with Francis Ince, he founded Faraday House, a training school that pioneered the concept of "sandwich courses" for engineers. Between 1883 and 1903 he paid several visits to the United States to study developments in electric traction and was one of the advisers to the Postmaster General on the acquisition of the telephone companies.
    [br]
    Bibliography
    1884, Electric Light in Our Homes, London (one of the first detailed accounts of electric lighting).
    1897, "Twenty five years" developments in central stations', Electrical Review 41:683–7 (surveys nineteenth-century public electricity supply).
    Further Reading
    F.W.Lipscomb, 1973, The Wise Men of the Wires, London (the story of Faraday House). B.Bowers, 1985, biography, in Dictionary of Business Biography, Vol. III, ed. J.Jeremy, London, pp. 21–2 (provides an account of Hammond's business ventures). J.D.Poulter, 1986, An Early History of 'Electricity Supply, London.
    GW

    Biographical history of technology > Hammond, Robert

  • 43 Inoue Masaru

    [br]
    b. 1 August 1843 Hagi, Choshu, Japan
    d. 2 August 1910 London, England
    [br]
    Japanese "Father of Japanese Railways".
    [br]
    In the early 1860s, most travel in Japan was still by foot and the Japanese were forbidden by their government to travel abroad. Inoue was one of a small group of students who left Japan illegally in 1863 for London. There he studied English, mathematics and science, and afterwards mineralogy and railways. Inoue returned to Japan in 1868, when the new Meiji Government reopened the country to the outside world after some 200 years of isolation. Part of its policy, despite opposition, was to build railways; at Inoue's suggestion, the gauge of 3 ft 6 in. (1.07 m) was adopted. Initially capital, engineers, skilled labour and materials ranging from locomotives to pencils and stationery were all imported from Britain; Edmund Morel was the first Chief Engineer. In 1871 Inoue was appointed Director of the Government Railway Bureau and he became the driving force behind railway development in Japan for more than two decades. The first line, from Tokyo to Yokohama, was opened in 1872, to be followed by others, some of them at first isolated. The number of foreigners employed, most of them British, peaked at 120 in 1877 and then rapidly declined as the Japanese learned to take over their tasks. In 1878, at Inoue's instance, construction of a line entirely by Japanese commenced for the first time, with British engineers as consultants only. It was ten years before Japanese Railways' total route was 70 miles (113 km) long; over the next ten years, this increased to 1,000 miles (1,600 km) and the system continued to grow rapidly. During 1892–3, a locomotive was built in Japan for the first time, under the guidance of Locomotive Superintendent R.F.Trevithick, grandson of the pioneer Richard Trevithick: it was a compound 2–4–2 tank engine, with many parts imported from Britain. Locomotive building in Japan then blossomed so rapidly that imports were discontinued, with rare exceptions, from 1911. Meanwhile Inoue had retired in 1893; he was on a visit to England at the time of his death.
    [br]
    Principal Honours and Distinctions
    Viscount 1887.
    Bibliography
    1909, "Japanese communications: railroads", in Count Shigenobu Okuma (ed.), Fifty Years of New Japan (English version ed. M.B.Huish), Smith, Elder, Ch. 18.
    Further Reading
    T.Richards and K.C.Rudd, 1991 Japanese Railways in the Meiji Period 1868–1912, Uxbridge: Brunel University (one of the few readily available accounts in English of the origins of Japanese Railways).
    PJGR

    Biographical history of technology > Inoue Masaru

  • 44 Rittinger, Peter von

    [br]
    b. 23 January 1811 Neutitschein, Moravia (now Now Jicin, Czech Republic)
    d. 7 December 1872 Vienna, Austria
    [br]
    Austrian mining engineer, improver of the processing of minerals.
    [br]
    After studying law, philosophy and politics at the University of Olmutz (now Olomouc), in 1835 Rittinger became a fellow of the Mining Academy in Schemnitz (now Banská Štiavnica), Slovakia. In 1839, the year he finished at the academy, he published a book on perspective drawing. The following year, he became Inspector of Mills at the ore mines in Schemnitz, and in 1845 he was engaged in coal mining in Bohemia and Moravia. In 1849 he joined the mining administration at Joachimsthal (now Jáchymov), Bohemia. In these early years he contributed his first important innovations for the mining industry and thus fostered his career in the government's service. In 1850 he was called to Vienna to become a high-ranked officer in various ministries. He was responsible for the construction of buildings, pumping installations and all sorts of machinery in the mining industry; he reorganized the curricula of the mining schools, was responsible for the mint and became head of the department of mines, forests and salt-works in the Austrian empire.
    During all his years of public service, Rittinger continued his concern with technological innovations. He improved the processing of ores by introducing in 1844 the rotary washer and the box classifier, and later his continuously shaking concussion table which, having been exhibited at the Vienna World Fair of 1873, was soon adopted in other countries. He constructed water-column pumps, invented a differential shaft pump with hydraulic linkage to replace the heavy iron rods and worked on centrifugal pumps. He was one of the first to be concerned with the transfer of heat, and he developed a system of using exhaust steam for heating in salt-works. He kept his eye on current developments abroad, using his function as official Austrian commissioner to the world exhibitions, on which he published frequently as well as on other matters related to technology. With his systematic handbook on mineral processing, first published in 1867, he emphasized his international reputation in this specialized field of mining.
    [br]
    Principal Honours and Distinctions
    Knighted 1863. Order of the Iron Crown 1863. Honorary Citizen of Joachimsthal 1864. President, Austrian Chamber of Engineers and Architects 1863–5.
    Bibliography
    1849, Der Spitzkasten-Apparat statt Mehlrinnen und Sümpfen…bei der nassen Aufbereitung, Freiberg.
    1855, Theoretisch-praktische Abhandlung über ein für alle Gattungen von Flüssigkeiten anwendbares neues Abdampfverfahren, Vienna.
    1867, Lehrbuch der Aufbereitungskunde, Berlin (with supplements, 1870–73).
    Further Reading
    H.Kunnert, 1972, "Peter Ritter von Rittinger. Lebensbild eines grossen Montanisten", Der Anschnitt 24:3–7 (a detailed description of his life, based on source material).
    J.Steiner, 1972, "Der Beitrag von Peter Rittinger zur Entwicklung der Aufbereitungstechnik". Berg-und hüttenmännische Monatshefte 117: 471–6 (an evaluation of Rittinger's achievements for the processing of ores).
    WK

    Biographical history of technology > Rittinger, Peter von

См. также в других словарях:

  • Construction industry of Iran — The Central Bank of Iran indicate that 70 percent of the Iranians own homes, with huge amounts of idle money entering the housing and other markets. In recent years, the construction industry of Iran has been thriving due to an increase in… …   Wikipedia

  • Turkish Construction and Contracting Industry — The Turkish Construction and Contracting Industry is one of the leading, most competitive and dynamic construction/contracting industries in the world. A total of 22 Turkish construction/contracting companies were selected for the Top… …   Wikipedia

  • China State Construction Engineering Corp — China State Construction Engineering Corporation 中国建筑工程总公司 Type State owned enterprise Industry Property and Real Estate Construction Founded 1982 …   Wikipedia

  • PLANNING AND CONSTRUCTION — The laws of planning and construction occupy an important place in contemporary public law. This group of laws regulates the status of the various planning authorities, determines norms for the planning of communities, allocates areas for… …   Encyclopedia of Judaism

  • USSR in Construction — is a propaganda journal published in the decade of 1930 to 1941 in the Soviet Union. It became an artistic gem and counter current in the first year of socialist realism. Its pages offered some of the greatest examples of early 20th century phot …   Wikipedia

  • Eser (Construction firm) — User infobox name = ETS Eser Contracting and Industry Co.Inc. Establishment = 1986 Headquarters = Ankara, Turkey website = www.eser.comEser is an international construction company based in Ankara, Turkey, and active in the Middle East, Central… …   Wikipedia

  • Austria — Austrian, adj., n. /aw stree euh/, n. a republic in central Europe. 8,054,078; 32,381 sq. mi. (83,865 sq. km). Cap.: Vienna. German, Österreich. * * * Austria Introduction Austria Background: Once the center of power for the large Austro… …   Universalium

  • Stephen Mallory — For his son, also a Senator, see Stephen Mallory II. Stephen Russell Mallory 1st Confederate States Secretary of the Navy In office March 4, 1861 – May 20, 1865 …   Wikipedia

  • Government-business relations in Japan — Government business relations are conducted in many ways and through numerous channels in Japan. The most important conduits in the postwar period are the economic ministries: the Ministry of Finance and the Ministry of Economy, Trade and… …   Wikipedia

  • china — /chuy neuh/, n. 1. a translucent ceramic material, biscuit fired at a high temperature, its glaze fired at a low temperature. 2. any porcelain ware. 3. plates, cups, saucers, etc., collectively. 4. figurines made of porcelain or ceramic material …   Universalium

  • China — /chuy neuh/, n. 1. People s Republic of, a country in E Asia. 1,221,591,778; 3,691,502 sq. mi. (9,560,990 sq. km). Cap.: Beijing. 2. Republic of. Also called Nationalist China. a republic consisting mainly of the island of Taiwan off the SE coast …   Universalium

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»