-
1 Condensing
The condenser card is a machine with the last doffer arranged so that the web of carded wool is divided into strips and rubbed into the form of silvers of the right count to be spun into yarn by being given the necessary twist and draft on the woollen mule. -
2 установка для обжатия лома
Engineering: scrap condenser, scrap condensing machine, scrap-condensing machineУниверсальный русско-английский словарь > установка для обжатия лома
-
3 конденсационная машина
1) Engineering: condensation machine2) Combustion gas turbines: condensing machineУниверсальный русско-английский словарь > конденсационная машина
-
4 установка для уплотнения лома
Engineering: scrap condenser, scrap-condensing machineУниверсальный русско-английский словарь > установка для уплотнения лома
-
5 máquina condensadora
f.condensing machine. -
6 skraplarka
• condensing unit• refrigerating machine -
7 Porter, Charles Talbot
SUBJECT AREA: Steam and internal combustion engines[br]b. 18 January 1826 Auburn, New York, USAd. 1910 USA[br]American inventor of a stone dressing machine, an improved centrifugal governor and a high-speed steam engine.[br]Porter graduated from Hamilton College, New York, in 1845, read law in his father's office, and in the autumn of 1847 was admitted to the Bar. He practised for six or seven years in Rochester, New York, and then in New York City. He was drawn into engineering when aged about 30, first through a client who claimed to have invented a revolutionary type of engine and offered Porter the rights to it as payment of a debt. Having lent more money, Porter saw neither the man nor the engine again. Porter followed this with a similar experience over a patent for a stone dressing machine, except this time the machine was built. It proved to be a failure, but Porter set about redesigning it and found that it was vastly improved when it ran faster. His improved machine went into production. It was while trying to get the steam engine that drove the stone dressing machine to run more smoothly that he made a discovery that formed the basis for his subsequent work.Porter took the ordinary Watt centrifugal governor and increased the speed by a factor of about ten; although he had to reduce the size of the weights, he gained a motion that was powerful. To make the device sufficiently responsive at the right speed, he balanced the centrifugal forces by a counterweight. This prevented the weights flying outwards until the optimum speed was reached, so that the steam valves remained fully open until that point and then the weights reacted more quickly to variations in speed. He took out a patent in 1858, and its importance was quickly recognized. At first he manufactured and sold the governors himself in a specially equipped factory, because this was the only way he felt he could get sufficient accuracy to ensure a perfect action. For marine use, the counterweight was replaced by a spring.Higher speed had brought the advantage of smoother running and so he thought that the same principles could be applied to the steam engine itself, but it was to take extensive design modifications over several years before his vision was realized. In the winter of 1860–1, J.F. Allen met Porter and sketched out his idea of a new type of steam inlet valve. Porter saw the potential of this for his high-speed engine and Allen took out patents for it in 1862. The valves were driven by a new valve gear designed by Pius Fink. Porter decided to display his engine at the International Exhibition in London in 1862, but it had to be assembled on site because the parts were finished in America only just in time to be shipped to meet the deadline. Running at 150 rpm, the engine caused a sensation, but as it was non-condensing there were few orders. Porter added condensing apparatus and, after the failure of Ormerod Grierson \& Co., entered into an agreement with Joseph Whitworth to build the engines. Four were exhibited at the 1867 Paris Exposition Universelle, but Whitworth and Porter fell out and in 1868 Porter returned to America.Porter established another factory to build his engine in America, but he ran into all sorts of difficulties, both mechanical and financial. Some engines were built, and serious production was started c. 1874, but again there were further problems and Porter had to leave his firm. High-speed engines based on his designs continued to be made until after 1907 by the Southwark Foundry and Machine Company, Philadelphia, so Porter's ideas were proved viable and led to many other high-speed designs.[br]Bibliography1908, Engineering Reminiscences, New York: J. Wiley \& Sons; reprinted 1985, Bradley, Ill.: Lindsay (autobiography; the main source of information about his life).Further ReadingR.L.Hills, 1989, Power from Steam. A History of the Stationary Steam Engine, Cambridge University Press (examines his governor and steam engine).O.Mayr, 1974, "Yankee practice and engineering theory; Charles T.Porter and the dynamics of the high-speed engine", Technology and Culture 16 (4) (examines his governor and steam engine).RLH -
8 машинное отделение
1) General subject: engine-room2) Naval: engine space, fidley house, machine space3) Engineering: machine room4) Construction: engine house (здание), equipment room, machinery space, mechanical equipment room, plant room5) Railway term: power compartment6) Metallurgy: enginehouse, machine shop, machinery hall7) Coolers: compressor compartment, compressor room, condensing unit room, engine room, machine compartment, refrigeration machinery room, refrigeration plant room8) Business: machinery department9) Oilfield: engine compartment, machinery compartment10) Automation: engine shopУниверсальный русско-английский словарь > машинное отделение
-
9 Corliss, George Henry
SUBJECT AREA: Steam and internal combustion engines[br]b. 2 June 1817 Easton, Washington City, New York, USAd. 21 February 1888 USA[br]American inventor of a cut-off mechanism linked to the governor which revolutionized the operation of steam engines.[br]Corliss's father was a physician and surgeon. The son was educated at Greenwich, New York, but while he showed an aptitude for mathematics and mechanics he first of all became a storekeeper and then clerk, bookkeeper, salesperson and official measurer and inspector of the cloth produced at W.Mowbray \& Son. He went to the Castleton Academy, Vermont, for three years and at the age of 21 returned to a store of his own in Greenwich. Complaints about stitching in the boots he sold led him to patent a sewing machine. He approached Fairbanks, Bancroft \& Co., Providence, Rhode Island, machine and steam engine builders, about producing his machine, but they agreed to take him on as a draughtsman providing he abandoned it. Corliss moved to Providence with his family and soon revolutionized the design and construction of steam engines. Although he started working out ideas for his engine in 1846 and completed one in 1848 for the Providence Dyeing, Bleaching and Calendering Company, it was not until March 1849 that he obtained a patent. By that time he had joined John Barstow and E.J.Nightingale to form a new company, Corliss Nightingale \& Co., to build his design of steam-engines. He used paired valves, two inlet and two exhaust, placed on opposite sides of the cylinder, which gave good thermal properties in the flow of steam. His wrist-plate operating mechanism gave quick opening and his trip mechanism allowed the governor to regulate the closure of the inlet valve, giving maximum expansion for any load. It has been claimed that Corliss should rank equally with James Watt in the development of the steam-engine. The new company bought land in Providence for a factory which was completed in 1856 when the Corliss Engine Company was incorporated. Corliss directed the business activities as well as technical improvements. He took out further patents modifying his valve gear in 1851, 1852, 1859, 1867, 1875, 1880. The business grew until well over 1,000 workers were employed. The cylindrical oscillating valve normally associated with the Corliss engine did not make its appearance until 1850 and was included in the 1859 patent. The impressive beam engine designed for the 1876 Centennial Exhibition by E. Reynolds was the product of Corliss's works. Corliss also patented gear-cutting machines, boilers, condensing apparatus and a pumping engine for waterworks. While having little interest in politics, he represented North Providence in the General Assembly of Rhode Island between 1868 and 1870.[br]Further ReadingMany obituaries appeared in engineering journals at the time of his death. Dictionary of American Biography, 1930, Vol. IV, New York: C.Scribner's Sons. R.L.Hills, 1989, Power from Steam. A History of the Stationary Steam Engine, Cambridge University Press (explains Corliss's development of his valve gear).J.L.Wood, 1980–1, "The introduction of the Corliss engine to Britain", Transactions of the Newcomen Society 52 (provides an account of the introduction of his valve gear to Britain).W.H.Uhland, 1879, Corliss Engines and Allied Steam-motors, London: E. \& F.N.Spon.RLH -
10 компрессорный зал
1) Engineering: compressor room, engine room -
11 Kondensationsmaschine
f < textil> ■ curing machine -
12 kondensasjonsanlegg
subst. condensing plant subst. condensation machine -
13 Woollen Yarn
A term which originally denoted carded wool yarn spun from wool fibre unsuitable for combing or rejected as noil from the wool combing machine. Now it denotes an infinitely varied class of yarns spun from virgin wool, re-used wool and other materials mixed in every conceivable manner, and prepared for spinning by carding and condensing. Woollen yarns are coarser than worsted and owing to the omission of combing in preparing the yarn for spinning, the component fibres are not parallelised, hence the yarns are fuller and have more projecting ends of fibres due to the presence of a greater proportion of short fibres. Woollen yarn spinning is a means of making serviceable yarns from fibres too short to be used by the worsted method of yarn preparation. -
14 Watt, James
SUBJECT AREA: Steam and internal combustion engines[br]b. 19 January 1735 Greenock, Renfrewshire, Scotlandd. 19 August 1819 Handsworth Heath, Birmingham, England[br]Scottish engineer and inventor of the separate condenser for the steam engine.[br]The sixth child of James Watt, merchant and general contractor, and Agnes Muirhead, Watt was a weak and sickly child; he was one of only two to survive childhood out of a total of eight, yet, like his father, he was to live to an age of over 80. He was educated at local schools, including Greenock Grammar School where he was an uninspired pupil. At the age of 17 he was sent to live with relatives in Glasgow and then in 1755 to London to become an apprentice to a mathematical instrument maker, John Morgan of Finch Lane, Cornhill. Less than a year later he returned to Greenock and then to Glasgow, where he was appointed mathematical instrument maker to the University and was permitted in 1757 to set up a workshop within the University grounds. In this position he came to know many of the University professors and staff, and it was thus that he became involved in work on the steam engine when in 1764 he was asked to put in working order a defective Newcomen engine model. It did not take Watt long to perceive that the great inefficiency of the Newcomen engine was due to the repeated heating and cooling of the cylinder. His idea was to drive the steam out of the cylinder and to condense it in a separate vessel. The story is told of Watt's flash of inspiration as he was walking across Glasgow Green one Sunday afternoon; the idea formed perfectly in his mind and he became anxious to get back to his workshop to construct the necessary apparatus, but this was the Sabbath and work had to wait until the morrow, so Watt forced himself to wait until the Monday morning.Watt designed a condensing engine and was lent money for its development by Joseph Black, the Glasgow University professor who had established the concept of latent heat. In 1768 Watt went into partnership with John Roebuck, who required the steam engine for the drainage of a coal-mine that he was opening up at Bo'ness, West Lothian. In 1769, Watt took out his patent for "A New Invented Method of Lessening the Consumption of Steam and Fuel in Fire Engines". When Roebuck went bankrupt in 1772, Matthew Boulton, proprietor of the Soho Engineering Works near Birmingham, bought Roebuck's share in Watt's patent. Watt had met Boulton four years earlier at the Soho works, where power was obtained at that time by means of a water-wheel and a steam engine to pump the water back up again above the wheel. Watt moved to Birmingham in 1774, and after the patent had been extended by Parliament in 1775 he and Boulton embarked on a highly profitable partnership. While Boulton endeavoured to keep the business supplied with capital, Watt continued to refine his engine, making several improvements over the years; he was also involved frequently in legal proceedings over infringements of his patent.In 1794 Watt and Boulton founded the new company of Boulton \& Watt, with a view to their retirement; Watt's son James and Boulton's son Matthew assumed management of the company. Watt retired in 1800, but continued to spend much of his time in the workshop he had set up in the garret of his Heathfield home; principal amongst his work after retirement was the invention of a pantograph sculpturing machine.James Watt was hard-working, ingenious and essentially practical, but it is doubtful that he would have succeeded as he did without the business sense of his partner, Matthew Boulton. Watt coined the term "horsepower" for quantifying the output of engines, and the SI unit of power, the watt, is named in his honour.[br]Principal Honours and DistinctionsFRS 1785. Honorary LLD, University of Glasgow 1806. Foreign Associate, Académie des Sciences, Paris 1814.Further ReadingH.W.Dickinson and R Jenkins, 1927, James Watt and the Steam Engine, Oxford: Clarendon Press.L.T.C.Rolt, 1962, James Watt, London: B.T. Batsford.R.Wailes, 1963, James Watt, Instrument Maker (The Great Masters: Engineering Heritage, Vol. 1), London: Institution of Mechanical Engineers.IMcN
См. также в других словарях:
turbine — /terr bin, buyn/, n. any of various machines having a rotor, usually with vanes or blades, driven by the pressure, momentum, or reactive thrust of a moving fluid, as steam, water, hot gases, or air, either occurring in the form of free jets or as … Universalium
4-8-4 — Under the Whyte notation for the classification of steam locomotives, a 4 8 4 locomotive has four leading wheels, eight coupled driving wheels and four trailing wheels.Other equivalent classifications are: UIC classification: 2D2 (also known as… … Wikipedia
Richard Trevithick — Infobox Scientist name = Richard Trevithick box width = image width = 150px caption = Richard Trevithick, by John Linnell (1792 1882) birth date = April 13, 1771 birth place = Cornwall death date = April 22, 1833 (aged 62) death place = Dartford … Wikipedia
building construction — Techniques and industry involved in the assembly and erection of structures. Early humans built primarily for shelter, using simple methods. Building materials came from the land, and fabrication was dictated by the limits of the materials and… … Universalium
Steam turbine — A rotor of a modern steam turbine, used in a power plant A steam turbine is a mechanical device that extracts thermal energy from pressurized steam, and converts it into rotary motion. Its modern manifestation was invented by Sir Charles Parsons… … Wikipedia
History of the steam engine — This article primarily deals with the history of the reciprocating type steam engine. The parallel development of turbine type engines is described in the steam turbine article. The history of the steam engine stretches back as far as the first… … Wikipedia
Air conditioner — For general aspects of air conditioning, see Air conditioning. A typical home air conditioning unit. An air conditioner (often referred to as AC) is a home appliance, system, or mechanism designed to dehumidify and extract heat from an area. The… … Wikipedia
Water heating — is a thermodynamic process using an energy source to heat water above its initial temperature. Typical domestic uses of hot water are for cooking, cleaning, bathing, and space heating. In industry, both hot water and water heated to steam have… … Wikipedia
Steam engine — A steam engine is a heat engine that performs mechanical work using steam as its working fluid. [ [http://www.britannica.com/EBchecked/topic/564472/steam engine steam engine Britannica Online Encyclopedia ] ] Steam engines have a long history,… … Wikipedia
Heat pump — A heat pump is a machine or device that moves heat from one location (the source ) to another location (the sink or heat sink ), using work. Most heat pump technology moves heat from a low temperature heat source to a higher temperature heat sink … Wikipedia
Dehumidifier — Typical portable dehumidifier, mounted on casters A dehumidifier is typically a household appliance that reduces the level of humidity in the air, usually for health reasons. Humid air can cause mold and mildew to grow inside homes, which pose… … Wikipedia