Перевод: со всех языков на все языки

со всех языков на все языки

civil+engineers

  • 101 Howden, James

    [br]
    b. 29 February 1832 Prestonpans, East Lothian, Scotland
    d. 21 November 1913 Glasgow, Scotland
    [br]
    Scottish engineer and boilermaker, inventor of the forced-draught system for the boiler combustion chamber.
    [br]
    Howden was educated in Prestonpans. While aged only 14 or 15, he travelled across Scotland by canal to Glasgow, where he served an engineering apprenticeship with James Gray \& Co. In 1853 he completed his time and for some months served with the civil engineers Bell and Miller, and then with Robert Griffiths, a designer of screw propellers for ships. In 1854, at the age of 22, Howden set up as a consulting engineer and designer. He designed a rivet-making machine from which he realized a fair sum by the sale of patent rights, this assisting him in converting the design business into a manufacturing one. His first contract for a marine engine came in 1859 for the compound steam engine and the watertube boilers of the Anchor Liner Ailsa Craig. This ship operated at 100 psi (approximately 7 kg/cm2), well above the norm for those days. James Howden \& Co. was formed in 1862. Despite operating in the world's most competitive market, the new company remained prosperous through the flow of inventions in marine propulsion. Shipbuilding was added to the company's list of services, but such work was subcontracted. Work was obtained from all the great shipping companies building in the Glasgow region, and with such throughput Howden's could afford research and experimentation. This led to the Howden hot-air forced-draught system, whereby furnace waste gases were used to heat the air being drawn into the combustion chambers. The first installation was on the New York City, built in 1885 for West Indian service. Howden's fertile mind brought about a fully enclosed high-speed marine steam engine in the 1900s and, shortly after, the Howden-Zoelly impulse steam turbine for land operation. Until his death, Howden worked on many technical and business problems: he was involved in the St Helena Whaling Company, marble quarrying in Greece and in the design of a recoilless gun for the Admiralty.
    [br]
    Principal Honours and Distinctions
    Howden was the last surviving member of the group who founded the Institution of Engineers and Shipbuilders in Scotland in 1857.
    Bibliography
    Howden contributed several papers to the Institution of Engineers and Shipbuilders in Scotland.
    Further Reading
    C.W.Munn, 1986, "James Howden", Dictionary of Scottish Business Biography, Vol. I, Aberdeen.
    FMW

    Biographical history of technology > Howden, James

  • 102 White, Sir William Henry

    SUBJECT AREA: Ports and shipping
    [br]
    b. 2 February 1845 Devonport, England
    d. 27 February 1913 London, England
    [br]
    English naval architect distinguished as the foremost nineteenth-century Director of Naval Construction, and latterly as a consultant and author.
    [br]
    Following early education at Devonport, White passed the Royal Dockyard entry examination in 1859 to commence a seven-year shipwright apprenticeship. However, he was destined for greater achievements and in 1863 passed the Admiralty Scholarship examinations, which enabled him to study at the Royal School of Naval Architecture at South Kensington, London. He graduated in 1867 with high honours and was posted to the Admiralty Constructive Department. Promotion came swiftly, with appointment to Assistant Constructor in 1875 and Chief Constructor in 1881.
    In 1883 he left the Admiralty and joined the Tyneside shipyard of Sir W.G. Armstrong, Mitchell \& Co. at a salary of about treble that of a Chief Constructor, with, in addition, a production bonus based on tonnage produced! At the Elswick Shipyard he became responsible for the organization and direction of shipbuilding activities, and during his relatively short period there enhanced the name of the shipyard in the warship export market. It is assumed that White did not settle easily in the North East of England, and in 1885, following negotiations with the Admiralty, he was released from his five-year exclusive contract and returned to public service as Director of Naval Construction and Assistant Controller of the Royal Navy. (As part of the settlement the Admiralty released Philip Watts to replace White, and in later years Watts was also to move from that same shipyard and become White's successor as Director of Naval Construction.) For seventeen momentous years White had technical control of ship production for the Royal Navy. The rapid building of warships commenced after the passing of the Naval Defence Act of 1889, which authorized directly and indirectly the construction of around seventy vessels. The total number of ships built during the White era amounted to 43 battleships, 128 cruisers of varying size and type, and 74 smaller vessels. While White did not have the stimulation of building a revolutionary capital ship as did his successor, he did have the satisfaction of ensuring that the Royal Navy was equipped with a fleet of all-round capability, and he saw the size, displacement and speed of the ships increase dramatically.
    In 1902 he resigned from the Navy because of ill health and assumed several less onerous tasks. During the construction of the Cunard Liner Mauretania on the Tyne, he held directorships with the shipbuilders Swan, Hunter and Wigham Richardson, and also the Parsons Marine Turbine Company. He acted as a consultant to many organizations and had an office in Westminster. It was there that he died in February 1913.
    White left a great literary legacy in the form of his esteemed Manual of Naval Architecture, first published in 1877 and reprinted several times since in English, German and other languages. This volume is important not only as a text dealing with first principles but also as an illustration of the problems facing warship designers of the late nineteenth century.
    [br]
    Principal Honours and Distinctions
    KCB 1895. Knight Commander of the Order of the Danneborg (Denmark). FRS. FRSE. President, Institution of Civil Engineers; Mechanical Engineers; Marine Engineers. Vice- President, Institution of Naval Architects.
    Bibliography
    Further Reading
    D.K.Brown, 1983, A Century of Naval Construction, London.
    FMW

    Biographical history of technology > White, Sir William Henry

  • 103 Doane, Thomas

    [br]
    b. 20 September 1821 Orleans, Massachusetts, USA
    d. 22 October 1897 West Townsend, Massachusetts, USA
    [br]
    American mechanical engineer.
    [br]
    The son of a lawyer, he entered an academy in Cape Cod and, at the age of 19, the English Academy at Andover, Massachusetts, for five terms. He was then in the employ of Samuel L. Fenton of Charlestown, Massachusetts. He served a three-year apprenticeship, then went to the Windsor White River Division of the Vermont Central Railroad. He was Resident Engineer of the Cheshire Railroad at Walpote, New Hampshire, from 1847 to 1849, and then worked in independent practice as a civil engineer and surveyor until his death. He was involved with nearly all the railroads running out of Boston, especially the Boston \& Maine. In April 1863 he was appointed Chief Engineer of the Hoosac Tunnel, which was already being built. He introduced new engineering methods, relocated the line of the tunnel and achieved great accuracy in the meeting of the borings. He was largely responsible for the development in the USA of the advanced system of tunnelling with machinery and explosives, and pioneered the use of compressed air in the USA. In 1869 he was Chief Engineer of the Burlington \& Missouri River Railroad in Nebraska, laying down some 240 miles (386 km) of track in four years. During this period he became interested in the building of a Congregational College at Crete, Nebraska, for which he gave the land and which was named after him. In 1873 he returned to Charlestown and was again appointed Chief Engineer of the Hoosac Tunnel. At the final opening of the tunnel on 9 February 1875 he drove the first engine through. He remained in charge of construction for a further two years.
    [br]
    Principal Honours and Distinctions
    President, School of Civil Engineers.
    Further Reading
    Duncan Malone (ed.), 1932–3, Dictionary of American Biography, New York: Charles Scribner.
    IMcN

    Biographical history of technology > Doane, Thomas

  • 104 Gregory, Sir Charles Hutton

    [br]
    b. 14 October 1817 Woolwich, England
    d. 10 January 1898 London, England
    [br]
    English civil engineer, inventor of the railway semaphore signal.
    [br]
    Gregory's father was Professor of Mathematics at the Royal Military Academy, Woolwich.C.H. Gregory himself, after working for Robert Stephenson, was appointed Engineer to the London \& Croydon Railway in 1839. On it, at New Cross in 1841, he installed a semaphore signal derived from signalling apparatus used by the Royal Navy; two hinged semaphore arms projected either side from the top of a post, signalling to drivers of trains in each direction of travel. In horizontal position each arm signified "danger", an arm inclined at 45° meant "caution" and the vertical position, in which the arms disappeared within a slot in the post, meant "all right". Gregory's signal was the forerunner of semaphore signals adopted on railways worldwide. In 1843 Gregory invented the stirrup frame: signal arms were connected to stirrups that were pushed down by the signalman's foot in order to operate them, while the points were operated by levers. The stirrups were connected together to prevent conflicting signals from being shown. This was a predecessor of interlocking. In 1846 Gregory became Engineer to the Bristol \& Exeter Railway, where in 1848 he co-operated with W.B. Adams in the development and operation of the first self-propelled railcar. He later did civil engineering work in Italy and France, was Engineer to the Somerset Central and Dorset Central railways and became Consulting Engineer for the government railways in Ceylon (now Sri Lanka), Cape of Good Hope, Straits Settlements and Trinidad.
    [br]
    Principal Honours and Distinctions
    Companion of the Order of St Michael and St George 1876. Knight Commander of the Order of St Michael and St George 1883. President, Institution of Civil Engineers 1867– 8.
    Bibliography
    1841, Practical Rules for the Management of a Locomotive Engine, London (one of the earliest such textbooks).
    Further Reading
    Obituary, 1898, Engineering 65 (14 January). See also Saxby, John.
    PJGR

    Biographical history of technology > Gregory, Sir Charles Hutton

  • 105 Whipple, Squire

    SUBJECT AREA: Civil engineering
    [br]
    b. 1804 Hardwick, Massachusetts, USA
    d. 15 March 1888 Albany, New York, USA
    [br]
    American civil engineer, author and inventor.
    [br]
    The son of James and Electa Whipple, his father was a farmer and later the owner of a small cotton mil at Hardwick, Massachusetts. In 1817 Squire Whipple moved with his family to Otego County, New York. He helped on the farm and attended the academy at Fairfield, Herkimer County. For a time he taught school pupils, and in 1829 he entered Union College, Schenectady, where he received the degree of AB in 1830; his interest in engineering was probably aroused by the construction of the Erie Canal near his home during his boyhood. He was first employed in a minor capacity in surveys for the Baltimore and Ohio Railroad and for the Erie Canal. In 1836–7 he was resident engineer for a division of the New York and Erie Railroad and was also employed in a number of other railroad and canal surveys, making surveying instruments in the intervals between these appointments; in 1840, he completed a lock for weighing canal boats.
    Whipple received his first bridge patent on 24 April 1841; this was for a truss of arched upper chord made of cast and wrought iron. Five years later, he devised a trapezoidal truss which was used in the building of many bridges over the succeeding generation. In 1852–3 Whipple used his truss in an iron railroad bridge of 44.5 m (146 ft) span on the Rensselaer and Saratoga Railroad. He also built a number of bridges with lifting spans.
    Whipple's main contribution to bridge engineering was the publication in 1847 of A Work on Bridge Building. In 1869 he issued a continuation of this treatise, and a fourth edition of both was published in 1883.
    [br]
    Principal Honours and Distinctions
    Honorary Member, American Society of Civil Engineers.
    IMcN

    Biographical history of technology > Whipple, Squire

  • 106 Williams, Sir Edward Leader

    SUBJECT AREA: Canals, Civil engineering
    [br]
    b. 28 April 1828 Worcester, England
    d. 1 June 1910 Altrincham, Cheshire, England
    [br]
    English civil engineer, designer and first Chief Engineer of the Manchester Ship Canal.
    [br]
    After an apprenticeship with the Severn Navigation, of which his father was Chief Engineer, Williams was engaged as Assistant Engineer on the Great Northern Railway, Resident Engineer at Shoreham Harbour and Engineer to the contractors for the Admiralty Pier at Dover. In 1856 he was appointed Engineer to the River Weaver Trust, and among the improvements he made was the introduction of the Anderton barge lift linking the Weaver and the Trent and Mersey Canal. After rejecting the proposal of a flight of locks he considered that barges might be lifted and lowered by hydraulic means. Various designs were submitted and the final choice fell on one by Edwin Clark that had two troughs counterbalancing each other through pistons. Movement of the troughs was initiated by introducing excess water into the upper trough to lift the lower. The work was carried out by Clark.
    In 1872 Williams became Engineer to the Bridgewater Navigation, enlarging the locks at Runcorn and introducing steam propulsion on the canal. He later examined the possibility of upgrading the Mersey \& Irwell Navigation to a Ship Canal. In 1882 his proposals to the Provisional Committee of the proposed Manchester Ship Canal were accepted. His scheme was to use the Mersey Channel as far as Eastham and then construct a lock canal from there to Manchester. He was appointed Chief Engineer of the undertaking.
    The canal's construction was a major engineering work during which Williams overcame many difficulties. He used the principle of the troughs on the Anderton lift as a guide for the construction of the Barton swing aqueduct, which replaced Brindley's original masonry aqueduct on the Bridgewater Canal. The first sod was cut at Eastham on 11 November 1887 and the lower portion of the canal was used for traffic in September 1891. The canal was opened to sea-borne traffic on 1 January 1894 and was formally opened by Queen Victoria on 21 May 1894. In acknowledgement of his work, a knighthood was conferred on him. He continued as Consulting Engineer until ill health forced his retirement.
    [br]
    Principal Honours and Distinctions
    Knighted. Vice-President, Institution of Civil Engineers 1905–7.
    JHB

    Biographical history of technology > Williams, Sir Edward Leader

  • 107 genio sm

    ['dʒɛnjo] I genio (-ni)
    1) (persona) genius
    2)

    (talento) avere il genio degli affari — to have a genius o flair for business

    3)

    (gusto) andare a genio a qn — to be to sb's liking

    4) (Mitol: gen) spirit, (arabo) genie
    II ['dʒɛnjo] sm
    1) Mil
    2)

    Dizionario Italiano-Inglese > genio sm

  • 108 genio

    sm ['dʒɛnjo] I genio (-ni)
    1) (persona) genius
    2)

    (talento) avere il genio degli affari — to have a genius o flair for business

    3)

    (gusto) andare a genio a qn — to be to sb's liking

    4) (Mitol: gen) spirit, (arabo) genie
    II ['dʒɛnjo] sm
    1) Mil
    2)

    Nuovo dizionario Italiano-Inglese > genio

  • 109 Pacheco, Duarte

    (1900-1943)
       One of Portugal's outstanding civil engineers and the most energetic and accomplished cabinet minister in the early phase of the Estado Novo, Duarte Pacheco was born in Loulé, Algarve district. As director and instructor in the Higher Technical Institute, Lisbon, Pacheco trained several generations of urban planners and engineers and served in several key posts in the Dictatorship: minister of education, president of the Lisbon Câmara Municipal (City Hall), and on two occasions between 1932 and 1943, the premier minister of public works and communications in the history of the regime. As a relatively liberal republican in a regime of conservatives, monarchists and crypto-monarchists, and integralists, Duarte Pacheco was a political maverick but a highly respected, if controversial, man of action. His Public Works Ministry helped to transform the look of the capital, Lisbon, improve urban planning and housing, create the remarkable Double Centenary Exposition of the Portuguese World at Belém in 1940, and construct a number of key edifices for various institutions. In November 1943, he was killed in a tragic automobile accident. His influential memory still lives in the oral tradition of the new Portugal's Ministry of Public Works, and his work sets a high standard of excellence.

    Historical dictionary of Portugal > Pacheco, Duarte

  • 110 Abt, Roman

    [br]
    b. 17 July 1850 Bünzen, Switzerland
    d. 1 May 1933 Lucerne, Switzerland
    [br]
    Swiss locomotive engineer, inventor of the Abt rack rail system.
    [br]
    Abt trained under N. Riggenbach and worked for his short-lived International Company for Mountain Railways during the 1870s, and subsequently invented the Abt rack system as an improvement on Riggenbach's ladder rack, in which the rungs gave trouble by working loose. Abt's rack system, in what became its usual form, comprises two machined racks side by side with their teeth staggered so that a tooth in one rack is opposite a recess in the other, and at least one tooth is always engaged with a locomotive's driving pinions. This system was first used in 1884 on the mixed rack-and-adhesion Harz Railway in Germany, and then largely superseded Riggenbach's system for new rack railways built worldwide to an eventual total of seventy-two, including the Snowdon Mountain Railway in the UK that was built in the 1890s. In many cases Abt himself designed locomotives and rolling stock, and supervised their construction.
    [br]
    Bibliography
    1877–8, Abstract in Minutes of Proceedings of the Institution of Civil Engineers, Vol. 52 (part II) (abstract of a paper given by Abt in which he described eight Riggenbach system railways then operating; his own system was patented in 1882).
    Further Reading
    J.Marshall, 1978, A Biographical Dictionary of Railway Engineers, Newton Abbot: David \& Charles.
    O.J.Morris, 1951, Snowdon Mountain Railway, Ian Allan.
    PJGR

    Biographical history of technology > Abt, Roman

  • 111 Armstrong, Sir William George, Baron Armstrong of Cragside

    [br]
    b. 26 November 1810 Shieldfield, Newcastle upon Tyne, England
    d. 27 December 1900 Cragside, Northumbria, England
    [br]
    English inventor, engineer and entrepreneur in hydraulic engineering, shipbuilding and the production of artillery.
    [br]
    The only son of a corn merchant, Alderman William Armstrong, he was educated at private schools in Newcastle and at Bishop Auckland Grammar School. He then became an articled clerk in the office of Armorer Donkin, a solicitor and a friend of his father. During a fishing trip he saw a water-wheel driven by an open stream to work a marble-cutting machine. He felt that its efficiency would be improved by introducing the water to the wheel in a pipe. He developed an interest in hydraulics and in electricity, and became a popular lecturer on these subjects. From 1838 he became friendly with Henry Watson of the High Bridge Works, Newcastle, and for six years he visited the Works almost daily, studying turret clocks, telescopes, papermaking machinery, surveying instruments and other equipment being produced. There he had built his first hydraulic machine, which generated 5 hp when run off the Newcastle town water-mains. He then designed and made a working model of a hydraulic crane, but it created little interest. In 1845, after he had served this rather unconventional apprenticeship at High Bridge Works, he was appointed Secretary of the newly formed Whittle Dene Water Company. The same year he proposed to the town council of Newcastle the conversion of one of the quayside cranes to his hydraulic operation which, if successful, should also be applied to a further four cranes. This was done by the Newcastle Cranage Company at High Bridge Works. In 1847 he gave up law and formed W.G.Armstrong \& Co. to manufacture hydraulic machinery in a works at Elswick. Orders for cranes, hoists, dock gates and bridges were obtained from mines; docks and railways.
    Early in the Crimean War, the War Office asked him to design and make submarine mines to blow up ships that were sunk by the Russians to block the entrance to Sevastopol harbour. The mines were never used, but this set him thinking about military affairs and brought him many useful contacts at the War Office. Learning that two eighteen-pounder British guns had silenced a whole Russian battery but were too heavy to move over rough ground, he carried out a thorough investigation and proposed light field guns with rifled barrels to fire elongated lead projectiles rather than cast-iron balls. He delivered his first gun in 1855; it was built of a steel core and wound-iron wire jacket. The barrel was multi-grooved and the gun weighed a quarter of a ton and could fire a 3 lb (1.4 kg) projectile. This was considered too light and was sent back to the factory to be rebored to take a 5 lb (2.3 kg) shot. The gun was a complete success and Armstrong was then asked to design and produce an equally successful eighteen-pounder. In 1859 he was appointed Engineer of Rifled Ordnance and was knighted. However, there was considerable opposition from the notably conservative officers of the Army who resented the intrusion of this civilian engineer in their affairs. In 1862, contracts with the Elswick Ordnance Company were terminated, and the Government rejected breech-loading and went back to muzzle-loading. Armstrong resigned and concentrated on foreign sales, which were successful worldwide.
    The search for a suitable proving ground for a 12-ton gun led to an interest in shipbuilding at Elswick from 1868. This necessitated the replacement of an earlier stone bridge with the hydraulically operated Tyne Swing Bridge, which weighed some 1450 tons and allowed a clear passage for shipping. Hydraulic equipment on warships became more complex and increasing quantities of it were made at the Elswick works, which also flourished with the reintroduction of the breech-loader in 1878. In 1884 an open-hearth acid steelworks was added to the Elswick facilities. In 1897 the firm merged with Sir Joseph Whitworth \& Co. to become Sir W.G.Armstrong Whitworth \& Co. After Armstrong's death a further merger with Vickers Ltd formed Vickers Armstrong Ltd.
    In 1879 Armstrong took a great interest in Joseph Swan's invention of the incandescent electric light-bulb. He was one of those who formed the Swan Electric Light Company, opening a factory at South Benwell to make the bulbs. At Cragside, his mansion at Roth bury, he installed a water turbine and generator, making it one of the first houses in England to be lit by electricity.
    Armstrong was a noted philanthropist, building houses for his workforce, and endowing schools, hospitals and parks. His last act of charity was to purchase Bamburgh Castle, Northumbria, in 1894, intending to turn it into a hospital or a convalescent home, but he did not live long enough to complete the work.
    [br]
    Principal Honours and Distinctions
    Knighted 1859. FRS 1846. President, Institution of Mechanical Engineers; Institution of Civil Engineers; British Association for the Advancement of Science 1863. Baron Armstrong of Cragside 1887.
    Further Reading
    E.R.Jones, 1886, Heroes of Industry', London: Low.
    D.J.Scott, 1962, A History of Vickers, London: Weidenfeld \& Nicolson.
    IMcN

    Biographical history of technology > Armstrong, Sir William George, Baron Armstrong of Cragside

  • 112 Aspinall, Sir John Audley Frederick

    [br]
    b. 25 August 1851 Liverpool, England
    d. 19 January 1937 Woking, England
    [br]
    English mechanical engineer, pioneer of the automatic vacuum brake for railway trains and of railway electrification.
    [br]
    Aspinall's father was a QC, Recorder of Liverpool, and Aspinall himself became a pupil at Crewe Works of the London \& North Western Railway, eventually under F.W. Webb. In 1875 he was appointed Manager of the works at Inchicore, Great Southern \& Western Railway, Ireland. While he was there, some of the trains were equipped, on trial, with continuous brakes of the non-automatic vacuum type. Aspinall modified these to make them automatic, i.e. if the train divided, brakes throughout both parts would be applied automatically. Aspinall vacuum brakes were subsequently adopted by the important Great Northern, Lancashire \& Yorkshire, and London \& North Western Railways.
    In 1883, aged only 32, Aspinall was appointed Locomotive Superintendent of the Great Southern \& Western Railway, but in 1886 he moved in the same capacity to the Lancashire \& Yorkshire Railway, where his first task was to fit out the new works at Horwich. The first locomotive was completed there in 1889, to his design. In 1899 he introduced a 4–4–2, the largest express locomotive in Britain at the time, some of which were fitted with smokebox superheaters to Aspinall's design.
    Unusually for an engineer, in 1892 Aspinall was appointed General Manager of the Lancashire \& Yorkshire Railway. He electrified the Liverpool-Southport line in 1904 at 600 volts DC with a third rail; this was an early example of main-line electrification, for it extended beyond the Liverpool suburban area. He also experimented with 3,500 volt DC overhead electrification of the Bury-Holcombe Brook branch in 1913, but converted this to 1,200 volts DC third rail to conform with the Manchester-Bury line when this was electrified in 1915. In 1918 he was made a director of the Lancashire \& Yorkshire Railway.
    [br]
    Principal Honours and Distinctions
    Knighted 1917. President, Institution of Mechanical Engineers 1909. President, Institution of Civil Engineers 1918.
    Further Reading
    H.A.V.Bulleid, 1967, The Aspinall Era, Shepperton: Ian Allan (provides a good account of Aspinall and his life's work).
    C.Hamilton Ellis, 1958, Twenty Locomotive Men, Shepperton: Ian Allan, Ch. 19 (a good brief account).
    PJGR

    Biographical history of technology > Aspinall, Sir John Audley Frederick

  • 113 Beyer, Charles Frederick

    [br]
    b. 14 May 1813 Plauen, Saxony, Germany
    d. 2 June 1876 Llantysilio, Denbighshire, Wales
    [br]
    German (naturalized British in 1852) engineer, founder of locomotive builders Beyer, Peacock \& Co.
    [br]
    Beyer came from a family of poor weavers, but showed talent as an artist and draftsman and was educated at Dresden Polytechnic School. He was sent to England in 1834 to report on improvements in cotton spinning machinery and settled in Manchester, working for the machinery manufacturers Sharp Roberts \& Co., initially as a draftsman. When the firm started to build locomotives he moved to this side of the business. The Institution of Mechanical Engineers was founded at his house in 1847. In 1853 Beyer entered into a partnership with Richard Peacock, Locomotive Engineer to the Manchester, Sheffield \& Lincolnshire Railway, and Henry Robertson to establish Beyer, Peacock \& Co. The company soon established a reputation for soundly designed, elegant locomotives: it exported worldwide, and survived until the 1960s.
    [br]
    Further Reading
    Obituary, 1877, Minutes of Proceedings of the Institution of Civil Engineers 47. R.L.Hills, 1967–8 "Some contributions to locomotive development by Beyer, Peacock \& Co.", Transactions of the Newcomen Society 40 (a good description of Beyer, Peacock \& Co's locomotive work).
    PJGR

    Biographical history of technology > Beyer, Charles Frederick

  • 114 Elgar, Francis

    SUBJECT AREA: Ports and shipping
    [br]
    b. April 1845 Portsmouth, England
    d. 16 January 1909 Monte Carlo, Monaco
    [br]
    English naval architect and shipbuilder.
    [br]
    Elgar enjoyed a fascinating professional life, during which he achieved distinction in the military, merchant, academic and political aspects of his profession. At the age of 14 he was apprenticed as a shipwright to the Royal Dockyard at Portsmouth but when he was in his late teens he was selected as one of the Admiralty students to further his education at the Royal School of Naval Architecture at South Kensington, London. On completion of the course he was appointed to Birkenhead, where the ill-fated HMS Captain was being built, and then to Portsmouth Dockyard. In 1870 the Captain was lost at sea and Francis Elgar was called on to prepare much of the evidence for the Court Martial. This began his life-long interest in ship stability and in ways of presenting this information in an easily understood form to ship operators.
    In 1883 he accepted the John Elder Chair of Naval Architecture at Glasgow University, an appointment which formalized the already well-established teaching of this branch of engineering at Glasgow. However, after only three years he returned to public service in the newly created post of Director of Royal Dockyards, a post that he held for a mere six years but which brought about great advances in the speed of warship construction, with associated reductions in cost. In 1892 he was made Naval Architect and Director of the Fairfield Shipbuilding Company in Glasgow, remaining there until he retired in 1907. The following year he accepted the post of Chairman of the Birkenhead shipyard of Cammell Laird \& Co.; this was a recent amalgamation of two companies, and he retained this position until his death. Throughout his life, Elgar acted on many consultative bodies and committees, including the 1884 Ship Load Line Enquiry. His work enabled him to keep abreast of all current thinking in ship design and construction.
    [br]
    Principal Honours and Distinctions
    FRS. FRSE. Chevalier de la Légion d'honneur.
    Bibliography
    Elgar produced some remarkable papers, which were published by the Institutions of Naval Architects, Civil Engineers and Engineers and Shipbuilders in Scotland as well as by the Royal Society. He published several books on shipbuilding.
    FMW

    Biographical history of technology > Elgar, Francis

  • 115 Fox, Samson

    [br]
    b. 11 July 1838 Bowling, near Bradford, Yorkshire, England
    d. 24 October 1903 Walsall, Staffordshire, England
    [br]
    English engineer who invented the corrugated boiler furnace.
    [br]
    He was the son of a cloth mill worker in Leeds and at the age of 10 he joined his father at the mill. Showing a mechanical inclination, he was apprenticed to a firm of machine-tool makers, Smith, Beacock and Tannett. There he rose to become Foreman and Traveller, and designed and patented tools for cutting bevelled gears. With his brother and one Refitt, he set up the Silver Cross engineering works for making special machine tools. In 1874 he founded the Leeds Forge Company, acting as Managing Director until 1896 and then as Chairman until shortly before his death.
    It was in 1877 that he patented his most important invention, the corrugated furnace for steam-boilers. These furnaces could withstand much higher pressures than the conventional form, and higher working pressures in marine boilers enabled triple-expansion engines to be installed, greatly improving the performance of steamships, and the outcome was the great ocean-going liners of the twentieth century. The first vessel to be equipped with the corrugated furnace was the Pretoria of 1878. At first the furnaces were made by hammering iron plates using swage blocks under a steam hammer. A plant for rolling corrugated plates was set up at Essen in Germany, and Fox installed a similar mill at his works in Leeds in 1882.
    In 1886 Fox installed a Siemens steelmaking plant and he was notable in the movement for replacing wrought iron with steel. He took out several patents for making pressed-steel underframes for railway wagons. The business prospered and Fox opened a works near Chicago in the USA, where in addition to wagon underframes he manufactured the first American pressed-steel carriages. He later added a works at Pittsburgh.
    Fox was the first in England to use water gas for his metallurgical operations and for lighting, with a saving in cost as it was cheaper than coal gas. He was also a pioneer in the acetylene industry, producing in 1894 the first calcium carbide, from which the gas is made.
    Fox took an active part in public life in and around Leeds, being thrice elected Mayor of Harrogate. As a music lover, he was a benefactor of musicians, contributing no less than £45,000 towards the cost of building the Royal College of Music in London, opened in 1894. In 1897 he sued for libel the author Jerome K.Jerome and the publishers of the Today magazine for accusing him of misusing his great generosity to the College to give a misleading impression of his commercial methods and prosperity. He won the case but was not awarded costs.
    [br]
    Principal Honours and Distinctions
    Royal Society of Arts James Watt Silver Medal and Howard Gold Medal. Légion d'honneur 1889.
    Bibliography
    1877, British Patent nos. 1097 and 2530 (the corrugated furnace or "flue", as it was often called).
    Further Reading
    Obituary, 1903, Proceedings of the Institution of Mechanical Engineers: 919–21.
    Obituary, 1903, Proceedings of the Institution of Civil Engineers (the fullest of the many obituary notices).
    G.A.Newby, 1993, "Behind the fire doors: Fox's corrugated furnace 1877 and the high pressure steamship", Transactions of the Newcomen Society 64.
    LRD

    Biographical history of technology > Fox, Samson

  • 116 Fox, Sir Charles

    [br]
    b. 11 March 1810 Derby, England
    d. 14 June 1874 Blackheath, London, England
    [br]
    English railway engineer, builder of Crystal Palace, London.
    [br]
    Fox was a pupil of John Ericsson, helped to build the locomotive Novelty, and drove it at the Rainhill Trials in 1829. He became a driver on the Liverpool \& Manchester Railway and then a pupil of Robert Stephenson, who appointed him an assistant engineer for construction of the southern part of the London \& Birmingham Railway, opened in 1837. He was probably responsible for the design of the early bow-string girder bridge which carried the railway over the Regent's Canal. He also invented turnouts with switch blades, i.e. "points". With Robert Stephenson he designed the light iron train sheds at Euston Station, a type of roof that was subsequently much used elsewhere. He then became a partner in Fox, Henderson \& Co., railway contractors and manufacturers of railway equipment and bridges. The firm built the Crystal Palace in London for the Great Exhibition of 1851: Fox did much of the detail design work personally and was subsequently knighted. It also built many station roofs, including that at Paddington. From 1857 Fox was in practice in London as a consulting engineer in partnership with his sons, Charles Douglas Fox and Francis Fox. Sir Charles Fox became an advocate of light and narrow-gauge railways, although he was opposed to break-of-gauge unless it was unavoidable. He was joint Engineer for the Indian Tramway Company, building the first narrow-gauge (3 ft 6 in. or 107 cm) railway in India, opened in 1865, and his firm was Consulting Engineer for the first railways in Queensland, Australia, built to the same gauge at the same period on recommendation of Government Engineer A.C.Fitzgibbon.
    [br]
    Principal Honours and Distinctions
    Knighted 1851.
    Further Reading
    F.Fox, 1904, River, Road, and Rail, John Murray, Ch. 1 (personal reminiscences by his son).
    L.T.C.Rolt, 1970, Victorian Engineering, London: Allen Lane.
    PJGR

    Biographical history of technology > Fox, Sir Charles

  • 117 Froude, William

    SUBJECT AREA: Ports and shipping
    [br]
    b. 1810 Dartington, Devon, England
    d. 4 May 1879 Simonstown, South Africa
    [br]
    English naval architect; pioneer of experimental ship-model research.
    [br]
    Froude was educated at a preparatory school at Buckfastleigh, and then at Westminster School, London, before entering Oriel College, Oxford, to read mathematics and classics. Between 1836 and 1838 he served as a pupil civil engineer, and then he joined the staff of Isambard Kingdom Brunel on various railway engineering projects in southern England, including the South Devon Atmospheric Railway. He retired from professional work in 1846 and lived with his invalid father at Dartington Parsonage. The next twenty years, while apparently unproductive, were important to Froude as he concentrated his mind on difficult mathematical and scientific problems. Froude married in 1839 and had five children, one of whom, Robert Edmund Froude (1846–1924), was to succeed him in later years in his research work for the Admiralty. Following the death of his father, Froude moved to Paignton, and there commenced his studies on the resistance of solid bodies moving through fluids. Initially these were with hulls towed through a house roof storage tank by wires taken over a pulley and attached to falling weights, but the work became more sophisticated and was conducted on ponds and the open water of a creek near Dartmouth. Froude published work on the rolling of ships in the second volume of the Transactions of the then new Institution of Naval Architects and through this became acquainted with Sir Edward Reed. This led in 1870 to the Admiralty's offer of £2,000 towards the cost of an experimental tank for ship models at Torquay. The tank was completed in 1872 and tests were carried out on the model of HMS Greyhound following full-scale towing trials which had commenced on the actual ship the previous year. From this Froude enunciated his Law of Comparisons, which defines the rules concerning the relationship of the power required to move geometrically similar floating bodies across fluids. It enabled naval architects to predict, from a study of a much less expensive and smaller model, the resistance to motion and the power required to move a full-size ship. The work in the tank led Froude to design a model-cutting machine, dynamometers and machinery for the accurate ruling of graph paper. Froude's work, and later that of his son, was prodigious and covered many fields of ship design, including powering, propulsion, rolling, steering and stability. In only six years he had stamped his academic authority on the new science of hydrodynamics, served on many national committees and corresponded with fellow researchers throughout the world. His health suffered and he sailed for South Africa to recuperate, but he contracted dysentery and died at Simonstown. He will be remembered for all time as one of the greatest "fathers" of naval architecture.
    [br]
    Principal Honours and Distinctions
    FRS. Honorary LLD Glasgow University.
    Bibliography
    1955, The Papers of William Froude, London: Institution of Naval Architects (the Institution also published a memoir by Sir Westcott Abell and an evaluation of his work by Dr R.W.L. Gawn of the Royal Corps of Naval Constructors; this volume reprints all Froude's papers from the Institution of Naval Architects and other sources as diverse as the British Association, the Royal Society of Edinburgh and the Institution of Civil Engineers.
    Further Reading
    A.T.Crichton, 1990, "William and Robert Edmund Froude and the evolution of the ship model experimental tank", Transactions of the Newcomen Society 61:33–49.
    FMW

    Biographical history of technology > Froude, William

  • 118 Perret, Auguste

    [br]
    b. 12 February 1874 Ixelles, near Brussels, Belgium
    d. 26 February 1954 Le Havre (?), France
    [br]
    French architect who pioneered and established building design in reinforced concrete in a style suited to the modern movement.
    [br]
    Auguste Perret belonged to the family contracting firm of A. \& G.Perret, which early specialized in the use of reinforced concrete. His eight-storey building at 25 bis Rue Franklin in Paris, built in 1902–3, was the first example of frame construction in this material and established its viability for structural design. Both ground plan and façade are uncompromisingly modern, the simplicity of the latter being relieved by unobtrusive faience decoration. The two upper floors, which are set back, and the open terrace roof garden set a pattern for future schemes. All of Perret's buildings had reinforced-concrete structures and this was clearly delineated on the façade designs. The concept was uncommon in Europe at the time, when eclecticism still largely ruled, but was derived from the late nineteenth-century skyscraper façades built by Louis Sullivan in America. In 1905–6 came Perret's Garage Ponthieu in Paris; a striking example of exposed concrete, it had a central façade window glazed in modern design in rich colours. By the 1920s ferroconcrete was in more common use, but Perret still led the field in France with his imaginative, bold use of the material. His most original structure is the Church of Notre Dame at Le Raincy on the outskirts of Paris (1922–3). The imposing exterior with its tall tower in diminishing stages is finely designed, but the interior has magnificence. It is a wide, light church, the segmented vaulted roof supported on slender columns. The whole structure is in concrete apart from the glass window panels, which extend the full height of the walls all around the church. They provide a symphony of colour culminating in deep blue behind the altar. Because of the slenderness of the columns and the richness of the glass, this church possesses a spiritual atmosphere and unimpeded sight and sound of and from the altar for everyone. It became the prototype for churches all over Europe for decades, from Moser in prewar Switzerland to Spence's postwar Coventry Cathedral.
    In a long working life Perret designed buildings for a wide range of purposes, adhering to his preference for ferroconcrete and adapting its use according to each building's needs. In the 1940s he was responsible for the railway station at Amiens, the Atomic Centre at Saclay and, one of his last important works, the redevelopment after wartime damage of the town centre of Le Havre. For the latter, he laid out large open squares enclosed by prefabricated units, which display a certain monotony, despite the imposing town hall and Church of St Joseph in the Place de L'Hôtel de Ville.
    [br]
    Principal Honours and Distinctions
    President des Réunions Internationales des Architectes. American Society of the French Legion of Honour Gold Medal 1950. Elected after the Second World War to the Institut de France. First President of the International Union of Architects on its creation in 1948. RIBA Royal Gold Medal 1948.
    Further Reading
    P.Blater, 1939, "Work of the architect A.Perret", Architektura SSSR (Moscow) 7:57 (illustrated article).
    1848 "Auguste Perret: a pioneer in reinforced concrete", Civil Engineers' Review, pp.
    296–300.
    Peter Collins, 1959, Concrete: The Vision of a New Architecture: A Study of Auguste Perret and his Precursors, Faber \& Faber.
    Marcel Zahar, 1959, D'Une Doctrine d'Architecture: Auguste Perret, Paris: Vincent Fréal.
    DY

    Biographical history of technology > Perret, Auguste

  • 119 ASCE

    сокр. [American Society for Civil Engineers] Американское общество инженеров гражданского строительства

    Большой англо-русский и русско-английский словарь > ASCE

  • 120 A.M.I.C.E.

    Универсальный англо-русский словарь > A.M.I.C.E.

См. также в других словарях:

  • American Society of Civil Engineers — Infobox Organization name = American Society of Civil Engineers motto = A better world by design. formation = November 5 1852 extinction = type = Engineering society headquarters = Reston, Virginia location = membership = 141,000 language =… …   Wikipedia

  • Institution of Civil Engineers — Type Civil engineering Professional title Chartered Civil Engineer Founded 2 January 1818 (1818 01 02) …   Wikipedia

  • Smeatonian Society of Civil Engineers — Infobox Professional Association Prof association name = Smeatonian Society of Civil Engineers Prof association Profession = Civil engineering Professional title = founded date = 1771 founder = John Smeaton location = London origins = key people …   Wikipedia

  • List of civil engineers — This list of civil engineers is a list of notable people who have been trained in or have practised civil engineering. Contents: Top · 0–9 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z A …   Wikipedia

  • Institution of Civil Engineers — Fichier:IceLogo.jpg Création 1818 Type Organisation professionnelle Siège 1 Great George Street, Londres, UK Langue(s) Anglais Budget …   Wikipédia en Français

  • A Biographical Dictionary of Civil Engineers — in Great Britain and Ireland discusses the lives of the people who were concerned with building harbours and lighthouses, undertook fen drainage and improved river navigations, built canals, roads, bridges and early railways, and provided water… …   Wikipedia

  • American Society Of Civil Engineers — L American Society of Civil Engineers (ASCE) (« Société américaine de génie civil ») est une organisation professionnelle d ingénieurs civils américains. Fondée en 1852, elle mène diverses activités et programmes de soutien à la… …   Wikipédia en Français

  • American society of civil engineers — L American Society of Civil Engineers (ASCE) (« Société américaine de génie civil ») est une organisation professionnelle d ingénieurs civils américains. Fondée en 1852, elle mène diverses activités et programmes de soutien à la… …   Wikipédia en Français

  • American Society of Civil Engineers — (ASCE) Zweck: Vorsitz: Kathy J. Caldwell Gründungsdatum: 5. November 1852 Mitgliederzahl …   Deutsch Wikipedia

  • American Society of Civil Engineers — L American Society of Civil Engineers (ASCE) (« Société américaine de génie civil ») est une organisation professionnelle d ingénieurs civils américains. Fondée en 1852, elle mène diverses activités et programmes de soutien à la… …   Wikipédia en Français

  • Institution of Civil Engineers — Hauptquartier in London Die Institution of Civil Engineers (ICE) ist eine Vereinigung von Bauingenieuren mit Sitz in London (Great George Street in Westminster). Obwohl sie hauptsächlich britische Bauingenieure als Mitglieder hat und deren… …   Deutsch Wikipedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»