Перевод: со всех языков на английский

с английского на все языки

carpenter+by+trade

  • 21 materiarius

    mātĕrĭārĭus, a, um, adj. [id.], of or belonging to stuff, matter, wood, timber.
    I.
    In gen. (ante-class. and post-Aug.):

    fabrica,

    carpentry, Plin. 7, 56, 57, § 198:

    FABER,

    a carpenter, Inscr. Grut. 642, 6:

    NEGOCIATOR,

    a timber-merchant, Inscr. Orell. 4248. —Also subst.
    B.
    mātĕrĭārĭus, ii, m. (sc. negotiator), a timber-merchant: si non [p. 1119] hos materiarius remoratur, Plaut. Mil. 3, 3, 45:

    CLAVORVM,

    a maker of wooden nails, Inscr. Orell. 4164.—
    II.
    In partic.:

    haeretici materiarii, in eccl. Lat.,

    those who believed in the eternity of matter, Tert. adv. Hermog. 25.—
    B.
    mātĕrĭārĭa, ae, f. (sc. negotiatio), the trade in timber, Paul. ex Fest. p. 27, 11 Müll.

    Lewis & Short latin dictionary > materiarius

  • 22 Arnold, Aza

    SUBJECT AREA: Textiles
    [br]
    b. 4 October 1788 Smithfield, Pawtucket, Rhode Island, USA
    d. 1865 Washington, DC, USA
    [br]
    American textile machinist who applied the differential motion to roving frames, solving the problem of winding on the delicate cotton rovings.
    [br]
    He was the son of Benjamin and Isabel Arnold, but his mother died when he was 2 years old and after his father's second marriage he was largely left to look after himself. After attending the village school he learnt the trade of a carpenter, and following this he became a machinist. He entered the employment of Samuel Slater, but left after a few years to engage in the unsuccessful manufacture of woollen blankets. He became involved in an engineering shop, where he devised a machine for taking wool off a carding machine and making it into endless slivers or rovings for spinning. He then became associated with a cotton-spinning mill, which led to his most important invention. The carded cotton sliver had to be reduced in thickness before it could be spun on the final machines such as the mule or the waterframe. The roving, as the mass of cotton fibres was called at this stage, was thin and very delicate because it could not be twisted to give strength, as this would not allow it to be drawn out again during the next stage. In order to wind the roving on to bobbins, the speed of the bobbin had to be just right but the diameter of the bobbin increased as it was filled. Obtaining the correct reduction in speed as the circumference increased was partially solved by the use of double-coned pulleys, but the driving belt was liable to slip owing to the power that had to be transmitted.
    The final solution to the problem came with the introduction of the differential drive with bevel gears or a sun-and-planet motion. Arnold had invented this compound motion in 1818 but did not think of applying it to the roving frame until 1820. It combined the direct-gearing drive from the main shaft of the machine with that from the cone-drum drive so that the latter only provided the difference between flyer and bobbin speeds, which meant that most of the transmission power was taken away from the belt. The patent for this invention was issued to Arnold on 23 January 1823 and was soon copied in Britain by Henry Houldsworth, although J.Green of Mansfield may have originated it independendy in the same year. Arnold's patent was widely infringed in America and he sued the Proprietors of the Locks and Canals, machine makers for the Lowell manufacturers, for $30,000, eventually receiving $3,500 compensation. Arnold had his own machine shop but he gave it up in 1838 and moved the Philadelphia, where he operated the Mulhausen Print Works. Around 1850 he went to Washington, DC, and became a patent attorney, remaining as such until his death. On 24 June 1856 he was granted patent for a self-setting and self-raking saw for sawing machines.
    [br]
    Bibliography
    28 June 1856, US patent no. 15,163 (self-setting and self-raking saw for sawing machines).
    Further Reading
    Dictionary of American Biography, Vol. 1.
    W.English, 1969, The Textile Industry, London (a description of the principles of the differential gear applied to the roving frame).
    D.J.Jeremy, 1981, Transatlantic Industrial Revolution. The Diffusion of Textile Technologies Between Britain and America, 1790–1830, Oxford (a discussion of the introduction and spread of Arnold's gear).
    RLH

    Biographical history of technology > Arnold, Aza

  • 23 Clymer, George E.

    SUBJECT AREA: Paper and printing
    [br]
    b. 1754 Bucks County, Pennsylvania, USA
    d. 27 August 1834 London, England
    [br]
    American inventor of the Columbian printing press.
    [br]
    Clymer was born on his father's farm, of a family that emigrated from Switzerland in the early eighteenth century. He attended local schools, helping out on the farm in his spare time, and he showed a particular talent for maintaining farm machinery. At the age of 16 he learned the trade of carpenter and joiner, which he followed in the same district for over twenty-five years. During that time, he showed his talent for mechanical invention in many ways, including the invention of a plough specially adapted to the local soils. Around 1800, he moved to Philadelphia, where his interest was aroused by the erection of the first bridge over the Schuylkill River. He devised a pump to remove water from the cofferdams at a rate of 500 gallons per day, superior to any other pumps then in use. He obtained a US patent for this in 1801, and a British one soon after.
    Clymer then turned his attention to the improvement of the printing press. For three and a half centuries after its invention, the old wooden-framed press had remained virtually unchanged except in detail. The first real change came in 1800 with the introduction of the iron press by Earl Stanhope. Modified versions were developed by other inventors, notably George Clymer, who after more than ten years' effort achieved his Columbian press. With its new system of levers, it enabled perfect impressions to be obtained with far less effort by the pressman. The Columbian was also notable for its distinctive cast-iron ornamentation, including a Hermes on each pillar and alligators and other reptiles on the levers. Most spectacular, it was surmounted by an American spread eagle, usually covered in gilt, which also served as a counterweight to raise the platen. The earliest known Columbian, surviving only in an illustration, bears the inscription Columbian Press/No.25/invented by George Clymer/Anno Domini 1813/Made in Philadelphia 1816. Few American printers could afford the US$400 selling price, so in 1817 Clymer went to England, where it was taken up enthusiastically. He obtained a British patent for it the same year, and by the following March it was being manufactured by the engineering firm R.W.Cope, although Clymer was probably making it on his own account soon afterwards. The Columbian was widely used for many years and continued to be made even into the twentieth century. The King of the Netherlands awarded Clymer a gold medal for his invention and the Tsar of Russia gave him a present for installing the press in Russia. Doubtless for business reasons, Clymer spent most of his remaining years in England and Europe.
    [br]
    Further Reading
    J.Moran, 1973, Printing Presses, London: Faber \& Faber.
    —1969, contributed a thorough survey of the press in J. Printing Hist. Soc., no. 3.
    LRD

    Biographical history of technology > Clymer, George E.

  • 24 Cubitt, Thomas

    [br]
    b. 25 February 1788 Buxton, Norfolk, England
    d. 20 December 1855 Dorking, Surrey, England
    [br]
    English master builder and founder of the first building firm of modern type.
    [br]
    He started his working life as a carpenter at a time when work in different trades such as bricklaying, masonry, carpentry and plumbing was subcontracted. The system had worked well enough until about 1800, but when large-scale development was required, as in the nineteenth century, it showed itself to be inefficient and slow. To avoid long delays in building, Cubitt bought land and established workshops, founding a firm that employed all the craftsmen necessary to the building trade on a permanent-wage basis. To keep his firm financially solvent he had to provide continuous work for his staff, which he achieved by large-scale, speculative building even while maintaining high architectural standards.
    Cubitt performed a major service to London, with many of his houses, squares and terraces still surviving as sound and elegant as they were over 150 years ago in the large estates he laid out. His most ambitious enterprise was Belgravia, where he built 200 imposing houses for the aristocracy upon an area of previously swampy land that he leased from Lord Grosvenor. His houses expose as inferior much of the later phases of development which surround them. All his life Cubitt used his influence to combat the abuses of architecture, building and living standards to which speculative building is heir. He was especially interested in drainage, smoke control and London's sewage arrangement, and constantly worked to improve these. He supplied first-class amenities in the way of land drainage, sewage disposal, street lighting and roads, and his own houses were soundly built, pleasant to live in and created to last.
    [br]
    Further Reading
    Hermione Hobhouse, 1971, Thomas Cubitt: Master Builder, Macmillan.
    Henry Russell-Hitchcock, 1976, Early Victorian Architecture, 2 vols, New York: Da Capo.
    DY

    Biographical history of technology > Cubitt, Thomas

  • 25 Harrison, John

    [br]
    b. 24 March 1693 Foulby, Yorkshire, England
    d. 24 March 1776 London, England
    [br]
    English horologist who constructed the first timekeeper of sufficient accuracy to determine longitude at sea and invented the gridiron pendulum for temperature compensation.
    [br]
    John Harrison was the son of a carpenter and was brought up to that trade. He was largely self-taught and learned mechanics from a copy of Nicholas Saunderson's lectures that had been lent to him. With the assistance of his younger brother, James, he built a series of unconventional clocks, mainly of wood. He was always concerned to reduce friction, without using oil, and this influenced the design of his "grasshopper" escapement. He also invented the "gridiron" compensation pendulum, which depended on the differential expansion of brass and steel. The excellent performance of his regulator clocks, which incorporated these devices, convinced him that they could also be used in a sea dock to compete for the longitude prize. In 1714 the Government had offered a prize of £20,000 for a method of determining longitude at sea to within half a degree after a voyage to the West Indies. In theory the longitude could be found by carrying an accurate timepiece that would indicate the time at a known longitude, but the requirements of the Act were very exacting. The timepiece would have to have a cumulative error of no more than two minutes after a voyage lasting six weeks.
    In 1730 Harrison went to London with his proposal for a sea clock, supported by examples of his grasshopper escapement and his gridiron pendulum. His proposal received sufficient encouragement and financial support, from George Graham and others, to enable him to return to Barrow and construct his first sea clock, which he completed five years later. This was a large and complicated machine that was made out of brass but retained the wooden wheelwork and the grasshopper escapement of the regulator clocks. The two balances were interlinked to counteract the rolling of the vessel and were controlled by helical springs operating in tension. It was the first timepiece with a balance to have temperature compensation. The effect of temperature change on the timekeeping of a balance is more pronounced than it is for a pendulum, as two effects are involved: the change in the size of the balance; and the change in the elasticity of the balance spring. Harrison compensated for both effects by using a gridiron arrangement to alter the tension in the springs. This timekeeper performed creditably when it was tested on a voyage to Lisbon, and the Board of Longitude agreed to finance improved models. Harrison's second timekeeper dispensed with the use of wood and had the added refinement of a remontoire, but even before it was tested he had embarked on a third machine. The balance of this machine was controlled by a spiral spring whose effective length was altered by a bimetallic strip to compensate for changes in temperature. In 1753 Harrison commissioned a London watchmaker, John Jefferys, to make a watch for his own personal use, with a similar form of temperature compensation and a modified verge escapement that was intended to compensate for the lack of isochronism of the balance spring. The time-keeping of this watch was surprisingly good and Harrison proceeded to build a larger and more sophisticated version, with a remontoire. This timekeeper was completed in 1759 and its performance was so remarkable that Harrison decided to enter it for the longitude prize in place of his third machine. It was tested on two voyages to the West Indies and on both occasions it met the requirements of the Act, but the Board of Longitude withheld half the prize money until they had proof that the timekeeper could be duplicated. Copies were made by Harrison and by Larcum Kendall, but the Board still continued to prevaricate and Harrison received the full amount of the prize in 1773 only after George III had intervened on his behalf.
    Although Harrison had shown that it was possible to construct a timepiece of sufficient accuracy to determine longitude at sea, his solution was too complex and costly to be produced in quantity. It had, for example, taken Larcum Kendall two years to produce his copy of Harrison's fourth timekeeper, but Harrison had overcome the psychological barrier and opened the door for others to produce chronometers in quantity at an affordable price. This was achieved before the end of the century by Arnold and Earnshaw, but they used an entirely different design that owed more to Le Roy than it did to Harrison and which only retained Harrison's maintaining power.
    [br]
    Principal Honours and Distinctions
    Royal Society Copley Medal 1749.
    Bibliography
    1767, The Principles of Mr Harrison's Time-keeper, with Plates of the Same, London. 1767, Remarks on a Pamphlet Lately Published by the Rev. Mr Maskelyne Under the
    Authority of the Board of Longitude, London.
    1775, A Description Concerning Such Mechanisms as Will Afford a Nice or True Mensuration of Time, London.
    Further Reading
    R.T.Gould, 1923, The Marine Chronometer: Its History and Development, London; reprinted 1960, Holland Press.
    —1978, John Harrison and His Timekeepers, 4th edn, London: National Maritime Museum.
    H.Quill, 1966, John Harrison, the Man who Found Longitude, London. A.G.Randall, 1989, "The technology of John Harrison's portable timekeepers", Antiquarian Horology 18:145–60, 261–77.
    J.Betts, 1993, John Harrison London (a good short account of Harrison's work). S.Smiles, 1905, Men of Invention and Industry; London: John Murray, Chapter III. Dictionary of National Biography, Vol. IX, pp. 35–6.
    DV

    Biographical history of technology > Harrison, John

  • 26 Wyatt, John

    SUBJECT AREA: Metallurgy, Textiles
    [br]
    b. April 1700 Thickbroom, Weeford, near Lichfield, England
    d. 29 November 1766 Birmingham, England
    [br]
    English inventor of machines for making files and rolling lead, and co-constructor of a cotton-spinning machine.
    [br]
    John Wyatt was the eldest son of John and Jane Wyatt, who lived in the small village of Thickbroom in the parish of Weeford, near Lichfield. John the younger was educated at Lichfield school and then worked as a carpenter at Thickbroom till 1730. In 1732 he was in Birmingham, engaged by a man named Heely, a gunbarrel forger, who became bankrupt in 1734. Wyatt had invented a machine for making files and sought the help of Lewis Paul to manufacture this commercially.
    The surviving papers of Paul and Wyatt in Birmingham are mostly undated and show a variety of machines with which they were involved. There was a machine for "making lead hard" which had rollers, and "a Gymcrak of some consequence" probably refers to a machine for boring barrels or the file-making machine. Wyatt is said to have been one of the unsuccessful competitors for the erection of London Bridge in 1736. He invented and perfected the compound-lever weighing machine. He had more success with this: after 1744, machines for weighing up to five tons were set up at Birmingham, Chester, Gloucester, Hereford, Lichfield and Liverpool. Road construction, bridge building, hydrostatics, canals, water-powered engines and many other schemes received his attention and it is said that he was employed for a time after 1744 by Matthew Boulton.
    It is certain that in April 1735 Paul and Wyatt were working on their spinning machine and Wyatt was making a model of it in London in 1736, giving up his work in Birmingham. The first patent, in 1738, was taken out in the name of Lewis Paul. It is impossible to know which of these two invented what. This first patent covers a wide variety of descriptions of the vital roller drafting to draw out the fibres, and it is unknown which system was actually used. Paul's carding patent of 1748 and his second spinning patent of 1758 show that he moved away from the system and principles upon which Arkwright built his success. Wyatt and Paul's spinning machines were sufficiently promising for a mill to be set up in 1741 at the Upper Priory, Birmingham, that was powered by two asses. Wyatt was the person responsible for constructing the machinery. Edward Cave established another at Northampton powered by water while later Daniel Bourn built yet another at Leominster. Many others were interested too. The Birmingham mill did not work for long and seems to have been given up in 1743. Wyatt was imprisoned for debt in The Fleet in 1742, and when released in 1743 he tried for a time to run the Birmingham mill and possibly the Northampton one. The one at Leominster burned down in 1754, while the Northampton mill was advertised for sale in 1756. This last mill may have been used again in conjunction with the 1758 patent. It was Wyatt whom Daniel Bourn contacted about a grant for spindles for his Leominster mill in 1748, but this seems to have been Wyatt's last association with the spinning venture.
    [br]
    Further Reading
    G.J.French, 1859, The Life and Times of Samuel Crompton, London (French collected many of the Paul and Wyatt papers; these should be read in conjunction with Hills 1970).
    R.L.Hills, 1970, Power in the Industrial Revolution, Manchester (Hills shows that the rollerdrafting system on this spinning machine worked on the wrong principles). A.P.Wadsworth and J.de L.Mann, 1931, The Cotton Trade and Industrial Lancashire, 1600–1780, Manchester (provides good coverage of the partnership of Paul and Wyatt and of the early mills).
    E.Baines, 1835, History of the Cotton Manufacture in Great Britain, London (this publication must be mentioned, although it is now out of date).
    W.English, 1969, The Textile Industry, London (a more recent account).
    W.A.Benton, "John Wyatt and the weighing of heavy loads", Transactions of the Newcomen Society 9 (for a description of Wyatt's weighing machine).
    RLH

    Biographical history of technology > Wyatt, John

См. также в других словарях:

  • trade — {{Roman}}I.{{/Roman}} noun 1 buying/selling of goods/services ADJECTIVE ▪ booming, brisk, burgeoning, expanding, flourishing, lively, roaring, thriving ▪ …   Collocations dictionary

  • trade — /treɪd / (say trayd) noun 1. the buying and selling, or exchanging, of commodities, either by wholesale or by retail, within a country or between countries: domestic trade; foreign trade. 2. a purchase, sale, or exchange. 3. a form of occupation… …  

  • Carpenter Body Company — Carpenter Industries, Inc. Carpenter: The Safest Link Between Home and School. Industry Vehicle Manufacturing Fate Dissolved by parent company Founded 1919 Founder(s) …   Wikipedia

  • Trade — Trade, n. [Formerly, a path, OE. tred a footmark. See {Tread}, n. & v.] 1. A track; a trail; a way; a path; also, passage; travel; resort. [Obs.] [1913 Webster] A postern with a blind wicket there was, A common trade to pass through Priam s house …   The Collaborative International Dictionary of English

  • Trade dollar — Trade Trade, n. [Formerly, a path, OE. tred a footmark. See {Tread}, n. & v.] 1. A track; a trail; a way; a path; also, passage; travel; resort. [Obs.] [1913 Webster] A postern with a blind wicket there was, A common trade to pass through Priam s …   The Collaborative International Dictionary of English

  • Trade price — Trade Trade, n. [Formerly, a path, OE. tred a footmark. See {Tread}, n. & v.] 1. A track; a trail; a way; a path; also, passage; travel; resort. [Obs.] [1913 Webster] A postern with a blind wicket there was, A common trade to pass through Priam s …   The Collaborative International Dictionary of English

  • Trade sale — Trade Trade, n. [Formerly, a path, OE. tred a footmark. See {Tread}, n. & v.] 1. A track; a trail; a way; a path; also, passage; travel; resort. [Obs.] [1913 Webster] A postern with a blind wicket there was, A common trade to pass through Priam s …   The Collaborative International Dictionary of English

  • Trade wind — Trade Trade, n. [Formerly, a path, OE. tred a footmark. See {Tread}, n. & v.] 1. A track; a trail; a way; a path; also, passage; travel; resort. [Obs.] [1913 Webster] A postern with a blind wicket there was, A common trade to pass through Priam s …   The Collaborative International Dictionary of English

  • trade — n 1 Trade, craft, handicraft, art, profession are general terms which designate a pursuit followed as an occupation or means of livelihood and requiring technical knowledge and skill. Trade is applied chiefly to pursuits involving skilled manual… …   New Dictionary of Synonyms

  • Trade union — Unions redirects here. For the defunct Australian rules football club, see Unions Football Club. Labour union redirects here. For the Polish political party, see Labour Union (Poland). For the Canadian political party, see Union Labour. Labor… …   Wikipedia

  • trade — tradable, tradeable, adj. tradeless, adj. /trayd/, n., v., traded, trading, adj. n. 1. the act or process of buying, selling, or exchanging commodities, at either wholesale or retail, within a country or between countries: domestic trade; foreign …   Universalium

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»