Перевод: со всех языков на все языки

со всех языков на все языки

capacity+of+press

  • 101 Bullard, Edward Payson

    [br]
    b. 18 April 1841 Uxbridge, Massachusetts, USA
    d. 22 December 1906 Bridgeport, Connecticut, USA
    [br]
    American mechanical engineer and machine-tool manufacturer who designed machines for boring.
    [br]
    Edward Payson Bullard served his apprenticeship at the Whitin Machine Works, Whitinsville, Massachusetts, and worked at the Colt Armory in Hartford, Connecticut, until 1863; he then entered the employ of Pratt \& Whitney, also in Hartford. He later formed a partnership with J.H.Prest and William Parsons manufacturing millwork and tools, the firm being known as Bullard \& Prest. In 1866 Bullard organized the Norwalk Iron Works Company of Norwalk, Connecticut, but afterwards withdrew and continued the business in Hartford. In 1868 the firm of Bullard \& Prest was dissolved and Bullard became Superintendent of a large machine shop in Athens, Georgia. He later organized the machine tool department of Post \& Co. at Cincinnati, and in 1872 he was made General Superintendent of the Gill Car Works at Columbus, Ohio. In 1875 he established a machinery business in Beekman Street, New York, under the name of Allis, Bullard \& Co. Mr Allis withdrew in 1877, and the Bullard Machine Company was organized.
    In 1880 Bullard secured entire control of the business and also became owner of the Bridgeport Machine Tool Works, Bridgeport, Connecticut. In 1883 he designed his first vertical boring and turning mill with a single head and belt feed and a 37 in. (94 cm) capacity; this was the first small boring machine designed to do the accurate work previously done on the face plate of a lathe. In 1889 Bullard gave up his New York interests and concentrated his entire attention on manufacturing at Bridgeport, the business being incorporated in 1894 as the Bullard Machine Tool Company. The company specialized in the construction of boring machines, the design being developed so that it became essentially a vertical turret lathe. After Bullard's death, his son Edward Payson Bullard II (b. 10 July 1872 Columbus, Ohio, USA; d. 26 June 1953 Fairfield, Connecticut, USA) continued as head of the company and further developed the boring machine into a vertical multi-spindle automatic lathe which he called the "Mult-au-matic" lathe. Both father and son were members of the American Society of Mechanical Engineers.
    [br]
    Further Reading
    J.W.Roe, 1916, English and American Tool Builders, New Haven: Yale University Press; repub. 1926, New York and 1987, Bradley, Ill.: Lindsay Publications Inc. (describes Bullard's machines).
    RTS

    Biographical history of technology > Bullard, Edward Payson

  • 102 Champion, William

    SUBJECT AREA: Metallurgy
    [br]
    b. 1710 Bristol, England
    d. 1789 England
    [br]
    English metallurgist, the first to produce metallic zinc in England on an industrial scale.
    [br]
    William, the youngest of the three sons of Nehemiah Champion, stemmed from a West Country Quaker family long associated with the metal trades. His grandfather, also called Nehemiah, had been one of Abraham Darby's close Quaker friends when the brassworks at Baptist Mills was being established in 1702 and 1703. Nehemiah II took over the management of these works soon after Darby went to Coalbrookdale, and in 1719, as one of a group of Bristol copper smelters, he negotiated an agreement with Lord Falmouth to develop copper mines in the Redruth area in Cornwall. In 1723 he was granted a patent for a cementation brass-making process using finely granulated copper rather than the broken fragments of massive copper hitherto employed.
    In 1730 he returned to Bristol after a tour of European metallurgical centres, and he began to develop an industrial process for the manufacture of pure zinc ingots in England. Metallic zinc or spelter was then imported at great expense from the Far East, largely for the manufacture of copper alloys of golden colour used for cheap jewellery. The process William developed, after six years of experimentation, reduced zinc oxide with charcoal at temperatures well above the boiling point of zinc. The zinc vapour obtained was condensed rapidly to prevent reoxidation and finally collected under water. This process, patented in 1738, was operated in secret until 1766 when Watson described it in his Chemical Essays. After encountering much opposition from the Bristol merchants and zinc importers, William decided to establish his own integrated brassworks at Warmley, five meals east of Bristol. The Warmley plant began to produce in 1748 and expanded rapidly. By 1767, when Warmley employed about 2,000 men, women and children, more capital was needed, requiring a Royal Charter of Incorporation. A consortium of Champion's competitors opposed this and secured its refusal. After this defeat William lost the confidence of his fellow directors, who dismissed him. He was declared bankrupt in 1769 and his works were sold to the British Brass Company, which never operated Warmley at full capacity, although it produced zinc on that site until 1784.
    [br]
    Bibliography
    1723, British patent no. 454 (cementation brass-making process).
    1738, British patent no. 564 (zinc ingot production process).
    1767, British patent no. 867 (brass manufacture wing zinc blende).
    Further Reading
    J.Day, 1973, Bristol Brass: The History of the Industry, Newton Abbot: David \& Charles.
    A.Raistrick, 1970, Dynasty of Ironfounders: The Darbys and Coalbrookdale, Newton Abbot: David \& Charles.
    J.R.Harris, 1964, The Copper King, Liverpool University Press.
    ASD

    Biographical history of technology > Champion, William

  • 103 Haber, Fritz

    SUBJECT AREA: Chemical technology
    [br]
    b. 9 December 1868 Breslau, Germany (now Wroclaw, Poland)
    d. 29 January 1934 Basel, Switzerland
    [br]
    German chemist, inventor of the process for the synthesis of ammonia.
    [br]
    Haber's father was a manufacturer of dyestuffs, so he studied organic chemistry at Berlin and Heidelberg universities to equip him to enter his father's firm. But his interest turned to physical chemistry and remained there throughout his life. He became Assistant at the Technische Hochschule in Karlsruhe in 1894; his first work there was on pyrolysis and electrochemistry, and he published his Grundrisse der technischen Electrochemie in 1898. Haber became famous for thorough and illuminating theoretical studies in areas of growing practical importance. He rose through the academic ranks and was appointed a full professor in 1906. In 1912 he was also appointed Director of the Institute of Physical Chemistry and Electrochemistry at Dahlem, outside Berlin.
    Early in the twentieth century Haber invented a process for the synthesis of ammonia. The English chemist and physicist Sir William Crookes (1832–1919) had warned of the danger of mass hunger because the deposits of Chilean nitrate were becoming exhausted and nitrogenous fertilizers would not suffice for the world's growing population. A solution lay in the use of the nitrogen in the air, and the efforts of chemists centred on ways of converting it to usable nitrate. Haber was aware of contemporary work on the fixation of nitrogen by the cyanamide and arc processes, but in 1904 he turned to the study of ammonia formation from its elements, nitrogen and hydrogen. During 1907–9 Haber found that the yield of ammonia reached an industrially viable level if the reaction took place under a pressure of 150–200 atmospheres and a temperature of 600°C (1,112° F) in the presence of a suitable catalyst—first osmium, later uranium. He devised an apparatus in which a mixture of the gases was pumped through a converter, in which the ammonia formed was withdrawn while the unchanged gases were recirculated. By 1913, Haber's collaborator, Carl Bosch had succeeded in raising this laboratory process to the industrial scale. It was the first successful high-pressure industrial chemical process, and solved the nitrogen problem. The outbreak of the First World War directed the work of the institute in Dahlem to military purposes, and Haber was placed in charge of chemical warfare. In this capacity, he developed poisonous gases as well as the means of defence against them, such as gas masks. The synthetic-ammonia process was diverted to produce nitric acid for explosives. The great benefits and achievement of the Haber-Bosch process were recognized by the award in 1919 of the Nobel Prize in Chemistry, but on account of Haber's association with chemical warfare, British, French and American scientists denounced the award; this only added to the sense of bitterness he already felt at his country's defeat in the war. He concentrated on the theoretical studies for which he was renowned, in particular on pyrolysis and autoxidation, and both the Karlsruhe and the Dahlem laboratories became international centres for discussion and research in physical chemistry.
    With the Nazi takeover in 1933, Haber found that, as a Jew, he was relegated to second-class status. He did not see why he should appoint staff on account of their grandmothers instead of their ability, so he resigned his posts and went into exile. For some months he accepted hospitality in Cambridge, but he was on his way to a new post in what is now Israel when he died suddenly in Basel, Switzerland.
    [br]
    Bibliography
    1898, Grundrisse der technischen Electrochemie.
    1927, Aus Leben und Beruf.
    Further Reading
    J.E.Coates, 1939, "The Haber Memorial Lecture", Journal of the Chemical Society: 1,642–72.
    M.Goran, 1967, The Story of Fritz Haber, Norman, OK: University of Oklahoma Press (includes a complete list of Haber's works).
    LRD

    Biographical history of technology > Haber, Fritz

  • 104 Möller, Anton

    SUBJECT AREA: Textiles
    [br]
    fl. c. 1580 Danzig, Poland
    [br]
    Polish may have been involved with the invention of the ribbon loom.
    [br]
    Around 1586, Anton Möller related that he saw in Danzig a loom on which four to six pieces of ribbon could be woven at once. Some accounts say he may have invented this loom, which required no skill to use beyond the working of a bar. The city council was afraid that a great many workers might be reduced to begging because of this invention, so they had it suppressed and the inventor strangled or drowned. It seems to have been in use in London c. 1616 and at Leiden in Holland by 1620, but its spread was handicapped both by popular rioting and by restrictive legislation. By 1621 the capacity of the loom had been increased to twenty-four ribbons, and it was later increased to fifty. It made its appearance in Lancashire around 1680 and the way the shuttles were operated could have given John Kay the inspiration for his flying shuttle.
    [br]
    Further Reading
    A.Barlow, 1878, The History and Principles of Weaving by Hand and by Power, London (includes a good description and illustration of the invention).
    to AD 1900, Oxford; C.Singer (ed.), 1957, A History of Technology, Vol. III, Oxford: Clarendon Press (both provide brief accounts of the introduction of the ribbon loom).
    RLH

    Biographical history of technology > Möller, Anton

  • 105 Talbot, Benjamin

    SUBJECT AREA: Metallurgy
    [br]
    b. 19 September 1864 Wellington, Shropshire, England
    d. 16 December 1947 Solberge Hall, Northallerton, Yorkshire, England
    [br]
    Talbot, William Henry Fox English steelmaker and businessman who introduced a technique for producing steel "continuously" in large tilting basic-lined open-hearth furnaces.
    [br]
    After spending some years at his father's Castle Ironworks and at Ebbw Vale Works, Talbot travelled to the USA in 1890 to become Superintendent of the Southern Iron and Steel Company of Chattanooga, Tennessee, where he initiated basic open-hearth steelmaking and a preliminary slag washing to remove silicon. In 1893 he moved to Pennsylvania as Steel Superintendent at the Pencoyd works; there, six years later, he began his "continuous" steelmaking process. Returning to Britain in 1900, Talbot marketed the technique: after ten years it was in successful use in Britain, continental Europe and the USA; it promoted the growth of steel production.
    Meanwhile its originator had joined the Cargo Fleet Iron Company Limited on Teesside, where he was made Managing Director in 1907. Twelve years later he assumed, in addition, the same position in the allied South Durham Steel and Iron Company Limited. While remaining Managing Director, he was appointed Deputy Chairman of both companies in 1925, and Chairman in 1940. The companies he controlled survived the depressed 1920s and 1930s and were significant contributors to British steel output, with a capacity of more than half a million tonnes per year.
    [br]
    Principal Honours and Distinctions
    President, Iron and Steel Institute 1928, and (British) National Federation of Iron and Steel Manufacturers. Iron and Steel Institute (London) Bessemer Gold Medal 1908. Franklin Institute (Philadelphia), Elliott Cresson Gold Medal, and John Scott Medal 1908.
    Bibliography
    1900, "The open-hearth continuous steel process", Journal of the Iron and Steel Institute 57 (1):33–61.
    1903, "The development of the continuous open-hearth process", Journal of the Iron and Steel Institute 63(1):57–73.
    1905, "Segregation in steel ingots", Journal of the Iron and Steel Institute 68(2):204–23. 1913, "The production of sound steel by lateral compression of the ingot whilst its centre is liquid", Journal of the Iron and Steel Institute 87(1):30–55.
    Further Reading
    G.Boyce, 1986, entry in Dictionary of Business Biography, Vol. V, ed. J.Jeremy, Butterworth.
    W.G.Willis, 1969, South Durham Steel and Iron Co. Ltd, South Durham Steel and Iron Company Ltd (includes a few pages specifically on Talbot, and a portrait photo). J.C.Carr and W.Taplin, 1962, History of the British Steel Industry, Cambridge, Mass.: Harvard University Press (mentions Talbot's business attitudes).
    JKA

    Biographical history of technology > Talbot, Benjamin

  • 106 Ward, Joshua

    SUBJECT AREA: Chemical technology
    [br]
    b. 1685
    d. 21 November 1761 London, England
    [br]
    English doctor and industrial chemist.
    [br]
    Ward is perhaps better described as a "quack" than a medical doctor. His remedies, one containing a dangerous quantity of antimony, were dubious to say the least. A fraudulent attempt to enter Parliament in 1717 forced him to leave the country quickly. After his pardon in 1733, he returned to London and established a successful practice. His medical prowess is immortalized in Hogarth's picture The Harlot's Progress.
    Sulphuric acid had been an important chemical for centuries and Ward found that he needed large quantities of it to make his remedies. He set up works to manufacture it at Twickenham, near London, in 1736 and then at Richmond three years later. His process consisted of burning a mixture of saltpetre (nitre; potassium nitrate) and sulphur in the neck of a large glass globe containing a little water. Dilute sulphuric acid was thereby formed, which was concentrated by distillation. Although the method was not new, having been described in the seventeenth century by the German chemist Johann Glauber, Ward was granted a patent for his process in 1749. An important feature was the size of the globes, which had no less than fifty gallons' capacity, which must have entailed considerable skill on the part of the glassblowers. Through the adoption of Ward's process, the price of this essential commodity fell from £2 per pound to only 2 shillings. It provided the best method of manufacture until the advent of the lead-chamber process invented by John Roebuck.
    [br]
    Further Reading
    A.Clow and N.Clow, 1952, The Chemical Revolution: A Contribution to Social Technology, London: Batch worth.
    C.Singer et al. (eds), 1958, A History of Technology, 7 vols, Oxford: Clarendon Press, Vol. IV.
    LRD

    Biographical history of technology > Ward, Joshua

См. также в других словарях:

  • PRESS — This article is arranged according to the following outline: introduction in australia and new zealand in belgium in canada in czechoslovakia in england yiddish press in france in germany and austria between the two world wars after world war ii… …   Encyclopedia of Judaism

  • Press Club, Thiruvananthapuram — The Press Club, Thiruvananthapuram is the hub of media activities in Thiruvananthapuram, capital of the southern Indian state of Kerala. Established in 1965 with 20 members, which has now swelled into 350. Governor Sahay addressed the first‘Meet… …   Wikipedia

  • Printing press — For the history and technology of movable type, see Movable type. Printing press from 1811, exhibited in Munich, Germany …   Wikipedia

  • Power press — Power Pow er, n. [OE. pouer, poer, OF. poeir, pooir, F. pouvoir, n. & v., fr. LL. potere, for L. posse, potesse, to be able, to have power. See {Possible}, {Potent}, and cf. {Posse comitatus}.] 1. Ability to act, regarded as latent or inherent;… …   The Collaborative International Dictionary of English

  • Punch press — A punch press is a type of machine press used to cut holes in material. It can be small and manually operated and hold one simple die set, or be very large, CNC operated, with a multi station turret and hold a much larger and complex die set.… …   Wikipedia

  • Heat capacity — Thermodynamics …   Wikipedia

  • Specific heat capacity — Specific heat capacity, also known simply as specific heat, is the measure of the heat energy required to increase the temperature of a unit quantity of a substance by a certain temperature interval. The term originated primarily through the work …   Wikipedia

  • Mental Capacity Act 2005 — The Mental Capacity Act 2005[1] Parliament of the United Kingdom Long title An Act to make new provision relating to persons who lack capacity; to establ …   Wikipedia

  • Channel capacity — In electrical engineering, computer science and information theory, channel capacity is the tightest upper bound on the amount of information that can be reliably transmitted over a communications channel. By the noisy channel coding theorem, the …   Wikipedia

  • Oxygen radical absorbance capacity — (ORAC) is a method of measuring antioxidant capacities in biological samples in vitro.[1][2] A wide variety of foods has been tested using this method, with certain spices, berries and legumes rated highly.[3] There exists no physiological proof… …   Wikipedia

  • Adaptive capacity — is the capacity of a system to adapt if the environment where the system exists is changing. It is applied to for example , ecological systems and human social systems.As applied to ecological systems, the adaptive capacity is determined by :*… …   Wikipedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»