Перевод: со всех языков на все языки

со всех языков на все языки

become+subject

  • 101 Dassault (Bloch), Marcel

    SUBJECT AREA: Aerospace
    [br]
    b. 22 January 1892 Paris, France
    d. 18 April 1986 Paris, France
    [br]
    French aircraft designer and manufacturer, best known for his jet fighters the Mystère and Mirage.
    [br]
    During the First World War, Marcel Bloch (he later changed his name to Dassault) worked on French military aircraft and developed a very successful propeller. With his associate, Henri Potez, he set up a company to produce their Eclair wooden propeller in a furniture workshop in Paris. In 1917 they produced a two-seater aircraft which was ordered but then cancelled when the war ended. Potez continued to built aircraft under his own name, but Bloch turned to property speculation, at which he was very successful. In 1930 Bloch returned to the aviation business with an unsuccessful bomber followed by several moderately effective airliners, including the Bloch 220 of 1935, which was similar to the DC-3. He was involved in the design of a four-engined airliner, the SNCASE Languedoc, which flew in September 1939. During the Second World War, Bloch and his brothers became important figures in the French Resistance Movement. Marcel Bloch was eventually captured but survived; however, one of his brothers was executed, and after the war Bloch changed his name to Dassault, which had been his brother's code name in the Resistance. During the 1950s, Avions Marcel Dassault rapidly grew to become Europe's foremost producer of jet fighters. The Ouragon was followed by the Mystère, Etendard and then the outstanding Mirage series. The basic delta-winged Mirage III, with a speed of Mach 2, was soon serving in twenty countries around the world. From this evolved a variable geometry version, a vertical-take-off aircraft, an enlarged light bomber capable of carrying a nuclear bomb, and a swept-wing version for the 1970s. Dassault also produced a successful series of jet airliners starting with the Fan Jet Falcon of 1963. When the Dassault and Breguet companies merged in 1971, Marcel Dassault was still a force to be reckoned with.
    [br]
    Principal Honours and Distinctions
    Guggenheim Medal. Deputy, Assemblée nationale 1951–5 and 1958–86.
    Bibliography
    1971, Le Talisman, Paris: Editions J'ai lu (autobiography).
    Further Reading
    1976, "The Mirage Maker", Sunday Times Magazine (1 June).
    Jane's All the World's Aircraft, London: Jane's (details of Bloch and Dassault aircraft can be found in various years' editions).
    JDS

    Biographical history of technology > Dassault (Bloch), Marcel

  • 102 Davidson, Robert

    [br]
    b. 18 April 1804 Aberdeen, Scotland
    d. 16 November 1894 Aberdeen, Scotland
    [br]
    Scottish chemist, pioneer of electric power and builder of the first electric railway locomotives.
    [br]
    Davidson, son of an Aberdeen merchant, attended Marischal College, Aberdeen, between 1819 and 1822: his studies included mathematics, mechanics and chemistry. He subsequently joined his father's grocery business, which from time to time received enquiries for yeast: to meet these, Davidson began to manufacture yeast for sale and from that start built up a successful chemical manufacturing business with the emphasis on yeast and dyes. About 1837 he started to experiment first with electric batteries and then with motors. He invented a form of electromagnetic engine in which soft iron bars arranged on the periphery of a wooden cylinder, parallel to its axis, around which the cylinder could rotate, were attracted by fixed electromagnets. These were energized in turn by current controlled by a simple commutaring device. Electric current was produced by his batteries. His activities were brought to the attention of Michael Faraday and to the scientific world in general by a letter from Professor Forbes of King's College, Aberdeen. Davidson declined to patent his inventions, believing that all should be able freely to draw advantage from them, and in order to afford an opportunity for all interested parties to inspect them an exhibition was held at 36 Union Street, Aberdeen, in October 1840 to demonstrate his "apparatus actuated by electro-magnetic power". It included: a model locomotive carriage, large enough to carry two people, that ran on a railway; a turning lathe with tools for visitors to use; and a small printing machine. In the spring of 1842 he put on a similar exhibition in Edinburgh, this time including a sawmill. Davidson sought support from railway companies for further experiments and the construction of an electromagnetic locomotive; the Edinburgh exhibition successfully attracted the attention of the proprietors of the Edinburgh 585\& Glasgow Railway (E \& GR), whose line had been opened in February 1842. Davidson built a full-size locomotive incorporating his principle, apparently at the expense of the railway company. The locomotive weighed 7 tons: each of its two axles carried a cylinder upon which were fastened three iron bars, and four electromagnets were arranged in pairs on each side of the cylinders. The motors he used were reluctance motors, the power source being zinc-iron batteries. It was named Galvani and was demonstrated on the E \& GR that autumn, when it achieved a speed of 4 mph (6.4 km/h) while hauling a load of 6 tons over a distance of 1 1/2 miles (2.4 km); it was the first electric locomotive. Nevertheless, further support from the railway company was not forthcoming, although to some railway workers the locomotive seems to have appeared promising enough: they destroyed it in Luddite reaction. Davidson staged a further exhibition in London in 1843 without result and then, the cost of battery chemicals being high, ceased further experiments of this type. He survived long enough to see the electric railway become truly practicable in the 1880s.
    [br]
    Bibliography
    1840, letter, Mechanics Magazine, 33:53–5 (comparing his machine with that of William Hannis Taylor (2 November 1839, British patent no. 8,255)).
    Further Reading
    1891, Electrical World, 17:454.
    J.H.R.Body, 1935, "A note on electro-magnetic engines", Transactions of the Newcomen Society 14:104 (describes Davidson's locomotive).
    F.J.G.Haut, 1956, "The early history of the electric locomotive", Transactions of the Newcomen Society 27 (describes Davidson's locomotive).
    A.F.Anderson, 1974, "Unusual electric machines", Electronics \& Power 14 (November) (biographical information).
    —1975, "Robert Davidson. Father of the electric locomotive", Proceedings of the Meeting on the History of Electrical Engineering Institution of Electrical Engineers, 8/1–8/17 (the most comprehensive account of Davidson's work).
    A.C.Davidson, 1976, "Ingenious Aberdonian", Scots Magazine (January) (details of his life).
    PJGR / GW

    Biographical history of technology > Davidson, Robert

  • 103 De Forest, Lee

    [br]
    b. 26 August 1873 Council Bluffs, Iowa, USA
    d. 30 June 1961 Hollywood, California, USA
    [br]
    American electrical engineer and inventor principally known for his invention of the Audion, or triode, vacuum tube; also a pioneer of sound in the cinema.
    [br]
    De Forest was born into the family of a Congregational minister that moved to Alabama in 1879 when the father became President of a college for African-Americans; this was a position that led to the family's social ostracism by the white community. By the time he was 13 years old, De Forest was already a keen mechanical inventor, and in 1893, rejecting his father's plan for him to become a clergyman, he entered the Sheffield Scientific School of Yale University. Following his first degree, he went on to study the propagation of electromagnetic waves, gaining a PhD in physics in 1899 for his thesis on the "Reflection of Hertzian Waves from the Ends of Parallel Wires", probably the first US thesis in the field of radio.
    He then joined the Western Electric Company in Chicago where he helped develop the infant technology of wireless, working his way up from a modest post in the production area to a position in the experimental laboratory. There, working alone after normal working hours, he developed a detector of electromagnetic waves based on an electrolytic device similar to that already invented by Fleming in England. Recognizing his talents, a number of financial backers enabled him to set up his own business in 1902 under the name of De Forest Wireless Telegraphy Company; he was soon demonstrating wireless telegraphy to interested parties and entering into competition with the American Marconi Company.
    Despite the failure of this company because of fraud by his partners, he continued his experiments; in 1907, by adding a third electrode, a wire mesh, between the anode and cathode of the thermionic diode invented by Fleming in 1904, he was able to produce the amplifying device now known as the triode valve and achieve a sensitivity of radio-signal reception much greater than possible with the passive carborundum and electrolytic detectors hitherto available. Patented under the name Audion, this new vacuum device was soon successfully used for experimental broadcasts of music and speech in New York and Paris. The invention of the Audion has been described as the beginning of the electronic era. Although much development work was required before its full potential was realized, the Audion opened the way to progress in all areas of sound transmission, recording and reproduction. The patent was challenged by Fleming and it was not until 1943 that De Forest's claim was finally recognized.
    Overcoming the near failure of his new company, the De Forest Radio Telephone Company, as well as unsuccessful charges of fraudulent promotion of the Audion, he continued to exploit the potential of his invention. By 1912 he had used transformer-coupling of several Audion stages to achieve high gain at radio frequencies, making long-distance communication a practical proposition, and had applied positive feedback from the Audion output anode to its input grid to realize a stable transmitter oscillator and modulator. These successes led to prolonged patent litigation with Edwin Armstrong and others, and he eventually sold the manufacturing rights, in retrospect often for a pittance.
    During the early 1920s De Forest began a fruitful association with T.W.Case, who for around ten years had been working to perfect a moving-picture sound system. De Forest claimed to have had an interest in sound films as early as 1900, and Case now began to supply him with photoelectric cells and primitive sound cameras. He eventually devised a variable-density sound-on-film system utilizing a glow-discharge modulator, the Photion. By 1926 De Forest's Phonofilm had been successfully demonstrated in over fifty theatres and this system became the basis of Movietone. Though his ideas were on the right lines, the technology was insufficiently developed and it was left to others to produce a system acceptable to the film industry. However, De Forest had played a key role in transforming the nature of the film industry; within a space of five years the production of silent films had all but ceased.
    In the following decade De Forest applied the Audion to the development of medical diathermy. Finally, after spending most of his working life as an independent inventor and entrepreneur, he worked for a time during the Second World War at the Bell Telephone Laboratories on military applications of electronics.
    [br]
    Principal Honours and Distinctions
    Institute of Electronic and Radio Engineers Medal of Honour 1922. President, Institute of Electronic and Radio Engineers 1930. Institute of Electrical and Electronics Engineers Edison Medal 1946.
    Bibliography
    1904, "Electrolytic detectors", Electrician 54:94 (describes the electrolytic detector). 1907, US patent no. 841,387 (the Audion).
    1950, Father of Radio, Chicago: WIlcox \& Follett (autobiography).
    De Forest gave his own account of the development of his sound-on-film system in a series of articles: 1923. "The Phonofilm", Transactions of the Society of Motion Picture Engineers 16 (May): 61–75; 1924. "Phonofilm progress", Transactions of the Society of Motion Picture Engineers 20:17–19; 1927, "Recent developments in the Phonofilm", Transactions of the Society of Motion Picture Engineers 27:64–76; 1941, "Pioneering in talking pictures", Journal of the Society of Motion Picture Engineers 36 (January): 41–9.
    Further Reading
    G.Carneal, 1930, A Conqueror of Space (biography).
    I.Levine, 1964, Electronics Pioneer, Lee De Forest (biography).
    E.I.Sponable, 1947, "Historical development of sound films", Journal of the Society of Motion Picture Engineers 48 (April): 275–303 (an authoritative account of De Forest's sound-film work, by Case's assistant).
    W.R.McLaurin, 1949, Invention and Innovation in the Radio Industry.
    C.F.Booth, 1955, "Fleming and De Forest. An appreciation", in Thermionic Valves 1904– 1954, IEE.
    V.J.Phillips, 1980, Early Radio Detectors, London: Peter Peregrinus.
    KF / JW

    Biographical history of technology > De Forest, Lee

  • 104 Dolby, Ray M.

    [br]
    b. 1933 Portland, Oregon, USA
    [br]
    American electronics engineer who developed professional systems for noise reduction.
    [br]
    He was employed by Ampex Corporation from 1949 to 1957 and received a BSc in electrical engineering from Stanford University in 1957. He studied in England and received a PhD in physics from Cambridge University in 1961. He was a United Nations adviser in India 1963–5 and established the Dolby Laboratories in London in 1965. The Dolby Laboratories continuously developed systems for background-noise reduction, and in 1966 introduced Dolby A for professional tape and film formats. In 1968 Dolby B was developed and quickly found its use in the Philips Compact Cassette, which had become the new consumer medium for music. In 1981 Dolby C was an improvement designed for the consumer market, but it also was used in professional video equipment. In 1986 Dolby SR was introduced for professional sound recording. It is a common feature that the equipment has to be in a good state of calibration in order to obtain the advantages of these compander systems.
    [br]
    Principal Honours and Distinctions
    OBE 1986.
    GB-N

    Biographical history of technology > Dolby, Ray M.

  • 105 Donisthorpe, George Edmond

    SUBJECT AREA: Textiles
    [br]
    fl. c.1842 England
    [br]
    English inventor of a wool-combing machine.
    [br]
    Edmund Cartwright's combing machine needed a great deal of improvement before it could be used to tackle the finer qualities of wool. Various people carried out experiments over the next thirty years, including G.E.Donisthorpe of Leicester. Together with Henry Rawson, Donisthorpe obtained his first patent for improvements to wool combing in 1835, but his important ones were obtained in 1842 and 1843. These attracted the attention of S.C. Lister, who had become interested in developing a machine to comb wool after seeing the grim working conditions of the hand-combers supplying his mill at Manningham. Lister was quick to perceive that Donisthorpe's invention carried sufficient promise to replace the hand-comber, so in 1842 he made Donisthorpe an offer, which was accepted, of £2,000 for half the patent rights. In the following year Lister purchased the other half of the patent for £10,000, whereby Donisthorpe ceased to have any pecuniary interest in it. Lister took Donisthorpe into partnership and they worked together over the ensuing years with patience and diligence until they eventually succeeded in bringing out a combing machine that was generally acceptable. They were combing fine botany wool for the first time by machine in 1843. Further patents were taken out in their joint names in 1849 and 1850: these included the "nip" mechanism, the priority of which was disputed by Heilmann. Donisthorpe also took out patents for wool combing with John Whitehead in 1849 and John Crofts in 1853.
    [br]
    Bibliography
    1835, British patent no. 6,808 (improvements to wool combing). 1842. British patent no. 9,404.
    1843. British patent no. 9,966.
    1843, British patent no. 9,780.
    1849, with S.C.Lister, British patent no. 12,712.
    1849, with S.C.Lister, British patent no. 13,009. 1849, with S.C.Lister, British patent no. 13,532. 1849, with John Whitehead, British patent no. 12,603. 1853, with John Crofts, British patent no. 216.
    Further Reading
    J.Hogg (ed.), c.1888, Fortunes Made in Business, London (provides an account of the association between Donisthorpe and Lister).
    W.English, 1969, The Textile Industry, London (explains the technical details of combing machines).
    C.Singer (ed.), 1958, A History of Technology, Vol. IV, Oxford: Clarendon Press (includes a good section on combing machines).
    RLH

    Biographical history of technology > Donisthorpe, George Edmond

  • 106 Dörell, Georg Ludwig Wilhelm

    [br]
    b. 17 December 1793 Clausthal, Harz, Germany
    d. 30 October 1854 Zellerfeld, Harz, Germany
    [br]
    German mining engineer who introduced the miner's elevator into the Harz Mountains.
    [br]
    After studying at the Freiberg Mining Academy he returned to his home region to serve in the mining administration, first at Clausthal. In 1848 he became an inspector of mines in Zellerfeld. He had become aware that in the early nineteenth century, when 500 m (1,640 ft) shafts were no longer unusual, devices other than ladders were needed for access to mines. Dörell found out that miners, in terms of physical strength, had to consume almost one-third more of their energy to climb up the shaft than they had to spend at work during the shift in the mine. Accordingly, in 1833 he constructed the miner's elevator. Two timbered bars, similar to those used for pumps, were installed in the shaft and were driven by water-wheel and moved in opposite directions. They were placed at such a distance from each other that the miners could easily step from one to the other in order to go up or down the shaft as desired.
    Dörell's elevators worked with great success and their use soon became widespread among Central European mining districts. Their use is particularly associated with Cornish tin-mines, where several such elevators operated over considerable distances.
    [br]
    Bibliography
    1837, "Über die seit dem Jahre 1833 beim Oberharzischen Bergbau angewendeten Fahrmaschinen", Die Bergwerks-Verwaltung des Hannoverschen Ober-Harzes in den Jahren 1831–1836, ed. W.A.J.Albert, Berlin, pp. 199–214.
    Further Reading
    C.Bartels, 1992, Vom frühneuzeitlichen Montangewerbe zur Bergbauindustrie. Erzbergbau im Oberharz 1635–1880, Bochum: Deutsches Bergbau-Museum, esp. pp. 382–411 (elaborates upon the context of contemporary technological innovations in Harz ore mining).
    WK

    Biographical history of technology > Dörell, Georg Ludwig Wilhelm

  • 107 Dunlop, John Boyd

    SUBJECT AREA: Land transport
    [br]
    b. 5 February 1840 Dreghorn, Ayrshire, Scotland
    d. 23 October 1921 Ballsbridge, Dublin, Ireland
    [br]
    Scottish inventor and pioneer of the pneumatic tyre.
    [br]
    Reared in an agricultural community, Dunlop became a qualified veterinary surgeon and practised successfully in Edinburgh and then in Belfast when he moved there in 1867. In October 1887, Dunlop's 9-year-old son complained of the rough ride he experienced with his tricycle over the cobbled streets of Belfast. Dunlop devised and fitted rubber air tubes, held on to a wooden ring by tacking a linen covering which he fixed around the wheels of the tricycle. A marked improvement in riding quality was noted. After further development, a new tricycle was ordered, with the new airtube wheels. This was so successful that Dunlop applied for a patent on 23 July 1889, granted on 7 December. With tyres made in Edinburgh to his specification, bicycles were manufactured by Edlin \& Co. of Belfast and put on sale complete with pneumatic tyres. The successful performance of a racing bicycle thus equipped inspired an unsuccessful competitor, William Harvey de Cros, who had used a solid-tyred machine, to take an interest in Dunlop's invention. With Dunlop, he refloated a company in Dublin, the Pneumatic Tyre \& Booth's Cycle Agency. Dunlop made over his patents, for the tyre, valves, rims and fixing methods, to Du Cros and took shares in the company. Although he was involved in it for many years, it was Du Cros who steered the company through several struggles to success.
    The pneumatic tyre revolutionized cycling and made possible the success of the motor vehicle, although Dunlop did not profit greatly from his invention. After the sale of the company in 1896, to E.T.Hooley for $3 million, he took no further part in the development of the pneumatic tyre. The company went on to become the great Dunlop Rubber Company.
    [br]
    Further Reading
    J.McClintock, 1923, History of the Pneumatic Tyre, Belfast (written by Dunlop's daughter, who based the book on her father's reminiscences).
    LRD

    Biographical history of technology > Dunlop, John Boyd

  • 108 Edison, Thomas Alva

    [br]
    b. 11 February 1847 Milan, Ohio, USA
    d. 18 October 1931 Glenmont
    [br]
    American inventor and pioneer electrical developer.
    [br]
    He was the son of Samuel Edison, who was in the timber business. His schooling was delayed due to scarlet fever until 1855, when he was 8½ years old, but he was an avid reader. By the age of 14 he had a job as a newsboy on the railway from Port Huron to Detroit, a distance of sixty-three miles (101 km). He worked a fourteen-hour day with a stopover of five hours, which he spent in the Detroit Free Library. He also sold sweets on the train and, later, fruit and vegetables, and was soon making a profit of $20 a week. He then started two stores in Port Huron and used a spare freight car as a laboratory. He added a hand-printing press to produce 400 copies weekly of The Grand Trunk Herald, most of which he compiled and edited himself. He set himself to learn telegraphy from the station agent at Mount Clements, whose son he had saved from being run over by a freight car.
    At the age of 16 he became a telegraphist at Port Huron. In 1863 he became railway telegraphist at the busy Stratford Junction of the Grand Trunk Railroad, arranging a clock with a notched wheel to give the hourly signal which was to prove that he was awake and at his post! He left hurriedly after failing to hold a train which was nearly involved in a head-on collision. He usually worked the night shift, allowing himself time for experiments during the day. His first invention was an arrangement of two Morse registers so that a high-speed input could be decoded at a slower speed. Moving from place to place he held many positions as a telegraphist. In Boston he invented an automatic vote recorder for Congress and patented it, but the idea was rejected. This was the first of a total of 1180 patents that he was to take out during his lifetime. After six years he resigned from the Western Union Company to devote all his time to invention, his next idea being an improved ticker-tape machine for stockbrokers. He developed a duplex telegraphy system, but this was turned down by the Western Union Company. He then moved to New York.
    Edison found accommodation in the battery room of Law's Gold Reporting Company, sleeping in the cellar, and there his repair of a broken transmitter marked him as someone of special talents. His superior soon resigned, and he was promoted with a salary of $300 a month. Western Union paid him $40,000 for the sole rights on future improvements on the duplex telegraph, and he moved to Ward Street, Newark, New Jersey, where he employed a gathering of specialist engineers. Within a year, he married one of his employees, Mary Stilwell, when she was only 16: a daughter, Marion, was born in 1872, and two sons, Thomas and William, in 1876 and 1879, respectively.
    He continued to work on the automatic telegraph, a device to send out messages faster than they could be tapped out by hand: that is, over fifty words per minute or so. An earlier machine by Alexander Bain worked at up to 400 words per minute, but was not good over long distances. Edison agreed to work on improving this feature of Bain's machine for the Automatic Telegraph Company (ATC) for $40,000. He improved it to a working speed of 500 words per minute and ran a test between Washington and New York. Hoping to sell their equipment to the Post Office in Britain, ATC sent Edison to England in 1873 to negotiate. A 500-word message was to be sent from Liverpool to London every half-hour for six hours, followed by tests on 2,200 miles (3,540 km) of cable at Greenwich. Only confused results were obtained due to induction in the cable, which lay coiled in a water tank. Edison returned to New York, where he worked on his quadruplex telegraph system, tests of which proved a success between New York and Albany in December 1874. Unfortunately, simultaneous negotiation with Western Union and ATC resulted in a lawsuit.
    Alexander Graham Bell was granted a patent for a telephone in March 1876 while Edison was still working on the same idea. His improvements allowed the device to operate over a distance of hundreds of miles instead of only a few miles. Tests were carried out over the 106 miles (170 km) between New York and Philadelphia. Edison applied for a patent on the carbon-button transmitter in April 1877, Western Union agreeing to pay him $6,000 a year for the seventeen-year duration of the patent. In these years he was also working on the development of the electric lamp and on a duplicating machine which would make up to 3,000 copies from a stencil. In 1876–7 he moved from Newark to Menlo Park, twenty-four miles (39 km) from New York on the Pennsylvania Railway, near Elizabeth. He had bought a house there around which he built the premises that would become his "inventions factory". It was there that he began the use of his 200- page pocket notebooks, each of which lasted him about two weeks, so prolific were his ideas. When he died he left 3,400 of them filled with notes and sketches.
    Late in 1877 he applied for a patent for a phonograph which was granted on 19 February 1878, and by the end of the year he had formed a company to manufacture this totally new product. At the time, Edison saw the device primarily as a business aid rather than for entertainment, rather as a dictating machine. In August 1878 he was granted a British patent. In July 1878 he tried to measure the heat from the solar corona at a solar eclipse viewed from Rawlins, Wyoming, but his "tasimeter" was too sensitive.
    Probably his greatest achievement was "The Subdivision of the Electric Light" or the "glow bulb". He tried many materials for the filament before settling on carbon. He gave a demonstration of electric light by lighting up Menlo Park and inviting the public. Edison was, of course, faced with the problem of inventing and producing all the ancillaries which go to make up the electrical system of generation and distribution-meters, fuses, insulation, switches, cabling—even generators had to be designed and built; everything was new. He started a number of manufacturing companies to produce the various components needed.
    In 1881 he built the world's largest generator, which weighed 27 tons, to light 1,200 lamps at the Paris Exhibition. It was later moved to England to be used in the world's first central power station with steam engine drive at Holborn Viaduct, London. In September 1882 he started up his Pearl Street Generating Station in New York, which led to a worldwide increase in the application of electric power, particularly for lighting. At the same time as these developments, he built a 1,300yd (1,190m) electric railway at Menlo Park.
    On 9 August 1884 his wife died of typhoid. Using his telegraphic skills, he proposed to 19-year-old Mina Miller in Morse code while in the company of others on a train. He married her in February 1885 before buying a new house and estate at West Orange, New Jersey, building a new laboratory not far away in the Orange Valley.
    Edison used direct current which was limited to around 250 volts. Alternating current was largely developed by George Westinghouse and Nicola Tesla, using transformers to step up the current to a higher voltage for long-distance transmission. The use of AC gradually overtook the Edison DC system.
    In autumn 1888 he patented a form of cinephotography, the kinetoscope, obtaining film-stock from George Eastman. In 1893 he set up the first film studio, which was pivoted so as to catch the sun, with a hinged roof which could be raised. In 1894 kinetoscope parlours with "peep shows" were starting up in cities all over America. Competition came from the Latham Brothers with a screen-projection machine, which Edison answered with his "Vitascope", shown in New York in 1896. This showed pictures with accompanying sound, but there was some difficulty with synchronization. Edison also experimented with captions at this early date.
    In 1880 he filed a patent for a magnetic ore separator, the first of nearly sixty. He bought up deposits of low-grade iron ore which had been developed in the north of New Jersey. The process was a commercial success until the discovery of iron-rich ore in Minnesota rendered it uneconomic and uncompetitive. In 1898 cement rock was discovered in New Village, west of West Orange. Edison bought the land and started cement manufacture, using kilns twice the normal length and using half as much fuel to heat them as the normal type of kiln. In 1893 he met Henry Ford, who was building his second car, at an Edison convention. This started him on the development of a battery for an electric car on which he made over 9,000 experiments. In 1903 he sold his patent for wireless telegraphy "for a song" to Guglielmo Marconi.
    In 1910 Edison designed a prefabricated concrete house. In December 1914 fire destroyed three-quarters of the West Orange plant, but it was at once rebuilt, and with the threat of war Edison started to set up his own plants for making all the chemicals that he had previously been buying from Europe, such as carbolic acid, phenol, benzol, aniline dyes, etc. He was appointed President of the Navy Consulting Board, for whom, he said, he made some forty-five inventions, "but they were pigeonholed, every one of them". Thus did Edison find that the Navy did not take kindly to civilian interference.
    In 1927 he started the Edison Botanic Research Company, founded with similar investment from Ford and Firestone with the object of finding a substitute for overseas-produced rubber. In the first year he tested no fewer than 3,327 possible plants, in the second year, over 1,400, eventually developing a variety of Golden Rod which grew to 14 ft (4.3 m) in height. However, all this effort and money was wasted, due to the discovery of synthetic rubber.
    In October 1929 he was present at Henry Ford's opening of his Dearborn Museum to celebrate the fiftieth anniversary of the incandescent lamp, including a replica of the Menlo Park laboratory. He was awarded the Congressional Gold Medal and was elected to the American Academy of Sciences. He died in 1931 at his home, Glenmont; throughout the USA, lights were dimmed temporarily on the day of his funeral.
    [br]
    Principal Honours and Distinctions
    Member of the American Academy of Sciences. Congressional Gold Medal.
    Further Reading
    M.Josephson, 1951, Edison, Eyre \& Spottiswode.
    R.W.Clark, 1977, Edison, the Man who Made the Future, Macdonald \& Jane.
    IMcN

    Biographical history of technology > Edison, Thomas Alva

  • 109 Ellehammer, Jacob Christian Hansen

    SUBJECT AREA: Aerospace
    [br]
    b. 14 June 1871 South Zealand, Denmark
    d. b. 20 May 1946 Copenhagen, Denmark
    [br]
    Danish inventor who took out some four hundred patents for his inventions, including aircraft.
    [br]
    Flying kites as a boy aroused Ellehammer's interest in aeronautics, and he developed a kite that could lift him off the ground. After completing an apprenticeship, he started his own manufacturing business, whose products included motor cycles. He experimented with model aircraft as a sideline and used his mo tor-cycle experience to build an aero engine during 1903–4. It had three cylinders radiating from the crankshaft, making it, in all probability, the world's first air-cooled radial engine. Ellehammer built his first full-size aircraft in 1905 and tested it in January 1906. It ran round a circular track, was tethered to a central mast and was unmanned. A more powerful engine was needed, and by September Ellehammer had improved his engine so that it was capable of lifting him for a tethered flight. In 1907 Ellehammer produced a new five-cylinder radial engine and installed it in the first manned tri-plane, which made a number of free-flight hops. Various wing designs were tested and during 1908–9 Ellehammer developed yet another radial engine, which had six cylinders arranged in two rows of three. Ellehammer's engines had a very good power-to-weight ratio, but his aircraft designs lacked an understanding of control; consequently, he never progressed beyond short hops in a straight line. In 1912 he built a helicopter with contra-rotating rotors that was a limited success. Ellehammer turned his attention to his other interests, but if he had concentrated on his excellent engines he might have become a major aero engine manufacturer.
    [br]
    Bibliography
    1931, Jeg fløj [I Flew], Copenhagen (Ellehammer's memoirs).
    Further Reading
    C.H.Gibbs-Smith, 1965, The Invention of the Aeroplane 1799–1909, London (contains concise information on Ellehammer's aircraft and their performance).
    J.H.Parkin, 1964, Bell and Baldwin, Toronto (provides more detailed descriptions).
    JDS

    Biographical history of technology > Ellehammer, Jacob Christian Hansen

  • 110 Fox, Samson

    [br]
    b. 11 July 1838 Bowling, near Bradford, Yorkshire, England
    d. 24 October 1903 Walsall, Staffordshire, England
    [br]
    English engineer who invented the corrugated boiler furnace.
    [br]
    He was the son of a cloth mill worker in Leeds and at the age of 10 he joined his father at the mill. Showing a mechanical inclination, he was apprenticed to a firm of machine-tool makers, Smith, Beacock and Tannett. There he rose to become Foreman and Traveller, and designed and patented tools for cutting bevelled gears. With his brother and one Refitt, he set up the Silver Cross engineering works for making special machine tools. In 1874 he founded the Leeds Forge Company, acting as Managing Director until 1896 and then as Chairman until shortly before his death.
    It was in 1877 that he patented his most important invention, the corrugated furnace for steam-boilers. These furnaces could withstand much higher pressures than the conventional form, and higher working pressures in marine boilers enabled triple-expansion engines to be installed, greatly improving the performance of steamships, and the outcome was the great ocean-going liners of the twentieth century. The first vessel to be equipped with the corrugated furnace was the Pretoria of 1878. At first the furnaces were made by hammering iron plates using swage blocks under a steam hammer. A plant for rolling corrugated plates was set up at Essen in Germany, and Fox installed a similar mill at his works in Leeds in 1882.
    In 1886 Fox installed a Siemens steelmaking plant and he was notable in the movement for replacing wrought iron with steel. He took out several patents for making pressed-steel underframes for railway wagons. The business prospered and Fox opened a works near Chicago in the USA, where in addition to wagon underframes he manufactured the first American pressed-steel carriages. He later added a works at Pittsburgh.
    Fox was the first in England to use water gas for his metallurgical operations and for lighting, with a saving in cost as it was cheaper than coal gas. He was also a pioneer in the acetylene industry, producing in 1894 the first calcium carbide, from which the gas is made.
    Fox took an active part in public life in and around Leeds, being thrice elected Mayor of Harrogate. As a music lover, he was a benefactor of musicians, contributing no less than £45,000 towards the cost of building the Royal College of Music in London, opened in 1894. In 1897 he sued for libel the author Jerome K.Jerome and the publishers of the Today magazine for accusing him of misusing his great generosity to the College to give a misleading impression of his commercial methods and prosperity. He won the case but was not awarded costs.
    [br]
    Principal Honours and Distinctions
    Royal Society of Arts James Watt Silver Medal and Howard Gold Medal. Légion d'honneur 1889.
    Bibliography
    1877, British Patent nos. 1097 and 2530 (the corrugated furnace or "flue", as it was often called).
    Further Reading
    Obituary, 1903, Proceedings of the Institution of Mechanical Engineers: 919–21.
    Obituary, 1903, Proceedings of the Institution of Civil Engineers (the fullest of the many obituary notices).
    G.A.Newby, 1993, "Behind the fire doors: Fox's corrugated furnace 1877 and the high pressure steamship", Transactions of the Newcomen Society 64.
    LRD

    Biographical history of technology > Fox, Samson

  • 111 Gaskill, Harvey Freeman

    [br]
    b. 19 January 1845 Royalton, New York, USA
    d. 1 April 1889 Lockport, New York, USA
    [br]
    American mechanical engineer, inventor of the water-pumping engine with flywheel and reciprocating pumps.
    [br]
    Gaskill's father was a farmer near New York, where the son attended the local schools until he was 16 years old. At the age of 13 he already showed his mechanical aptitude by inventing a revolving hayrake, which was not exploited because the family had no money. His parents moved to Lockport, New York, where Harvey became a student at Lockport Union School and then the Poughkeepsie Commercial College, from which he graduated in 1866. After a period in his uncle's law office, he entered the firm of Penfield, Martin \& Gaskill to manufacture a patent clock. Then he was involved in a planing mill and a sash-and-blind manufactory. He devised a clothes spinner and a horse hayrake, but he did not manufacture them. In 1873 he became a draughtsman in the Holly Manufacturing Company in Lockport, which made pumping machinery for waterworks. He was promoted first to Engineer and then to Superintendent of the company in 1877. In 1885 he became a member of the Board of Directors and Vice-President. But for his untimely death, he might have become President. He was also a director of several other manufacturing concerns, public utilities and banks. In 1882 he produced a pump driven by a Woolf compound engine, which was the first time that rotary power with a crank and flywheel had been applied in waterworks. His design was more compact, more economical and lower in cost than previous types and gave the Holly Company a considerable advantage for a time over their main rivals, the Worthington Pump \& Machinery Company. These steam pumps became very popular in the United States and the type was also adopted in Britain.
    [br]
    Further Reading
    As well as obituaries appearing in many American engineering journals on Gaskill's death, there is an entry in the Dictionary of American Biography, 1931, Vol. VII, New York, C.Scribner's Sons.
    RLH

    Biographical history of technology > Gaskill, Harvey Freeman

  • 112 Gestetner, David

    SUBJECT AREA: Paper and printing
    [br]
    b. March 1854 Csorna, Hungary
    d. 8 March 1939 Nice, France
    [br]
    Hungarian/British pioneer of stencil duplicating.
    [br]
    For the first twenty-five years of his life, Gestetner was a rolling stone and accordingly gathered no moss. Leaving school in 1867, he began working for an uncle in Sopron, making sausages. Four years later he apprenticed himself to another uncle, a stockbroker, in Vienna. The financial crisis of 1873 prompted a move to a restaurant, also in the family, but tiring of a menial existence, he emigrated to the USA, travelling steerage. He began to earn a living by selling Japanese kites: these were made of strong Japanese paper coated with lacquer, and he noted their long fibres and great strength, an observation that was later to prove useful when he was searching for a suitable medium for stencil duplicating. However, he did not prosper in the USA and he returned to Europe, first to Vienna and finally to London in 1879. He took a job with Fairholme \& Co., stationers in Shoe Lane, off Holborn; at last Gestetner found an outlet for his inventive genius and he began his life's work in developing stencil duplicating. His first patent was in 1879 for an application of the hectograph, an early method of duplicating documents. In 1881, he patented the toothed-wheel pen, or Cyclostyle, which made good ink-passing perforations in the stencil paper, with which he was able to pioneer the first practicable form of stencil duplicating. He then adopted a better stencil tissue of Japanese paper coated with wax, and later an improved form of pen. This assured the success of Gestetner's form of stencil duplicating and it became established practice in offices in the late 1880s. Gestetner began to manufacture the apparatus in premises in Sun Street, at first under the name of Fairholme, since they had defrayed the patent expenses and otherwise supported him financially, in return for which Gestetner assigned them his patent rights. In 1882 he patented the wheel pen in the USA and appointed an agent to sell the equipment there. In 1884 he moved to larger premises, and three years later to still larger premises. The introduction of the typewriter prompted modifications that enabled stencil duplicating to become both the standard means of printing short runs of copy and an essential piece of equipment in offices. Before the First World War, Gestetner's products were being sold around the world; in fact he created one of the first truly international distribution networks. He finally moved to a large factory to the north-east of London: when his company went public in 1929, it had a share capital of nearly £750,000. It was only with the development of electrostatic photocopying and small office offset litho machines that stencil duplicating began to decline in the 1960s. The firm David Gestetner had founded adapted to the new conditions and prospers still, under the direction of his grandson and namesake.
    [br]
    Further Reading
    W.B.Proudfoot, 1972, The Origin of Stencil Duplicating London: Hutchinson (gives a good account of the method and the development of the Gestetner process, together with some details of his life).
    H.V.Culpan, 1951, "The House of Gestetner", in Gestetner 70th Anniversary Celebration Brochure, London: Gestetner.
    LRD

    Biographical history of technology > Gestetner, David

  • 113 Gooch, Sir Daniel

    [br]
    b. 24 August 1816 Bedlington, Northumberland, England
    d. 15 October 1889 Clewer Park, Berkshire, England
    [br]
    English engineer, first locomotive superintendent of the Great Western Railway and pioneer of transatlantic electric telegraphy.
    [br]
    Gooch gained experience as a pupil with several successive engineering firms, including Vulcan Foundry and Robert Stephenson \& Co. In 1837 he was engaged by I.K. Brunel, who was then building the Great Western Railway (GWR) to the broad gauge of 7 ft 1/4 in. (2.14 m), to take charge of the railway's locomotive department. He was just 21 years old. The initial locomotive stock comprised several locomotives built to such extreme specifications laid down by Brunel that they were virtually unworkable, and two 2–2–2 locomotives, North Star and Morning Star, which had been built by Robert Stephenson \& Co. but left on the builder's hands. These latter were reliable and were perpetuated. An enlarged version, the "Fire Fly" class, was designed by Gooch and built in quantity: Gooch was an early proponent of standardization. His highly successful 4–2–2 Iron Duke of 1847 became the prototype of GWR express locomotives for the next forty-five years, until the railway's last broad-gauge sections were narrowed. Meanwhile Gooch had been largely responsible for establishing Swindon Works, opened in 1843. In 1862 he designed 2–4–0 condensing tank locomotives to work the first urban underground railway, the Metropolitan Railway in London. Gooch retired in 1864 but was then instrumental in arranging for Brunel's immense steamship Great Eastern to be used to lay the first transatlantic electric telegraph cable: he was on board when the cable was successfully laid in 1866. He had been elected Member of Parliament for Cricklade (which constituency included Swindon) in 1865, and the same year he had accepted an invitation to become Chairman of the Great Western Railway Company, which was in financial difficulties; he rescued it from near bankruptcy and remained Chairman until shortly before his death. The greatest engineering work undertaken during his chairmanship was the boring of the Severn Tunnel.
    [br]
    Principal Honours and Distinctions
    Knighted 1866 (on completion of transatlantic telegraph).
    Bibliography
    1972, Sir Daniel Gooch, Memoirs and Diary, ed. R.B.Wilson, with introd. and notes, Newton Abbot: David \& Charles.
    Further Reading
    A.Platt, 1987, The Life and Times of Daniel Gooch, Gloucester: Alan Sutton (puts Gooch's career into context).
    C.Hamilton Ellis, 1958, Twenty Locomotive Men, Ian Allan (contains a good short biography).
    J.Kieve, 1973, The Electric Telegraph, Newton Abbot: David \& Charles, pp. 112–5.
    PJGR

    Biographical history of technology > Gooch, Sir Daniel

  • 114 Gramme, Zénobe Théophile

    [br]
    b. 4 April 1826 Jehay-Bodignée, Belgium
    d. 20 January 1901 Bois de Colombes, Paris, France
    [br]
    Belgian engineer whose improvements to the dynamo produced a machine ready for successful commercial exploitation.
    [br]
    Gramme trained as a carpenter and showed an early talent for working with machinery. Moving to Paris he found employment in the Alliance factory as a model maker. With a growing interest in electricity he left to become an instrument maker with Heinrich Daniel Rühmkorff. In 1870 he patented the uniformly wound ring-armature dynamo with which his name is associated. Together with Hippolyte Fontaine, in 1871 Gramme opened a factory to manufacture his dynamos. They rapidly became a commercial success for both arc lighting and electrochemical purposes, international publicity being achieved at exhibitions in Vienna, Paris and Philadelphia. It was the realization that a Gramme machine was capable of running as a motor, i.e. the reversibility of function, that illustrated the entire concept of power transmission by electricity. This was first publicly demonstrated in 1873. In 1874 Gramme reduced the size and increased the efficiency of his generators by relying completely on the principle of self-excitation. It was the first practical machine in which were combined the features of continuity of commutation, self-excitation, good lamination of the armature core and a reasonably good magnetic circuit. This dynamo, together with the self-regulating arc lamps then available, made possible the innumerable electric-lighting schemes that followed. These were of the greatest importance in demonstrating that electric lighting was a practical and economic means of illumination. Gramme also designed an alternator to operate Jablochkoff candles. For some years he took an active part in the operations of the Société Gramme and also experimented in his own workshop without collaboration, but made no further contribution to electrical technology.
    [br]
    Principal Honours and Distinctions
    Knight Commander, Order of Leopold of Belgium 1897. Chevalier de la Légion d'honneur. Chevalier, Order of the Iron Crown, Austria.
    Bibliography
    9 June 1870, British patent no. 1,668 (the ring armature machine).
    1871, Comptes rendus 73:175–8 (Gramme's first description of his invention).
    Further Reading
    W.J.King, 1962, The Development of Electrical Technology in the 19th Century, Washington, DC: Smithsonian Institution, Paper 30, pp. 377–90 (an extensive account of Gramme's machines).
    S.P.Thompson, 1901, obituary, Electrician 66: 509–10.
    C.C.Gillispie (ed.), 1972, Dictionary of Scientific Biography, Vol. V, New York, p. 496.
    GW

    Biographical history of technology > Gramme, Zénobe Théophile

  • 115 Gresley, Sir Herbert Nigel

    [br]
    b. 19 June 1876 Edinburgh, Scotland
    d. 5 April 1941 Hertford, England
    [br]
    English mechanical engineer, designer of the A4-class 4–6–2 locomotive holding the world speed record for steam traction.
    [br]
    Gresley was the son of the Rector of Netherseale, Derbyshire; he was educated at Marlborough and by the age of 13 was skilled at making sketches of locomotives. In 1893 he became a pupil of F.W. Webb at Crewe works, London \& North Western Railway, and in 1898 he moved to Horwich works, Lancashire \& Yorkshire Railway, to gain drawing-office experience under J.A.F.Aspinall, subsequently becoming Foreman of the locomotive running sheds at Blackpool. In 1900 he transferred to the carriage and wagon department, and in 1904 he had risen to become its Assistant Superintendent. In 1905 he moved to the Great Northern Railway, becoming Superintendent of its carriage and wagon department at Doncaster under H.A. Ivatt. In 1906 he designed and produced a bogie luggage van with steel underframe, teak body, elliptical roof, bowed ends and buckeye couplings: this became the prototype for East Coast main-line coaches built over the next thirty-five years. In 1911 Gresley succeeded Ivatt as Locomotive, Carriage \& Wagon Superintendent. His first locomotive was a mixed-traffic 2–6–0, his next a 2–8–0 for freight. From 1915 he worked on the design of a 4–6–2 locomotive for express passenger traffic: as with Ivatt's 4 4 2s, the trailing axle would allow the wide firebox needed for Yorkshire coal. He also devised a means by which two sets of valve gear could operate the valves on a three-cylinder locomotive and applied it for the first time on a 2–8–0 built in 1918. The system was complex, but a later simplified form was used on all subsequent Gresley three-cylinder locomotives, including his first 4–6–2 which appeared in 1922. In 1921, Gresley introduced the first British restaurant car with electric cooking facilities.
    With the grouping of 1923, the Great Northern Railway was absorbed into the London \& North Eastern Railway and Gresley was appointed Chief Mechanical Engineer. More 4–6– 2s were built, the first British class of such wheel arrangement. Modifications to their valve gear, along lines developed by G.J. Churchward, reduced their coal consumption sufficiently to enable them to run non-stop between London and Edinburgh. So that enginemen might change over en route, some of the locomotives were equipped with corridor tenders from 1928. The design was steadily improved in detail, and by comparison an experimental 4–6–4 with a watertube boiler that Gresley produced in 1929 showed no overall benefit. A successful high-powered 2–8–2 was built in 1934, following the introduction of third-class sleeping cars, to haul 500-ton passenger trains between Edinburgh and Aberdeen.
    In 1932 the need to meet increasing road competition had resulted in the end of a long-standing agreement between East Coast and West Coast railways, that train journeys between London and Edinburgh by either route should be scheduled to take 8 1/4 hours. Seeking to accelerate train services, Gresley studied high-speed, diesel-electric railcars in Germany and petrol-electric railcars in France. He considered them for the London \& North Eastern Railway, but a test run by a train hauled by one of his 4–6–2s in 1934, which reached 108 mph (174 km/h), suggested that a steam train could better the railcar proposals while its accommodation would be more comfortable. To celebrate the Silver Jubilee of King George V, a high-speed, streamlined train between London and Newcastle upon Tyne was proposed, the first such train in Britain. An improved 4–6–2, the A4 class, was designed with modifications to ensure free running and an ample reserve of power up hill. Its streamlined outline included a wedge-shaped front which reduced wind resistance and helped to lift the exhaust dear of the cab windows at speed. The first locomotive of the class, named Silver Link, ran at an average speed of 100 mph (161 km/h) for 43 miles (69 km), with a maximum speed of 112 1/2 mph (181 km/h), on a seven-coach test train on 27 September 1935: the locomotive went into service hauling the Silver Jubilee express single-handed (since others of the class had still to be completed) for the first three weeks, a round trip of 536 miles (863 km) daily, much of it at 90 mph (145 km/h), without any mechanical troubles at all. Coaches for the Silver Jubilee had teak-framed, steel-panelled bodies on all-steel, welded underframes; windows were double glazed; and there was a pressure ventilation/heating system. Comparable trains were introduced between London Kings Cross and Edinburgh in 1937 and to Leeds in 1938.
    Gresley did not hesitate to incorporate outstanding features from elsewhere into his locomotive designs and was well aware of the work of André Chapelon in France. Four A4s built in 1938 were equipped with Kylchap twin blast-pipes and double chimneys to improve performance still further. The first of these to be completed, no. 4468, Mallard, on 3 July 1938 ran a test train at over 120 mph (193 km/h) for 2 miles (3.2 km) and momentarily achieved 126 mph (203 km/h), the world speed record for steam traction. J.Duddington was the driver and T.Bray the fireman. The use of high-speed trains came to an end with the Second World War. The A4s were then demonstrated to be powerful as well as fast: one was noted hauling a 730-ton, 22-coach train at an average speed exceeding 75 mph (120 km/h) over 30 miles (48 km). The war also halted electrification of the Manchester-Sheffield line, on the 1,500 volt DC overhead system; however, anticipating eventual resumption, Gresley had a prototype main-line Bo-Bo electric locomotive built in 1941. Sadly, Gresley died from a heart attack while still in office.
    [br]
    Principal Honours and Distinctions
    Knighted 1936. President, Institution of Locomotive Engineers 1927 and 1934. President, Institution of Mechanical Engineers 1936.
    Further Reading
    F.A.S.Brown, 1961, Nigel Gresley, Locomotive Engineer, Ian Allan (full-length biography).
    John Bellwood and David Jenkinson, Gresley and Stanier. A Centenary Tribute (a good comparative account).
    PJGR

    Biographical history of technology > Gresley, Sir Herbert Nigel

  • 116 Griffith, Alan Arnold

    [br]
    b. 13 June 1893 London, England
    d. 13 October 1963 Farnborough, England
    [br]
    English research engineer responsible for many original ideas, including jet-lift aircraft.
    [br]
    Griffith was very much a "boffin", for he was a quiet, thoughtful man who shunned public appearances, yet he produced many revolutionary ideas. During the First World War he worked at the Royal Aircraft Factory, Farnborough, where he carried out research into structural analysis. Because of his use of soap films in solving torsion problems, he was nicknamed "Soap-bubble".
    During the 1920s Griffith carried out research into gas-turbine design at the Royal Aircraft Establishment (RAE; as the Royal Aircraft Factory had become). In 1929 he made proposals for a gas turbine driving a propeller (a turboprop), but the idea was shelved. In the 1930s he was head of the Engine Department of the RAE and developed multi-stage axial compressors, which were later used in jet engines. This work attracted the attention of E.W. (later Lord) Hives of Rolls-Royce who persuaded Griffith to join Rolls-Royce in 1939. His first major project was a "contra-flow" jet engine, which was a good idea but a practical failure. However, Griffith's axial-flow compressor experience played an important part in the success of Rolls-Royce jet engines from the Avon onwards. He also proposed the bypass principle used for the Conway.
    Griffith experimented with suction to control the boundary layer on wings, but his main interest in the 1950s centred on vertical-take-off and -landing aircraft. He developed the remarkable "flying bedstead", which consisted of a framework (the bedstead) in which two jet engines were mounted with their jets pointing downwards, thus lifting the machine vertically. It first flew in 1954 and provided much valuable data. The Short SC1 aircraft followed, with four small jets providing lift for vertical take-off and one conventional jet to provide forward propulsion. This flew successfully in the late 1950s and early 1960s. Griffith proposed an airliner with lifting engines, but the weight of the lifting engines when not in use would have been a serious handicap. He retired in 1960.
    [br]
    Principal Honours and Distinctions
    CBE 1948. FRS 1941. Royal Aeronautical Society Silver Medal 1955; Blériot Medal 1962.
    Bibliography
    Griffith produced many technical papers in his early days; for example: 1926, Aerodynamic Theory of Turbine Design, Farnborough.
    Further Reading
    D.Eyre, 1966, "Dr A.A.Griffith, CBE, FRS", Journal of the Royal Aeronautical Society (June) (a detailed obituary).
    F.W.Armstrong, 1976, "The aero engine and its progress: fifty years after Griffith", Aeronautical Journal (December).
    O.Stewart, 1966, Aviation: The Creative Ideas, London (provides brief descriptions of Griffith's many projects).
    JDS

    Biographical history of technology > Griffith, Alan Arnold

  • 117 Guinand, Pierre Louis

    [br]
    b. 20 April 1748 Brenets, Neuchâtel, Switzerland
    d. 13 February 1824 Brenets, Neuchâtel, Switzerland
    [br]
    Swiss optical glassmaker.
    [br]
    Guinand received little formal education and followed his father's trade of joiner. He specialized in making clock cases, but after learning how to cast metals he took up the more lucrative work of making watch cases. When he was about 20 years old, in a customer's house he caught sight of an English telescope, a rarity in a Swiss mountain village. Intrigued, he obtained permission to examine it. This aroused his interest in optical matters and he began making spectacles and small telescopes.
    Achromatic lenses were becoming known, their use being to remove the defect of chromatic aberration or coloured optical images, but there remained defects due to imperfections in the glass itself. Stimulated by offers of prizes by scientific bodies, including the Royal Society of London, for removing these defects, Guinand set out to remedy them. He embarked in 1784 on a long and arduous series of experiments, varying the materials and techniques for making glass. The even more lucrative trade of making bells for repeaters provided the funds for a furnace capable of holding 2 cwt (102 kg) of molten glass. By 1798 or so he had succeeded in making discs of homogeneous glass. He impressed the famous Parisian astronomer de Lalande with them and his glass became well enough known for scientists to visit him. In 1805 Fraunhofer persuaded Guinand to join his optical-instrument works at Benediktheurn, in Bavaria, to make lenses. After nine years, Guinand returned to Brenets with a pension, on condition he made no more glass and disclosed no details of his methods. After two years these conditions had become irksome and he relinquished the pension. On 19 February 1823 Guinand described his discoveries in his classic "Memoir on the making of optical glass, more particularly of glass of high refractive index for use in the production of achromatic lenses", presented to the Société de Physique et d'Histoire Naturelle de Genève. This gives details of his experiments and investigations and discusses a suitable pot-clay stirrer and stirring mechanism for the molten glass, with temperature control, to overcome optical-glass defects such as bubbles, seeds, cords and colours. Guinand was hailed as the man in Europe who had achieved this and has thus rightly been called the founder of the era of optical glassmaking.
    [br]
    Further Reading
    The fullest account in English of Guinand's life and work is 'Some account of the late M. Guinand and of the discovery made by him in the manufacture of flint glass for large telescopes by F.R., extracted from the Bibliothèque Universelle des Sciences, trans.
    C.F.de B.', Quart.J.Sci.Roy.Instn.Lond. (1825) 19: 244–58.
    M.von Rohr, 1924, "Pierre Louis Guinand", Zeitschrift für Instr., 46:121, 139, with an English summary in J.Glass. Tech., (1926) 10: abs. 150–1.
    LRD

    Biographical history of technology > Guinand, Pierre Louis

  • 118 Guo Shoujing (Kuo Shou-Ching)

    SUBJECT AREA: Canals, Civil engineering
    [br]
    b. 1231 China
    d. 1316 China
    [br]
    Chinese mathematician, astronomer and civil engineer.
    [br]
    First, from 1262, he was engaged in hydraulic-engineering works for Kublai Khan. He began astronomical and calendrical investigations in 1276, and became the greatest astronomer of the Yuan dynasty. He perfected interpolation formulae (a method of finite differences) and was the founder of the study of spherical trigonometry in China; this was applied to the circles of the heavenly sphere. He planned the Ji Zhou, the summit section of the Grand Canal through the Shandong foothills, in 1283. Although the canal had to await further improvement before it could become fully effective, it was nevertheless the world's first successful entirely artificial summit canal.
    Guo Shoujing was responsible for the construction of the Tong Hui He (Channel of Communicating Grace) canal with twenty lock gates in 1293, in addition to the overhaul of the entire Grand Canal. He constructed a number of devices, including 40 ft (12 m) gnomons in 1276, with which he made some of the most accurate measurements of the sun's solstitial shadows, the results of which were collected in a book that is now lost. Between 1276 and 1279 he also constructed at least one water-driven mechanical escapement clock with sophisticated jack work, and the Beijing observatory and its equipment.
    [br]
    Further Reading
    J.Needham, Science and Civilisation in China, Cambridge: Cambridge University Press, 1959–1971, vols III, pp. 48–50, 109–10, 294, 296, 299, 349, 350; IV. 2, pp. 504–5; IV.
    3, pp. 312ff., 319, 355; Heavenly Clockwork, 1960, pp. 134, 136ff., 159, 160, 163;
    Clerks and Craftsmen in China and the West, 1970, pp. 2, 5, 9–10, 16, 96, 398.
    LRD

    Biographical history of technology > Guo Shoujing (Kuo Shou-Ching)

  • 119 Gurney, Sir Goldsworthy

    [br]
    b. 14 February 1793 Treator, near Padstow, Cornwall, England
    d. 28 February 1875 Reeds, near Bude, Cornwall, England
    [br]
    English pioneer of steam road transport.
    [br]
    Educated at Truro Grammar School, he then studied under Dr Avery at Wadebridge to become a doctor of medicine. He settled as a surgeon in Wadebridge, spending his leisure time in building an organ and in the study of chemistry and mechanical science. He married Elizabeth Symons in 1814, and in 1820 moved with his wife to London. He delivered a course of lectures at the Surrey Institution on the elements of chemical science, attended by, amongst others, the young Michael Faraday. While there, Gurney made his first invention, the oxyhydrogen blowpipe. For this he received the Gold Medal of the Society of Arts. He experimented with lime and magnesia for the production of an illuminant for lighthouses with some success. He invented a musical instrument of glasses played like a piano.
    In 1823 he started experiments related to steam and locomotion which necessitated taking a partner in to his medical practice, from which he resigned shortly after. His objective was to produce a steam-driven vehicle to run on common roads. His invention of the steam-jet of blast greatly improved the performance of the steam engine. In 1827 he took his steam carriage to Cyfarthfa at the request of Mr Crawshaw, and while there applied his steam-jet to the blast furnaces, greatly improving their performance in the manufacture of iron. Much of the success of George Stephenson's steam engine, the Rocket was due to Gurney's steam blast.
    In July 1829 Gurney made a historic trip with his road locomotive. This was from London to Bath and back, which was accomplished at a speed of 18 mph (29 km/h) and was made at the instigation of the Quartermaster-General of the Army. So successful was the carriage that Sir Charles Dance started to run a regular service with it between Gloucester and Cheltenham. This ran for three months without accident, until Parliament introduced prohibitive taxation on all self-propelled vehicles. A House of Commons committee proposed that these should be abolished as inhibiting progress, but this was not done. Sir Goldsworthy petitioned Parliament on the harm being done to him, but nothing was done and the coming of the railways put the matter beyond consideration. He devoted his time to finding other uses for the steam-jet: it was used for extinguishing fires in coal-mines, some of which had been burning for many years; he developed a stove for the production of gas from oil and other fatty substances, intended for lighthouses; he was responsible for the heating and the lighting of both the old and the new Houses of Parliament. His evidence after a colliery explosion resulted in an Act of Parliament requiring all mines to have two shafts. He was knighted in 1863, the same year that he suffered a stroke which incapacitated him. He retired to his house at Reeds, near Bude, where he was looked after by his daughter, Anna.
    [br]
    Principal Honours and Distinctions
    Knighted 1863. Society of Arts Gold Medal.
    IMcN

    Biographical history of technology > Gurney, Sir Goldsworthy

  • 120 Hamilton, Harold Lee (Hal)

    [br]
    b. 14 June 1890 Little Shasta, California, USA
    d. 3 May 1969 California, USA
    [br]
    American pioneer of diesel rail traction.
    [br]
    Orphaned as a child, Hamilton went to work for Southern Pacific Railroad in his teens, and then worked for several other companies. In his spare time he learned mathematics and physics from a retired professor. In 1911 he joined the White Motor Company, makers of road motor vehicles in Denver, Colorado, where he had gone to recuperate from malaria. He remained there until 1922, apart from an eighteenth-month break for war service.
    Upon his return from war service, Hamilton found White selling petrol-engined railbuses with mechanical transmission, based on road vehicles, to railways. He noted that they were not robust enough and that the success of petrol railcars with electric transmission, built by General Electric since 1906, was limited as they were complex to drive and maintain. In 1922 Hamilton formed, and became President of, the Electro- Motive Engineering Corporation (later Electro-Motive Corporation) to design and produce petrol-electric rail cars. Needing an engine larger than those used in road vehicles, yet lighter and faster than marine engines, he approached the Win ton Engine Company to develop a suitable engine; in addition, General Electric provided electric transmission with a simplified control system. Using these components, Hamilton arranged for his petrol-electric railcars to be built by the St Louis Car Company, with the first being completed in 1924. It was the beginning of a highly successful series. Fuel costs were lower than for steam trains and initial costs were kept down by using standardized vehicles instead of designing for individual railways. Maintenance costs were minimized because Electro-Motive kept stocks of spare parts and supplied replacement units when necessary. As more powerful, 800 hp (600 kW) railcars were produced, railways tended to use them to haul trailer vehicles, although that practice reduced the fuel saving. By the end of the decade Electro-Motive needed engines more powerful still and therefore had to use cheap fuel. Diesel engines of the period, such as those that Winton had made for some years, were too heavy in relation to their power, and too slow and sluggish for rail use. Their fuel-injection system was erratic and insufficiently robust and Hamilton concluded that a separate injector was needed for each cylinder.
    In 1930 Electro-Motive Corporation and Winton were acquired by General Motors in pursuance of their aim to develop a diesel engine suitable for rail traction, with the use of unit fuel injectors; Hamilton retained his position as President. At this time, industrial depression had combined with road and air competition to undermine railway-passenger business, and Ralph Budd, President of the Chicago, Burlington \& Quincy Railroad, thought that traffic could be recovered by way of high-speed, luxury motor trains; hence the Pioneer Zephyr was built for the Burlington. This comprised a 600 hp (450 kW), lightweight, two-stroke, diesel engine developed by General Motors (model 201 A), with electric transmission, that powered a streamlined train of three articulated coaches. This train demonstrated its powers on 26 May 1934 by running non-stop from Denver to Chicago, a distance of 1,015 miles (1,635 km), in 13 hours and 6 minutes, when the fastest steam schedule was 26 hours. Hamilton and Budd were among those on board the train, and it ushered in an era of high-speed diesel trains in the USA. By then Hamilton, with General Motors backing, was planning to use the lightweight engine to power diesel-electric locomotives. Their layout was derived not from steam locomotives, but from the standard American boxcar. The power plant was mounted within the body and powered the bogies, and driver's cabs were at each end. Two 900 hp (670 kW) engines were mounted in a single car to become an 1,800 hp (l,340 kW) locomotive, which could be operated in multiple by a single driver to form a 3,600 hp (2,680 kW) locomotive. To keep costs down, standard locomotives could be mass-produced rather than needing individual designs for each railway, as with steam locomotives. Two units of this type were completed in 1935 and sent on trial throughout much of the USA. They were able to match steam locomotive performance, with considerable economies: fuel costs alone were halved and there was much less wear on the track. In the same year, Electro-Motive began manufacturing diesel-electrie locomotives at La Grange, Illinois, with design modifications: the driver was placed high up above a projecting nose, which improved visibility and provided protection in the event of collision on unguarded level crossings; six-wheeled bogies were introduced, to reduce axle loading and improve stability. The first production passenger locomotives emerged from La Grange in 1937, and by early 1939 seventy units were in service. Meanwhile, improved engines had been developed and were being made at La Grange, and late in 1939 a prototype, four-unit, 5,400 hp (4,000 kW) diesel-electric locomotive for freight trains was produced and sent out on test from coast to coast; production versions appeared late in 1940. After an interval from 1941 to 1943, when Electro-Motive produced diesel engines for military and naval use, locomotive production resumed in quantity in 1944, and within a few years diesel power replaced steam on most railways in the USA.
    Hal Hamilton remained President of Electro-Motive Corporation until 1942, when it became a division of General Motors, of which he became Vice-President.
    [br]
    Further Reading
    P.M.Reck, 1948, On Time: The History of the Electro-Motive Division of General Motors Corporation, La Grange, Ill.: General Motors (describes Hamilton's career).
    PJGR

    Biographical history of technology > Hamilton, Harold Lee (Hal)

См. также в других словарях:

  • Subject indexing — is the act of describing a document by index terms to indicate what the document is about or to summarize its content. Indices are constructed, separately, on three distinct levels: terms in a document such as a book; objects in a collection such …   Wikipedia

  • subject — {{Roman}}I.{{/Roman}} noun 1 topic or person under consideration ADJECTIVE ▪ big, complex, complicated, vast ▪ simple ▪ excellent, fascinating …   Collocations dictionary

  • subject — sub|ject1 [ sʌb,dʒekt ] noun count *** ▸ 1 something you talk/write about ▸ 2 something taught at school ▸ 3 in grammar/linguistics ▸ 4 someone in scientific test ▸ 5 someone/something shown in art, etc. ▸ 6 someone ruled by king/queen 1. ) an… …   Usage of the words and phrases in modern English

  • subject — I UK [ˈsʌbdʒɪkt] / US [ˈsʌbˌdʒekt] noun [countable] Word forms subject : singular subject plural subjects *** 1) an idea, problem, situation etc that you discuss or write about Can we talk about a different subject please? subject of: He s never… …   English dictionary

  • Subject matter in South Park — South Park has attempted to cover and satirize a large number of topics over the course of its run. In more recent years, the use of computer animation has made it possible to edit episodes in days, quickly commenting on recent events (Elián… …   Wikipedia

  • become — verb Become is used with these nouns as the subject: ↑mood, ↑society, ↑weather Become is used with these nouns as the object: ↑addiction, ↑alcoholic, ↑archbishop, ↑burden, ↑caricature, ↑Catholic, ↑champion, ↑ …   Collocations dictionary

  • become out of touch with something — be, become, etc. out of ˈtouch (with sth) idiom to not know or understand what is happening in a particular subject or area • Unfortunately, the people making the decisions are out of touch with the real world. Main entry: ↑touchidiom …   Useful english dictionary

  • become out of touch — be, become, etc. out of ˈtouch (with sth) idiom to not know or understand what is happening in a particular subject or area • Unfortunately, the people making the decisions are out of touch with the real world. Main entry: ↑touchidiom …   Useful english dictionary

  • British subject — British Commonwealth citizenship …   Wikipedia

  • Object–verb–subject — Linguistic typology Morphological Isolating Synthetic Polysynthetic Fusional Agglutinative Morphosyntactic Alig …   Wikipedia

  • Object Verb Subject — (OVS) or Object Verb Agent (OVA) is one of the permutations of expression used in linguistic typology, although it is rare among languages in general. OVS denotes the sequence Object Verb Subject in unmarked expressions: Oranges ate Sam , Thorns… …   Wikipedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»