-
41 исследование
1. с. research2. с. investigation, study3. с. exploration4. с. analysis, examinationисследование с целью … — investigation to find
исследование методом «возбуждение — отклик» — stimulus-response analysis
Синонимический ряд:1. изыскание (сущ.) изыскание; разыскание2. обследование (сущ.) обследование; освидетельствование; осмотр3. проведение исследования (сущ.) изучение; проведение исследования -
42 Cayley, Sir George
SUBJECT AREA: Aerospace[br]b. 27 December 1773 Scarborough, Englandd. 15 December 1857 Brompton Hall, Yorkshire, England[br]English pioneer who laid down the basic principles of the aeroplane in 1799 and built a manned glider in 1853.[br]Cayley was born into a well-to-do Yorkshire family living at Brompton Hall. He was encouraged to study mathematics, navigation and mechanics, particularly by his mother. In 1792 he succeeded to the baronetcy and took over the daunting task of revitalizing the run-down family estate.The first aeronautical device made by Cayley was a copy of the toy helicopter invented by the Frenchmen Launoy and Bienvenu in 1784. Cayley's version, made in 1796, convinced him that a machine could "rise in the air by mechanical means", as he later wrote. He studied the aerodynamics of flight and broke away from the unsuccessful ornithopters of his predecessors. In 1799 he scratched two sketches on a silver disc: one side of the disc showed the aerodynamic force on a wing resolved into lift and drag, and on the other side he illustrated his idea for a fixed-wing aeroplane; this disc is preserved in the Science Museum in London. In 1804 he tested a small wing on the end of a whirling arm to measure its lifting power. This led to the world's first model glider, which consisted of a simple kite (the wing) mounted on a pole with an adjustable cruciform tail. A full-size glider followed in 1809 and this flew successfully unmanned. By 1809 Cayley had also investigated the lifting properties of cambered wings and produced a low-drag aerofoil section. His aim was to produce a powered aeroplane, but no suitable engines were available. Steam-engines were too heavy, but he experimented with a gunpowder motor and invented the hot-air engine in 1807. He published details of some of his aeronautical researches in 1809–10 and in 1816 he wrote a paper on airships. Then for a period of some twenty-five years he was so busy with other activities that he largely neglected his aeronautical researches. It was not until 1843, at the age of 70, that he really had time to pursue his quest for flight. The Mechanics' Magazine of 8 April 1843 published drawings of "Sir George Cayley's Aerial Carriage", which consisted of a helicopter design with four circular lifting rotors—which could be adjusted to become wings—and two pusher propellers. In 1849 he built a full-size triplane glider which lifted a boy off the ground for a brief hop. Then in 1852 he proposed a monoplane glider which could be launched from a balloon. Late in 1853 Cayley built his "new flyer", another monoplane glider, which carried his coachman as a reluctant passenger across a dale at Brompton, Cayley became involved in public affairs and was MP for Scarborough in 1832. He also took a leading part in local scientific activities and was co-founder of the British Association for the Advancement of Science in 1831 and of the Regent Street Polytechnic Institution in 1838.[br]BibliographyCayley wrote a number of articles and papers, the most significant being "On aerial navigation", Nicholson's Journal of Natural Philosophy (November 1809—March 1810) (published in three numbers); and two further papers with the same title in Philosophical Magazine (1816 and 1817) (both describe semi-rigid airships).Further ReadingL.Pritchard, 1961, Sir George Cayley, London (the standard work on the life of Cayley).C.H.Gibbs-Smith, 1962, Sir George Cayley's Aeronautics 1796–1855, London (covers his aeronautical achievements in more detail).—1974, "Sir George Cayley, father of aerial navigation (1773–1857)", Aeronautical Journal (Royal Aeronautical Society) (April) (an updating paper).JDS -
43 Reichenbach, Georg Friedrich von
SUBJECT AREA: Mechanical, pneumatic and hydraulic engineering, Photography, film and optics, Public utilities[br]b. 24 August 1772 Durlach, Baden, Germanyd. 21 May 1826 Munich, Germany[br]German engineer.[br]While he was attending the Military School at Mannheim, Reichenbach drew attention to himself due to the mathematical instruments that he had designed. On the recommendation of Count Rumford in Munich, the Bavarian government financed a two-year stay in Britain so that Reichenbach could become acquainted with modern mechanical engineering. He returned to Mannheim in 1793, and during the Napoleonic Wars he was involved in the manufacture of arms. In Munich, where he was in the service of the Bavarian state from 1796, he started producing precision instruments in his own time. His basic invention was the design of a dividing machine for circles, produced at the end of the eighteenth century. The astronomic and geodetic instruments he produced excelled all the others for their precision. His telescopes in particular, being perfect in use and of solid construction, soon brought him an international reputation. They were manufactured at the MathematicMechanical Institute, which he had jointly founded with Joseph Utzschneider and Joseph Liebherr in 1804 and which became a renowned training establishment. The glasses and lenses were produced by Joseph Fraunhofer who joined the company in 1807.In the same year he was put in charge of the technical reorganization of the salt-works at Reichenhall. After he had finished the brine-transport line from Reichenhall to Traunstein in 1810, he started on the one from Berchtesgaden to Reichenhall which was an extremely difficult task because of the mountainous area that had to be crossed. As water was the only source of energy available he decided to use water-column engines for pumping the brine in the pipes of both lines. Such devices had been in use for pumping purposes in different mining areas since the middle of the eighteenth century. Reichenbach knew about the one constructed by Joseph Karl Hell in Slovakia, which in principle had just been a simple piston-pump driven by water which did not work satisfactorily. Instead he constructed a really effective double-action water-column engine; this was a short time after Richard Trevithick had constructed a similar machine in England. For the second line he improved the system and built a single-action pump. All the parts of it were made of metal, which made them easy to produce, and the pumps proved to be extremely reliable, working for over 100 years.At the official opening of the line in 1817 the Bavarian king rewarded him generously. He remained in the state's service, becoming head of the department for roads and waterways in 1820, and he contributed to the development of Bavarian industry as well as the public infrastructure in many ways as a result of his mechanical skill and his innovative engineering mind.[br]Further ReadingBauernfeind, "Georg von Reichenbach" Allgemeine deutsche Biographie 27:656–67 (a reliable nineteenth-century account).W.Dyck, 1912, Georg v. Reichenbach, Munich.K.Matschoss, 1941, Grosse Ingenieure, Munich and Berlin, 3rd edn. 121–32 (a concise description of his achievements in the development of optical instruments and engineering).WKBiographical history of technology > Reichenbach, Georg Friedrich von
-
44 Categories
Two general and basic principles are proposed for the formation of categories: The first has to do with the function of category systems and asserts that the task of category systems is to provide maximum information with the least cognitive effort [("cognitive economy")]; the second has to do with the structure of the information so provided and asserts that the perceived world comes as structured information rather than than arbitrary or unpredictable attributes [("perceived world structure")]. Thus maximum information with least cognitive effort is achieved if categories map the perceived world structure as closely as possible. This condition can be achieved either by the mapping of categories to given attribute structures or by the definition or redefinition of attributes to render a given set of categories appropriately structured. (Rosch, 1978, p. 28)Historical dictionary of quotations in cognitive science > Categories
-
45 Cognitive Psychology
The basic reason for studying cognitive processes has become as clear as the reason for studying anything else: because they are there. Our knowledge of the world must be somehow developed from stimulus input.... Cognitive processes surely exist, so it can hardly be unscientific to study them. (Neisser, 1967, p. 5).The task of the cognitive psychologist is a highly inferential one. The cognitive psychologist must proceed from observations of the behavior of humans performing intellectual tasks to conclusions about the abstract mechanisms underlying the behavior. Developing a theory in cognitive psychology is much like developing a model for the working of the engine of a strange new vehicle by driving the vehicle, being unable to open it up to inspect the engine itself....It is well understood from the automata theory... that many different mechanisms can generate the same external behavior. (Anderson, 1980, pp. 12, 17)[Cognitive psychology does not] deal with whole people but with a very special and bizarre-almost Frankensteinian-preparation, which consists of a brain attached to two eyes, two ears, and two index fingers. This preparation is only to be found inside small, gloomy cubicles, outside which red lights burn to warn ordinary people away.... It does not feel hungry or tired or inquisitive; it does not think extraneous thoughts or try to understand what is going on. It is, in short, a computer, made in the image of the larger electronic organism that sends it stimuli and records its responses. (Claxton, 1980, p. 13)4) Cognitive Psychology Has Not Succeeded in Making a Significant Contribution to the Understanding of the Human MindCognitive psychology is not getting anywhere; that in spite of our sophisticated methodology, we have not succeeded in making a substantial contribution toward the understanding of the human mind.... A short time ago, the information processing approach to cognition was just beginning. Hopes were high that the analysis of information processing into a series of discrete stages would offer profound insights into human cognition. But in only a few short years the vigor of this approach was spent. It was only natural that hopes that had been so high should sink low. (Glass, Holyoak & Santa, 1979, p. ix)Cognitive psychology attempts to understand the nature of human intelligence and how people think. (Anderson, 1980, p. 3)6) The Rise of Cognitive Psychology Demonstrates That the Impeccable Peripheralism of Stimulus- Response Theories Could Not LastThe past few years have witnessed a noticeable increase in interest in an investigation of the cognitive processes.... It has resulted from a recognition of the complex processes that mediate between the classical "stimuli" and "responses" out of which stimulus-response learning theories hoped to fashion a psychology that would by-pass anything smacking of the "mental." The impeccable peripheralism of such theories could not last. One might do well to have a closer look at these intervening "cognitive maps." (Bruner, Goodnow & Austin, 1956, p. vii)Historical dictionary of quotations in cognitive science > Cognitive Psychology
См. также в других словарях:
Task analysis — is the analysis of how a task is accomplished, including a detailed description of both manual and mental activities, task and element durations, task frequency, task allocation, task complexity, environmental conditions, necessary clothing and… … Wikipedia
Task allocation and partitioning of social insects — Task allocation and partitioning refers to the way that tasks are chosen, assigned, subdivided, and coordinated (here, within a single colony of social insects). Closely associated are issues of communication that enable these actions to… … Wikipedia
Task Force Faith — Task Force Faith, also sometimes referred to as Task Force Maclean (and by its official designation, RCT 31) was a United States Army unit destroyed in fighting at the Battle of Chosin Reservoir during the Korean War between November 27 and… … Wikipedia
Task Force 31 — (TF 31) was a US Navy task force active with the United States Third Fleet during World War II, and still ready to be activated today with today s Third Fleet. Task Force numbers were in constant use, and there were several incarnations of TF 31… … Wikipedia
Task Force 72 — is an international association of Radio controlled model boat builders, all building in the common scale (ratio) of 1:72 (1 inch in 1:72 equals 72 inches in real life). History Task Force 72 originated in Australia in 1994, when a number of… … Wikipedia
Task loading — in Scuba diving is a term used to refer to a multiplicity of responsibilities leading to an increased risk failure on the part of the diver to undertake some key basic function which would normally be routine for safety underwater. [cite journal… … Wikipedia
task — noun ADJECTIVE ▪ awesome, challenging, daunting, enormous, formidable, great, Herculean, huge, mammoth (esp. BrE), massive … Collocations dictionary
Basic ecclesial community — Not to be confused with Ecclesial Community. Basic Ecclesial Communities (BECs), also called Basic Christian Communities, Small Christian Communities. Some contend that the movement has its origin and inspiration from Liberation Theology in Latin … Wikipedia
Basic science (psychology) — Psychology … Wikipedia
Basic Law — As early as 1947, the executive of the Vaad Leumi appointed a committee headed by Zerah Warhaftig to study the question of a constitution for the new state. In December 1947, the Jewish Agency executive entrusted Dr. Leo Kohn, professor of… … Historical Dictionary of Israel
basic — adj. Basic is used with these nouns: ↑aim, ↑amenity, ↑approach, ↑argument, ↑arithmetic, ↑aspect, ↑assumption, ↑belief, ↑category, ↑characteristic, ↑colour, ↑ … Collocations dictionary