Перевод: с русского на все языки

со всех языков на русский

basic+logic

  • 1 Basic Logic

    Programming: BL

    Универсальный русско-английский словарь > Basic Logic

  • 2 basic logic unit

    Engineering: BLU

    Универсальный русско-английский словарь > basic logic unit

  • 3 basic transient diode logic

    Optics: BTDL

    Универсальный русско-английский словарь > basic transient diode logic

  • 4 основная логика

    Russian-English Dictionary "Microeconomics" > основная логика

  • 5 основной логический блок

    Русско-английский исловарь по машиностроению и автоматизации производства > основной логический блок

  • 6 базовая логика

    1) Engineering: basic logic
    2) Household appliances: core logic

    Универсальный русско-английский словарь > базовая логика

  • 7 базовые логические схемы

    Engineering: basic logic

    Универсальный русско-английский словарь > базовые логические схемы

  • 8 базовый логический блок

    Engineering: basic logic unit

    Универсальный русско-английский словарь > базовый логический блок

  • 9 основная логика

    Mathematics: basic logic

    Универсальный русско-английский словарь > основная логика

  • 10 основной логический блок

    Automation: basic logic unit

    Универсальный русско-английский словарь > основной логический блок

  • 11 базовая ТТЛ-схема

    Русско-английский словарь по микроэлектронике > базовая ТТЛ-схема

  • 12 основной элемент

    Бизнес, юриспруденция. Русско-английский словарь > основной элемент

  • 13 схема

    chart, circuit, connection, circuit design, design, device, diagram, drawing, element, ( расчетная или эквивалентная) model, net, network, outline, pattern, plan, plot, project, ( логическая структура данных) schema, schematic, scheme, setup, sheet, structure
    * * *
    схе́ма ж.
    1. (графическое изображение, чертёж) diagram
    2. ( совокупность элементов и цепей связи) circuit; (разновидность какой-л. схемы) circuit design
    возбужда́ть схе́му — drive a circuit
    запуска́ть схе́му — trigger a circuit
    подгота́вливать схе́му — arm a circuit, set up a circuit in readiness for operation
    … со́бран по схе́ме ё́мкостной трёхто́чки … — connected in the Hartley oscillator circuit
    составля́ть схе́му — draw (up) a circuit
    существу́ет не́сколько схем супергетероди́нного приё́мника — superhets come in several circuit designs
    3. (изображение, образ действия последовательность событий) scheme, plan
    автоди́нная схе́ма — autodyne circuit
    схе́ма автомати́ческой подстро́йки частоты́ [АПЧ] — automatic frequency control [AFC] circuit
    анало́говая схе́ма — analog circuit
    схе́ма ано́дного повтори́теля — see-saw circuit
    схе́ма антисовпаде́ний — anticoincidence circuit
    бала́нсная схе́ма — balanced circuit
    схе́ма Берну́лли ( в теории вероятностей) — Bernoulli trials
    ве́нтильная схе́ма — gate (circuit)
    схе́ма вентиля́ции — ventilation (system), ventilation plan
    схе́ма вентиля́ции, за́мкнутая — closed-circuit ventilation (system)
    схе́ма вентиля́ции, осева́я — axial ventilation (system)
    схе́ма вентиля́ции, протяжна́я — open-circuit ventilation (system)
    схе́ма вентиля́ции, радиа́льная — radial ventilation (system)
    схе́ма включа́ющее ИЛИ — inclusive OR circuit
    схе́ма вычисле́ния — computational scheme, pattern of calculation
    схе́ма вычита́ния — subtract(ion) circuit
    схе́ма гаше́ния луча́ — blanking circuit
    герметизи́рованная схе́ма — potted circuit
    гибри́дная схе́ма — hybrid circuit
    двухта́ктная схе́ма — push-pull circuit
    двухта́ктная схе́ма с о́бщим като́дным сопротивле́нием — long-tailed pair
    схе́ма деле́ния — dividing circuit
    схе́ма деле́ния на два — divide-by-two circuit, binary scaler
    дифференци́рующая схе́ма — differentiating circuit
    схе́ма заде́ржки — delay circuit
    схе́ма замеще́ния — equivalent circuit
    заостря́ющая схе́ма — peaking circuit
    запомина́ющая схе́ма — memory [storage] circuit
    схе́ма запре́та ( логический элемент) — NOT-AND [NAND] circuit, NOT-AND [NAND] gate, inhibitor circuit, inhibit gate
    схе́ма за́пуска — trigger circuit
    схе́ма засве́та развё́ртки рлк.intensifier gate circuit
    схе́ма И — AND circuit, AND gate
    схе́ма И-И — AND-to-AND circuit
    схе́ма И-ИЛИ — AND-to-OR circuit
    схе́ма ИЛИ — OR circuit, OR gate
    схе́ма ИЛИ-И — OR-to-AND circuit
    схе́ма ИЛИ-ИЛИ — OR-to-OR circuit
    и́мпульсная схе́ма — pulse circuit
    схе́ма И-НЕТ — NOT-AND [NAND] circuit, NOT-AND [NAND] gate
    интегра́льная схе́ма — integrated circuit
    помеща́ть интегра́льную схе́му в ко́рпус — encase an integrated circuit
    интегра́льная, больша́я схе́ма [БИС] — large-scale integrated [LSI] circuit
    интегра́льная, гибри́дная схе́ма — hybrid integrated circuit, hybrid IC, HIC
    интегра́льная, моноли́тная схе́ма — monolithic integrated circuit, MIC
    интегра́льная, осаждё́нная схе́ма — deposited integrated circuit
    интегра́льная, плана́рная эпитаксиа́льная схе́ма — planex integrated circuit
    интегра́льная, полупроводнико́вая схе́ма — semiconductor integrated circuit
    интегра́льная схе́ма СВЧ диапазо́на — microwave integrated circuit
    интегра́льная схе́ма с инжекцио́нным возбужде́нием — integrated-injection-logic [I2 L] circuit
    интегра́льная, толстоплё́ночная схе́ма — thick-film integrated circuit
    интегри́рующая схе́ма — integrating circuit, integrating network
    схе́ма исключа́ющее ИЛИ — exclusive OR circuit, exclusive or [nonequivalent] element
    каско́дная схе́ма — cascode circuit
    квадрату́рная схе́ма — quadrature network
    кинемати́ческая схе́ма — mechanical diagram
    кольцева́я схе́ма — ring circuit
    коммутацио́нная схе́ма — diagram of connections; wiring diagram
    компоно́вочная схе́ма — lay-out diagram
    схе́ма корре́кции часто́тной характери́стики — compensating network
    схе́ма корре́кции часто́тной характери́стики, проста́я — series frequency compensating network
    схе́ма корре́кции часто́тной характери́стики, сло́жная — shunt frequency compensating network
    криотро́нная схе́ма — cryotron circuit
    логи́ческая схе́ма — ( материальный объект) logic(al) (circuit); ( совокупность логических элементов) logic system
    стро́ить логи́ческую схе́му на ба́зе реле́ — mechanize the logic system with relays
    логи́ческая схе́ма без па́мяти — combinational logic network
    логи́ческая, дио́дная схе́ма — diode logic circuit
    логи́ческая, дио́дно-транзи́сторная схе́ма — diode-transistor logic, DTL
    логи́ческая, микроминиатю́рная схе́ма — micrologic circuit
    логи́ческая схе́ма на магни́тных серде́чниках — core logic
    логи́ческая схе́ма на параметро́нах — parametron logic
    схе́ма логи́ческая схе́ма на поро́говых элеме́нтах — threshold logic
    логи́ческая схе́ма на транзи́сторах и рези́сторах — resistor-transistor logic
    логи́ческая, потенциа́льная схе́ма — level logic
    логи́ческая, рези́сторно-транзи́сторная схе́ма — resistor-transistor logic
    логи́ческая схе́ма с па́мятью — sequential logic circuit, sequential logic network
    логи́ческая, транзи́сторная схе́ма с непосре́дственными свя́зями — direct-coupled transistor logic
    маке́тная схе́ма — breadboard model
    ма́тричная схе́ма — matrix circuit
    микроминиатю́рная схе́ма — microminiature [micromin] circuit
    микроэлектро́нная схе́ма — microelectronic circuit
    мнемони́ческая схе́ма — mimic diagram
    многофункциона́льная схе́ма — multifunction circuit
    модели́рующая схе́ма — analog circuit
    мо́дульная схе́ма — modular(ized) circuit
    молекуля́рная схе́ма — molecular circuit
    монта́жная схе́ма — wiring diagram, wiring lay-out
    мостова́я схе́ма эл.bridge circuit
    схе́ма набо́ра зада́чи, структу́рная вчт.problem set-up
    нагля́дная схе́ма — pictorial diagram
    схе́ма нака́чки — pump(ing) circuit
    схе́ма на не́скольких криста́лликах — multichip circuit
    схе́ма на не́скольких чи́пах — multichip circuit
    схе́ма на то́лстых плё́нках — thick-film circuit
    схе́ма на то́нких плё́нках — thin-film circuit
    схе́ма на транзи́сторах — transistor circuit
    схе́ма НЕ — NOT circuit, NOT gate
    невзаи́мная схе́ма — unilateral [nonreciprocal] network
    схе́ма НЕ И — NOT AND [NAND] circuit, NOT AND [NAND] gate
    схе́ма НЕ ИЛИ — NOT OR circuit, NOT OR circuit, NOT OR gate
    нелине́йная схе́ма — non-linear circuit, non-linear network
    схе́ма несовпаде́ния — non-coincidence [anticoincidence] circuit
    схе́ма образова́ния дополне́ния (числа́) вчт.complementer
    схе́ма образова́ния дополни́тельного ко́да (числа́) вчт.2's complementer
    схе́ма образова́ния обра́тного ко́да (числа́) вчт.1's complementer
    схе́ма обра́тной корре́кции радиоdeemphasis circuit
    схе́ма обра́тной свя́зи — feedback circuit
    схе́ма объедине́ния — OR circuit, OR gate
    однолине́йная схе́ма эл. — single-line diagram, single-line scheme
    однота́ктная схе́ма — single-ended circuit
    опти́ческая схе́ма (напр. микроскопа) — optical train
    переключа́ющая схе́ма — switch(ing) [commutation] circuit
    переключа́ющая схе́ма на криотро́нах — cryotron switching [commutation] circuit
    пересчё́тная схе́ма — scaler, scaling circuit
    пересчё́тная, бина́рная схе́ма — scale-of-two circuit, binary scaler
    пересчё́тная, дека́дная схе́ма — scale-of-ten circuit, decade scaler
    пересчё́тная, кольцева́я схе́ма — ring scaler
    пересчё́тная схе́ма с коэффицие́нтом пересчё́та — N scale-of-N circuit, modulo-N scaler
    печа́тная схе́ма — printed circuit
    печа́тная, микроминиатю́рная схе́ма — microprinted circuit
    схе́ма пита́ния, однони́точная тепл.single-run feeding system
    схе́ма пита́ния, паралле́льная радиоparallel feed
    схе́ма пита́ния ано́дной це́пи ла́мпы, паралле́льная — parallel feed is used in the anode circuit
    плана́рная схе́ма — planar circuit
    пневмати́ческая схе́ма — pneumatic circuit
    схе́ма повтори́теля ( логический элемент) — OR circuit, OR gate
    поро́говая схе́ма — threshold circuit
    потенциа́льная схе́ма — level circuit
    принципиа́льная схе́ма
    1. ( изображение) schematic (diagram); (неэлектрическая, напр. механического устройства) (simplified) line diagram; ( пневматического или гидравлического устройства) flow diagram (of an apparatus)
    2. ( материальный объект) fundamental [basic] circuit arrangement
    схе́ма прове́рки — test set-up
    собра́ть схе́му прове́рки по рис. 1 — establish the test set-up shown in Fig. 1
    схе́ма прове́рки чё́тности — parity checker
    схе́ма произво́дственного проце́сса, маршру́тная — plant flow diagram, route sheet
    схе́ма прока́тки — rolling schedule
    противоколеба́тельная схе́ма — antihurt circuit
    противоме́стная схе́ма тлф.antisidetone circuit
    схе́ма проце́сса, технологи́ческая
    1. ( диаграмма) flow chart, flow sheet, flow diagram
    схе́ма пупиниза́ции свз.loading scheme
    пускова́я схе́ма
    1. тепл. start-up system
    2. элк. trigger circuit
    пускова́я, однора́зовая схе́ма элк.single-shot trigger circuit
    развя́зывающая схе́ма свз.isolation network
    схе́ма разделе́ния — separation circuit
    схе́ма разноимё́нности — exclusive OR circuit; exclusive OR [non-equivalence] element
    схе́ма распа́да физ. — decay [disintegration] scheme
    схе́ма расположе́ния — lay-out diagram
    схе́ма расположе́ния ламп радиоtube-location diagram
    схе́ма распределе́ния па́мяти — memory allocation scheme
    регенерати́вная схе́ма — regenerative [positive feedback] circuit
    реже́кторная схе́ма — rejector circuit
    релаксацио́нная схе́ма — relaxation circuit
    реле́йно-конта́ктная схе́ма — (relay) switching circuit
    схе́ма самолё́та, аэродинами́ческая — airplane configuration
    схе́ма с двумя́ усто́йчивыми состоя́ниями — bistable circuit
    схе́ма селе́кции дви́жущихся це́лей — moving target indicator [MTI] canceller
    схе́ма с заземлё́нной се́ткой — grounded-grid [common-grid] circuit
    схе́ма с заземлё́нным като́дом — grounded-cathode [common-emitter] circuit
    схе́ма с заземлё́нным колле́ктором — grounded-collector [common-collector] circuit
    схе́ма с заземлё́нным эми́ттером — grounded-emitter [common-emitter] circuit
    симметри́чная схе́ма — symmetrical circuit
    схе́ма синхрониза́ции — sync(hronizing) circuit
    схе́ма синхрониза́ции, гла́вная — master clock
    схе́ма с като́дной свя́зью — cathode-coupled circuit
    скеле́тная схе́ма — skeleton diagram
    схе́ма сма́зки — lubrication diagram, lubrication chart
    схе́ма смеще́ния це́нтра развё́ртки — off-centring circuit
    собира́тельная схе́ма — OR circuit, OR gate
    схе́ма с о́бщей като́дной нагру́зкой, парафа́зная — long-tail-pair circuit
    схе́ма совпаде́ния — AND [coincidence] circuit, AND gate
    схе́ма с одни́м усто́йчивым состоя́нием — monostable circuit
    схе́ма соедине́ний — (diagram of) connections
    схе́ма соедине́ния трансформа́тора — winding connection(s)
    спускова́я схе́ма элк.trigger circuit
    схе́ма сравне́ния — comparison circuit
    схе́ма с разделе́нием сигна́лов по частоте́ ( форма организации связи или системы) — frequency-division multiplex [FDM] working
    стабилизи́рующая схе́ма — stabilizing circuit
    структу́рная схе́ма — block diagram
    сумми́рующая схе́ма — ( дискретных сигналов) add(ing) circuit; ( аналоговых сигналов) summing circuit
    счё́тная схе́ма — counting circuit
    твердоте́льная схе́ма — solid-state circuit
    твердоте́льная, эпитаксиа́льная схе́ма — epitaxial solid circuit
    Т-обра́зная схе́ма — T-circuit, T-network
    схе́ма токопрохожде́ния — signal-flow diagram
    толстоплё́ночная схе́ма — thick-film circuit
    тонкоплё́ночная схе́ма — thin-film circuit
    транзи́сторная схе́ма — transistor(ized) circuit
    схе́ма трёхто́чки, ё́мкостная — Colpitts oscillator (circuit)
    схе́ма трёхто́чки, индукти́вная — Hartley oscillator (circuit)
    схе́ма удвое́ния — doubling circuit, doubler
    схе́ма удлине́ния и́мпульсов — pulse stretcher
    схе́ма умноже́ния — multiply(ing) circuit
    схе́ма умноже́ния на два — multiply-by-2 circuit
    схе́ма управле́ния — control circuit
    усредня́ющая схе́ма — averaging circuit, averager
    схе́ма фа́зовой автомати́ческой подстро́йки частоты́ [ФАПЧ] — phase-lock loop, PLL
    фазовраща́тельная схе́ма — phase-shifting network
    фикси́рующая схе́ма — clamp(ing) circuit, clamper
    формиру́ющая схе́ма — shaping circuit, shaper
    функциона́льная схе́ма — functional (block) diagram; вчт. logic diagram
    цепна́я схе́ма — ladder circuit, ladder [recurrent] network
    эквивале́нтная схе́ма — equivalent circuit
    схе́ма экскава́ции горн.excavation scheme
    электри́ческая схе́ма — circuit diagram
    электро́нная схе́ма — electronic circuit
    схе́ма электропрово́дки — wiring diagram
    схе́ма энергети́ческих у́ровней — energy-level diagram
    * * *
    1) circuit design; 2) diagram

    Русско-английский политехнический словарь > схема

  • 14 программируемый логический контроллер

    1. storage-programmable logic controller
    2. Programmable Logic Controller
    3. programmable controller
    4. PLC

     

    программируемый логический контроллер
    ПЛК
    -
    [Интент]

    контроллер
    Управляющее устройство, осуществляющее автоматическое управление посредством программной реализации алгоритмов управления.
    [Сборник рекомендуемых терминов. Выпуск 107. Теория управления.
     Академия наук СССР. Комитет научно-технической терминологии. 1984 г.]

    EN

    storage-programmable logic controller
    computer-aided control equipment or system whose logic sequence can be varied via a directly or remote-control connected programming device, for example a control panel, a host computer or a portable terminal
    [IEV ref 351-32-34]

    FR

    automate programmable à mémoire
    équipement ou système de commande assisté par ordinateur dont la séquence logique peut être modifiée directement ou par l'intermédiaire d'un dispositif de programmation relié à une télécommande, par exemple un panneau de commande, un ordinateur hôte ou un terminal de données portatif
    [IEV ref 351-32-34]

      См. также:
    - архитектура контроллера;
    - производительность контроллера;
    - время реакции контроллера;
    КЛАССИФИКАЦИЯ

      Основным показателем ПЛК является количество каналов ввода-вывода. По этому признаку ПЛК делятся на следующие группы: По расположению модулей ввода-вывода ПЛК бывают:
    • моноблочными - в которых устройство ввода-вывода не может быть удалено из контроллера или заменено на другое. Конструктивно контроллер представляет собой единое целое с устройствами ввода-вывода (например, одноплатный контроллер). Моноблочный контроллер может иметь, например, 16 каналов дискретного ввода и 8 каналов релейного вывода;
    • модульные - состоящие из общей корзины (шасси), в которой располагаются модуль центрального процессора и сменные модули ввода-вывода. Состав модулей выбирается пользователем в зависимости от решаемой задачи. Типовое количество слотов для сменных модулей - от 8 до 32;
    • распределенные (с удаленными модулями ввода-вывода) - в которых модули ввода-вывода выполнены в отдельных корпусах, соединяются с модулем контроллера по сети (обычно на основе интерфейса RS-485) и могут быть расположены на расстоянии до 1,2 км от процессорного модуля.
    Часто перечисленные конструктивные типы контроллеров комбинируются, например, моноблочный контроллер может иметь несколько съемных плат; моноблочный и модульный контроллеры могут быть дополнены удаленными модулями ввода-вывода, чтобы увеличить общее количество каналов.

    Многие контроллеры имеют набор сменных процессорных плат разной производительности. Это позволяет расширить круг потенциальных пользователей системы без изменения ее конструктива.

    По конструктивному исполнению и способу крепления контроллеры делятся на:
    По области применения контроллеры делятся на следующие типы:
    • универсальные общепромышленные;
    • для управления роботами;
    • для управления позиционированием и перемещением;
    • коммуникационные;
    • ПИД-контроллеры;
    • специализированные.

    По способу программирования контроллеры бывают:
    • программируемые с лицевой панели контроллера;
    • программируемые переносным программатором;
    • программируемые с помощью дисплея, мыши и клавиатуры;
    • программируемые с помощью персонального компьютера.

    Контроллеры могут программироваться на следующих языках:
    • на классических алгоритмических языках (C, С#, Visual Basic);
    • на языках МЭК 61131-3.

    Контроллеры могут содержать в своем составе модули ввода-вывода или не содержать их. Примерами контроллеров без модулей ввода-вывода являются коммуникационные контроллеры, которые выполняют функцию межсетевого шлюза, или контроллеры, получающие данные от контроллеров нижнего уровня иерархии АСУ ТП.   Контроллеры для систем автоматизации

    Слово "контроллер" произошло от английского "control" (управление), а не от русского "контроль" (учет, проверка). Контроллером в системах автоматизации называют устройство, выполняющее управление физическими процессами по записанному в него алгоритму, с использованием информации, получаемой от датчиков и выводимой в исполнительные устройства.

    Первые контроллеры появились на рубеже 60-х и 70-х годов в автомобильной промышленности, где использовались для автоматизации сборочных линий. В то время компьютеры стоили чрезвычайно дорого, поэтому контроллеры строились на жесткой логике (программировались аппаратно), что было гораздо дешевле. Однако перенастройка с одной технологической линии на другую требовала фактически изготовления нового контроллера. Поэтому появились контроллеры, алгоритм работы которых мог быть изменен несколько проще - с помощью схемы соединений реле. Такие контроллеры получили название программируемых логических контроллеров (ПЛК), и этот термин сохранился до настоящего времени. Везде ниже термины "контроллер" и "ПЛК" мы будем употреблять как синонимы.

    Немного позже появились ПЛК, которые можно было программировать на машинно-ориентированном языке, что было проще конструктивно, но требовало участия специально обученного программиста для внесения даже незначительных изменений в алгоритм управления. С этого момента началась борьба за упрощение процесса программирования ПЛК, которая привела сначала к созданию языков высокого уровня, затем - специализированных языков визуального программирования, похожих на язык релейной логики. В настоящее время этот процесс завершился созданием международного стандарта IEC (МЭК) 1131-3, который позже был переименован в МЭК 61131-3. Стандарт МЭК 61131-3 поддерживает пять языков технологического программирования, что исключает необходимость привлечения профессиональных программистов при построении систем с контроллерами, оставляя для них решение нестандартных задач.

    В связи с тем, что способ программирования является наиболее существенным классифицирующим признаком контроллера, понятие "ПЛК" все реже используется для обозначения управляющих контроллеров, которые не поддерживают технологические языки программирования.   Жесткие ограничения на стоимость и огромное разнообразие целей автоматизации привели к невозможности создания универсального ПЛК, как это случилось с офисными компьютерами. Область автоматизации выдвигает множество задач, в соответствии с которыми развивается и рынок, содержащий сотни непохожих друг на друга контроллеров, различающихся десятками параметров.

    Выбор оптимального для конкретной задачи контроллера основывается обычно на соответствии функциональных характеристик контроллера решаемой задаче при условии минимальной его стоимости. Учитываются также другие важные характеристики (температурный диапазон, надежность, бренд изготовителя, наличие разрешений Ростехнадзора, сертификатов и т. п.).

    Несмотря на огромное разнообразие контроллеров, в их развитии заметны следующие общие тенденции:
    • уменьшение габаритов;
    • расширение функциональных возможностей;
    • увеличение количества поддерживаемых интерфейсов и сетей;
    • использование идеологии "открытых систем";
    • использование языков программирования стандарта МЭК 61131-3;
    • снижение цены.
    Еще одной тенденцией является появление в контроллерах признаков компьютера (наличие мыши, клавиатуры, монитора, ОС Windows, возможности подключения жесткого диска), а в компьютерах - признаков контроллера (расширенный температурный диапазон, электронный диск, защита от пыли и влаги, крепление на DIN-рейку, наличие сторожевого таймера, увеличенное количество коммуникационных портов, использование ОС жесткого реального времени, функции самотестирования и диагностики, контроль целостности прикладной программы). Появились компьютеры в конструктивах для жестких условий эксплуатации. Аппаратные различия между компьютером и контроллером постепенно исчезают. Основными отличительными признаками контроллера остаются его назначение и наличие технологического языка программирования.

    [ http://bookasutp.ru/Chapter6_1.aspx]  
    Программируемый логический контроллер (ПЛК, PLC) – микропроцессорное устройство, предназначенное для управления технологическим процессом и другими сложными технологическими объектами.
    Принцип работы контроллера состоит в выполнение следующего цикла операций:

    1.    Сбор сигналов с датчиков;
    2.    Обработка сигналов согласно прикладному алгоритму управления;
    3.    Выдача управляющих воздействий на исполнительные устройства.

    В нормальном режиме работы контроллер непрерывно выполняет этот цикл с частотой от 50 раз в секунду. Время, затрачиваемое контроллером на выполнение полного цикла, часто называют временем (или периодом) сканирования; в большинстве современных ПЛК сканирование может настраиваться пользователем в диапазоне от 20 до 30000 миллисекунд. Для быстрых технологических процессов, где критична скорость реакции системы и требуется оперативное регулирование, время сканирования может составлять 20 мс, однако для большинства непрерывных процессов период 100 мс считается вполне приемлемым.

    Аппаратно контроллеры имеют модульную архитектуру и могут состоять из следующих компонентов:

    1.    Базовая панель ( Baseplate). Она служит для размещения на ней других модулей системы, устанавливаемых в специально отведенные позиции (слоты). Внутри базовой панели проходят две шины: одна - для подачи питания на электронные модули, другая – для пересылки данных и информационного обмена между модулями.

    2.    Модуль центрального вычислительного устройства ( СPU). Это мозг системы. Собственно в нем и происходит математическая обработка данных. Для связи с другими устройствами CPU часто оснащается сетевым интерфейсом, поддерживающим тот или иной коммуникационный стандарт.

    3.    Дополнительные коммуникационные модули. Необходимы для добавления сетевых интерфейсов, неподдерживаемых напрямую самим CPU. Коммуникационные модули существенно расширяют возможности ПЛК по сетевому взаимодействию. C их помощью к контроллеру подключают узлы распределенного ввода/вывода, интеллектуальные полевые приборы и станции операторского уровня.

    4.    Блок питания. Нужен для запитки системы от 220 V. Однако многие ПЛК не имеют стандартного блока питания и запитываются от внешнего.  
    4906
    Рис.1. Контроллер РСУ с коммуникациями Profibus и Ethernet.
     
    Иногда на базовую панель, помимо указанных выше, допускается устанавливать модули ввода/вывода полевых сигналов, которые образуют так называемый локальный ввод/вывод. Однако для большинства РСУ (DCS) характерно использование именно распределенного (удаленного) ввода/вывода.

    Отличительной особенностью контроллеров, применяемых в DCS, является возможность их резервирования. Резервирование нужно для повышения отказоустойчивости системы и заключается, как правило, в дублировании аппаратных модулей системы.
     
    4907
    Рис. 2. Резервированный контроллер с коммуникациями Profibus и Ethernet.
     
    Резервируемые модули работают параллельно и выполняют одни и те же функции. При этом один модуль находится в активном состоянии, а другой, являясь резервом, – в режиме “standby”. В случае отказа активного модуля, система автоматически переключается на резерв (это называется “горячий резерв”).

    Обратите внимание, контроллеры связаны шиной синхронизации, по которой они мониторят состояние друг друга. Это решение позволяет разнести резервированные модули на значительное расстояние друг от друга (например, расположить их в разных шкафах или даже аппаратных).

    Допустим, в данный момент активен левый контроллер, правый – находится в резерве. При этом, даже находясь в резерве, правый контроллер располагает всеми процессными данными и выполняет те же самые математические операции, что и левый. Контроллеры синхронизированы. Предположим, случается отказ левого контроллера, а именно модуля CPU. Управление автоматически передается резервному контроллеру, и теперь он становится главным. Здесь очень большое значение имеют время, которое система тратит на переключение на резерв (обычно меньше 0.5 с) и отсутствие возмущений (удара). Теперь система работает на резерве. Как только инженер заменит отказавший модуль CPU на исправный, система автоматически передаст ему управление и возвратится в исходное состояние.

    На рис. 3 изображен резервированный контроллер S7-400H производства Siemens. Данный контроллер входит в состав РСУ Simatic PCS7.
     
     
    4908
    Рис. 3. Резервированный контроллер S7-400H. Несколько другое техническое решение показано на примере резервированного контроллера FCP270 производства Foxboro (рис. 4). Данный контроллер входит в состав системы управления Foxboro IA Series.  
    4909
    Рис. 4. Резервированный контроллер FCP270.
    На базовой панели инсталлировано два процессорных модуля, работающих как резервированная пара, и коммуникационный модуль для сопряжения с оптическими сетями стандарта Ethernet. Взаимодействие между модулями происходит по внутренней шине (тоже резервированной), спрятанной непосредственно в базовую панель (ее не видно на рисунке).

    На рисунке ниже показан контроллер AC800M производства ABB (часть РСУ Extended Automation System 800xA).  
    4910
    Рис. 5. Контроллер AC800M.
     
    Это не резервированный вариант. Контроллер состоит из двух коммуникационных модулей, одного СPU и одного локального модуля ввода/вывода. Кроме этого, к контроллеру можно подключить до 64 внешних модулей ввода/вывода.

    При построении РСУ важно выбрать контроллер, удовлетворяющий всем техническим условиям и требованиям конкретного производства. Подбирая оптимальную конфигурацию, инженеры оперируют определенными техническими характеристиками промышленных контроллеров. Наиболее значимые перечислены ниже:

    1.    Возможность полного резервирования. Для задач, где отказоустойчивость критична (химия, нефтехимия, металлургия и т.д.), применение резервированных конфигураций вполне оправдано, тогда как для других менее ответственных производств резервирование зачастую оказывается избыточным решением.

    2.    Количество и тип поддерживаемых коммуникационных интерфейсов. Это определяет гибкость и масштабируемость системы управления в целом. Современные контроллеры способны поддерживать до 10 стандартов передачи данных одновременно, что во многом определяет их универсальность.

    3.    Быстродействие. Измеряется, как правило, в количестве выполняемых в секунду элементарных операций (до 200 млн.). Иногда быстродействие измеряется количеством обрабатываемых за секунду функциональных блоков (что такое функциональный блок – будет рассказано в следующей статье). Быстродействие зависит от типа центрального процессора (популярные производители - Intel, AMD, Motorola, Texas Instruments и т.д.)

    4.    Объем оперативной памяти. Во время работы контроллера в его оперативную память загружены запрограммированные пользователем алгоритмы автоматизированного управления, операционная система, библиотечные модули и т.д. Очевидно, чем больше оперативной памяти, тем сложнее и объемнее алгоритмы контроллер может выполнять, тем больше простора для творчества у программиста. Варьируется от 256 килобайт до 32 мегабайт.

    5.    Надежность. Наработка на отказ до 10-12 лет.

    6. Наличие специализированных средств разработки и поддержка различных языков программирования. Очевидно, что существование специализированный среды разработки прикладных программ – это стандарт для современного контроллера АСУ ТП. Для удобства программиста реализуется поддержка сразу нескольких языков как визуального, так и текстового (процедурного) программирования (FBD, SFC, IL, LAD, ST; об этом в следующей статье).

    7.    Возможность изменения алгоритмов управления на “лету” (online changes), т.е. без остановки работы контроллера. Для большинства контроллеров, применяемых в РСУ, поддержка online changes жизненно необходима, так как позволяет тонко настраивать систему или расширять ее функционал прямо на работающем производстве.

    8.    Возможность локального ввода/вывода. Как видно из рис. 4 контроллер Foxboro FCP270 рассчитан на работу только с удаленной подсистемой ввода/вывода, подключаемой к нему по оптическим каналам. Simatic S7-400 может спокойно работать как с локальными модулями ввода/вывода (свободные слоты на базовой панели есть), так и удаленными узлами.

    9.    Вес, габаритные размеры, вид монтажа (на DIN-рейку, на монтажную панель или в стойку 19”). Важно учитывать при проектировании и сборке системных шкафов.

    10.  Условия эксплуатации (температура, влажность, механические нагрузки). Большинство промышленных контроллеров могут работать в нечеловеческих условиях от 0 до 65 °С и при влажности до 95-98%.

    [ http://kazanets.narod.ru/PLC_PART1.htm]

    Тематики

    Синонимы

    EN

    DE

    • speicherprogrammierbare Steuerung, f

    FR

    Русско-английский словарь нормативно-технической терминологии > программируемый логический контроллер

  • 15 принципиальная схема

    1) General subject: principle diagram, (продвижения от исходной точки к конечной цели посредством решения ряда промежуточных задач) road map
    2) Aviation: skeleton diagram
    8) Accounting: flowchart
    10) Physics: key diagram
    12) Information technology: functional diagram
    14) Sakhalin energy glossary: flow chart, general layout, interconnection diagram
    16) Automation: action chart, framework
    17) General subject: circuit diagram (напр., пневматической тормозной системы), schematics
    18) Chemical weapons: concept scheme
    19) Makarov: basic circuit arrangement (материальный объект), flow diagram (of an apparatus) (пневматического или гидравлического устройства), fundamental circuit arrangement (материальный объект), line diagram (simplified; неэлектрическая, напр. механического устройства), schematic (diagram) (изображение), schematic diagram (изображение), simplified line diagram (неэлектрическая, напр. механического устройства)
    20) Electric machinery: single line diagram
    21) Electrochemistry: basic outline
    23) Electrical engineering: (электрическая) circuit schematic, (электрическая) wiring diagram, connection diagram

    Универсальный русско-английский словарь > принципиальная схема

  • 16 программируемый логический контроллер

    1. speicherprogrammierbare Steuerung, f

     

    программируемый логический контроллер
    ПЛК
    -
    [Интент]

    контроллер
    Управляющее устройство, осуществляющее автоматическое управление посредством программной реализации алгоритмов управления.
    [Сборник рекомендуемых терминов. Выпуск 107. Теория управления.
     Академия наук СССР. Комитет научно-технической терминологии. 1984 г.]

    EN

    storage-programmable logic controller
    computer-aided control equipment or system whose logic sequence can be varied via a directly or remote-control connected programming device, for example a control panel, a host computer or a portable terminal
    [IEV ref 351-32-34]

    FR

    automate programmable à mémoire
    équipement ou système de commande assisté par ordinateur dont la séquence logique peut être modifiée directement ou par l'intermédiaire d'un dispositif de programmation relié à une télécommande, par exemple un panneau de commande, un ordinateur hôte ou un terminal de données portatif
    [IEV ref 351-32-34]

      См. также:
    - архитектура контроллера;
    - производительность контроллера;
    - время реакции контроллера;
    КЛАССИФИКАЦИЯ

      Основным показателем ПЛК является количество каналов ввода-вывода. По этому признаку ПЛК делятся на следующие группы: По расположению модулей ввода-вывода ПЛК бывают:
    • моноблочными - в которых устройство ввода-вывода не может быть удалено из контроллера или заменено на другое. Конструктивно контроллер представляет собой единое целое с устройствами ввода-вывода (например, одноплатный контроллер). Моноблочный контроллер может иметь, например, 16 каналов дискретного ввода и 8 каналов релейного вывода;
    • модульные - состоящие из общей корзины (шасси), в которой располагаются модуль центрального процессора и сменные модули ввода-вывода. Состав модулей выбирается пользователем в зависимости от решаемой задачи. Типовое количество слотов для сменных модулей - от 8 до 32;
    • распределенные (с удаленными модулями ввода-вывода) - в которых модули ввода-вывода выполнены в отдельных корпусах, соединяются с модулем контроллера по сети (обычно на основе интерфейса RS-485) и могут быть расположены на расстоянии до 1,2 км от процессорного модуля.
    Часто перечисленные конструктивные типы контроллеров комбинируются, например, моноблочный контроллер может иметь несколько съемных плат; моноблочный и модульный контроллеры могут быть дополнены удаленными модулями ввода-вывода, чтобы увеличить общее количество каналов.

    Многие контроллеры имеют набор сменных процессорных плат разной производительности. Это позволяет расширить круг потенциальных пользователей системы без изменения ее конструктива.

    По конструктивному исполнению и способу крепления контроллеры делятся на:
    По области применения контроллеры делятся на следующие типы:
    • универсальные общепромышленные;
    • для управления роботами;
    • для управления позиционированием и перемещением;
    • коммуникационные;
    • ПИД-контроллеры;
    • специализированные.

    По способу программирования контроллеры бывают:
    • программируемые с лицевой панели контроллера;
    • программируемые переносным программатором;
    • программируемые с помощью дисплея, мыши и клавиатуры;
    • программируемые с помощью персонального компьютера.

    Контроллеры могут программироваться на следующих языках:
    • на классических алгоритмических языках (C, С#, Visual Basic);
    • на языках МЭК 61131-3.

    Контроллеры могут содержать в своем составе модули ввода-вывода или не содержать их. Примерами контроллеров без модулей ввода-вывода являются коммуникационные контроллеры, которые выполняют функцию межсетевого шлюза, или контроллеры, получающие данные от контроллеров нижнего уровня иерархии АСУ ТП.   Контроллеры для систем автоматизации

    Слово "контроллер" произошло от английского "control" (управление), а не от русского "контроль" (учет, проверка). Контроллером в системах автоматизации называют устройство, выполняющее управление физическими процессами по записанному в него алгоритму, с использованием информации, получаемой от датчиков и выводимой в исполнительные устройства.

    Первые контроллеры появились на рубеже 60-х и 70-х годов в автомобильной промышленности, где использовались для автоматизации сборочных линий. В то время компьютеры стоили чрезвычайно дорого, поэтому контроллеры строились на жесткой логике (программировались аппаратно), что было гораздо дешевле. Однако перенастройка с одной технологической линии на другую требовала фактически изготовления нового контроллера. Поэтому появились контроллеры, алгоритм работы которых мог быть изменен несколько проще - с помощью схемы соединений реле. Такие контроллеры получили название программируемых логических контроллеров (ПЛК), и этот термин сохранился до настоящего времени. Везде ниже термины "контроллер" и "ПЛК" мы будем употреблять как синонимы.

    Немного позже появились ПЛК, которые можно было программировать на машинно-ориентированном языке, что было проще конструктивно, но требовало участия специально обученного программиста для внесения даже незначительных изменений в алгоритм управления. С этого момента началась борьба за упрощение процесса программирования ПЛК, которая привела сначала к созданию языков высокого уровня, затем - специализированных языков визуального программирования, похожих на язык релейной логики. В настоящее время этот процесс завершился созданием международного стандарта IEC (МЭК) 1131-3, который позже был переименован в МЭК 61131-3. Стандарт МЭК 61131-3 поддерживает пять языков технологического программирования, что исключает необходимость привлечения профессиональных программистов при построении систем с контроллерами, оставляя для них решение нестандартных задач.

    В связи с тем, что способ программирования является наиболее существенным классифицирующим признаком контроллера, понятие "ПЛК" все реже используется для обозначения управляющих контроллеров, которые не поддерживают технологические языки программирования.   Жесткие ограничения на стоимость и огромное разнообразие целей автоматизации привели к невозможности создания универсального ПЛК, как это случилось с офисными компьютерами. Область автоматизации выдвигает множество задач, в соответствии с которыми развивается и рынок, содержащий сотни непохожих друг на друга контроллеров, различающихся десятками параметров.

    Выбор оптимального для конкретной задачи контроллера основывается обычно на соответствии функциональных характеристик контроллера решаемой задаче при условии минимальной его стоимости. Учитываются также другие важные характеристики (температурный диапазон, надежность, бренд изготовителя, наличие разрешений Ростехнадзора, сертификатов и т. п.).

    Несмотря на огромное разнообразие контроллеров, в их развитии заметны следующие общие тенденции:
    • уменьшение габаритов;
    • расширение функциональных возможностей;
    • увеличение количества поддерживаемых интерфейсов и сетей;
    • использование идеологии "открытых систем";
    • использование языков программирования стандарта МЭК 61131-3;
    • снижение цены.
    Еще одной тенденцией является появление в контроллерах признаков компьютера (наличие мыши, клавиатуры, монитора, ОС Windows, возможности подключения жесткого диска), а в компьютерах - признаков контроллера (расширенный температурный диапазон, электронный диск, защита от пыли и влаги, крепление на DIN-рейку, наличие сторожевого таймера, увеличенное количество коммуникационных портов, использование ОС жесткого реального времени, функции самотестирования и диагностики, контроль целостности прикладной программы). Появились компьютеры в конструктивах для жестких условий эксплуатации. Аппаратные различия между компьютером и контроллером постепенно исчезают. Основными отличительными признаками контроллера остаются его назначение и наличие технологического языка программирования.

    [ http://bookasutp.ru/Chapter6_1.aspx]  
    Программируемый логический контроллер (ПЛК, PLC) – микропроцессорное устройство, предназначенное для управления технологическим процессом и другими сложными технологическими объектами.
    Принцип работы контроллера состоит в выполнение следующего цикла операций:

    1.    Сбор сигналов с датчиков;
    2.    Обработка сигналов согласно прикладному алгоритму управления;
    3.    Выдача управляющих воздействий на исполнительные устройства.

    В нормальном режиме работы контроллер непрерывно выполняет этот цикл с частотой от 50 раз в секунду. Время, затрачиваемое контроллером на выполнение полного цикла, часто называют временем (или периодом) сканирования; в большинстве современных ПЛК сканирование может настраиваться пользователем в диапазоне от 20 до 30000 миллисекунд. Для быстрых технологических процессов, где критична скорость реакции системы и требуется оперативное регулирование, время сканирования может составлять 20 мс, однако для большинства непрерывных процессов период 100 мс считается вполне приемлемым.

    Аппаратно контроллеры имеют модульную архитектуру и могут состоять из следующих компонентов:

    1.    Базовая панель ( Baseplate). Она служит для размещения на ней других модулей системы, устанавливаемых в специально отведенные позиции (слоты). Внутри базовой панели проходят две шины: одна - для подачи питания на электронные модули, другая – для пересылки данных и информационного обмена между модулями.

    2.    Модуль центрального вычислительного устройства ( СPU). Это мозг системы. Собственно в нем и происходит математическая обработка данных. Для связи с другими устройствами CPU часто оснащается сетевым интерфейсом, поддерживающим тот или иной коммуникационный стандарт.

    3.    Дополнительные коммуникационные модули. Необходимы для добавления сетевых интерфейсов, неподдерживаемых напрямую самим CPU. Коммуникационные модули существенно расширяют возможности ПЛК по сетевому взаимодействию. C их помощью к контроллеру подключают узлы распределенного ввода/вывода, интеллектуальные полевые приборы и станции операторского уровня.

    4.    Блок питания. Нужен для запитки системы от 220 V. Однако многие ПЛК не имеют стандартного блока питания и запитываются от внешнего.  
    4906
    Рис.1. Контроллер РСУ с коммуникациями Profibus и Ethernet.
     
    Иногда на базовую панель, помимо указанных выше, допускается устанавливать модули ввода/вывода полевых сигналов, которые образуют так называемый локальный ввод/вывод. Однако для большинства РСУ (DCS) характерно использование именно распределенного (удаленного) ввода/вывода.

    Отличительной особенностью контроллеров, применяемых в DCS, является возможность их резервирования. Резервирование нужно для повышения отказоустойчивости системы и заключается, как правило, в дублировании аппаратных модулей системы.
     
    4907
    Рис. 2. Резервированный контроллер с коммуникациями Profibus и Ethernet.
     
    Резервируемые модули работают параллельно и выполняют одни и те же функции. При этом один модуль находится в активном состоянии, а другой, являясь резервом, – в режиме “standby”. В случае отказа активного модуля, система автоматически переключается на резерв (это называется “горячий резерв”).

    Обратите внимание, контроллеры связаны шиной синхронизации, по которой они мониторят состояние друг друга. Это решение позволяет разнести резервированные модули на значительное расстояние друг от друга (например, расположить их в разных шкафах или даже аппаратных).

    Допустим, в данный момент активен левый контроллер, правый – находится в резерве. При этом, даже находясь в резерве, правый контроллер располагает всеми процессными данными и выполняет те же самые математические операции, что и левый. Контроллеры синхронизированы. Предположим, случается отказ левого контроллера, а именно модуля CPU. Управление автоматически передается резервному контроллеру, и теперь он становится главным. Здесь очень большое значение имеют время, которое система тратит на переключение на резерв (обычно меньше 0.5 с) и отсутствие возмущений (удара). Теперь система работает на резерве. Как только инженер заменит отказавший модуль CPU на исправный, система автоматически передаст ему управление и возвратится в исходное состояние.

    На рис. 3 изображен резервированный контроллер S7-400H производства Siemens. Данный контроллер входит в состав РСУ Simatic PCS7.
     
     
    4908
    Рис. 3. Резервированный контроллер S7-400H. Несколько другое техническое решение показано на примере резервированного контроллера FCP270 производства Foxboro (рис. 4). Данный контроллер входит в состав системы управления Foxboro IA Series.  
    4909
    Рис. 4. Резервированный контроллер FCP270.
    На базовой панели инсталлировано два процессорных модуля, работающих как резервированная пара, и коммуникационный модуль для сопряжения с оптическими сетями стандарта Ethernet. Взаимодействие между модулями происходит по внутренней шине (тоже резервированной), спрятанной непосредственно в базовую панель (ее не видно на рисунке).

    На рисунке ниже показан контроллер AC800M производства ABB (часть РСУ Extended Automation System 800xA).  
    4910
    Рис. 5. Контроллер AC800M.
     
    Это не резервированный вариант. Контроллер состоит из двух коммуникационных модулей, одного СPU и одного локального модуля ввода/вывода. Кроме этого, к контроллеру можно подключить до 64 внешних модулей ввода/вывода.

    При построении РСУ важно выбрать контроллер, удовлетворяющий всем техническим условиям и требованиям конкретного производства. Подбирая оптимальную конфигурацию, инженеры оперируют определенными техническими характеристиками промышленных контроллеров. Наиболее значимые перечислены ниже:

    1.    Возможность полного резервирования. Для задач, где отказоустойчивость критична (химия, нефтехимия, металлургия и т.д.), применение резервированных конфигураций вполне оправдано, тогда как для других менее ответственных производств резервирование зачастую оказывается избыточным решением.

    2.    Количество и тип поддерживаемых коммуникационных интерфейсов. Это определяет гибкость и масштабируемость системы управления в целом. Современные контроллеры способны поддерживать до 10 стандартов передачи данных одновременно, что во многом определяет их универсальность.

    3.    Быстродействие. Измеряется, как правило, в количестве выполняемых в секунду элементарных операций (до 200 млн.). Иногда быстродействие измеряется количеством обрабатываемых за секунду функциональных блоков (что такое функциональный блок – будет рассказано в следующей статье). Быстродействие зависит от типа центрального процессора (популярные производители - Intel, AMD, Motorola, Texas Instruments и т.д.)

    4.    Объем оперативной памяти. Во время работы контроллера в его оперативную память загружены запрограммированные пользователем алгоритмы автоматизированного управления, операционная система, библиотечные модули и т.д. Очевидно, чем больше оперативной памяти, тем сложнее и объемнее алгоритмы контроллер может выполнять, тем больше простора для творчества у программиста. Варьируется от 256 килобайт до 32 мегабайт.

    5.    Надежность. Наработка на отказ до 10-12 лет.

    6. Наличие специализированных средств разработки и поддержка различных языков программирования. Очевидно, что существование специализированный среды разработки прикладных программ – это стандарт для современного контроллера АСУ ТП. Для удобства программиста реализуется поддержка сразу нескольких языков как визуального, так и текстового (процедурного) программирования (FBD, SFC, IL, LAD, ST; об этом в следующей статье).

    7.    Возможность изменения алгоритмов управления на “лету” (online changes), т.е. без остановки работы контроллера. Для большинства контроллеров, применяемых в РСУ, поддержка online changes жизненно необходима, так как позволяет тонко настраивать систему или расширять ее функционал прямо на работающем производстве.

    8.    Возможность локального ввода/вывода. Как видно из рис. 4 контроллер Foxboro FCP270 рассчитан на работу только с удаленной подсистемой ввода/вывода, подключаемой к нему по оптическим каналам. Simatic S7-400 может спокойно работать как с локальными модулями ввода/вывода (свободные слоты на базовой панели есть), так и удаленными узлами.

    9.    Вес, габаритные размеры, вид монтажа (на DIN-рейку, на монтажную панель или в стойку 19”). Важно учитывать при проектировании и сборке системных шкафов.

    10.  Условия эксплуатации (температура, влажность, механические нагрузки). Большинство промышленных контроллеров могут работать в нечеловеческих условиях от 0 до 65 °С и при влажности до 95-98%.

    [ http://kazanets.narod.ru/PLC_PART1.htm]

    Тематики

    Синонимы

    EN

    DE

    • speicherprogrammierbare Steuerung, f

    FR

    Русско-немецкий словарь нормативно-технической терминологии > программируемый логический контроллер

  • 17 программируемый логический контроллер

    1. automate programmable à mémoire

     

    программируемый логический контроллер
    ПЛК
    -
    [Интент]

    контроллер
    Управляющее устройство, осуществляющее автоматическое управление посредством программной реализации алгоритмов управления.
    [Сборник рекомендуемых терминов. Выпуск 107. Теория управления.
     Академия наук СССР. Комитет научно-технической терминологии. 1984 г.]

    EN

    storage-programmable logic controller
    computer-aided control equipment or system whose logic sequence can be varied via a directly or remote-control connected programming device, for example a control panel, a host computer or a portable terminal
    [IEV ref 351-32-34]

    FR

    automate programmable à mémoire
    équipement ou système de commande assisté par ordinateur dont la séquence logique peut être modifiée directement ou par l'intermédiaire d'un dispositif de programmation relié à une télécommande, par exemple un panneau de commande, un ordinateur hôte ou un terminal de données portatif
    [IEV ref 351-32-34]

      См. также:
    - архитектура контроллера;
    - производительность контроллера;
    - время реакции контроллера;
    КЛАССИФИКАЦИЯ

      Основным показателем ПЛК является количество каналов ввода-вывода. По этому признаку ПЛК делятся на следующие группы: По расположению модулей ввода-вывода ПЛК бывают:
    • моноблочными - в которых устройство ввода-вывода не может быть удалено из контроллера или заменено на другое. Конструктивно контроллер представляет собой единое целое с устройствами ввода-вывода (например, одноплатный контроллер). Моноблочный контроллер может иметь, например, 16 каналов дискретного ввода и 8 каналов релейного вывода;
    • модульные - состоящие из общей корзины (шасси), в которой располагаются модуль центрального процессора и сменные модули ввода-вывода. Состав модулей выбирается пользователем в зависимости от решаемой задачи. Типовое количество слотов для сменных модулей - от 8 до 32;
    • распределенные (с удаленными модулями ввода-вывода) - в которых модули ввода-вывода выполнены в отдельных корпусах, соединяются с модулем контроллера по сети (обычно на основе интерфейса RS-485) и могут быть расположены на расстоянии до 1,2 км от процессорного модуля.
    Часто перечисленные конструктивные типы контроллеров комбинируются, например, моноблочный контроллер может иметь несколько съемных плат; моноблочный и модульный контроллеры могут быть дополнены удаленными модулями ввода-вывода, чтобы увеличить общее количество каналов.

    Многие контроллеры имеют набор сменных процессорных плат разной производительности. Это позволяет расширить круг потенциальных пользователей системы без изменения ее конструктива.

    По конструктивному исполнению и способу крепления контроллеры делятся на:
    По области применения контроллеры делятся на следующие типы:
    • универсальные общепромышленные;
    • для управления роботами;
    • для управления позиционированием и перемещением;
    • коммуникационные;
    • ПИД-контроллеры;
    • специализированные.

    По способу программирования контроллеры бывают:
    • программируемые с лицевой панели контроллера;
    • программируемые переносным программатором;
    • программируемые с помощью дисплея, мыши и клавиатуры;
    • программируемые с помощью персонального компьютера.

    Контроллеры могут программироваться на следующих языках:
    • на классических алгоритмических языках (C, С#, Visual Basic);
    • на языках МЭК 61131-3.

    Контроллеры могут содержать в своем составе модули ввода-вывода или не содержать их. Примерами контроллеров без модулей ввода-вывода являются коммуникационные контроллеры, которые выполняют функцию межсетевого шлюза, или контроллеры, получающие данные от контроллеров нижнего уровня иерархии АСУ ТП.   Контроллеры для систем автоматизации

    Слово "контроллер" произошло от английского "control" (управление), а не от русского "контроль" (учет, проверка). Контроллером в системах автоматизации называют устройство, выполняющее управление физическими процессами по записанному в него алгоритму, с использованием информации, получаемой от датчиков и выводимой в исполнительные устройства.

    Первые контроллеры появились на рубеже 60-х и 70-х годов в автомобильной промышленности, где использовались для автоматизации сборочных линий. В то время компьютеры стоили чрезвычайно дорого, поэтому контроллеры строились на жесткой логике (программировались аппаратно), что было гораздо дешевле. Однако перенастройка с одной технологической линии на другую требовала фактически изготовления нового контроллера. Поэтому появились контроллеры, алгоритм работы которых мог быть изменен несколько проще - с помощью схемы соединений реле. Такие контроллеры получили название программируемых логических контроллеров (ПЛК), и этот термин сохранился до настоящего времени. Везде ниже термины "контроллер" и "ПЛК" мы будем употреблять как синонимы.

    Немного позже появились ПЛК, которые можно было программировать на машинно-ориентированном языке, что было проще конструктивно, но требовало участия специально обученного программиста для внесения даже незначительных изменений в алгоритм управления. С этого момента началась борьба за упрощение процесса программирования ПЛК, которая привела сначала к созданию языков высокого уровня, затем - специализированных языков визуального программирования, похожих на язык релейной логики. В настоящее время этот процесс завершился созданием международного стандарта IEC (МЭК) 1131-3, который позже был переименован в МЭК 61131-3. Стандарт МЭК 61131-3 поддерживает пять языков технологического программирования, что исключает необходимость привлечения профессиональных программистов при построении систем с контроллерами, оставляя для них решение нестандартных задач.

    В связи с тем, что способ программирования является наиболее существенным классифицирующим признаком контроллера, понятие "ПЛК" все реже используется для обозначения управляющих контроллеров, которые не поддерживают технологические языки программирования.   Жесткие ограничения на стоимость и огромное разнообразие целей автоматизации привели к невозможности создания универсального ПЛК, как это случилось с офисными компьютерами. Область автоматизации выдвигает множество задач, в соответствии с которыми развивается и рынок, содержащий сотни непохожих друг на друга контроллеров, различающихся десятками параметров.

    Выбор оптимального для конкретной задачи контроллера основывается обычно на соответствии функциональных характеристик контроллера решаемой задаче при условии минимальной его стоимости. Учитываются также другие важные характеристики (температурный диапазон, надежность, бренд изготовителя, наличие разрешений Ростехнадзора, сертификатов и т. п.).

    Несмотря на огромное разнообразие контроллеров, в их развитии заметны следующие общие тенденции:
    • уменьшение габаритов;
    • расширение функциональных возможностей;
    • увеличение количества поддерживаемых интерфейсов и сетей;
    • использование идеологии "открытых систем";
    • использование языков программирования стандарта МЭК 61131-3;
    • снижение цены.
    Еще одной тенденцией является появление в контроллерах признаков компьютера (наличие мыши, клавиатуры, монитора, ОС Windows, возможности подключения жесткого диска), а в компьютерах - признаков контроллера (расширенный температурный диапазон, электронный диск, защита от пыли и влаги, крепление на DIN-рейку, наличие сторожевого таймера, увеличенное количество коммуникационных портов, использование ОС жесткого реального времени, функции самотестирования и диагностики, контроль целостности прикладной программы). Появились компьютеры в конструктивах для жестких условий эксплуатации. Аппаратные различия между компьютером и контроллером постепенно исчезают. Основными отличительными признаками контроллера остаются его назначение и наличие технологического языка программирования.

    [ http://bookasutp.ru/Chapter6_1.aspx]  
    Программируемый логический контроллер (ПЛК, PLC) – микропроцессорное устройство, предназначенное для управления технологическим процессом и другими сложными технологическими объектами.
    Принцип работы контроллера состоит в выполнение следующего цикла операций:

    1.    Сбор сигналов с датчиков;
    2.    Обработка сигналов согласно прикладному алгоритму управления;
    3.    Выдача управляющих воздействий на исполнительные устройства.

    В нормальном режиме работы контроллер непрерывно выполняет этот цикл с частотой от 50 раз в секунду. Время, затрачиваемое контроллером на выполнение полного цикла, часто называют временем (или периодом) сканирования; в большинстве современных ПЛК сканирование может настраиваться пользователем в диапазоне от 20 до 30000 миллисекунд. Для быстрых технологических процессов, где критична скорость реакции системы и требуется оперативное регулирование, время сканирования может составлять 20 мс, однако для большинства непрерывных процессов период 100 мс считается вполне приемлемым.

    Аппаратно контроллеры имеют модульную архитектуру и могут состоять из следующих компонентов:

    1.    Базовая панель ( Baseplate). Она служит для размещения на ней других модулей системы, устанавливаемых в специально отведенные позиции (слоты). Внутри базовой панели проходят две шины: одна - для подачи питания на электронные модули, другая – для пересылки данных и информационного обмена между модулями.

    2.    Модуль центрального вычислительного устройства ( СPU). Это мозг системы. Собственно в нем и происходит математическая обработка данных. Для связи с другими устройствами CPU часто оснащается сетевым интерфейсом, поддерживающим тот или иной коммуникационный стандарт.

    3.    Дополнительные коммуникационные модули. Необходимы для добавления сетевых интерфейсов, неподдерживаемых напрямую самим CPU. Коммуникационные модули существенно расширяют возможности ПЛК по сетевому взаимодействию. C их помощью к контроллеру подключают узлы распределенного ввода/вывода, интеллектуальные полевые приборы и станции операторского уровня.

    4.    Блок питания. Нужен для запитки системы от 220 V. Однако многие ПЛК не имеют стандартного блока питания и запитываются от внешнего.  
    4906
    Рис.1. Контроллер РСУ с коммуникациями Profibus и Ethernet.
     
    Иногда на базовую панель, помимо указанных выше, допускается устанавливать модули ввода/вывода полевых сигналов, которые образуют так называемый локальный ввод/вывод. Однако для большинства РСУ (DCS) характерно использование именно распределенного (удаленного) ввода/вывода.

    Отличительной особенностью контроллеров, применяемых в DCS, является возможность их резервирования. Резервирование нужно для повышения отказоустойчивости системы и заключается, как правило, в дублировании аппаратных модулей системы.
     
    4907
    Рис. 2. Резервированный контроллер с коммуникациями Profibus и Ethernet.
     
    Резервируемые модули работают параллельно и выполняют одни и те же функции. При этом один модуль находится в активном состоянии, а другой, являясь резервом, – в режиме “standby”. В случае отказа активного модуля, система автоматически переключается на резерв (это называется “горячий резерв”).

    Обратите внимание, контроллеры связаны шиной синхронизации, по которой они мониторят состояние друг друга. Это решение позволяет разнести резервированные модули на значительное расстояние друг от друга (например, расположить их в разных шкафах или даже аппаратных).

    Допустим, в данный момент активен левый контроллер, правый – находится в резерве. При этом, даже находясь в резерве, правый контроллер располагает всеми процессными данными и выполняет те же самые математические операции, что и левый. Контроллеры синхронизированы. Предположим, случается отказ левого контроллера, а именно модуля CPU. Управление автоматически передается резервному контроллеру, и теперь он становится главным. Здесь очень большое значение имеют время, которое система тратит на переключение на резерв (обычно меньше 0.5 с) и отсутствие возмущений (удара). Теперь система работает на резерве. Как только инженер заменит отказавший модуль CPU на исправный, система автоматически передаст ему управление и возвратится в исходное состояние.

    На рис. 3 изображен резервированный контроллер S7-400H производства Siemens. Данный контроллер входит в состав РСУ Simatic PCS7.
     
     
    4908
    Рис. 3. Резервированный контроллер S7-400H. Несколько другое техническое решение показано на примере резервированного контроллера FCP270 производства Foxboro (рис. 4). Данный контроллер входит в состав системы управления Foxboro IA Series.  
    4909
    Рис. 4. Резервированный контроллер FCP270.
    На базовой панели инсталлировано два процессорных модуля, работающих как резервированная пара, и коммуникационный модуль для сопряжения с оптическими сетями стандарта Ethernet. Взаимодействие между модулями происходит по внутренней шине (тоже резервированной), спрятанной непосредственно в базовую панель (ее не видно на рисунке).

    На рисунке ниже показан контроллер AC800M производства ABB (часть РСУ Extended Automation System 800xA).  
    4910
    Рис. 5. Контроллер AC800M.
     
    Это не резервированный вариант. Контроллер состоит из двух коммуникационных модулей, одного СPU и одного локального модуля ввода/вывода. Кроме этого, к контроллеру можно подключить до 64 внешних модулей ввода/вывода.

    При построении РСУ важно выбрать контроллер, удовлетворяющий всем техническим условиям и требованиям конкретного производства. Подбирая оптимальную конфигурацию, инженеры оперируют определенными техническими характеристиками промышленных контроллеров. Наиболее значимые перечислены ниже:

    1.    Возможность полного резервирования. Для задач, где отказоустойчивость критична (химия, нефтехимия, металлургия и т.д.), применение резервированных конфигураций вполне оправдано, тогда как для других менее ответственных производств резервирование зачастую оказывается избыточным решением.

    2.    Количество и тип поддерживаемых коммуникационных интерфейсов. Это определяет гибкость и масштабируемость системы управления в целом. Современные контроллеры способны поддерживать до 10 стандартов передачи данных одновременно, что во многом определяет их универсальность.

    3.    Быстродействие. Измеряется, как правило, в количестве выполняемых в секунду элементарных операций (до 200 млн.). Иногда быстродействие измеряется количеством обрабатываемых за секунду функциональных блоков (что такое функциональный блок – будет рассказано в следующей статье). Быстродействие зависит от типа центрального процессора (популярные производители - Intel, AMD, Motorola, Texas Instruments и т.д.)

    4.    Объем оперативной памяти. Во время работы контроллера в его оперативную память загружены запрограммированные пользователем алгоритмы автоматизированного управления, операционная система, библиотечные модули и т.д. Очевидно, чем больше оперативной памяти, тем сложнее и объемнее алгоритмы контроллер может выполнять, тем больше простора для творчества у программиста. Варьируется от 256 килобайт до 32 мегабайт.

    5.    Надежность. Наработка на отказ до 10-12 лет.

    6. Наличие специализированных средств разработки и поддержка различных языков программирования. Очевидно, что существование специализированный среды разработки прикладных программ – это стандарт для современного контроллера АСУ ТП. Для удобства программиста реализуется поддержка сразу нескольких языков как визуального, так и текстового (процедурного) программирования (FBD, SFC, IL, LAD, ST; об этом в следующей статье).

    7.    Возможность изменения алгоритмов управления на “лету” (online changes), т.е. без остановки работы контроллера. Для большинства контроллеров, применяемых в РСУ, поддержка online changes жизненно необходима, так как позволяет тонко настраивать систему или расширять ее функционал прямо на работающем производстве.

    8.    Возможность локального ввода/вывода. Как видно из рис. 4 контроллер Foxboro FCP270 рассчитан на работу только с удаленной подсистемой ввода/вывода, подключаемой к нему по оптическим каналам. Simatic S7-400 может спокойно работать как с локальными модулями ввода/вывода (свободные слоты на базовой панели есть), так и удаленными узлами.

    9.    Вес, габаритные размеры, вид монтажа (на DIN-рейку, на монтажную панель или в стойку 19”). Важно учитывать при проектировании и сборке системных шкафов.

    10.  Условия эксплуатации (температура, влажность, механические нагрузки). Большинство промышленных контроллеров могут работать в нечеловеческих условиях от 0 до 65 °С и при влажности до 95-98%.

    [ http://kazanets.narod.ru/PLC_PART1.htm]

    Тематики

    Синонимы

    EN

    DE

    • speicherprogrammierbare Steuerung, f

    FR

    Русско-французский словарь нормативно-технической терминологии > программируемый логический контроллер

  • 18 система команд

    1. command system
    2. computer code
    3. instruction code
    4. instruction repertory
    5. machine code

    код команды; система команд; набор командinstruction code

    6. machine-instruction code

    код команды; система командorder code

    7. machine-labguage code

    машинный код; система командcomputer code

    8. machine-operation code

    символ, начинающий командуlead-in code

    9. order code
    10. instruction set
    11. repertory code

    система команд; набор командinstruction repertory

    Русско-английский большой базовый словарь > система команд

  • 19 система

    complex, chain, installation, method, repertoire вчт., repertory, structure, system
    * * *
    систе́ма ж.
    system
    дубли́ровать систе́му — duplicate a system
    отла́живать систе́му — tune up a system
    систе́ма функциони́рует норма́льно киб.the system is well-behaved
    авари́йная систе́ма ав.emergency system
    систе́ма авари́йного покида́ния ( самолёта) — escape system
    автомати́ческая систе́ма — automatic system
    систе́ма автомати́ческого регули́рования [САР] — automatic-control system of the regulator(y) type
    систе́ма автомати́ческого регули́рования, де́йствующая по отклоне́нию — error-actuated control system
    систе́ма автомати́ческого регули́рования, за́мкнутая — closed-loop control system
    систе́ма автомати́ческого регули́рования, и́мпульсная — sampling control system
    систе́ма автомати́ческого регули́рования, многоё́мкостная — multicapacity control system
    систе́ма автомати́ческого регули́рования, многоко́нтурная — multiloop control system
    систе́ма автомати́ческого регули́рования, многоме́рная — multivariable control system
    систе́ма автомати́ческого регули́рования, програ́ммная — time-pattern control system
    систе́ма автомати́ческого регули́рования, разо́мкнутая — open-loop control system
    систе́ма автомати́ческого регули́рования следя́щего ти́па — servo-operation control system
    систе́ма автомати́ческого регули́рования со случа́йными возде́йствиями, и́мпульсная — random-input sampled-data system
    систе́ма автомати́ческого регули́рования со стабилиза́цией (проце́сса) — regulator-operation control system
    систе́ма автомати́ческого управле́ния [САУ] — automatic-control system
    систе́ма автомати́ческого управле́ния, цифрова́я — digital control system
    систе́ма автоподстро́йки частоты́ [АПЧ] — AFC system
    систе́ма АПЧ захва́тывает частоту́ — the AFC system locks on to the (desired) frequency
    систе́ма АПЧ осуществля́ет по́иск частоты́ — the AFC system searches for the (desired) frequency
    систе́ма автоподстро́йки частоты́, фа́зовая [ФАПЧ] — phase-lock loop, PLL
    агрега́тная, унифици́рованная систе́ма ( советская система пневматических средств автоматики) — standard-module pneumatic instrumentation system
    адапти́вная систе́ма — adaptive system
    апериоди́ческая систе́ма — critically damped system
    асинхро́нная систе́ма — asynchronous system
    астати́ческая систе́ма — zero-constant-error system
    астати́ческая систе́ма второ́го поря́дка — Type 2 [zero-velocity-error] system
    астати́ческая систе́ма пе́рвого поря́дка — Type 1 [zero-position-error] system
    систе́ма без резерви́рования — non-redundant system
    систе́ма блокиро́вки ( радиационной установки) — interlock system
    систе́ма ва́ла ( в допусках и посадках) — the basic shaft system
    вентиляцио́нная систе́ма — ventilation system
    вентиляцио́нная, вытяжна́я систе́ма — exhaust ventilation system
    взаи́мные систе́мы — mutual systems
    систе́ма водоснабже́ния — water(-supply) system
    систе́ма водоснабже́ния, оборо́тная — circulating [closed-circuit] water system
    систе́ма водоснабже́ния, прямото́чная — once-through [run-of-river cooling] system
    систе́ма возду́шного отопле́ния — warm-air heating system
    систе́ма воспроизведе́ния ( записи) — reproduction system
    систе́ма впры́ска двс.injection system
    систе́ма впры́ска, предка́мерная двс.antechamber system of injection
    систе́ма впу́ска двс. — induction [intake] system
    систе́ма вы́борки вчт.selection system
    вытяжна́я систе́ма — exhaust system
    вычисли́тельная систе́ма — computer [computing] system
    вычисли́тельная, многома́шинная систе́ма — multicomputer system
    систе́ма генера́тор — дви́гатель — Ward-Leonard speed-control system
    гибри́дная систе́ма — hybrid system
    систе́ма громкоговоря́щей свя́зи — public-address [personnel-address, PA] system
    грузова́я систе́ма мор.cargo (handling) system
    двухкомпоне́нтная систе́ма хим. — two-component [binary] system
    двухни́точная систе́ма тепл.two-flow system
    двухпроводна́я систе́ма эл.two-wire system
    двухэлектро́дная систе́ма ( электроннооптического преобразователя) — self-focusing (diod) system
    диспе́рсная систе́ма — disperse system
    диссипати́вная систе́ма — dissipative system
    систе́ма дистанцио́нного управле́ния — remote control system
    диффере́нтная систе́ма мор.trim system
    дифференциа́льная систе́ма тлф.hybrid set
    систе́ма дождева́ния — sprinkling system
    систе́ма до́пусков — tolerance system
    систе́ма до́пусков, двусторо́нняя [симметри́чная], преде́льная — bilateral system of tolerances
    систе́ма до́пусков и поса́док — system [classification] of fits and tolerances
    систе́ма до́пусков, односторо́нняя [асимметри́чная], преде́льная — unilateral system of tolerances
    систе́ма дрена́жа ( топливных баков) ав.vent system
    систе́ма едини́ц — system of units
    систе́ма едини́ц, междунаро́дная [СИ] — international system of units, SI
    систе́ма едини́ц МКГСС уст. — MKGSS [metre-kilogram(me)-force-second ] system (of units)
    систе́ма едини́ц МКС — MKS [metre-kilogram(me)-second ] system (of units)
    систе́ма едини́ц МКСА — MKSA [metre-kilogram(me)-mass-second-ampere ] system (of units), absolute practical system of units
    систе́ма едини́ц МКСГ — MKSG [metre-kilogram(me)-force-second-kelvin ] system (of units)
    систе́ма едини́ц МСС — MSC [metre-second-candela] system (of units)
    систе́ма едини́ц МТС — MTS [metre-ton-second] system (of units)
    систе́мы едини́ц СГС — CGS [centimetre-gram(me)-second ] systems (of units)
    систе́ма едини́ц, техни́ческая — engineer's system of units
    же́зловая систе́ма ж.-д.staff system
    систе́ма жизнеобеспе́чения косм.life-support (and survival) system
    систе́ма жизнеобеспе́чения, автоно́мная — back-pack life-support system
    систе́ма зажига́ния — ignition system
    систе́ма зажига́ния, полупроводнико́вая — transistor(ized) ignition system
    систе́ма зажига́ния, электро́нная — electronic ignition system
    систе́ма заземле́ния — earth [ground] network
    замедля́ющая систе́ма — ( в электровакуумных устройствах СВЧ) slow-wave structure; ( волноводная) slow-wave guide; ( коаксиальная) wave delay line
    замедля́ющая, встре́чно-стержнева́я систе́ма — interdigital [interdigitated] slow-wave structure
    замедля́ющая, гребе́нчатая систе́ма — vane-line slow-wave structure, finned slow-wave guide
    замедля́ющая, спира́льная систе́ма — helical slow-wave structure
    за́мкнутая систе́ма — closed system
    систе́ма за́писи вчт.writing system
    запомина́ющая систе́ма вчт.storage system
    систе́ма затопле́ния мор.flood(ing) system
    систе́ма захо́да на поса́дку по кома́ндам с земли́ ав. — ground-controlled-approach [GCA] system
    зачи́стная систе́ма ( танкера) — stripping system
    систе́ма зерка́л Фабри́—Перо́ — Fabry-Perot [FP] mirror system
    зерка́льно-ли́нзовая систе́ма ( в микроскопе) — catadioptric system
    систе́ма золоудале́ния — ash-handling system
    систе́ма зо́льников кож. — lime yard, lime round
    изоли́рованная систе́ма — isolated system
    систе́ма индивидуа́льного вы́зова свз.paging system
    инерциа́льная систе́ма — inertial system
    информацио́нная систе́ма — information system
    информацио́нно-поиско́вая систе́ма — information retrieval system
    исхо́дная систе́ма — prototype [original] system
    канализацио́нная систе́ма — sewer(age) system
    канализацио́нная, общесплавна́я систе́ма — combined sewer(age) system
    канализацио́нная, разде́льная систе́ма — separate sewer(age) system
    систе́ма коди́рования — coding system
    колеба́тельная систе́ма — (преим. механическая) vibratory [vibrating] system; ( немеханическая) oscillatory [resonant] system
    колеба́тельная, многорезона́торная систе́ма ( магнетрона) — multiple-cavity resonator
    колориметри́ческая трёхцве́тная систе́ма — three-colour photometric system
    систе́ма кома́нд ЭВМ — instruction set of a computer, computer instruction set
    систе́ма координа́т — coordinate system
    свя́зывать систе́му координа́т с … — tie in a coordinate system with …, tie coordinate system to …
    систе́ма координа́т, инерциа́льная — inertial frame
    систе́ма координа́т, лаборато́рная — laboratory coordinate system, laboratory frame of reference
    систе́ма координа́т, ле́вая — left-handed coordinate system
    систе́ма координа́т, ме́стная — local (coordinate) system
    систе́ма координа́т, поко́ящаяся — rest (coordinate) system
    систе́ма координа́т, пото́чная аргд.(relative) wind coordinate system
    систе́ма координа́т, пра́вая — right-handed coordinate system
    систе́ма координа́т, свя́занная с дви́жущимся те́лом — body axes (coordinate) system
    систе́ма координа́т, свя́занная с Землё́й — fixed-in-the-earth (coordinate) system
    систе́ма корре́кции гироско́па — gyro monitor, (long-term) reference
    систе́ма корре́кции гироско́па, магни́тная — magnetic gyro monitor, magnetic reference
    систе́ма корре́кции гироско́па, ма́ятниковая — gravity gyro monitor, gravity reference
    систе́ма криволине́йных координа́т — curvilinear coordinate system
    курсова́я систе́ма ав. — directional heading [waiting] system
    ли́тниковая систе́ма — gating [pouring gate] system
    магни́тная систе́ма — magnetic system
    систе́ма ма́ссового обслу́живания — queueing [waiting] system
    систе́ма ма́ссового обслу́живания, сме́шанная — combined loss-delay queueing [waiting] system
    систе́ма ма́ссового обслу́живания с ожида́нием — delay queueing [waiting] system
    систе́ма ма́ссового обслу́живания с отка́зами — congestion queueing [waiting] system
    систе́ма ма́ссового обслу́живания с поте́рями — loss-type queueing [waiting] system
    мени́сковая систе́ма — meniscus [Maksutov] system
    систе́ма мер, метри́ческая — metric system
    систе́ма мер, типогра́фская — point system
    механи́ческая систе́ма — mechanical system
    механи́ческая, несвобо́дная систе́ма — constrained material system
    систе́ма мно́гих тел — many-body system
    многокана́льная систе́ма свз.multichannel system
    многокомпоне́нтная систе́ма — multicomponent system
    многоме́рная систе́ма — multivariable system
    модели́руемая систе́ма — prototype system
    мо́дульная систе́ма — modular system
    мультипле́ксная систе́ма — multiplex system
    систе́ма набо́ра ( корпуса судна) — framing system
    систе́ма набо́ра, кле́тчатая — cellular framing system
    систе́ма набо́ра, попере́чная — transverse framing system
    систе́ма набо́ра, продо́льная — longitudinal framing system
    систе́ма набо́ра, сме́шанная — mixed framing system
    систе́ма навига́ции — navigation system
    систе́ма навига́ции, автоно́мная — self-contained navigation system
    систе́ма навига́ции, гиперболи́ческая — hyperbolic navigation system
    систе́ма навига́ции, дальноме́рная — rho-rho [ - ] navigation system
    систе́ма навига́ции, дальноме́рно-угломе́рная — rho-theta [ - ] navigation system
    систе́ма навига́ции, кругова́я — rho-rho [ - ] navigation system
    систе́ма навига́ции, ра́зностно-дальноме́рная [РДНС] — hyperbolic navigation system
    систе́ма навига́ции, угломе́рная — theta-theta [ - ] navigation system
    систе́ма на стру́йных элеме́нтах, логи́ческая — fluid logic system
    систе́ма нумера́ции тлф.numbering scheme
    систе́ма обду́ва стё́кол авто, автмт.demister
    систе́ма обнаруже́ния оши́бок ( в передаче данных) свз.error detection system
    систе́ма обогре́ва стё́кол авто, ав.defroster
    систе́ма обозначе́ний — notation, symbolism
    систе́ма обозначе́ний Междунаро́дного нау́чного радиообъедине́ния — URSI symbol system
    систе́ма обозначе́ния про́бы, кара́тная — carat test sign system
    систе́ма обозначе́ния про́бы, метри́ческая — metric test sign system
    обора́чивающая систе́ма опт. — erecting [inversion (optical)] system
    обора́чивающая, при́зменная систе́ма опт.prism-erecting (optical) system
    систе́ма обрабо́тки да́нных — data processing [dp] system
    систе́ма обрабо́тки да́нных в реа́льном масшта́бе вре́мени — real time data processing system
    систе́ма обрабо́тки да́нных, операти́вная — on-line data processing system
    систе́ма обрабо́тки отхо́дов — waste treatment system
    систе́ма объё́много пожаротуше́ния мор.fire-smothering system
    одноотка́зная систе́ма — fall-safe system
    опти́ческая систе́ма — optical system, optical train
    опти́ческая, зерка́льно-ли́нзовая систе́ма — catadioptric system
    систе́ма ориента́ции ав.attitude control system
    ороси́тельная систе́ма — irrigation system, irrigation project
    систе́ма ороше́ния мор.sprinkling system
    систе́ма освеще́ния — lighting (system)
    осуши́тельная систе́ма мор.drain(age) system
    систе́ма отбо́ра во́здуха от компре́ссора — compressor air-bleed system
    систе́ма отве́рстия ( в допусках и посадках) — the basic hole system
    отклоня́ющая систе́ма ( в ЭЛТ) — deflecting system, deflection yoke
    отклоня́ющая, ка́дровая систе́ма — vertical (deflection) yoke
    отклоня́ющая, магни́тная систе́ма — magnetic (deflection) yoke
    отклоня́ющая, стро́чная систе́ма — horizontal [line] (deflection) yoke
    систе́ма относи́тельных едини́ц — per-unit system
    отопи́тельная систе́ма — heating system
    отопи́тельная систе́ма с разво́дкой све́рху — down-feed heating system
    отопи́тельная систе́ма с разво́дкой сни́зу — up-feed heating system
    систе́ма отсчё́та — frame of reference, (reference) frame, reference system
    систе́ма отсчё́та, инерциа́льная — inertial frame of reference
    систе́ма охлажде́ния — cooling system
    систе́ма охлажде́ния, возду́шная — air-cooling system
    систе́ма охлажде́ния, жи́дкостная — liquid-cooling system
    систе́ма охлажде́ния, испари́тельная — evaporative cooling system
    систе́ма охлажде́ния, каска́дная — cascade refrigeration system
    систе́ма охлажде́ния непосре́дственным испаре́нием холоди́льного аге́нта — direct expansion system
    систе́ма охлажде́ния, пане́льная — panel cooling system
    систе́ма охлажде́ния, рассо́льная, двухтемперату́рная — dual-temperature brine refrigeration system
    систе́ма охлажде́ния, рассо́льная, закры́тая — closed brine cooling system
    систе́ма охлажде́ния, рассо́льная, с испаре́нием — brine spray cooling system
    систе́ма охлажде́ния с теплозащи́тной руба́шкой — jacketed cooling system
    систе́ма очи́стки воды́ — water purification system
    систе́ма па́мяти — memory [storage] system
    систе́ма парашю́та, подвесна́я — parachute harness
    систе́ма переда́чи да́нных — data transmission system
    систе́ма переда́чи да́нных с обра́тной свя́зью — information feedback data transmission system
    систе́ма переда́чи да́нных с коммута́цией сообще́ний и промежу́точным хране́нием — store-and-forward data network
    систе́ма переда́чи да́нных с реша́ющей обра́тной свя́зью — decision feedback data transmission system
    систе́ма переда́чи и́мпульсов набо́ра, шле́йфная тлф.loop dialling system
    систе́ма переда́чи на одно́й боково́й полосе́ и пода́вленной несу́щей — single-sideband suppressed-carrier [SSB-SC] system
    систе́ма переда́чи на одно́й боково́й полосе́ с осла́бленной несу́щей — single-sideband reduced carrier [SSB-RC] system
    систе́ма пита́ния двс.fuel system
    систе́ма пита́ния котла́ — boiler-feed piping system
    систе́ма питьево́й воды́ мор. — drinking-water [portable-water] system
    систе́ма пода́чи то́плива, вытесни́тельная — pressure feeding system
    систе́ма пода́чи то́плива самотё́ком — gravity feeding system
    систе́ма пода́чи то́плива, турбонасо́сная — turbopump feeding system
    подви́жная систе́ма ( измерительного прибора) — moving element (movement не рекомендован соответствующими стандартами)
    систе́ма пожа́рной сигнализа́ции — fire-alarm system
    систе́ма пожаротуше́нения — fire-extinguishing system
    систе́ма поса́дки — landing system
    систе́ма поса́дки по прибо́рам — instrument landing system (сокращение ILS относится к международной системе, советская система обозначается СПinstrument landing system)
    систе́ма проду́вки автоscavenging system
    противообледени́тельная систе́ма ав. — ( для предотвращения образования льда) anti-icing [ice protection] system; ( для удаления образовавшегося льда) de-icing system
    противопожа́рная систе́ма — fire-extinguishing system
    противото́чная систе́ма — counter-current flow system
    систе́ма прямо́го перено́са ( электроннооптического преобразователя) — proximity focused system
    прямото́чная систе́ма — direct-flow system
    систе́ма прямоуго́льных координа́т — Cartesian [rectangular] coordinate system
    систе́ма, рабо́тающая в и́стинном масшта́бе вре́мени — real-time system
    радиолокацио́нная, втори́чная систе́ма УВД — ( для работы внутри СССР) SSR system; ( отвечающая нормам ИКАО) ICAO SSR system
    радиолокацио́нная систе́ма с электро́нным скани́рованием — electronic scanning radar system, ESRS
    радиомая́чная систе́ма — radio range
    радиомая́чная, многокана́льная систе́ма — multitrack radio range
    систе́ма радионавига́ции — radio-navigation system (см. тж. система навигации)
    развё́ртывающая систе́ма тлв.scanning system
    систе́ма разрабо́тки — mining system, method of mining
    распредели́тельная систе́ма — distribution system
    регенерати́вная систе́ма тепл.feed heating system
    резерви́рованная систе́ма — redundant system
    систе́ма ремне́й, подвесна́я ( респиратора) — harness
    систе́ма ру́бок лес.cutting system
    самонастра́ивающаяся систе́ма — self-adjusting system
    самообуча́ющаяся систе́ма киб.learning system
    самоорганизу́ющаяся систе́ма — self-organizing system
    самоприспоса́бливающаяся систе́ма киб.adaptive system
    самоуравнове́шивающаяся систе́ма — self-balancing system
    самоусоверше́нствующаяся систе́ма — evolutionary system
    санита́рная систе́ма мор.sanitary system
    систе́ма свя́зи — communication system
    сопряга́ть систе́му свя́зи, напр. с ЭВМ — interface a communication network with, e. g., a computer
    уплотня́ть систе́му свя́зи телегра́фными кана́лами — multiplex telegraph channels on a communication link
    систе́ма свя́зи, асинхро́нная — asyncronous communication system
    систе́ма свя́зи, двои́чная — binary communication system
    систе́ма свя́зи, многокана́льная — multi-channel communication system
    систе́ма свя́зи на метео́рных вспы́шках — meteor burst [meteor-scatter] communication system
    систе́ма свя́зи, разветвлё́нная — deployed communication system
    систе́ма свя́зи с испо́льзованием да́льнего тропосфе́рного рассе́яния — troposcatter communication system
    систе́ма свя́зи с испо́льзованием ионосфе́рного рассе́яния — ionoscatter communication system
    систе́ма свя́зи с переспро́сом — ARQ communication system
    систе́ма свя́зи, уплотнё́нная — multiplex communication system
    систе́ма свя́зи, уплотнё́нная, с временны́м разделе́нием сигна́лов — time division multiplex [TDM] communication system
    систе́ма свя́зи, уплотнё́нная, с разделе́нием по ко́дам — code-division multiplex(ing) communication system
    систе́ма свя́зи, уплотнё́нная, с часто́тным разделе́нием сигна́лов — frequency division multiplex [FDM] communication system
    сельси́нная систе́ма — synchro system
    сельси́нная систе́ма в индика́торном режи́ме — synchro-repeater [direct-transmission synchro] system
    сельси́нная систе́ма в трансформа́торном режи́ме — synchro-detector [control-transformer synchro] system
    сельси́нная, двухотсчё́тная систе́ма — two-speed [coarse-fine] synchro system
    сельси́нная, дифференциа́льная систе́ма — differential synchro system
    сельси́нная, одноотсчё́тная систе́ма — singlespeed synchro system
    систе́ма сил — force system
    систе́ма синхрониза́ции — timing [synchronizing] mechanism
    синхро́нная систе́ма — synchronous system
    следя́щая систе́ма — servo (system)
    следя́щая, позицио́нная систе́ма — positional servo (system)
    следя́щая систе́ма с не́сколькими входны́ми возде́йствиями — multi-input servo (system)
    следя́щая систе́ма с предваре́нием — predictor servo (system)
    систе́ма слеже́ния — tracking system
    систе́ма слеже́ния по да́льности — range tracking system
    систе́ма слеже́ния по ско́рости измене́ния да́льности — range rate tracking system
    систе́ма сма́зки — lubrication (system)
    систе́ма сма́зки, принуди́тельная — force(-feed) lubrication (system)
    систе́ма сма́зки, разбры́згивающая — splash lubrication (system)
    сма́зочная систе́ма — lubrication (system)
    систе́ма с мно́гими переме́нными — multivariable system
    систе́ма сниже́ния шу́ма — noise reduction system
    систе́ма с обра́тной свя́зью — feedback system
    Со́лнечная систе́ма — solar system
    систе́ма сопровожде́ния — tracking system
    систе́ма со свобо́дными пове́рхностями — unbounded system
    систе́ма с пара́метрами, изменя́ющимися во вре́мени — time variable [time-variant] system
    систе́ма с постоя́нным резерви́рованием — parallel-redundant system
    систе́ма с разделе́нием вре́мени — time-sharing system
    систе́ма с распределё́нными пара́метрами — distributed parameter system
    систе́ма с самоизменя́ющейся структу́рой — self-structuring system
    систе́ма с сосредото́ченными пара́метрами — lumped-parameter [lumped-constant] system
    стати́ческая систе́ма — киб. constant-error system; ( в следящих системах) type O servo system
    систе́ма, стати́чески неопредели́мая мех.statically indeterminate system
    систе́ма, стати́чески определи́мая мех.statically determinate system
    систе́ма стира́ния ( записи) — erasing system
    стохасти́ческая систе́ма — stochastic system
    сто́чная систе́ма мор.deck drain system
    судова́я систе́ма — ship system
    систе́ма с фикси́рованными грани́цами — bounded system
    систе́ма счисле́ния — number(ing) system, notation
    систе́ма счисле́ния, восьмери́чная — octal number system, octonary notation
    систе́ма счисле́ния, двенадцатери́чная — duodecimal number system, duodecimal notation
    систе́ма счисле́ния, двои́чная — binary system, binary notation
    систе́ма счисле́ния, двои́чно-десяти́чная — binary-coded decimal system, binary-coded decimal [BCD] notation
    систе́ма счисле́ния, девятери́чная — nine number system
    систе́ма счисле́ния, десяти́чная — decimal number system, decimal notation
    систе́ма счисле́ния, непозицио́нная — non-positional notation
    систе́ма счисле́ния, позицио́нная — positional number notation
    систе́ма счисле́ния пути́, возду́шно-до́плеровская навиг.airborne Doppler navigator
    систе́ма счисле́ния, трои́чная — ternary number system, ternary notation
    систе́ма счисле́ния, шестнадцатери́чная — hexadecimal number system, hexadecimal notation
    телевизио́нная светокла́панная систе́ма — light-modulator [light-modulating] television system
    телегра́фная многокра́тная систе́ма ( с временным распределением) — time-division multiplex (transmission), time division telegraph system
    телеметри́ческая систе́ма — telemetering system
    телеметри́ческая, промы́шленная систе́ма — industrial telemetering system
    телеметри́ческая, то́ковая систе́ма — current-type telemeter
    телеметри́ческая, часто́тная систе́ма — frequency-type telemeter
    телефо́нная, автомати́ческая систе́ма — dial telephone system
    телефо́нная систе́ма с ручны́м обслу́живанием — manual-switchboard telephone system
    термодинами́ческая систе́ма — thermodynamic system
    техни́ческая систе́ма (в отличие от естественных, математических и т. п.) — engineering system
    систе́ма тона́льного телеграфи́рования — voice-frequency multichannel system
    то́пливная систе́ма — fuel system
    то́пливная систе́ма с пода́чей само́тёком — gravity fuel system
    тормозна́я систе́ма ( автомобиля) — brake system
    трёхкомпоне́нтная систе́ма — ternary [three-component] system
    трёхпроводна́я систе́ма эл.three-wire system
    трёхфа́зная систе́ма эл.three-phase system
    трёхфа́зная систе́ма с глухозаземлё́нной нейтра́лью эл.solidly-earthed-neutral three-phase system
    трёхфа́зная, симметри́чная систе́ма эл.symmetrical three-phase system
    трёхфа́зная систе́ма с незаземлё́нной нейтра́лью эл.isolated-neutral three-phase system
    трю́мная систе́ма мор.bilge system
    систе́ма тяг — linkage
    тя́го-дутьева́я систе́ма — draught system
    систе́ма УВД — air traffic control [ATC] system
    систе́ма управле́ния — control system
    систе́ма управле́ния, автомати́ческая — automatic control system
    систе́ма управле́ния без па́мяти — combinational (control) system
    систе́ма управле́ния возду́шным движе́нием — air traffic control [ATC] system
    систе́ма управле́ния произво́дством [предприя́тием], автоматизи́рованная [АСУП] — management information system, MIS
    систе́ма управле́ния с вычисли́тельной маши́ной — computer control system
    систе́ма управле́ния с па́мятью — sequential (control) system
    систе́ма управле́ния с предсказа́нием — predictor control system
    систе́ма управле́ния технологи́ческим проце́ссом, автоматизи́рованная [АСУТП] — (automatic) process control system
    систе́ма управле́ния, цифрова́я — digital control system
    управля́емая систе́ма ( объект управления) — controlled system, controlled plant
    управля́ющая систе́ма ( часть системы управления) — controlling (sub-)system
    упру́гая систе́ма ( гравиметра) — elastic system
    систе́ма уравне́ний — set [system] of equations, set of simultaneous equations
    систе́ма уравне́ния объё́ма ( ядерного реактора) — pressurizing system
    уравнове́шенная систе́ма — balanced system
    усто́йчивая систе́ма — stable system
    фа́новая систе́ма мор. — flushing [sewage-disposal] system
    систе́ма физи́ческих величи́н — system of physical quantities
    хи́мико-технологи́ческая систе́ма — chemical engineering system
    хими́ческая систе́ма — chemical system
    систе́ма ЦБ-АТС тлф.dial system
    систе́ма цветно́го телеви́дения, совмести́мая — compatible colour-television system
    систе́ма це́нтра масс — centre-of-mass [centre-of-gravity, centre-of-momentum] system
    систе́ма цифрово́го управле́ния ( не путать с числовы́м управле́нием) — digital control system (not to be confused with numeric control system)
    систе́ма «челове́к — маши́на» — man-machine system
    шарни́рная систе́ма — hinged system
    шарни́рно-стержнева́я систе́ма — hinged-rod system
    шпре́нгельная систе́ма — strutted [truss] system
    систе́ма эксплуата́ции телефо́нной свя́зи, заказна́я — delay operation
    систе́ма эксплуата́ции телефо́нной свя́зи, ско́рая — demand working, telephone traffic on the demand basis
    экстрема́льная систе́ма — extremal system
    систе́ма электро́дов ЭЛТ — CRT electrode structure
    электроже́зловая систе́ма ж.-д.(electric) token system
    электрохими́ческая систе́ма — electrochemical system
    электрохими́ческая, необрати́мая систе́ма — irreversible electrochemical system
    электрохими́ческая, обрати́мая систе́ма — reversible electrochemical system
    электроэнергети́ческая систе́ма — electric power system
    систе́ма элеме́нтов Менделе́ева, периоди́ческая — Mendeleeff's [Mendeleev's, periodic] law, periodic system, periodic table
    систе́ма элеме́нтов ЦВМ — computer building-block range
    энергети́ческая систе́ма — power system
    энергети́ческая, еди́ная систе́ма — power grid
    энергети́ческая, объединё́нная систе́ма — interconnected power system

    Русско-английский политехнический словарь > система

  • 20 рассматривать

    We shall cover these compounds in the next chapter.

    Here we examine the combined effect of...

    We shall deal with this subject in the next chapter.

    To fully appreciate the significance of these data, each aspect of the genetical processes must first be scrutinized.

    We have considered this problem carefully.

    Mechanics treats of the action of forces and their effect.

    Since subtraction is the same process as addition, subtraction is not treated separately here.

    We will now look at the basic principles used in fluid logic.

    Let us take a look at the individual components of...

    The effect of these differences on... will be covered later.

    At the moment enzyme catalysis forms a separate subject; we shall not take it up here.

    The durability of the material must be viewed from two standpoints - the mechanical and the electrical.

    II

    When an object is viewed with both eyes, it looks like...

    This series can be considered a result of the substitution of...

    Then luminiferous ether could be viewed as an exceedingly subtle gas.

    Русско-английский научно-технический словарь переводчика > рассматривать

См. также в других словарях:

  • Logic family — In computer engineering, a logic family may refer to one of two related concepts. A logic family of monolithic digital integrated circuit devices is a group of electronic logic gates constructed using one of several different designs, usually… …   Wikipedia

  • Logic gate — A logic gate is an idealized or physical device implementing a Boolean function, that is, it performs a logical operation on one or more logic inputs and produces a single logic output. Depending on the context, the term may refer to an ideal… …   Wikipedia

  • Logic model — The logic model is a general framework for describing work in an organization. Since work is often packaged in programs, it is often referred to as the program logic model. Definition In its simplest form, the logic model analyzes work into four… …   Wikipedia

  • logic — noun 1 system of reasoning ADJECTIVE ▪ formal ▪ mathematical ▪ deductive, inductive ▪ Aristotelian, classical ▪ …   Collocations dictionary

  • Logic design — In electronic design, logic design is a step in the standard design cycle in which the functional design of an electronic circuit is converted into the representation which captures logic operations, arithmetic operations, control flow, etc. A… …   Wikipedia

  • Logic and the philosophy of mathematics in the nineteenth century — John Stillwell INTRODUCTION In its history of over two thousand years, mathematics has seldom been disturbed by philosophical disputes. Ever since Plato, who is said to have put the slogan ‘Let no one who is not a geometer enter here’ over the… …   History of philosophy

  • Basic writing — Basic writing, or developmental writing, is a discipline of composition studies which focuses on the writing of students sometimes otherwise called remedial or underprepared , usually freshman college students. Contents 1 Defining Basic Writing 2 …   Wikipedia

  • logic design — Basic organization of the circuitry of a digital computer. All digital computers are based on a two valued logic system 1/0, on/off, yes/no (see binary code). Computers perform calculations using components called logic gates, which are made up… …   Universalium

  • Logic in computer science — describes topics where logic is applied to computer science and artificial intelligence. These include:*Investigations into logic that are guided by applications in computer science. For example: Combinatory logic and Abstract interpretation;… …   Wikipedia

  • LOGIC — (Heb. חָכְמַת הַדִּבּוּר or מְלֶאכֶת הַהִגַּיוֹן), the study of the principles governing correct reasoning and demonstration. The term logic, according to Maimonides, is used in three senses: to refer to the rational faculty, the intelligible in… …   Encyclopedia of Judaism

  • Logic Works — Inc. was a software company based in Princeton, New Jersey. Their flagship product was an IDEF1X modeling and database design toolcalled ER win (ERwin) whose name is formed from an initialism of ER for Entity Relationship and win , short for… …   Wikipedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»