-
1 Basic Logic
Programming: BL -
2 basic logic unit
Engineering: BLU -
3 basic transient diode logic
Optics: BTDLУниверсальный русско-английский словарь > basic transient diode logic
-
4 основная логика
Russian-English Dictionary "Microeconomics" > основная логика
-
5 основной логический блок
Русско-английский исловарь по машиностроению и автоматизации производства > основной логический блок
-
6 базовая логика
1) Engineering: basic logic2) Household appliances: core logic -
7 базовые логические схемы
Engineering: basic logicУниверсальный русско-английский словарь > базовые логические схемы
-
8 базовый логический блок
Engineering: basic logic unitУниверсальный русско-английский словарь > базовый логический блок
-
9 основная логика
Mathematics: basic logic -
10 основной логический блок
Automation: basic logic unitУниверсальный русско-английский словарь > основной логический блок
-
11 базовая ТТЛ-схема
Русско-английский словарь по микроэлектронике > базовая ТТЛ-схема
-
12 основной элемент
Бизнес, юриспруденция. Русско-английский словарь > основной элемент
-
13 схема
chart, circuit, connection, circuit design, design, device, diagram, drawing, element, ( расчетная или эквивалентная) model, net, network, outline, pattern, plan, plot, project, ( логическая структура данных) schema, schematic, scheme, setup, sheet, structure* * *схе́ма ж.1. (графическое изображение, чертёж) diagram2. ( совокупность элементов и цепей связи) circuit; (разновидность какой-л. схемы) circuit designвозбужда́ть схе́му — drive a circuitзапуска́ть схе́му — trigger a circuitподгота́вливать схе́му — arm a circuit, set up a circuit in readiness for operation… со́бран по схе́ме ё́мкостной трёхто́чки … — connected in the Hartley oscillator circuitсоставля́ть схе́му — draw (up) a circuitсуществу́ет не́сколько схем супергетероди́нного приё́мника — superhets come in several circuit designs3. (изображение, образ действия последовательность событий) scheme, planавтоди́нная схе́ма — autodyne circuitсхе́ма автомати́ческой подстро́йки частоты́ [АПЧ] — automatic frequency control [AFC] circuitанало́говая схе́ма — analog circuitсхе́ма ано́дного повтори́теля — see-saw circuitсхе́ма антисовпаде́ний — anticoincidence circuitбала́нсная схе́ма — balanced circuitсхе́ма Берну́лли ( в теории вероятностей) — Bernoulli trialsве́нтильная схе́ма — gate (circuit)схе́ма вентиля́ции — ventilation (system), ventilation planсхе́ма вентиля́ции, за́мкнутая — closed-circuit ventilation (system)схе́ма вентиля́ции, осева́я — axial ventilation (system)схе́ма вентиля́ции, протяжна́я — open-circuit ventilation (system)схе́ма вентиля́ции, радиа́льная — radial ventilation (system)схе́ма включа́ющее ИЛИ — inclusive OR circuitсхе́ма вычисле́ния — computational scheme, pattern of calculationсхе́ма вычита́ния — subtract(ion) circuitсхе́ма гаше́ния луча́ — blanking circuitгерметизи́рованная схе́ма — potted circuitгибри́дная схе́ма — hybrid circuitдвухта́ктная схе́ма — push-pull circuitдвухта́ктная схе́ма с о́бщим като́дным сопротивле́нием — long-tailed pairсхе́ма деле́ния — dividing circuitсхе́ма деле́ния на два — divide-by-two circuit, binary scalerдифференци́рующая схе́ма — differentiating circuitсхе́ма заде́ржки — delay circuitсхе́ма замеще́ния — equivalent circuitзаостря́ющая схе́ма — peaking circuitзапомина́ющая схе́ма — memory [storage] circuitсхе́ма запре́та ( логический элемент) — NOT-AND [NAND] circuit, NOT-AND [NAND] gate, inhibitor circuit, inhibit gateсхе́ма за́пуска — trigger circuitсхе́ма засве́та развё́ртки рлк. — intensifier gate circuitсхе́ма И — AND circuit, AND gateсхе́ма И-И — AND-to-AND circuitсхе́ма И-ИЛИ — AND-to-OR circuitсхе́ма ИЛИ — OR circuit, OR gateсхе́ма ИЛИ-И — OR-to-AND circuitсхе́ма ИЛИ-ИЛИ — OR-to-OR circuitи́мпульсная схе́ма — pulse circuitсхе́ма И-НЕТ — NOT-AND [NAND] circuit, NOT-AND [NAND] gateинтегра́льная схе́ма — integrated circuitпомеща́ть интегра́льную схе́му в ко́рпус — encase an integrated circuitинтегра́льная, больша́я схе́ма [БИС] — large-scale integrated [LSI] circuitинтегра́льная, гибри́дная схе́ма — hybrid integrated circuit, hybrid IC, HICинтегра́льная, моноли́тная схе́ма — monolithic integrated circuit, MICинтегра́льная, осаждё́нная схе́ма — deposited integrated circuitинтегра́льная, плана́рная эпитаксиа́льная схе́ма — planex integrated circuitинтегра́льная, полупроводнико́вая схе́ма — semiconductor integrated circuitинтегра́льная схе́ма СВЧ диапазо́на — microwave integrated circuitинтегра́льная схе́ма с инжекцио́нным возбужде́нием — integrated-injection-logic [I2 L] circuitинтегра́льная, толстоплё́ночная схе́ма — thick-film integrated circuitинтегри́рующая схе́ма — integrating circuit, integrating networkсхе́ма исключа́ющее ИЛИ — exclusive OR circuit, exclusive or [nonequivalent] elementкаско́дная схе́ма — cascode circuitквадрату́рная схе́ма — quadrature networkкинемати́ческая схе́ма — mechanical diagramкольцева́я схе́ма — ring circuitкоммутацио́нная схе́ма — diagram of connections; wiring diagramкомпоно́вочная схе́ма — lay-out diagramсхе́ма корре́кции часто́тной характери́стики — compensating networkсхе́ма корре́кции часто́тной характери́стики, проста́я — series frequency compensating networkсхе́ма корре́кции часто́тной характери́стики, сло́жная — shunt frequency compensating networkкриотро́нная схе́ма — cryotron circuitлоги́ческая схе́ма — ( материальный объект) logic(al) (circuit); ( совокупность логических элементов) logic systemстро́ить логи́ческую схе́му на ба́зе реле́ — mechanize the logic system with relaysлоги́ческая схе́ма без па́мяти — combinational logic networkлоги́ческая, дио́дная схе́ма — diode logic circuitлоги́ческая, дио́дно-транзи́сторная схе́ма — diode-transistor logic, DTLлоги́ческая, микроминиатю́рная схе́ма — micrologic circuitлоги́ческая схе́ма на магни́тных серде́чниках — core logicлоги́ческая схе́ма на параметро́нах — parametron logicсхе́ма логи́ческая схе́ма на поро́говых элеме́нтах — threshold logicлоги́ческая схе́ма на транзи́сторах и рези́сторах — resistor-transistor logicлоги́ческая, потенциа́льная схе́ма — level logicлоги́ческая, рези́сторно-транзи́сторная схе́ма — resistor-transistor logicлоги́ческая схе́ма с па́мятью — sequential logic circuit, sequential logic networkлоги́ческая, транзи́сторная схе́ма с непосре́дственными свя́зями — direct-coupled transistor logicмаке́тная схе́ма — breadboard modelма́тричная схе́ма — matrix circuitмикроминиатю́рная схе́ма — microminiature [micromin] circuitмикроэлектро́нная схе́ма — microelectronic circuitмнемони́ческая схе́ма — mimic diagramмногофункциона́льная схе́ма — multifunction circuitмодели́рующая схе́ма — analog circuitмо́дульная схе́ма — modular(ized) circuitмолекуля́рная схе́ма — molecular circuitмонта́жная схе́ма — wiring diagram, wiring lay-outмостова́я схе́ма эл. — bridge circuitсхе́ма набо́ра зада́чи, структу́рная вчт. — problem set-upнагля́дная схе́ма — pictorial diagramсхе́ма нака́чки — pump(ing) circuitсхе́ма на не́скольких криста́лликах — multichip circuitсхе́ма на не́скольких чи́пах — multichip circuitсхе́ма на то́лстых плё́нках — thick-film circuitсхе́ма на то́нких плё́нках — thin-film circuitсхе́ма на транзи́сторах — transistor circuitсхе́ма НЕ — NOT circuit, NOT gateневзаи́мная схе́ма — unilateral [nonreciprocal] networkсхе́ма НЕ И — NOT AND [NAND] circuit, NOT AND [NAND] gateсхе́ма НЕ ИЛИ — NOT OR circuit, NOT OR circuit, NOT OR gateнелине́йная схе́ма — non-linear circuit, non-linear networkсхе́ма несовпаде́ния — non-coincidence [anticoincidence] circuitсхе́ма образова́ния дополне́ния (числа́) вчт. — complementerсхе́ма образова́ния дополни́тельного ко́да (числа́) вчт. — 2's complementerсхе́ма образова́ния обра́тного ко́да (числа́) вчт. — 1's complementerсхе́ма обра́тной корре́кции радио — deemphasis circuitсхе́ма обра́тной свя́зи — feedback circuitсхе́ма объедине́ния — OR circuit, OR gateоднолине́йная схе́ма эл. — single-line diagram, single-line schemeоднота́ктная схе́ма — single-ended circuitопти́ческая схе́ма (напр. микроскопа) — optical trainпереключа́ющая схе́ма — switch(ing) [commutation] circuitпереключа́ющая схе́ма на криотро́нах — cryotron switching [commutation] circuitпересчё́тная схе́ма — scaler, scaling circuitпересчё́тная, бина́рная схе́ма — scale-of-two circuit, binary scalerпересчё́тная, дека́дная схе́ма — scale-of-ten circuit, decade scalerпересчё́тная, кольцева́я схе́ма — ring scalerпересчё́тная схе́ма с коэффицие́нтом пересчё́та — N scale-of-N circuit, modulo-N scalerпеча́тная схе́ма — printed circuitпеча́тная, микроминиатю́рная схе́ма — microprinted circuitсхе́ма пита́ния, однони́точная тепл. — single-run feeding systemсхе́ма пита́ния, паралле́льная радио — parallel feedсхе́ма пита́ния ано́дной це́пи ла́мпы, паралле́льная — parallel feed is used in the anode circuitплана́рная схе́ма — planar circuitпневмати́ческая схе́ма — pneumatic circuitсхе́ма повтори́теля ( логический элемент) — OR circuit, OR gateпоро́говая схе́ма — threshold circuitпотенциа́льная схе́ма — level circuitпринципиа́льная схе́ма1. ( изображение) schematic (diagram); (неэлектрическая, напр. механического устройства) (simplified) line diagram; ( пневматического или гидравлического устройства) flow diagram (of an apparatus)2. ( материальный объект) fundamental [basic] circuit arrangementсхе́ма прове́рки — test set-upсобра́ть схе́му прове́рки по рис. 1 — establish the test set-up shown in Fig. 1схе́ма прове́рки чё́тности — parity checkerсхе́ма произво́дственного проце́сса, маршру́тная — plant flow diagram, route sheetсхе́ма прока́тки — rolling scheduleпротивоколеба́тельная схе́ма — antihurt circuitпротивоме́стная схе́ма тлф. — antisidetone circuitсхе́ма проце́сса, технологи́ческая1. ( диаграмма) flow chart, flow sheet, flow diagram2. ( размещение производственного оборудования) plant layoutсхе́ма пупиниза́ции свз. — loading schemeпускова́я схе́ма1. тепл. start-up system2. элк. trigger circuitпускова́я, однора́зовая схе́ма элк. — single-shot trigger circuitразвя́зывающая схе́ма свз. — isolation networkсхе́ма разделе́ния — separation circuitсхе́ма разноимё́нности — exclusive OR circuit; exclusive OR [non-equivalence] elementсхе́ма распа́да физ. — decay [disintegration] schemeсхе́ма расположе́ния — lay-out diagramсхе́ма расположе́ния ламп радио — tube-location diagramсхе́ма распределе́ния па́мяти — memory allocation schemeрегенерати́вная схе́ма — regenerative [positive feedback] circuitреже́кторная схе́ма — rejector circuitрелаксацио́нная схе́ма — relaxation circuitреле́йно-конта́ктная схе́ма — (relay) switching circuitсхе́ма самолё́та, аэродинами́ческая — airplane configurationсхе́ма с двумя́ усто́йчивыми состоя́ниями — bistable circuitсхе́ма селе́кции дви́жущихся це́лей — moving target indicator [MTI] cancellerсхе́ма с заземлё́нной се́ткой — grounded-grid [common-grid] circuitсхе́ма с заземлё́нным като́дом — grounded-cathode [common-emitter] circuitсхе́ма с заземлё́нным колле́ктором — grounded-collector [common-collector] circuitсхе́ма с заземлё́нным эми́ттером — grounded-emitter [common-emitter] circuitсимметри́чная схе́ма — symmetrical circuitсхе́ма синхрониза́ции — sync(hronizing) circuitсхе́ма синхрониза́ции, гла́вная — master clockсхе́ма с като́дной свя́зью — cathode-coupled circuitскеле́тная схе́ма — skeleton diagramсхе́ма сма́зки — lubrication diagram, lubrication chartсхе́ма смеще́ния це́нтра развё́ртки — off-centring circuitсобира́тельная схе́ма — OR circuit, OR gateсхе́ма с о́бщей като́дной нагру́зкой, парафа́зная — long-tail-pair circuitсхе́ма совпаде́ния — AND [coincidence] circuit, AND gateсхе́ма с одни́м усто́йчивым состоя́нием — monostable circuitсхе́ма соедине́ний — (diagram of) connectionsсхе́ма соедине́ния трансформа́тора — winding connection(s)спускова́я схе́ма элк. — trigger circuitсхе́ма сравне́ния — comparison circuitсхе́ма с разделе́нием сигна́лов по частоте́ ( форма организации связи или системы) — frequency-division multiplex [FDM] workingстабилизи́рующая схе́ма — stabilizing circuitструкту́рная схе́ма — block diagramсумми́рующая схе́ма — ( дискретных сигналов) add(ing) circuit; ( аналоговых сигналов) summing circuitсхе́ма счё́та ( последовательность арифметических и логических операторов в алгоритме ЭВМ) — path of controlсчё́тная схе́ма — counting circuitтвердоте́льная схе́ма — solid-state circuitтвердоте́льная, эпитаксиа́льная схе́ма — epitaxial solid circuitТ-обра́зная схе́ма — T-circuit, T-networkсхе́ма токопрохожде́ния — signal-flow diagramтолстоплё́ночная схе́ма — thick-film circuitтонкоплё́ночная схе́ма — thin-film circuitтранзи́сторная схе́ма — transistor(ized) circuitсхе́ма трёхто́чки, ё́мкостная — Colpitts oscillator (circuit)схе́ма трёхто́чки, индукти́вная — Hartley oscillator (circuit)схе́ма удвое́ния — doubling circuit, doublerсхе́ма удлине́ния и́мпульсов — pulse stretcherсхе́ма умноже́ния — multiply(ing) circuitсхе́ма умноже́ния на два — multiply-by-2 circuitсхе́ма управле́ния — control circuitусредня́ющая схе́ма — averaging circuit, averagerсхе́ма фа́зовой автомати́ческой подстро́йки частоты́ [ФАПЧ] — phase-lock loop, PLLфазовраща́тельная схе́ма — phase-shifting networkфикси́рующая схе́ма — clamp(ing) circuit, clamperформиру́ющая схе́ма — shaping circuit, shaperфункциона́льная схе́ма — functional (block) diagram; вчт. logic diagramцепна́я схе́ма — ladder circuit, ladder [recurrent] networkэквивале́нтная схе́ма — equivalent circuitсхе́ма экскава́ции горн. — excavation schemeэлектри́ческая схе́ма — circuit diagramэлектро́нная схе́ма — electronic circuitсхе́ма электропрово́дки — wiring diagramсхе́ма энергети́ческих у́ровней — energy-level diagram* * *1) circuit design; 2) diagram -
14 программируемый логический контроллер
программируемый логический контроллер
ПЛК
-
[Интент]
контроллер
Управляющее устройство, осуществляющее автоматическое управление посредством программной реализации алгоритмов управления.
[Сборник рекомендуемых терминов. Выпуск 107. Теория управления.
Академия наук СССР. Комитет научно-технической терминологии. 1984 г.]EN
storage-programmable logic controller
computer-aided control equipment or system whose logic sequence can be varied via a directly or remote-control connected programming device, for example a control panel, a host computer or a portable terminal
[IEV ref 351-32-34]FR
automate programmable à mémoire
См. также:
équipement ou système de commande assisté par ordinateur dont la séquence logique peut être modifiée directement ou par l'intermédiaire d'un dispositif de programmation relié à une télécommande, par exemple un panneau de commande, un ordinateur hôte ou un terminal de données portatif
[IEV ref 351-32-34]
- архитектура контроллера;
- производительность контроллера;
- время реакции контроллера;
КЛАССИФИКАЦИЯ
Основным показателем ПЛК является количество каналов ввода-вывода. По этому признаку ПЛК делятся на следующие группы:- нано- ПЛК (менее 16 каналов);
- микро-ПЛК (более 16, до 100 каналов);
- средние (более 100, до 500 каналов);
- большие (более 500 каналов).
- моноблочными - в которых устройство ввода-вывода не может быть удалено из контроллера или заменено на другое. Конструктивно контроллер представляет собой единое целое с устройствами ввода-вывода (например, одноплатный контроллер). Моноблочный контроллер может иметь, например, 16 каналов дискретного ввода и 8 каналов релейного вывода;
- модульные - состоящие из общей корзины (шасси), в которой располагаются модуль центрального процессора и сменные модули ввода-вывода. Состав модулей выбирается пользователем в зависимости от решаемой задачи. Типовое количество слотов для сменных модулей - от 8 до 32;
- распределенные (с удаленными модулями ввода-вывода) - в которых модули ввода-вывода выполнены в отдельных корпусах, соединяются с модулем контроллера по сети (обычно на основе интерфейса RS-485) и могут быть расположены на расстоянии до 1,2 км от процессорного модуля.
Многие контроллеры имеют набор сменных процессорных плат разной производительности. Это позволяет расширить круг потенциальных пользователей системы без изменения ее конструктива.
По конструктивному исполнению и способу крепления контроллеры делятся на:- панельные (для монтажа на панель или дверцу шкафа);
- для монтажа на DIN-рейку внутри шкафа;
- для крепления на стене;
- стоечные - для монтажа в стойке;
- бескорпусные (обычно одноплатные) для применения в специализированных конструктивах производителей оборудования (OEM - "Original Equipment Manufact urer").
По области применения контроллеры делятся на следующие типы:- универсальные общепромышленные;
- для управления роботами;
- для управления позиционированием и перемещением;
- коммуникационные;
- ПИД-контроллеры;
- специализированные.
По способу программирования контроллеры бывают:- программируемые с лицевой панели контроллера;
- программируемые переносным программатором;
- программируемые с помощью дисплея, мыши и клавиатуры;
- программируемые с помощью персонального компьютера.
Контроллеры могут программироваться на следующих языках:- на классических алгоритмических языках (C, С#, Visual Basic);
- на языках МЭК 61131-3.
Контроллеры могут содержать в своем составе модули ввода-вывода или не содержать их. Примерами контроллеров без модулей ввода-вывода являются коммуникационные контроллеры, которые выполняют функцию межсетевого шлюза, или контроллеры, получающие данные от контроллеров нижнего уровня иерархии АСУ ТП. Контроллеры для систем автоматизации
Слово "контроллер" произошло от английского "control" (управление), а не от русского "контроль" (учет, проверка). Контроллером в системах автоматизации называют устройство, выполняющее управление физическими процессами по записанному в него алгоритму, с использованием информации, получаемой от датчиков и выводимой в исполнительные устройства.
Первые контроллеры появились на рубеже 60-х и 70-х годов в автомобильной промышленности, где использовались для автоматизации сборочных линий. В то время компьютеры стоили чрезвычайно дорого, поэтому контроллеры строились на жесткой логике (программировались аппаратно), что было гораздо дешевле. Однако перенастройка с одной технологической линии на другую требовала фактически изготовления нового контроллера. Поэтому появились контроллеры, алгоритм работы которых мог быть изменен несколько проще - с помощью схемы соединений реле. Такие контроллеры получили название программируемых логических контроллеров (ПЛК), и этот термин сохранился до настоящего времени. Везде ниже термины "контроллер" и "ПЛК" мы будем употреблять как синонимы.
Немного позже появились ПЛК, которые можно было программировать на машинно-ориентированном языке, что было проще конструктивно, но требовало участия специально обученного программиста для внесения даже незначительных изменений в алгоритм управления. С этого момента началась борьба за упрощение процесса программирования ПЛК, которая привела сначала к созданию языков высокого уровня, затем - специализированных языков визуального программирования, похожих на язык релейной логики. В настоящее время этот процесс завершился созданием международного стандарта IEC (МЭК) 1131-3, который позже был переименован в МЭК 61131-3. Стандарт МЭК 61131-3 поддерживает пять языков технологического программирования, что исключает необходимость привлечения профессиональных программистов при построении систем с контроллерами, оставляя для них решение нестандартных задач.
В связи с тем, что способ программирования является наиболее существенным классифицирующим признаком контроллера, понятие "ПЛК" все реже используется для обозначения управляющих контроллеров, которые не поддерживают технологические языки программирования. Жесткие ограничения на стоимость и огромное разнообразие целей автоматизации привели к невозможности создания универсального ПЛК, как это случилось с офисными компьютерами. Область автоматизации выдвигает множество задач, в соответствии с которыми развивается и рынок, содержащий сотни непохожих друг на друга контроллеров, различающихся десятками параметров.
Выбор оптимального для конкретной задачи контроллера основывается обычно на соответствии функциональных характеристик контроллера решаемой задаче при условии минимальной его стоимости. Учитываются также другие важные характеристики (температурный диапазон, надежность, бренд изготовителя, наличие разрешений Ростехнадзора, сертификатов и т. п.).
Несмотря на огромное разнообразие контроллеров, в их развитии заметны следующие общие тенденции:- уменьшение габаритов;
- расширение функциональных возможностей;
- увеличение количества поддерживаемых интерфейсов и сетей;
- использование идеологии "открытых систем";
- использование языков программирования стандарта МЭК 61131-3;
- снижение цены.
[ http://bookasutp.ru/Chapter6_1.aspx]
Программируемый логический контроллер (ПЛК, PLC) – микропроцессорное устройство, предназначенное для управления технологическим процессом и другими сложными технологическими объектами.
Принцип работы контроллера состоит в выполнение следующего цикла операций:
1. Сбор сигналов с датчиков;
2. Обработка сигналов согласно прикладному алгоритму управления;
3. Выдача управляющих воздействий на исполнительные устройства.
В нормальном режиме работы контроллер непрерывно выполняет этот цикл с частотой от 50 раз в секунду. Время, затрачиваемое контроллером на выполнение полного цикла, часто называют временем (или периодом) сканирования; в большинстве современных ПЛК сканирование может настраиваться пользователем в диапазоне от 20 до 30000 миллисекунд. Для быстрых технологических процессов, где критична скорость реакции системы и требуется оперативное регулирование, время сканирования может составлять 20 мс, однако для большинства непрерывных процессов период 100 мс считается вполне приемлемым.
Аппаратно контроллеры имеют модульную архитектуру и могут состоять из следующих компонентов:
1. Базовая панель ( Baseplate). Она служит для размещения на ней других модулей системы, устанавливаемых в специально отведенные позиции (слоты). Внутри базовой панели проходят две шины: одна - для подачи питания на электронные модули, другая – для пересылки данных и информационного обмена между модулями.
2. Модуль центрального вычислительного устройства ( СPU). Это мозг системы. Собственно в нем и происходит математическая обработка данных. Для связи с другими устройствами CPU часто оснащается сетевым интерфейсом, поддерживающим тот или иной коммуникационный стандарт.
3. Дополнительные коммуникационные модули. Необходимы для добавления сетевых интерфейсов, неподдерживаемых напрямую самим CPU. Коммуникационные модули существенно расширяют возможности ПЛК по сетевому взаимодействию. C их помощью к контроллеру подключают узлы распределенного ввода/вывода, интеллектуальные полевые приборы и станции операторского уровня.
4. Блок питания. Нужен для запитки системы от 220 V. Однако многие ПЛК не имеют стандартного блока питания и запитываются от внешнего.
Рис.1. Контроллер РСУ с коммуникациями Profibus и Ethernet.
Иногда на базовую панель, помимо указанных выше, допускается устанавливать модули ввода/вывода полевых сигналов, которые образуют так называемый локальный ввод/вывод. Однако для большинства РСУ (DCS) характерно использование именно распределенного (удаленного) ввода/вывода.
Отличительной особенностью контроллеров, применяемых в DCS, является возможность их резервирования. Резервирование нужно для повышения отказоустойчивости системы и заключается, как правило, в дублировании аппаратных модулей системы.
Рис. 2. Резервированный контроллер с коммуникациями Profibus и Ethernet.
Резервируемые модули работают параллельно и выполняют одни и те же функции. При этом один модуль находится в активном состоянии, а другой, являясь резервом, – в режиме “standby”. В случае отказа активного модуля, система автоматически переключается на резерв (это называется “горячий резерв”).
Обратите внимание, контроллеры связаны шиной синхронизации, по которой они мониторят состояние друг друга. Это решение позволяет разнести резервированные модули на значительное расстояние друг от друга (например, расположить их в разных шкафах или даже аппаратных).
Допустим, в данный момент активен левый контроллер, правый – находится в резерве. При этом, даже находясь в резерве, правый контроллер располагает всеми процессными данными и выполняет те же самые математические операции, что и левый. Контроллеры синхронизированы. Предположим, случается отказ левого контроллера, а именно модуля CPU. Управление автоматически передается резервному контроллеру, и теперь он становится главным. Здесь очень большое значение имеют время, которое система тратит на переключение на резерв (обычно меньше 0.5 с) и отсутствие возмущений (удара). Теперь система работает на резерве. Как только инженер заменит отказавший модуль CPU на исправный, система автоматически передаст ему управление и возвратится в исходное состояние.
На рис. 3 изображен резервированный контроллер S7-400H производства Siemens. Данный контроллер входит в состав РСУ Simatic PCS7.
Рис. 3. Резервированный контроллер S7-400H. Несколько другое техническое решение показано на примере резервированного контроллера FCP270 производства Foxboro (рис. 4). Данный контроллер входит в состав системы управления Foxboro IA Series.
Рис. 4. Резервированный контроллер FCP270.
На базовой панели инсталлировано два процессорных модуля, работающих как резервированная пара, и коммуникационный модуль для сопряжения с оптическими сетями стандарта Ethernet. Взаимодействие между модулями происходит по внутренней шине (тоже резервированной), спрятанной непосредственно в базовую панель (ее не видно на рисунке).
На рисунке ниже показан контроллер AC800M производства ABB (часть РСУ Extended Automation System 800xA).
Рис. 5. Контроллер AC800M.
Это не резервированный вариант. Контроллер состоит из двух коммуникационных модулей, одного СPU и одного локального модуля ввода/вывода. Кроме этого, к контроллеру можно подключить до 64 внешних модулей ввода/вывода.
При построении РСУ важно выбрать контроллер, удовлетворяющий всем техническим условиям и требованиям конкретного производства. Подбирая оптимальную конфигурацию, инженеры оперируют определенными техническими характеристиками промышленных контроллеров. Наиболее значимые перечислены ниже:
1. Возможность полного резервирования. Для задач, где отказоустойчивость критична (химия, нефтехимия, металлургия и т.д.), применение резервированных конфигураций вполне оправдано, тогда как для других менее ответственных производств резервирование зачастую оказывается избыточным решением.
2. Количество и тип поддерживаемых коммуникационных интерфейсов. Это определяет гибкость и масштабируемость системы управления в целом. Современные контроллеры способны поддерживать до 10 стандартов передачи данных одновременно, что во многом определяет их универсальность.
3. Быстродействие. Измеряется, как правило, в количестве выполняемых в секунду элементарных операций (до 200 млн.). Иногда быстродействие измеряется количеством обрабатываемых за секунду функциональных блоков (что такое функциональный блок – будет рассказано в следующей статье). Быстродействие зависит от типа центрального процессора (популярные производители - Intel, AMD, Motorola, Texas Instruments и т.д.)
4. Объем оперативной памяти. Во время работы контроллера в его оперативную память загружены запрограммированные пользователем алгоритмы автоматизированного управления, операционная система, библиотечные модули и т.д. Очевидно, чем больше оперативной памяти, тем сложнее и объемнее алгоритмы контроллер может выполнять, тем больше простора для творчества у программиста. Варьируется от 256 килобайт до 32 мегабайт.
5. Надежность. Наработка на отказ до 10-12 лет.
6. Наличие специализированных средств разработки и поддержка различных языков программирования. Очевидно, что существование специализированный среды разработки прикладных программ – это стандарт для современного контроллера АСУ ТП. Для удобства программиста реализуется поддержка сразу нескольких языков как визуального, так и текстового (процедурного) программирования (FBD, SFC, IL, LAD, ST; об этом в следующей статье).
7. Возможность изменения алгоритмов управления на “лету” (online changes), т.е. без остановки работы контроллера. Для большинства контроллеров, применяемых в РСУ, поддержка online changes жизненно необходима, так как позволяет тонко настраивать систему или расширять ее функционал прямо на работающем производстве.
8. Возможность локального ввода/вывода. Как видно из рис. 4 контроллер Foxboro FCP270 рассчитан на работу только с удаленной подсистемой ввода/вывода, подключаемой к нему по оптическим каналам. Simatic S7-400 может спокойно работать как с локальными модулями ввода/вывода (свободные слоты на базовой панели есть), так и удаленными узлами.
9. Вес, габаритные размеры, вид монтажа (на DIN-рейку, на монтажную панель или в стойку 19”). Важно учитывать при проектировании и сборке системных шкафов.
10. Условия эксплуатации (температура, влажность, механические нагрузки). Большинство промышленных контроллеров могут работать в нечеловеческих условиях от 0 до 65 °С и при влажности до 95-98%.
[ http://kazanets.narod.ru/PLC_PART1.htm]Тематики
Синонимы
EN
DE
- speicherprogrammierbare Steuerung, f
FR
Русско-английский словарь нормативно-технической терминологии > программируемый логический контроллер
15 принципиальная схема
1) General subject: principle diagram, (продвижения от исходной точки к конечной цели посредством решения ряда промежуточных задач) road map2) Aviation: skeleton diagram3) Naval: diagrammatic layout, principal diagram4) Military: actual layout, circuitry, equipment circuit5) Engineering: basic diagram, circuit diagram, circuit schematic, hookup, ladder (напр. автоматики станка), ladder circuit (напр. электроавтоматики станка), ladder diagram, ladder logic (напр. автоматики станка), ladder network (напр. электроавтоматики станка), cable-and-trunk schematic6) Construction: structural scheme, P&ID( piping and instruments diagram)7) Mathematics: a conceptual sketch of, block diagram, elementary diagram, principal scheme, schematic diagram8) Accounting: flowchart9) Automobile industry: elementary diagram (напр. электрических соединений и аппаратов), plat10) Physics: key diagram11) Electronics: basic circuit, hook-up, schematic circuit, schematic circuit diagram, wiring diagram12) Information technology: functional diagram13) Ecology: conceptual flow chart14) Sakhalin energy glossary: flow chart, general layout, interconnection diagram15) Microelectronics: basic-circuit arrangement, configuration, schematic configuration16) Automation: action chart, framework17) General subject: circuit diagram (напр., пневматической тормозной системы), schematics18) Chemical weapons: concept scheme19) Makarov: basic circuit arrangement (материальный объект), flow diagram (of an apparatus) (пневматического или гидравлического устройства), fundamental circuit arrangement (материальный объект), line diagram (simplified; неэлектрическая, напр. механического устройства), schematic (diagram) (изображение), schematic diagram (изображение), simplified line diagram (неэлектрическая, напр. механического устройства)20) Electric machinery: single line diagram21) Electrochemistry: basic outline22) Combustion gas turbines: basic configuration, basic scheme, diagrammatic arrangement23) Electrical engineering: (электрическая) circuit schematic, (электрическая) wiring diagram, connection diagramУниверсальный русско-английский словарь > принципиальная схема
16 программируемый логический контроллер
- speicherprogrammierbare Steuerung, f
программируемый логический контроллер
ПЛК
-
[Интент]
контроллер
Управляющее устройство, осуществляющее автоматическое управление посредством программной реализации алгоритмов управления.
[Сборник рекомендуемых терминов. Выпуск 107. Теория управления.
Академия наук СССР. Комитет научно-технической терминологии. 1984 г.]EN
storage-programmable logic controller
computer-aided control equipment or system whose logic sequence can be varied via a directly or remote-control connected programming device, for example a control panel, a host computer or a portable terminal
[IEV ref 351-32-34]FR
automate programmable à mémoire
См. также:
équipement ou système de commande assisté par ordinateur dont la séquence logique peut être modifiée directement ou par l'intermédiaire d'un dispositif de programmation relié à une télécommande, par exemple un panneau de commande, un ordinateur hôte ou un terminal de données portatif
[IEV ref 351-32-34]
- архитектура контроллера;
- производительность контроллера;
- время реакции контроллера;
КЛАССИФИКАЦИЯ
Основным показателем ПЛК является количество каналов ввода-вывода. По этому признаку ПЛК делятся на следующие группы:- нано- ПЛК (менее 16 каналов);
- микро-ПЛК (более 16, до 100 каналов);
- средние (более 100, до 500 каналов);
- большие (более 500 каналов).
- моноблочными - в которых устройство ввода-вывода не может быть удалено из контроллера или заменено на другое. Конструктивно контроллер представляет собой единое целое с устройствами ввода-вывода (например, одноплатный контроллер). Моноблочный контроллер может иметь, например, 16 каналов дискретного ввода и 8 каналов релейного вывода;
- модульные - состоящие из общей корзины (шасси), в которой располагаются модуль центрального процессора и сменные модули ввода-вывода. Состав модулей выбирается пользователем в зависимости от решаемой задачи. Типовое количество слотов для сменных модулей - от 8 до 32;
- распределенные (с удаленными модулями ввода-вывода) - в которых модули ввода-вывода выполнены в отдельных корпусах, соединяются с модулем контроллера по сети (обычно на основе интерфейса RS-485) и могут быть расположены на расстоянии до 1,2 км от процессорного модуля.
Многие контроллеры имеют набор сменных процессорных плат разной производительности. Это позволяет расширить круг потенциальных пользователей системы без изменения ее конструктива.
По конструктивному исполнению и способу крепления контроллеры делятся на:- панельные (для монтажа на панель или дверцу шкафа);
- для монтажа на DIN-рейку внутри шкафа;
- для крепления на стене;
- стоечные - для монтажа в стойке;
- бескорпусные (обычно одноплатные) для применения в специализированных конструктивах производителей оборудования (OEM - "Original Equipment Manufact urer").
По области применения контроллеры делятся на следующие типы:- универсальные общепромышленные;
- для управления роботами;
- для управления позиционированием и перемещением;
- коммуникационные;
- ПИД-контроллеры;
- специализированные.
По способу программирования контроллеры бывают:- программируемые с лицевой панели контроллера;
- программируемые переносным программатором;
- программируемые с помощью дисплея, мыши и клавиатуры;
- программируемые с помощью персонального компьютера.
Контроллеры могут программироваться на следующих языках:- на классических алгоритмических языках (C, С#, Visual Basic);
- на языках МЭК 61131-3.
Контроллеры могут содержать в своем составе модули ввода-вывода или не содержать их. Примерами контроллеров без модулей ввода-вывода являются коммуникационные контроллеры, которые выполняют функцию межсетевого шлюза, или контроллеры, получающие данные от контроллеров нижнего уровня иерархии АСУ ТП. Контроллеры для систем автоматизации
Слово "контроллер" произошло от английского "control" (управление), а не от русского "контроль" (учет, проверка). Контроллером в системах автоматизации называют устройство, выполняющее управление физическими процессами по записанному в него алгоритму, с использованием информации, получаемой от датчиков и выводимой в исполнительные устройства.
Первые контроллеры появились на рубеже 60-х и 70-х годов в автомобильной промышленности, где использовались для автоматизации сборочных линий. В то время компьютеры стоили чрезвычайно дорого, поэтому контроллеры строились на жесткой логике (программировались аппаратно), что было гораздо дешевле. Однако перенастройка с одной технологической линии на другую требовала фактически изготовления нового контроллера. Поэтому появились контроллеры, алгоритм работы которых мог быть изменен несколько проще - с помощью схемы соединений реле. Такие контроллеры получили название программируемых логических контроллеров (ПЛК), и этот термин сохранился до настоящего времени. Везде ниже термины "контроллер" и "ПЛК" мы будем употреблять как синонимы.
Немного позже появились ПЛК, которые можно было программировать на машинно-ориентированном языке, что было проще конструктивно, но требовало участия специально обученного программиста для внесения даже незначительных изменений в алгоритм управления. С этого момента началась борьба за упрощение процесса программирования ПЛК, которая привела сначала к созданию языков высокого уровня, затем - специализированных языков визуального программирования, похожих на язык релейной логики. В настоящее время этот процесс завершился созданием международного стандарта IEC (МЭК) 1131-3, который позже был переименован в МЭК 61131-3. Стандарт МЭК 61131-3 поддерживает пять языков технологического программирования, что исключает необходимость привлечения профессиональных программистов при построении систем с контроллерами, оставляя для них решение нестандартных задач.
В связи с тем, что способ программирования является наиболее существенным классифицирующим признаком контроллера, понятие "ПЛК" все реже используется для обозначения управляющих контроллеров, которые не поддерживают технологические языки программирования. Жесткие ограничения на стоимость и огромное разнообразие целей автоматизации привели к невозможности создания универсального ПЛК, как это случилось с офисными компьютерами. Область автоматизации выдвигает множество задач, в соответствии с которыми развивается и рынок, содержащий сотни непохожих друг на друга контроллеров, различающихся десятками параметров.
Выбор оптимального для конкретной задачи контроллера основывается обычно на соответствии функциональных характеристик контроллера решаемой задаче при условии минимальной его стоимости. Учитываются также другие важные характеристики (температурный диапазон, надежность, бренд изготовителя, наличие разрешений Ростехнадзора, сертификатов и т. п.).
Несмотря на огромное разнообразие контроллеров, в их развитии заметны следующие общие тенденции:- уменьшение габаритов;
- расширение функциональных возможностей;
- увеличение количества поддерживаемых интерфейсов и сетей;
- использование идеологии "открытых систем";
- использование языков программирования стандарта МЭК 61131-3;
- снижение цены.
[ http://bookasutp.ru/Chapter6_1.aspx]
Программируемый логический контроллер (ПЛК, PLC) – микропроцессорное устройство, предназначенное для управления технологическим процессом и другими сложными технологическими объектами.
Принцип работы контроллера состоит в выполнение следующего цикла операций:
1. Сбор сигналов с датчиков;
2. Обработка сигналов согласно прикладному алгоритму управления;
3. Выдача управляющих воздействий на исполнительные устройства.
В нормальном режиме работы контроллер непрерывно выполняет этот цикл с частотой от 50 раз в секунду. Время, затрачиваемое контроллером на выполнение полного цикла, часто называют временем (или периодом) сканирования; в большинстве современных ПЛК сканирование может настраиваться пользователем в диапазоне от 20 до 30000 миллисекунд. Для быстрых технологических процессов, где критична скорость реакции системы и требуется оперативное регулирование, время сканирования может составлять 20 мс, однако для большинства непрерывных процессов период 100 мс считается вполне приемлемым.
Аппаратно контроллеры имеют модульную архитектуру и могут состоять из следующих компонентов:
1. Базовая панель ( Baseplate). Она служит для размещения на ней других модулей системы, устанавливаемых в специально отведенные позиции (слоты). Внутри базовой панели проходят две шины: одна - для подачи питания на электронные модули, другая – для пересылки данных и информационного обмена между модулями.
2. Модуль центрального вычислительного устройства ( СPU). Это мозг системы. Собственно в нем и происходит математическая обработка данных. Для связи с другими устройствами CPU часто оснащается сетевым интерфейсом, поддерживающим тот или иной коммуникационный стандарт.
3. Дополнительные коммуникационные модули. Необходимы для добавления сетевых интерфейсов, неподдерживаемых напрямую самим CPU. Коммуникационные модули существенно расширяют возможности ПЛК по сетевому взаимодействию. C их помощью к контроллеру подключают узлы распределенного ввода/вывода, интеллектуальные полевые приборы и станции операторского уровня.
4. Блок питания. Нужен для запитки системы от 220 V. Однако многие ПЛК не имеют стандартного блока питания и запитываются от внешнего.
Рис.1. Контроллер РСУ с коммуникациями Profibus и Ethernet.
Иногда на базовую панель, помимо указанных выше, допускается устанавливать модули ввода/вывода полевых сигналов, которые образуют так называемый локальный ввод/вывод. Однако для большинства РСУ (DCS) характерно использование именно распределенного (удаленного) ввода/вывода.
Отличительной особенностью контроллеров, применяемых в DCS, является возможность их резервирования. Резервирование нужно для повышения отказоустойчивости системы и заключается, как правило, в дублировании аппаратных модулей системы.
Рис. 2. Резервированный контроллер с коммуникациями Profibus и Ethernet.
Резервируемые модули работают параллельно и выполняют одни и те же функции. При этом один модуль находится в активном состоянии, а другой, являясь резервом, – в режиме “standby”. В случае отказа активного модуля, система автоматически переключается на резерв (это называется “горячий резерв”).
Обратите внимание, контроллеры связаны шиной синхронизации, по которой они мониторят состояние друг друга. Это решение позволяет разнести резервированные модули на значительное расстояние друг от друга (например, расположить их в разных шкафах или даже аппаратных).
Допустим, в данный момент активен левый контроллер, правый – находится в резерве. При этом, даже находясь в резерве, правый контроллер располагает всеми процессными данными и выполняет те же самые математические операции, что и левый. Контроллеры синхронизированы. Предположим, случается отказ левого контроллера, а именно модуля CPU. Управление автоматически передается резервному контроллеру, и теперь он становится главным. Здесь очень большое значение имеют время, которое система тратит на переключение на резерв (обычно меньше 0.5 с) и отсутствие возмущений (удара). Теперь система работает на резерве. Как только инженер заменит отказавший модуль CPU на исправный, система автоматически передаст ему управление и возвратится в исходное состояние.
На рис. 3 изображен резервированный контроллер S7-400H производства Siemens. Данный контроллер входит в состав РСУ Simatic PCS7.
Рис. 3. Резервированный контроллер S7-400H. Несколько другое техническое решение показано на примере резервированного контроллера FCP270 производства Foxboro (рис. 4). Данный контроллер входит в состав системы управления Foxboro IA Series.
Рис. 4. Резервированный контроллер FCP270.
На базовой панели инсталлировано два процессорных модуля, работающих как резервированная пара, и коммуникационный модуль для сопряжения с оптическими сетями стандарта Ethernet. Взаимодействие между модулями происходит по внутренней шине (тоже резервированной), спрятанной непосредственно в базовую панель (ее не видно на рисунке).
На рисунке ниже показан контроллер AC800M производства ABB (часть РСУ Extended Automation System 800xA).
Рис. 5. Контроллер AC800M.
Это не резервированный вариант. Контроллер состоит из двух коммуникационных модулей, одного СPU и одного локального модуля ввода/вывода. Кроме этого, к контроллеру можно подключить до 64 внешних модулей ввода/вывода.
При построении РСУ важно выбрать контроллер, удовлетворяющий всем техническим условиям и требованиям конкретного производства. Подбирая оптимальную конфигурацию, инженеры оперируют определенными техническими характеристиками промышленных контроллеров. Наиболее значимые перечислены ниже:
1. Возможность полного резервирования. Для задач, где отказоустойчивость критична (химия, нефтехимия, металлургия и т.д.), применение резервированных конфигураций вполне оправдано, тогда как для других менее ответственных производств резервирование зачастую оказывается избыточным решением.
2. Количество и тип поддерживаемых коммуникационных интерфейсов. Это определяет гибкость и масштабируемость системы управления в целом. Современные контроллеры способны поддерживать до 10 стандартов передачи данных одновременно, что во многом определяет их универсальность.
3. Быстродействие. Измеряется, как правило, в количестве выполняемых в секунду элементарных операций (до 200 млн.). Иногда быстродействие измеряется количеством обрабатываемых за секунду функциональных блоков (что такое функциональный блок – будет рассказано в следующей статье). Быстродействие зависит от типа центрального процессора (популярные производители - Intel, AMD, Motorola, Texas Instruments и т.д.)
4. Объем оперативной памяти. Во время работы контроллера в его оперативную память загружены запрограммированные пользователем алгоритмы автоматизированного управления, операционная система, библиотечные модули и т.д. Очевидно, чем больше оперативной памяти, тем сложнее и объемнее алгоритмы контроллер может выполнять, тем больше простора для творчества у программиста. Варьируется от 256 килобайт до 32 мегабайт.
5. Надежность. Наработка на отказ до 10-12 лет.
6. Наличие специализированных средств разработки и поддержка различных языков программирования. Очевидно, что существование специализированный среды разработки прикладных программ – это стандарт для современного контроллера АСУ ТП. Для удобства программиста реализуется поддержка сразу нескольких языков как визуального, так и текстового (процедурного) программирования (FBD, SFC, IL, LAD, ST; об этом в следующей статье).
7. Возможность изменения алгоритмов управления на “лету” (online changes), т.е. без остановки работы контроллера. Для большинства контроллеров, применяемых в РСУ, поддержка online changes жизненно необходима, так как позволяет тонко настраивать систему или расширять ее функционал прямо на работающем производстве.
8. Возможность локального ввода/вывода. Как видно из рис. 4 контроллер Foxboro FCP270 рассчитан на работу только с удаленной подсистемой ввода/вывода, подключаемой к нему по оптическим каналам. Simatic S7-400 может спокойно работать как с локальными модулями ввода/вывода (свободные слоты на базовой панели есть), так и удаленными узлами.
9. Вес, габаритные размеры, вид монтажа (на DIN-рейку, на монтажную панель или в стойку 19”). Важно учитывать при проектировании и сборке системных шкафов.
10. Условия эксплуатации (температура, влажность, механические нагрузки). Большинство промышленных контроллеров могут работать в нечеловеческих условиях от 0 до 65 °С и при влажности до 95-98%.
[ http://kazanets.narod.ru/PLC_PART1.htm]Тематики
Синонимы
EN
DE
- speicherprogrammierbare Steuerung, f
FR
Русско-немецкий словарь нормативно-технической терминологии > программируемый логический контроллер
17 программируемый логический контроллер
программируемый логический контроллер
ПЛК
-
[Интент]
контроллер
Управляющее устройство, осуществляющее автоматическое управление посредством программной реализации алгоритмов управления.
[Сборник рекомендуемых терминов. Выпуск 107. Теория управления.
Академия наук СССР. Комитет научно-технической терминологии. 1984 г.]EN
storage-programmable logic controller
computer-aided control equipment or system whose logic sequence can be varied via a directly or remote-control connected programming device, for example a control panel, a host computer or a portable terminal
[IEV ref 351-32-34]FR
automate programmable à mémoire
См. также:
équipement ou système de commande assisté par ordinateur dont la séquence logique peut être modifiée directement ou par l'intermédiaire d'un dispositif de programmation relié à une télécommande, par exemple un panneau de commande, un ordinateur hôte ou un terminal de données portatif
[IEV ref 351-32-34]
- архитектура контроллера;
- производительность контроллера;
- время реакции контроллера;
КЛАССИФИКАЦИЯ
Основным показателем ПЛК является количество каналов ввода-вывода. По этому признаку ПЛК делятся на следующие группы:- нано- ПЛК (менее 16 каналов);
- микро-ПЛК (более 16, до 100 каналов);
- средние (более 100, до 500 каналов);
- большие (более 500 каналов).
- моноблочными - в которых устройство ввода-вывода не может быть удалено из контроллера или заменено на другое. Конструктивно контроллер представляет собой единое целое с устройствами ввода-вывода (например, одноплатный контроллер). Моноблочный контроллер может иметь, например, 16 каналов дискретного ввода и 8 каналов релейного вывода;
- модульные - состоящие из общей корзины (шасси), в которой располагаются модуль центрального процессора и сменные модули ввода-вывода. Состав модулей выбирается пользователем в зависимости от решаемой задачи. Типовое количество слотов для сменных модулей - от 8 до 32;
- распределенные (с удаленными модулями ввода-вывода) - в которых модули ввода-вывода выполнены в отдельных корпусах, соединяются с модулем контроллера по сети (обычно на основе интерфейса RS-485) и могут быть расположены на расстоянии до 1,2 км от процессорного модуля.
Многие контроллеры имеют набор сменных процессорных плат разной производительности. Это позволяет расширить круг потенциальных пользователей системы без изменения ее конструктива.
По конструктивному исполнению и способу крепления контроллеры делятся на:- панельные (для монтажа на панель или дверцу шкафа);
- для монтажа на DIN-рейку внутри шкафа;
- для крепления на стене;
- стоечные - для монтажа в стойке;
- бескорпусные (обычно одноплатные) для применения в специализированных конструктивах производителей оборудования (OEM - "Original Equipment Manufact urer").
По области применения контроллеры делятся на следующие типы:- универсальные общепромышленные;
- для управления роботами;
- для управления позиционированием и перемещением;
- коммуникационные;
- ПИД-контроллеры;
- специализированные.
По способу программирования контроллеры бывают:- программируемые с лицевой панели контроллера;
- программируемые переносным программатором;
- программируемые с помощью дисплея, мыши и клавиатуры;
- программируемые с помощью персонального компьютера.
Контроллеры могут программироваться на следующих языках:- на классических алгоритмических языках (C, С#, Visual Basic);
- на языках МЭК 61131-3.
Контроллеры могут содержать в своем составе модули ввода-вывода или не содержать их. Примерами контроллеров без модулей ввода-вывода являются коммуникационные контроллеры, которые выполняют функцию межсетевого шлюза, или контроллеры, получающие данные от контроллеров нижнего уровня иерархии АСУ ТП. Контроллеры для систем автоматизации
Слово "контроллер" произошло от английского "control" (управление), а не от русского "контроль" (учет, проверка). Контроллером в системах автоматизации называют устройство, выполняющее управление физическими процессами по записанному в него алгоритму, с использованием информации, получаемой от датчиков и выводимой в исполнительные устройства.
Первые контроллеры появились на рубеже 60-х и 70-х годов в автомобильной промышленности, где использовались для автоматизации сборочных линий. В то время компьютеры стоили чрезвычайно дорого, поэтому контроллеры строились на жесткой логике (программировались аппаратно), что было гораздо дешевле. Однако перенастройка с одной технологической линии на другую требовала фактически изготовления нового контроллера. Поэтому появились контроллеры, алгоритм работы которых мог быть изменен несколько проще - с помощью схемы соединений реле. Такие контроллеры получили название программируемых логических контроллеров (ПЛК), и этот термин сохранился до настоящего времени. Везде ниже термины "контроллер" и "ПЛК" мы будем употреблять как синонимы.
Немного позже появились ПЛК, которые можно было программировать на машинно-ориентированном языке, что было проще конструктивно, но требовало участия специально обученного программиста для внесения даже незначительных изменений в алгоритм управления. С этого момента началась борьба за упрощение процесса программирования ПЛК, которая привела сначала к созданию языков высокого уровня, затем - специализированных языков визуального программирования, похожих на язык релейной логики. В настоящее время этот процесс завершился созданием международного стандарта IEC (МЭК) 1131-3, который позже был переименован в МЭК 61131-3. Стандарт МЭК 61131-3 поддерживает пять языков технологического программирования, что исключает необходимость привлечения профессиональных программистов при построении систем с контроллерами, оставляя для них решение нестандартных задач.
В связи с тем, что способ программирования является наиболее существенным классифицирующим признаком контроллера, понятие "ПЛК" все реже используется для обозначения управляющих контроллеров, которые не поддерживают технологические языки программирования. Жесткие ограничения на стоимость и огромное разнообразие целей автоматизации привели к невозможности создания универсального ПЛК, как это случилось с офисными компьютерами. Область автоматизации выдвигает множество задач, в соответствии с которыми развивается и рынок, содержащий сотни непохожих друг на друга контроллеров, различающихся десятками параметров.
Выбор оптимального для конкретной задачи контроллера основывается обычно на соответствии функциональных характеристик контроллера решаемой задаче при условии минимальной его стоимости. Учитываются также другие важные характеристики (температурный диапазон, надежность, бренд изготовителя, наличие разрешений Ростехнадзора, сертификатов и т. п.).
Несмотря на огромное разнообразие контроллеров, в их развитии заметны следующие общие тенденции:- уменьшение габаритов;
- расширение функциональных возможностей;
- увеличение количества поддерживаемых интерфейсов и сетей;
- использование идеологии "открытых систем";
- использование языков программирования стандарта МЭК 61131-3;
- снижение цены.
[ http://bookasutp.ru/Chapter6_1.aspx]
Программируемый логический контроллер (ПЛК, PLC) – микропроцессорное устройство, предназначенное для управления технологическим процессом и другими сложными технологическими объектами.
Принцип работы контроллера состоит в выполнение следующего цикла операций:
1. Сбор сигналов с датчиков;
2. Обработка сигналов согласно прикладному алгоритму управления;
3. Выдача управляющих воздействий на исполнительные устройства.
В нормальном режиме работы контроллер непрерывно выполняет этот цикл с частотой от 50 раз в секунду. Время, затрачиваемое контроллером на выполнение полного цикла, часто называют временем (или периодом) сканирования; в большинстве современных ПЛК сканирование может настраиваться пользователем в диапазоне от 20 до 30000 миллисекунд. Для быстрых технологических процессов, где критична скорость реакции системы и требуется оперативное регулирование, время сканирования может составлять 20 мс, однако для большинства непрерывных процессов период 100 мс считается вполне приемлемым.
Аппаратно контроллеры имеют модульную архитектуру и могут состоять из следующих компонентов:
1. Базовая панель ( Baseplate). Она служит для размещения на ней других модулей системы, устанавливаемых в специально отведенные позиции (слоты). Внутри базовой панели проходят две шины: одна - для подачи питания на электронные модули, другая – для пересылки данных и информационного обмена между модулями.
2. Модуль центрального вычислительного устройства ( СPU). Это мозг системы. Собственно в нем и происходит математическая обработка данных. Для связи с другими устройствами CPU часто оснащается сетевым интерфейсом, поддерживающим тот или иной коммуникационный стандарт.
3. Дополнительные коммуникационные модули. Необходимы для добавления сетевых интерфейсов, неподдерживаемых напрямую самим CPU. Коммуникационные модули существенно расширяют возможности ПЛК по сетевому взаимодействию. C их помощью к контроллеру подключают узлы распределенного ввода/вывода, интеллектуальные полевые приборы и станции операторского уровня.
4. Блок питания. Нужен для запитки системы от 220 V. Однако многие ПЛК не имеют стандартного блока питания и запитываются от внешнего.
Рис.1. Контроллер РСУ с коммуникациями Profibus и Ethernet.
Иногда на базовую панель, помимо указанных выше, допускается устанавливать модули ввода/вывода полевых сигналов, которые образуют так называемый локальный ввод/вывод. Однако для большинства РСУ (DCS) характерно использование именно распределенного (удаленного) ввода/вывода.
Отличительной особенностью контроллеров, применяемых в DCS, является возможность их резервирования. Резервирование нужно для повышения отказоустойчивости системы и заключается, как правило, в дублировании аппаратных модулей системы.
Рис. 2. Резервированный контроллер с коммуникациями Profibus и Ethernet.
Резервируемые модули работают параллельно и выполняют одни и те же функции. При этом один модуль находится в активном состоянии, а другой, являясь резервом, – в режиме “standby”. В случае отказа активного модуля, система автоматически переключается на резерв (это называется “горячий резерв”).
Обратите внимание, контроллеры связаны шиной синхронизации, по которой они мониторят состояние друг друга. Это решение позволяет разнести резервированные модули на значительное расстояние друг от друга (например, расположить их в разных шкафах или даже аппаратных).
Допустим, в данный момент активен левый контроллер, правый – находится в резерве. При этом, даже находясь в резерве, правый контроллер располагает всеми процессными данными и выполняет те же самые математические операции, что и левый. Контроллеры синхронизированы. Предположим, случается отказ левого контроллера, а именно модуля CPU. Управление автоматически передается резервному контроллеру, и теперь он становится главным. Здесь очень большое значение имеют время, которое система тратит на переключение на резерв (обычно меньше 0.5 с) и отсутствие возмущений (удара). Теперь система работает на резерве. Как только инженер заменит отказавший модуль CPU на исправный, система автоматически передаст ему управление и возвратится в исходное состояние.
На рис. 3 изображен резервированный контроллер S7-400H производства Siemens. Данный контроллер входит в состав РСУ Simatic PCS7.
Рис. 3. Резервированный контроллер S7-400H. Несколько другое техническое решение показано на примере резервированного контроллера FCP270 производства Foxboro (рис. 4). Данный контроллер входит в состав системы управления Foxboro IA Series.
Рис. 4. Резервированный контроллер FCP270.
На базовой панели инсталлировано два процессорных модуля, работающих как резервированная пара, и коммуникационный модуль для сопряжения с оптическими сетями стандарта Ethernet. Взаимодействие между модулями происходит по внутренней шине (тоже резервированной), спрятанной непосредственно в базовую панель (ее не видно на рисунке).
На рисунке ниже показан контроллер AC800M производства ABB (часть РСУ Extended Automation System 800xA).
Рис. 5. Контроллер AC800M.
Это не резервированный вариант. Контроллер состоит из двух коммуникационных модулей, одного СPU и одного локального модуля ввода/вывода. Кроме этого, к контроллеру можно подключить до 64 внешних модулей ввода/вывода.
При построении РСУ важно выбрать контроллер, удовлетворяющий всем техническим условиям и требованиям конкретного производства. Подбирая оптимальную конфигурацию, инженеры оперируют определенными техническими характеристиками промышленных контроллеров. Наиболее значимые перечислены ниже:
1. Возможность полного резервирования. Для задач, где отказоустойчивость критична (химия, нефтехимия, металлургия и т.д.), применение резервированных конфигураций вполне оправдано, тогда как для других менее ответственных производств резервирование зачастую оказывается избыточным решением.
2. Количество и тип поддерживаемых коммуникационных интерфейсов. Это определяет гибкость и масштабируемость системы управления в целом. Современные контроллеры способны поддерживать до 10 стандартов передачи данных одновременно, что во многом определяет их универсальность.
3. Быстродействие. Измеряется, как правило, в количестве выполняемых в секунду элементарных операций (до 200 млн.). Иногда быстродействие измеряется количеством обрабатываемых за секунду функциональных блоков (что такое функциональный блок – будет рассказано в следующей статье). Быстродействие зависит от типа центрального процессора (популярные производители - Intel, AMD, Motorola, Texas Instruments и т.д.)
4. Объем оперативной памяти. Во время работы контроллера в его оперативную память загружены запрограммированные пользователем алгоритмы автоматизированного управления, операционная система, библиотечные модули и т.д. Очевидно, чем больше оперативной памяти, тем сложнее и объемнее алгоритмы контроллер может выполнять, тем больше простора для творчества у программиста. Варьируется от 256 килобайт до 32 мегабайт.
5. Надежность. Наработка на отказ до 10-12 лет.
6. Наличие специализированных средств разработки и поддержка различных языков программирования. Очевидно, что существование специализированный среды разработки прикладных программ – это стандарт для современного контроллера АСУ ТП. Для удобства программиста реализуется поддержка сразу нескольких языков как визуального, так и текстового (процедурного) программирования (FBD, SFC, IL, LAD, ST; об этом в следующей статье).
7. Возможность изменения алгоритмов управления на “лету” (online changes), т.е. без остановки работы контроллера. Для большинства контроллеров, применяемых в РСУ, поддержка online changes жизненно необходима, так как позволяет тонко настраивать систему или расширять ее функционал прямо на работающем производстве.
8. Возможность локального ввода/вывода. Как видно из рис. 4 контроллер Foxboro FCP270 рассчитан на работу только с удаленной подсистемой ввода/вывода, подключаемой к нему по оптическим каналам. Simatic S7-400 может спокойно работать как с локальными модулями ввода/вывода (свободные слоты на базовой панели есть), так и удаленными узлами.
9. Вес, габаритные размеры, вид монтажа (на DIN-рейку, на монтажную панель или в стойку 19”). Важно учитывать при проектировании и сборке системных шкафов.
10. Условия эксплуатации (температура, влажность, механические нагрузки). Большинство промышленных контроллеров могут работать в нечеловеческих условиях от 0 до 65 °С и при влажности до 95-98%.
[ http://kazanets.narod.ru/PLC_PART1.htm]Тематики
Синонимы
EN
DE
- speicherprogrammierbare Steuerung, f
FR
Русско-французский словарь нормативно-технической терминологии > программируемый логический контроллер
18 система команд
1. command system2. computer code3. instruction code4. instruction repertory5. machine codeкод команды; система команд; набор команд — instruction code
команда < стереть единичный код> — single code delete
6. machine-instruction codeкод команды; система команд — order code
7. machine-labguage codeмашинный код; система команд — computer code
8. machine-operation codeсимвол, начинающий команду — lead-in code
9. order code10. instruction set11. repertory codeсистема команд; набор команд — instruction repertory
19 система
complex, chain, installation, method, repertoire вчт., repertory, structure, system* * *систе́ма ж.
systemдубли́ровать систе́му — duplicate a systemотла́живать систе́му — tune up a systemсисте́ма функциони́рует норма́льно киб. — the system is well-behavedавари́йная систе́ма ав. — emergency systemсисте́ма авари́йного покида́ния ( самолёта) — escape systemавтомати́ческая систе́ма — automatic systemсисте́ма автомати́ческого регули́рования [САР] — automatic-control system of the regulator(y) typeсисте́ма автомати́ческого регули́рования, де́йствующая по отклоне́нию — error-actuated control systemсисте́ма автомати́ческого регули́рования, за́мкнутая — closed-loop control systemсисте́ма автомати́ческого регули́рования, и́мпульсная — sampling control systemсисте́ма автомати́ческого регули́рования, многоё́мкостная — multicapacity control systemсисте́ма автомати́ческого регули́рования, многоко́нтурная — multiloop control systemсисте́ма автомати́ческого регули́рования, многоме́рная — multivariable control systemсисте́ма автомати́ческого регули́рования, програ́ммная — time-pattern control systemсисте́ма автомати́ческого регули́рования, разо́мкнутая — open-loop control systemсисте́ма автомати́ческого регули́рования следя́щего ти́па — servo-operation control systemсисте́ма автомати́ческого регули́рования со случа́йными возде́йствиями, и́мпульсная — random-input sampled-data systemсисте́ма автомати́ческого регули́рования со стабилиза́цией (проце́сса) — regulator-operation control systemсисте́ма автомати́ческого управле́ния [САУ] — automatic-control systemсисте́ма автомати́ческого управле́ния, цифрова́я — digital control systemсисте́ма автоподстро́йки частоты́ [АПЧ] — AFC systemсисте́ма АПЧ захва́тывает частоту́ — the AFC system locks on to the (desired) frequencyсисте́ма АПЧ осуществля́ет по́иск частоты́ — the AFC system searches for the (desired) frequencyсисте́ма автоподстро́йки частоты́, фа́зовая [ФАПЧ] — phase-lock loop, PLLагрега́тная, унифици́рованная систе́ма ( советская система пневматических средств автоматики) — standard-module pneumatic instrumentation systemадапти́вная систе́ма — adaptive systemапериоди́ческая систе́ма — critically damped systemасинхро́нная систе́ма — asynchronous systemастати́ческая систе́ма — zero-constant-error systemастати́ческая систе́ма второ́го поря́дка — Type 2 [zero-velocity-error] systemастати́ческая систе́ма пе́рвого поря́дка — Type 1 [zero-position-error] systemсисте́ма без резерви́рования — non-redundant systemсисте́ма блокиро́вки ( радиационной установки) — interlock systemсисте́ма ва́ла ( в допусках и посадках) — the basic shaft systemвентиляцио́нная систе́ма — ventilation systemвентиляцио́нная, вытяжна́я систе́ма — exhaust ventilation systemвзаи́мные систе́мы — mutual systemsсисте́ма водоснабже́ния — water(-supply) systemсисте́ма водоснабже́ния, оборо́тная — circulating [closed-circuit] water systemсисте́ма водоснабже́ния, прямото́чная — once-through [run-of-river cooling] systemсисте́ма возду́шного отопле́ния — warm-air heating systemсисте́ма воспроизведе́ния ( записи) — reproduction systemсисте́ма впры́ска двс. — injection systemсисте́ма впры́ска, предка́мерная двс. — antechamber system of injectionсисте́ма впу́ска двс. — induction [intake] systemсисте́ма вы́борки вчт. — selection systemвытяжна́я систе́ма — exhaust systemвычисли́тельная систе́ма — computer [computing] systemвычисли́тельная, многома́шинная систе́ма — multicomputer systemсисте́ма генера́тор — дви́гатель — Ward-Leonard speed-control systemгибри́дная систе́ма — hybrid systemсисте́ма громкоговоря́щей свя́зи — public-address [personnel-address, PA] systemгрузова́я систе́ма мор. — cargo (handling) systemдвухкомпоне́нтная систе́ма хим. — two-component [binary] systemдвухни́точная систе́ма тепл. — two-flow systemдвухпроводна́я систе́ма эл. — two-wire systemдвухэлектро́дная систе́ма ( электроннооптического преобразователя) — self-focusing (diod) systemдиспе́рсная систе́ма — disperse systemдиссипати́вная систе́ма — dissipative systemсисте́ма дистанцио́нного управле́ния — remote control systemдиффере́нтная систе́ма мор. — trim systemдифференциа́льная систе́ма тлф. — hybrid setсисте́ма дождева́ния — sprinkling systemсисте́ма до́пусков — tolerance systemсисте́ма до́пусков, двусторо́нняя [симметри́чная], преде́льная — bilateral system of tolerancesсисте́ма до́пусков и поса́док — system [classification] of fits and tolerancesсисте́ма до́пусков, односторо́нняя [асимметри́чная], преде́льная — unilateral system of tolerancesсисте́ма дрена́жа ( топливных баков) ав. — vent systemсисте́ма едини́ц — system of unitsсисте́ма едини́ц, междунаро́дная [СИ] — international system of units, SIсисте́ма едини́ц МКГСС уст. — MKGSS [metre-kilogram(me)-force-second ] system (of units)систе́ма едини́ц МКС — MKS [metre-kilogram(me)-second ] system (of units)систе́ма едини́ц МКСА — MKSA [metre-kilogram(me)-mass-second-ampere ] system (of units), absolute practical system of unitsсисте́ма едини́ц МКСГ — MKSG [metre-kilogram(me)-force-second-kelvin ] system (of units)систе́ма едини́ц МСС — MSC [metre-second-candela] system (of units)систе́ма едини́ц МТС — MTS [metre-ton-second] system (of units)систе́мы едини́ц СГС — CGS [centimetre-gram(me)-second ] systems (of units)систе́ма едини́ц, техни́ческая — engineer's system of unitsже́зловая систе́ма ж.-д. — staff systemсисте́ма жизнеобеспе́чения косм. — life-support (and survival) systemсисте́ма жизнеобеспе́чения, автоно́мная — back-pack life-support systemсисте́ма зажига́ния — ignition systemсисте́ма зажига́ния, полупроводнико́вая — transistor(ized) ignition systemсисте́ма зажига́ния, электро́нная — electronic ignition systemсисте́ма заземле́ния — earth [ground] networkзамедля́ющая систе́ма — ( в электровакуумных устройствах СВЧ) slow-wave structure; ( волноводная) slow-wave guide; ( коаксиальная) wave delay lineзамедля́ющая, встре́чно-стержнева́я систе́ма — interdigital [interdigitated] slow-wave structureзамедля́ющая, гребе́нчатая систе́ма — vane-line slow-wave structure, finned slow-wave guideзамедля́ющая, спира́льная систе́ма — helical slow-wave structureза́мкнутая систе́ма — closed systemсисте́ма за́писи вчт. — writing systemзапомина́ющая систе́ма вчт. — storage systemсисте́ма затопле́ния мор. — flood(ing) systemсисте́ма захо́да на поса́дку по кома́ндам с земли́ ав. — ground-controlled-approach [GCA] systemзачи́стная систе́ма ( танкера) — stripping systemсисте́ма зерка́л Фабри́—Перо́ — Fabry-Perot [FP] mirror systemзерка́льно-ли́нзовая систе́ма ( в микроскопе) — catadioptric systemсисте́ма золоудале́ния — ash-handling systemсисте́ма зо́льников кож. — lime yard, lime roundизоли́рованная систе́ма — isolated systemсисте́ма индивидуа́льного вы́зова свз. — paging systemинерциа́льная систе́ма — inertial systemинформацио́нная систе́ма — information systemинформацио́нно-поиско́вая систе́ма — information retrieval systemисхо́дная систе́ма — prototype [original] systemканализацио́нная систе́ма — sewer(age) systemканализацио́нная, общесплавна́я систе́ма — combined sewer(age) systemканализацио́нная, разде́льная систе́ма — separate sewer(age) systemсисте́ма коди́рования — coding systemколеба́тельная систе́ма — (преим. механическая) vibratory [vibrating] system; ( немеханическая) oscillatory [resonant] systemколеба́тельная, многорезона́торная систе́ма ( магнетрона) — multiple-cavity resonatorколориметри́ческая трёхцве́тная систе́ма — three-colour photometric systemсисте́ма кома́нд ЭВМ — instruction set of a computer, computer instruction setсисте́ма координа́т — coordinate systemсвя́зывать систе́му координа́т с … — tie in a coordinate system with …, tie coordinate system to …систе́ма координа́т, инерциа́льная — inertial frameсисте́ма координа́т, лаборато́рная — laboratory coordinate system, laboratory frame of referenceсисте́ма координа́т, ле́вая — left-handed coordinate systemсисте́ма координа́т, ме́стная — local (coordinate) systemсисте́ма координа́т, поко́ящаяся — rest (coordinate) systemсисте́ма координа́т, пото́чная аргд. — (relative) wind coordinate systemсисте́ма координа́т, пра́вая — right-handed coordinate systemсисте́ма координа́т, свя́занная с дви́жущимся те́лом — body axes (coordinate) systemсисте́ма координа́т, свя́занная с Землё́й — fixed-in-the-earth (coordinate) systemсисте́ма корре́кции гироско́па — gyro monitor, (long-term) referenceсисте́ма корре́кции гироско́па, магни́тная — magnetic gyro monitor, magnetic referenceсисте́ма корре́кции гироско́па, ма́ятниковая — gravity gyro monitor, gravity referenceсисте́ма криволине́йных координа́т — curvilinear coordinate systemкурсова́я систе́ма ав. — directional heading [waiting] systemли́тниковая систе́ма — gating [pouring gate] systemмагни́тная систе́ма — magnetic systemсисте́ма ма́ссового обслу́живания — queueing [waiting] systemсисте́ма ма́ссового обслу́живания, сме́шанная — combined loss-delay queueing [waiting] systemсисте́ма ма́ссового обслу́живания с ожида́нием — delay queueing [waiting] systemсисте́ма ма́ссового обслу́живания с отка́зами — congestion queueing [waiting] systemсисте́ма ма́ссового обслу́живания с поте́рями — loss-type queueing [waiting] systemмени́сковая систе́ма — meniscus [Maksutov] systemсисте́ма мер, метри́ческая — metric systemсисте́ма мер, типогра́фская — point systemмехани́ческая систе́ма — mechanical systemмехани́ческая, несвобо́дная систе́ма — constrained material systemсисте́ма мно́гих тел — many-body systemмногокана́льная систе́ма свз. — multichannel systemмногокомпоне́нтная систе́ма — multicomponent systemмногоме́рная систе́ма — multivariable systemмодели́руемая систе́ма — prototype systemмо́дульная систе́ма — modular systemмультипле́ксная систе́ма — multiplex systemсисте́ма набо́ра ( корпуса судна) — framing systemсисте́ма набо́ра, кле́тчатая — cellular framing systemсисте́ма набо́ра, попере́чная — transverse framing systemсисте́ма набо́ра, продо́льная — longitudinal framing systemсисте́ма набо́ра, сме́шанная — mixed framing systemсисте́ма навига́ции — navigation systemсисте́ма навига́ции, автоно́мная — self-contained navigation systemсисте́ма навига́ции, гиперболи́ческая — hyperbolic navigation systemсисте́ма навига́ции, дальноме́рная — rho-rho [ - ] navigation systemсисте́ма навига́ции, дальноме́рно-угломе́рная — rho-theta [ - ] navigation systemсисте́ма навига́ции, кругова́я — rho-rho [ - ] navigation systemсисте́ма навига́ции, ра́зностно-дальноме́рная [РДНС] — hyperbolic navigation systemсисте́ма навига́ции, угломе́рная — theta-theta [ - ] navigation systemсисте́ма на стру́йных элеме́нтах, логи́ческая — fluid logic systemсисте́ма нумера́ции тлф. — numbering schemeсисте́ма обду́ва стё́кол авто, автмт. — demisterсисте́ма обнаруже́ния оши́бок ( в передаче данных) свз. — error detection systemсисте́ма обогре́ва стё́кол авто, ав. — defrosterсисте́ма обозначе́ний — notation, symbolismсисте́ма обозначе́ний Междунаро́дного нау́чного радиообъедине́ния — URSI symbol systemсисте́ма обозначе́ния про́бы, кара́тная — carat test sign systemсисте́ма обозначе́ния про́бы, метри́ческая — metric test sign systemобора́чивающая систе́ма опт. — erecting [inversion (optical)] systemобора́чивающая, при́зменная систе́ма опт. — prism-erecting (optical) systemсисте́ма обрабо́тки да́нных — data processing [dp] systemсисте́ма обрабо́тки да́нных в реа́льном масшта́бе вре́мени — real time data processing systemсисте́ма обрабо́тки да́нных, операти́вная — on-line data processing systemсисте́ма обрабо́тки отхо́дов — waste treatment systemсисте́ма объё́много пожаротуше́ния мор. — fire-smothering systemодноотка́зная систе́ма — fall-safe systemопти́ческая систе́ма — optical system, optical trainопти́ческая, зерка́льно-ли́нзовая систе́ма — catadioptric systemсисте́ма ориента́ции ав. — attitude control systemороси́тельная систе́ма — irrigation system, irrigation projectсисте́ма ороше́ния мор. — sprinkling systemсисте́ма освеще́ния — lighting (system)осуши́тельная систе́ма мор. — drain(age) systemсисте́ма отбо́ра во́здуха от компре́ссора — compressor air-bleed systemсисте́ма отве́рстия ( в допусках и посадках) — the basic hole systemотклоня́ющая систе́ма ( в ЭЛТ) — deflecting system, deflection yokeотклоня́ющая, ка́дровая систе́ма — vertical (deflection) yokeотклоня́ющая, магни́тная систе́ма — magnetic (deflection) yokeотклоня́ющая, стро́чная систе́ма — horizontal [line] (deflection) yokeсисте́ма относи́тельных едини́ц — per-unit systemотопи́тельная систе́ма — heating systemотопи́тельная систе́ма с разво́дкой све́рху — down-feed heating systemотопи́тельная систе́ма с разво́дкой сни́зу — up-feed heating systemсисте́ма отсчё́та — frame of reference, (reference) frame, reference systemсисте́ма отсчё́та, инерциа́льная — inertial frame of referenceсисте́ма охлажде́ния — cooling systemсисте́ма охлажде́ния, возду́шная — air-cooling systemсисте́ма охлажде́ния, жи́дкостная — liquid-cooling systemсисте́ма охлажде́ния, испари́тельная — evaporative cooling systemсисте́ма охлажде́ния, каска́дная — cascade refrigeration systemсисте́ма охлажде́ния непосре́дственным испаре́нием холоди́льного аге́нта — direct expansion systemсисте́ма охлажде́ния, пане́льная — panel cooling systemсисте́ма охлажде́ния, рассо́льная, двухтемперату́рная — dual-temperature brine refrigeration systemсисте́ма охлажде́ния, рассо́льная, закры́тая — closed brine cooling systemсисте́ма охлажде́ния, рассо́льная, с испаре́нием — brine spray cooling systemсисте́ма охлажде́ния с теплозащи́тной руба́шкой — jacketed cooling systemсисте́ма очи́стки воды́ — water purification systemсисте́ма па́мяти — memory [storage] systemсисте́ма парашю́та, подвесна́я — parachute harnessсисте́ма переда́чи да́нных — data transmission systemсисте́ма переда́чи да́нных с обра́тной свя́зью — information feedback data transmission systemсисте́ма переда́чи да́нных с коммута́цией сообще́ний и промежу́точным хране́нием — store-and-forward data networkсисте́ма переда́чи да́нных с реша́ющей обра́тной свя́зью — decision feedback data transmission systemсисте́ма переда́чи и́мпульсов набо́ра, шле́йфная тлф. — loop dialling systemсисте́ма переда́чи на одно́й боково́й полосе́ и пода́вленной несу́щей — single-sideband suppressed-carrier [SSB-SC] systemсисте́ма переда́чи на одно́й боково́й полосе́ с осла́бленной несу́щей — single-sideband reduced carrier [SSB-RC] systemсисте́ма пита́ния двс. — fuel systemсисте́ма пита́ния котла́ — boiler-feed piping systemсисте́ма питьево́й воды́ мор. — drinking-water [portable-water] systemсисте́ма пода́чи то́плива, вытесни́тельная — pressure feeding systemсисте́ма пода́чи то́плива самотё́ком — gravity feeding systemсисте́ма пода́чи то́плива, турбонасо́сная — turbopump feeding systemподви́жная систе́ма ( измерительного прибора) — moving element (movement не рекомендован соответствующими стандартами)систе́ма пожа́рной сигнализа́ции — fire-alarm systemсисте́ма пожаротуше́нения — fire-extinguishing systemсисте́ма поса́дки — landing systemсисте́ма поса́дки по прибо́рам — instrument landing system (сокращение ILS относится к международной системе, советская система обозначается СП — instrument landing system)систе́ма проду́вки авто — scavenging systemпротивообледени́тельная систе́ма ав. — ( для предотвращения образования льда) anti-icing [ice protection] system; ( для удаления образовавшегося льда) de-icing systemпротивопожа́рная систе́ма — fire-extinguishing systemпротивото́чная систе́ма — counter-current flow systemсисте́ма прямо́го перено́са ( электроннооптического преобразователя) — proximity focused systemпрямото́чная систе́ма — direct-flow systemсисте́ма прямоуго́льных координа́т — Cartesian [rectangular] coordinate systemсисте́ма, рабо́тающая в и́стинном масшта́бе вре́мени — real-time systemрадиолокацио́нная, втори́чная систе́ма УВД — ( для работы внутри СССР) SSR system; ( отвечающая нормам ИКАО) ICAO SSR systemрадиолокацио́нная систе́ма с электро́нным скани́рованием — electronic scanning radar system, ESRSрадиомая́чная систе́ма — radio rangeрадиомая́чная, многокана́льная систе́ма — multitrack radio rangeсисте́ма радионавига́ции — radio-navigation system (см. тж. система навигации)развё́ртывающая систе́ма тлв. — scanning systemсисте́ма разрабо́тки — mining system, method of miningраспредели́тельная систе́ма — distribution systemрегенерати́вная систе́ма тепл. — feed heating systemрезерви́рованная систе́ма — redundant systemсисте́ма ремне́й, подвесна́я ( респиратора) — harnessсисте́ма ру́бок лес. — cutting systemсамонастра́ивающаяся систе́ма — self-adjusting systemсамообуча́ющаяся систе́ма киб. — learning systemсамоорганизу́ющаяся систе́ма — self-organizing systemсамоприспоса́бливающаяся систе́ма киб. — adaptive systemсамоуравнове́шивающаяся систе́ма — self-balancing systemсамоусоверше́нствующаяся систе́ма — evolutionary systemсанита́рная систе́ма мор. — sanitary systemсисте́ма свя́зи — communication systemсопряга́ть систе́му свя́зи, напр. с ЭВМ — interface a communication network with, e. g., a computerуплотня́ть систе́му свя́зи телегра́фными кана́лами — multiplex telegraph channels on a communication linkсисте́ма свя́зи, асинхро́нная — asyncronous communication systemсисте́ма свя́зи, двои́чная — binary communication systemсисте́ма свя́зи, многокана́льная — multi-channel communication systemсисте́ма свя́зи на метео́рных вспы́шках — meteor burst [meteor-scatter] communication systemсисте́ма свя́зи, разветвлё́нная — deployed communication systemсисте́ма свя́зи с испо́льзованием да́льнего тропосфе́рного рассе́яния — troposcatter communication systemсисте́ма свя́зи с испо́льзованием ионосфе́рного рассе́яния — ionoscatter communication systemсисте́ма свя́зи с переспро́сом — ARQ communication systemсисте́ма свя́зи, уплотнё́нная — multiplex communication systemсисте́ма свя́зи, уплотнё́нная, с временны́м разделе́нием сигна́лов — time division multiplex [TDM] communication systemсисте́ма свя́зи, уплотнё́нная, с разделе́нием по ко́дам — code-division multiplex(ing) communication systemсисте́ма свя́зи, уплотнё́нная, с часто́тным разделе́нием сигна́лов — frequency division multiplex [FDM] communication systemсельси́нная систе́ма — synchro systemсельси́нная систе́ма в индика́торном режи́ме — synchro-repeater [direct-transmission synchro] systemсельси́нная систе́ма в трансформа́торном режи́ме — synchro-detector [control-transformer synchro] systemсельси́нная, двухотсчё́тная систе́ма — two-speed [coarse-fine] synchro systemсельси́нная, дифференциа́льная систе́ма — differential synchro systemсельси́нная, одноотсчё́тная систе́ма — singlespeed synchro systemсисте́ма сил — force systemсисте́ма синхрониза́ции — timing [synchronizing] mechanismсинхро́нная систе́ма — synchronous systemследя́щая систе́ма — servo (system)следя́щая, позицио́нная систе́ма — positional servo (system)следя́щая систе́ма с не́сколькими входны́ми возде́йствиями — multi-input servo (system)следя́щая систе́ма с предваре́нием — predictor servo (system)систе́ма слеже́ния — tracking systemсисте́ма слеже́ния по да́льности — range tracking systemсисте́ма слеже́ния по ско́рости измене́ния да́льности — range rate tracking systemсисте́ма сма́зки — lubrication (system)систе́ма сма́зки, принуди́тельная — force(-feed) lubrication (system)систе́ма сма́зки, разбры́згивающая — splash lubrication (system)сма́зочная систе́ма — lubrication (system)систе́ма с мно́гими переме́нными — multivariable systemсисте́ма сниже́ния шу́ма — noise reduction systemсисте́ма с обра́тной свя́зью — feedback systemСо́лнечная систе́ма — solar systemсисте́ма сопровожде́ния — tracking systemсисте́ма со свобо́дными пове́рхностями — unbounded systemсисте́ма с пара́метрами, изменя́ющимися во вре́мени — time variable [time-variant] systemсисте́ма с постоя́нным резерви́рованием — parallel-redundant systemсисте́ма с разделе́нием вре́мени — time-sharing systemсисте́ма с распределё́нными пара́метрами — distributed parameter systemсисте́ма с самоизменя́ющейся структу́рой — self-structuring systemсисте́ма с сосредото́ченными пара́метрами — lumped-parameter [lumped-constant] systemстати́ческая систе́ма — киб. constant-error system; ( в следящих системах) type O servo systemсисте́ма, стати́чески неопредели́мая мех. — statically indeterminate systemсисте́ма, стати́чески определи́мая мех. — statically determinate systemсисте́ма стира́ния ( записи) — erasing systemстохасти́ческая систе́ма — stochastic systemсто́чная систе́ма мор. — deck drain systemсудова́я систе́ма — ship systemсисте́ма с фикси́рованными грани́цами — bounded systemсисте́ма счисле́ния — number(ing) system, notationсисте́ма счисле́ния, восьмери́чная — octal number system, octonary notationсисте́ма счисле́ния, двенадцатери́чная — duodecimal number system, duodecimal notationсисте́ма счисле́ния, двои́чная — binary system, binary notationсисте́ма счисле́ния, двои́чно-десяти́чная — binary-coded decimal system, binary-coded decimal [BCD] notationсисте́ма счисле́ния, девятери́чная — nine number systemсисте́ма счисле́ния, десяти́чная — decimal number system, decimal notationсисте́ма счисле́ния, непозицио́нная — non-positional notationсисте́ма счисле́ния, позицио́нная — positional number notationсисте́ма счисле́ния пути́, возду́шно-до́плеровская навиг. — airborne Doppler navigatorсисте́ма счисле́ния, трои́чная — ternary number system, ternary notationсисте́ма счисле́ния, шестнадцатери́чная — hexadecimal number system, hexadecimal notationтелевизио́нная светокла́панная систе́ма — light-modulator [light-modulating] television systemтелегра́фная многокра́тная систе́ма ( с временным распределением) — time-division multiplex (transmission), time division telegraph systemтелеметри́ческая систе́ма — telemetering systemтелеметри́ческая, промы́шленная систе́ма — industrial telemetering systemтелеметри́ческая, то́ковая систе́ма — current-type telemeterтелеметри́ческая, часто́тная систе́ма — frequency-type telemeterтелефо́нная, автомати́ческая систе́ма — dial telephone systemтелефо́нная систе́ма с ручны́м обслу́живанием — manual-switchboard telephone systemтермодинами́ческая систе́ма — thermodynamic systemтехни́ческая систе́ма (в отличие от естественных, математических и т. п.) — engineering systemсисте́ма тона́льного телеграфи́рования — voice-frequency multichannel systemто́пливная систе́ма — fuel systemто́пливная систе́ма с пода́чей само́тёком — gravity fuel systemтормозна́я систе́ма ( автомобиля) — brake systemтрёхкомпоне́нтная систе́ма — ternary [three-component] systemтрёхпроводна́я систе́ма эл. — three-wire systemтрёхфа́зная систе́ма эл. — three-phase systemтрёхфа́зная систе́ма с глухозаземлё́нной нейтра́лью эл. — solidly-earthed-neutral three-phase systemтрёхфа́зная, симметри́чная систе́ма эл. — symmetrical three-phase systemтрёхфа́зная систе́ма с незаземлё́нной нейтра́лью эл. — isolated-neutral three-phase systemтрю́мная систе́ма мор. — bilge systemсисте́ма тяг — linkageтя́го-дутьева́я систе́ма — draught systemсисте́ма УВД — air traffic control [ATC] systemсисте́ма управле́ния — control systemсисте́ма управле́ния, автомати́ческая — automatic control systemсисте́ма управле́ния без па́мяти — combinational (control) systemсисте́ма управле́ния возду́шным движе́нием — air traffic control [ATC] systemсисте́ма управле́ния произво́дством [предприя́тием], автоматизи́рованная [АСУП] — management information system, MISсисте́ма управле́ния с вычисли́тельной маши́ной — computer control systemсисте́ма управле́ния с па́мятью — sequential (control) systemсисте́ма управле́ния с предсказа́нием — predictor control systemсисте́ма управле́ния технологи́ческим проце́ссом, автоматизи́рованная [АСУТП] — (automatic) process control systemсисте́ма управле́ния, цифрова́я — digital control systemуправля́емая систе́ма ( объект управления) — controlled system, controlled plantуправля́ющая систе́ма ( часть системы управления) — controlling (sub-)systemупру́гая систе́ма ( гравиметра) — elastic systemсисте́ма уравне́ний — set [system] of equations, set of simultaneous equationsсисте́ма уравне́ния объё́ма ( ядерного реактора) — pressurizing systemуравнове́шенная систе́ма — balanced systemусто́йчивая систе́ма — stable systemфа́новая систе́ма мор. — flushing [sewage-disposal] systemсисте́ма физи́ческих величи́н — system of physical quantitiesхи́мико-технологи́ческая систе́ма — chemical engineering systemхими́ческая систе́ма — chemical systemсисте́ма ЦБ-АТС тлф. — dial systemсисте́ма цветно́го телеви́дения, совмести́мая — compatible colour-television systemсисте́ма це́нтра масс — centre-of-mass [centre-of-gravity, centre-of-momentum] systemсисте́ма цифрово́го управле́ния ( не путать с числовы́м управле́нием) — digital control system (not to be confused with numeric control system)систе́ма «челове́к — маши́на» — man-machine systemшарни́рная систе́ма — hinged systemшарни́рно-стержнева́я систе́ма — hinged-rod systemшпре́нгельная систе́ма — strutted [truss] systemсисте́ма эксплуата́ции телефо́нной свя́зи, заказна́я — delay operationсисте́ма эксплуата́ции телефо́нной свя́зи, ско́рая — demand working, telephone traffic on the demand basisэкстрема́льная систе́ма — extremal systemсисте́ма электро́дов ЭЛТ — CRT electrode structureэлектроже́зловая систе́ма ж.-д. — (electric) token systemэлектрохими́ческая систе́ма — electrochemical systemэлектрохими́ческая, необрати́мая систе́ма — irreversible electrochemical systemэлектрохими́ческая, обрати́мая систе́ма — reversible electrochemical systemэлектроэнергети́ческая систе́ма — electric power systemсисте́ма элеме́нтов Менделе́ева, периоди́ческая — Mendeleeff's [Mendeleev's, periodic] law, periodic system, periodic tableсисте́ма элеме́нтов ЦВМ — computer building-block rangeэнергети́ческая систе́ма — power systemэнергети́ческая, еди́ная систе́ма — power gridэнергети́ческая, объединё́нная систе́ма — interconnected power system20 рассматривать
•We shall cover these compounds in the next chapter.
•We shall deal with this subject in the next chapter.
•To fully appreciate the significance of these data, each aspect of the genetical processes must first be scrutinized.
•The question could be approached from two angles.
•In this paper we will not concern ourselves with those problems.
•We have considered this problem carefully.
•Since subtraction is the same process as addition, subtraction is not treated separately here.
•We will now look at the basic principles used in fluid logic.
•Let us take a look at the individual components of...
•The formation and properties of shock waves will be discussed in the following chapter.
•The effect of these differences on... will be covered later.
•At the moment enzyme catalysis forms a separate subject; we shall not take it up here.
•The next section takes care of Case 1.
•The durability of the material must be viewed from two standpoints - the mechanical and the electrical.
II•When an object is viewed with both eyes, it looks like...
•This series can be considered a result of the substitution of...
•Then luminiferous ether could be viewed as an exceedingly subtle gas.
Русско-английский научно-технический словарь переводчика > рассматривать
Страницы- 1
- 2
См. также в других словарях:
Logic family — In computer engineering, a logic family may refer to one of two related concepts. A logic family of monolithic digital integrated circuit devices is a group of electronic logic gates constructed using one of several different designs, usually… … Wikipedia
Logic gate — A logic gate is an idealized or physical device implementing a Boolean function, that is, it performs a logical operation on one or more logic inputs and produces a single logic output. Depending on the context, the term may refer to an ideal… … Wikipedia
Logic model — The logic model is a general framework for describing work in an organization. Since work is often packaged in programs, it is often referred to as the program logic model. Definition In its simplest form, the logic model analyzes work into four… … Wikipedia
logic — noun 1 system of reasoning ADJECTIVE ▪ formal ▪ mathematical ▪ deductive, inductive ▪ Aristotelian, classical ▪ … Collocations dictionary
Logic design — In electronic design, logic design is a step in the standard design cycle in which the functional design of an electronic circuit is converted into the representation which captures logic operations, arithmetic operations, control flow, etc. A… … Wikipedia
Logic and the philosophy of mathematics in the nineteenth century — John Stillwell INTRODUCTION In its history of over two thousand years, mathematics has seldom been disturbed by philosophical disputes. Ever since Plato, who is said to have put the slogan ‘Let no one who is not a geometer enter here’ over the… … History of philosophy
Basic writing — Basic writing, or developmental writing, is a discipline of composition studies which focuses on the writing of students sometimes otherwise called remedial or underprepared , usually freshman college students. Contents 1 Defining Basic Writing 2 … Wikipedia
logic design — Basic organization of the circuitry of a digital computer. All digital computers are based on a two valued logic system 1/0, on/off, yes/no (see binary code). Computers perform calculations using components called logic gates, which are made up… … Universalium
Logic in computer science — describes topics where logic is applied to computer science and artificial intelligence. These include:*Investigations into logic that are guided by applications in computer science. For example: Combinatory logic and Abstract interpretation;… … Wikipedia
LOGIC — (Heb. חָכְמַת הַדִּבּוּר or מְלֶאכֶת הַהִגַּיוֹן), the study of the principles governing correct reasoning and demonstration. The term logic, according to Maimonides, is used in three senses: to refer to the rational faculty, the intelligible in… … Encyclopedia of Judaism
Logic Works — Inc. was a software company based in Princeton, New Jersey. Their flagship product was an IDEF1X modeling and database design toolcalled ER win (ERwin) whose name is formed from an initialism of ER for Entity Relationship and win , short for… … Wikipedia
Перевод: с русского на все языки
со всех языков на русский- Со всех языков на:
- Русский
- С русского на:
- Все языки
- Английский
- Немецкий
- Французский