-
121 data
мн. ч.1) данные испытаний; ( эксплуатационные) характеристики2) факты, результаты3) геод. исходные точки•- accurate data - actual data - addition to the initial data - ambiguous data - angular data - basic data - behavioural data - clarification of the initial data - combined data - complete data - correct data - correction data - cost data - delay in data submission - design data - economic data - empirical data - engineering data - environmental data - field data - final data - fresh initial data - hydrologic data - incoming data - incomplete data - incorrect data - initial data - lack of data - main data - manufacturer's data - measuring data - necessary data - obligations on data submission - operating data - operational data - performance data - performance-test data - preliminary data - primary data - production data - progress data - provisional data - real data - reference data - remaining data - research data - service data - size data - statistic data - status data - submission of data - substantiation of the initial data - supplementary data - tabular data - technical data - tentative data - test data - time-temperature data - valid data - working data* * *1. данные2. геод. исходные точки- basic data
- basic design data
- boundary data
- climatological data
- design data
- environmental data
- geometrical data
- geometric data
- operating data
- performance-related data
- reference data
- research data
- service data -
122 industry
[ˈɪndəstrɪ]advertising industry рекламное дело agri-foodstuffs industry промышленность переработки сельскохозяйственной продукции agricultural industry сельское хозяйство agricultural industry сельскохозяйственное производство armament industry военная промышленность armament industry оборонная промышленность arms industry военная промышленность arms industry оборонная промышленность automobile industry автомобильная промышленность banking industry банковское дело basic industrial chemical industry базовые отрасли химической промышленности basic industry основная отрасль basic industry тяжелая промышленность building and construction industry строительная промышленность building industry строительная промышленность business and industry торгово-промышленная деятельность car industry автомобильная промышленность cardboard industry производство картона chemical industry химическая промышленность coal iron and steel industry металлургическая промышленность construction industry строительная промышленность cottage industry надомное производство cottage industry надомный промысел cottage industry семейное производство (для рынка) dairy industry молочная промышленность defence industry оборонная промышленность edible fish industry рыбная промышленность engineering industry машиностроение export industry отрасль, работающая на экспорт extractive industry добывающая промышленность fashion industry пошив модной одежды fish industry рыбная промышленность fishing industry рыбная промышленность food industry пищевая промышленность food processing industry пищевая промышленность foodstuff industry пищевая промышленность fragmented industry отрасль промышленности, состоящая из мелких предприятий fragmented industry слабо концентрированная отрасль промышленности heavy industry тяжелая промышленность high-technology industry промышленность с высоким уровнем технологии hollowware industry производство посуды home industry отечественная индустрия hotel industry гостиничное хозяйство import industry промышленность, работающая на импорт industry индустрия industry отрасль промышленности industry промышленность, индустрия industry промышленность industry трудолюбие, прилежание, усидчивость industry трудолюбие information industry информационная индустрия insurance industry индустрия страхования insurance industry страховое дело iron industry черная металлургия key industry ведущая отрасль key industry ключевая отрасль large-scale industry крупная промышленность large-scale industry крупносерийное производство light industry легкая промышленность manufacturing industry обрабатывающая промышленность metal goods industry промышленность металлоизделий mining industry горная промышленность nationalised industry национализированная промышленность; государственная промышленность oil industry нефтяная промышленность personal industry индивидуальное производство petroleum industry нефтяная промышленность pharmaceutical industry фармацевтическая промышленность plastics industry производство пластмасс poultry industry птицеводство primary industry базовая отрасль primary industry основная отрасль primary industry профилирующая отрасль primary industry сырьевая промышленность private industry частная отрасль private industry частная промышленность private: industry industry частный сектор промышленности; private life частная жизнь; private means личное состояние process industry обрабатывающая промышленность processing industry обрабатывающая промышленность processing: industry industry обрабатывающая промышленность secondary industry обрабатывающая промышленность service industry отрасль, производящая услуги service industry сфера услуг staple industry производство основных товаров textile industry текстильная промышленность tobacco industry табачная промышленность trade and industry торговля и промышленность urban industry городская промышленность wood industry лесная промышленность -
123 Reichenbach, Georg Friedrich von
SUBJECT AREA: Mechanical, pneumatic and hydraulic engineering, Photography, film and optics, Public utilities[br]b. 24 August 1772 Durlach, Baden, Germanyd. 21 May 1826 Munich, Germany[br]German engineer.[br]While he was attending the Military School at Mannheim, Reichenbach drew attention to himself due to the mathematical instruments that he had designed. On the recommendation of Count Rumford in Munich, the Bavarian government financed a two-year stay in Britain so that Reichenbach could become acquainted with modern mechanical engineering. He returned to Mannheim in 1793, and during the Napoleonic Wars he was involved in the manufacture of arms. In Munich, where he was in the service of the Bavarian state from 1796, he started producing precision instruments in his own time. His basic invention was the design of a dividing machine for circles, produced at the end of the eighteenth century. The astronomic and geodetic instruments he produced excelled all the others for their precision. His telescopes in particular, being perfect in use and of solid construction, soon brought him an international reputation. They were manufactured at the MathematicMechanical Institute, which he had jointly founded with Joseph Utzschneider and Joseph Liebherr in 1804 and which became a renowned training establishment. The glasses and lenses were produced by Joseph Fraunhofer who joined the company in 1807.In the same year he was put in charge of the technical reorganization of the salt-works at Reichenhall. After he had finished the brine-transport line from Reichenhall to Traunstein in 1810, he started on the one from Berchtesgaden to Reichenhall which was an extremely difficult task because of the mountainous area that had to be crossed. As water was the only source of energy available he decided to use water-column engines for pumping the brine in the pipes of both lines. Such devices had been in use for pumping purposes in different mining areas since the middle of the eighteenth century. Reichenbach knew about the one constructed by Joseph Karl Hell in Slovakia, which in principle had just been a simple piston-pump driven by water which did not work satisfactorily. Instead he constructed a really effective double-action water-column engine; this was a short time after Richard Trevithick had constructed a similar machine in England. For the second line he improved the system and built a single-action pump. All the parts of it were made of metal, which made them easy to produce, and the pumps proved to be extremely reliable, working for over 100 years.At the official opening of the line in 1817 the Bavarian king rewarded him generously. He remained in the state's service, becoming head of the department for roads and waterways in 1820, and he contributed to the development of Bavarian industry as well as the public infrastructure in many ways as a result of his mechanical skill and his innovative engineering mind.[br]Further ReadingBauernfeind, "Georg von Reichenbach" Allgemeine deutsche Biographie 27:656–67 (a reliable nineteenth-century account).W.Dyck, 1912, Georg v. Reichenbach, Munich.K.Matschoss, 1941, Grosse Ingenieure, Munich and Berlin, 3rd edn. 121–32 (a concise description of his achievements in the development of optical instruments and engineering).WKBiographical history of technology > Reichenbach, Georg Friedrich von
-
124 ABET
-
125 abet
-
126 part
1) часть, доля, компонент, элемент2) часть, деталь ( механизма)4) разделять, делить ( на части)•part in bending — элемент, работающий на изгиб
part in compression — элемент, работающий на сжатие, сжатый элемент
- parts of rope - parts of structure - accessory part - architectural part of design - basic part - building part - closing parts - complex part - constructional part of design - damaged part - electric engineering part of design - electronic part - embedded parts - fabricated parts - fashion parts - fastening part - finished part - friction part - integral part - irreparable part - load-bearing part - location part - make-up part - male part - mechanical and process engineering part of design - mortar part of the mix - odd parts - odd-shaped part - profiled part - remanufactured part - removable parts - repair parts - rubbing part - sampling part - sanitary engineering part of design - sealing part - simple part - spare parts - stamped part - standard part - standardized machine parts - striking part of hammer - structural part of design - supporting part - wearing partpart in tension — элемент, работающий на растяжении, растянутый элемент
* * *1. часть, доля2. разделять, отделять3. компонент, элемент; деталь; узел- parts of construction works
- parts of rope
- parts of structure
- accessory part
- building part
- closing parts
- constituent parts
- defective parts
- dividing parts
- driving parts
- embedded parts
- enclosing parts
- fixed part of the crane
- interchangeable parts
- live derricking part
- machine parts
- mortar part of the mix
- repair parts
- spare parts
- structural parts
- subsurface parts of building
- trimming parts -
127 Artificial Intelligence
In my opinion, none of [these programs] does even remote justice to the complexity of human mental processes. Unlike men, "artificially intelligent" programs tend to be single minded, undistractable, and unemotional. (Neisser, 1967, p. 9)Future progress in [artificial intelligence] will depend on the development of both practical and theoretical knowledge.... As regards theoretical knowledge, some have sought a unified theory of artificial intelligence. My view is that artificial intelligence is (or soon will be) an engineering discipline since its primary goal is to build things. (Nilsson, 1971, pp. vii-viii)Most workers in AI [artificial intelligence] research and in related fields confess to a pronounced feeling of disappointment in what has been achieved in the last 25 years. Workers entered the field around 1950, and even around 1960, with high hopes that are very far from being realized in 1972. In no part of the field have the discoveries made so far produced the major impact that was then promised.... In the meantime, claims and predictions regarding the potential results of AI research had been publicized which went even farther than the expectations of the majority of workers in the field, whose embarrassments have been added to by the lamentable failure of such inflated predictions....When able and respected scientists write in letters to the present author that AI, the major goal of computing science, represents "another step in the general process of evolution"; that possibilities in the 1980s include an all-purpose intelligence on a human-scale knowledge base; that awe-inspiring possibilities suggest themselves based on machine intelligence exceeding human intelligence by the year 2000 [one has the right to be skeptical]. (Lighthill, 1972, p. 17)4) Just as Astronomy Succeeded Astrology, the Discovery of Intellectual Processes in Machines Should Lead to a Science, EventuallyJust as astronomy succeeded astrology, following Kepler's discovery of planetary regularities, the discoveries of these many principles in empirical explorations on intellectual processes in machines should lead to a science, eventually. (Minsky & Papert, 1973, p. 11)5) Problems in Machine Intelligence Arise Because Things Obvious to Any Person Are Not Represented in the ProgramMany problems arise in experiments on machine intelligence because things obvious to any person are not represented in any program. One can pull with a string, but one cannot push with one.... Simple facts like these caused serious problems when Charniak attempted to extend Bobrow's "Student" program to more realistic applications, and they have not been faced up to until now. (Minsky & Papert, 1973, p. 77)What do we mean by [a symbolic] "description"? We do not mean to suggest that our descriptions must be made of strings of ordinary language words (although they might be). The simplest kind of description is a structure in which some features of a situation are represented by single ("primitive") symbols, and relations between those features are represented by other symbols-or by other features of the way the description is put together. (Minsky & Papert, 1973, p. 11)[AI is] the use of computer programs and programming techniques to cast light on the principles of intelligence in general and human thought in particular. (Boden, 1977, p. 5)The word you look for and hardly ever see in the early AI literature is the word knowledge. They didn't believe you have to know anything, you could always rework it all.... In fact 1967 is the turning point in my mind when there was enough feeling that the old ideas of general principles had to go.... I came up with an argument for what I called the primacy of expertise, and at the time I called the other guys the generalists. (Moses, quoted in McCorduck, 1979, pp. 228-229)9) Artificial Intelligence Is Psychology in a Particularly Pure and Abstract FormThe basic idea of cognitive science is that intelligent beings are semantic engines-in other words, automatic formal systems with interpretations under which they consistently make sense. We can now see why this includes psychology and artificial intelligence on a more or less equal footing: people and intelligent computers (if and when there are any) turn out to be merely different manifestations of the same underlying phenomenon. Moreover, with universal hardware, any semantic engine can in principle be formally imitated by a computer if only the right program can be found. And that will guarantee semantic imitation as well, since (given the appropriate formal behavior) the semantics is "taking care of itself" anyway. Thus we also see why, from this perspective, artificial intelligence can be regarded as psychology in a particularly pure and abstract form. The same fundamental structures are under investigation, but in AI, all the relevant parameters are under direct experimental control (in the programming), without any messy physiology or ethics to get in the way. (Haugeland, 1981b, p. 31)There are many different kinds of reasoning one might imagine:Formal reasoning involves the syntactic manipulation of data structures to deduce new ones following prespecified rules of inference. Mathematical logic is the archetypical formal representation. Procedural reasoning uses simulation to answer questions and solve problems. When we use a program to answer What is the sum of 3 and 4? it uses, or "runs," a procedural model of arithmetic. Reasoning by analogy seems to be a very natural mode of thought for humans but, so far, difficult to accomplish in AI programs. The idea is that when you ask the question Can robins fly? the system might reason that "robins are like sparrows, and I know that sparrows can fly, so robins probably can fly."Generalization and abstraction are also natural reasoning process for humans that are difficult to pin down well enough to implement in a program. If one knows that Robins have wings, that Sparrows have wings, and that Blue jays have wings, eventually one will believe that All birds have wings. This capability may be at the core of most human learning, but it has not yet become a useful technique in AI.... Meta- level reasoning is demonstrated by the way one answers the question What is Paul Newman's telephone number? You might reason that "if I knew Paul Newman's number, I would know that I knew it, because it is a notable fact." This involves using "knowledge about what you know," in particular, about the extent of your knowledge and about the importance of certain facts. Recent research in psychology and AI indicates that meta-level reasoning may play a central role in human cognitive processing. (Barr & Feigenbaum, 1981, pp. 146-147)Suffice it to say that programs already exist that can do things-or, at the very least, appear to be beginning to do things-which ill-informed critics have asserted a priori to be impossible. Examples include: perceiving in a holistic as opposed to an atomistic way; using language creatively; translating sensibly from one language to another by way of a language-neutral semantic representation; planning acts in a broad and sketchy fashion, the details being decided only in execution; distinguishing between different species of emotional reaction according to the psychological context of the subject. (Boden, 1981, p. 33)Can the synthesis of Man and Machine ever be stable, or will the purely organic component become such a hindrance that it has to be discarded? If this eventually happens-and I have... good reasons for thinking that it must-we have nothing to regret and certainly nothing to fear. (Clarke, 1984, p. 243)The thesis of GOFAI... is not that the processes underlying intelligence can be described symbolically... but that they are symbolic. (Haugeland, 1985, p. 113)14) Artificial Intelligence Provides a Useful Approach to Psychological and Psychiatric Theory FormationIt is all very well formulating psychological and psychiatric theories verbally but, when using natural language (even technical jargon), it is difficult to recognise when a theory is complete; oversights are all too easily made, gaps too readily left. This is a point which is generally recognised to be true and it is for precisely this reason that the behavioural sciences attempt to follow the natural sciences in using "classical" mathematics as a more rigorous descriptive language. However, it is an unfortunate fact that, with a few notable exceptions, there has been a marked lack of success in this application. It is my belief that a different approach-a different mathematics-is needed, and that AI provides just this approach. (Hand, quoted in Hand, 1985, pp. 6-7)We might distinguish among four kinds of AI.Research of this kind involves building and programming computers to perform tasks which, to paraphrase Marvin Minsky, would require intelligence if they were done by us. Researchers in nonpsychological AI make no claims whatsoever about the psychological realism of their programs or the devices they build, that is, about whether or not computers perform tasks as humans do.Research here is guided by the view that the computer is a useful tool in the study of mind. In particular, we can write computer programs or build devices that simulate alleged psychological processes in humans and then test our predictions about how the alleged processes work. We can weave these programs and devices together with other programs and devices that simulate different alleged mental processes and thereby test the degree to which the AI system as a whole simulates human mentality. According to weak psychological AI, working with computer models is a way of refining and testing hypotheses about processes that are allegedly realized in human minds.... According to this view, our minds are computers and therefore can be duplicated by other computers. Sherry Turkle writes that the "real ambition is of mythic proportions, making a general purpose intelligence, a mind." (Turkle, 1984, p. 240) The authors of a major text announce that "the ultimate goal of AI research is to build a person or, more humbly, an animal." (Charniak & McDermott, 1985, p. 7)Research in this field, like strong psychological AI, takes seriously the functionalist view that mentality can be realized in many different types of physical devices. Suprapsychological AI, however, accuses strong psychological AI of being chauvinisticof being only interested in human intelligence! Suprapsychological AI claims to be interested in all the conceivable ways intelligence can be realized. (Flanagan, 1991, pp. 241-242)16) Determination of Relevance of Rules in Particular ContextsEven if the [rules] were stored in a context-free form the computer still couldn't use them. To do that the computer requires rules enabling it to draw on just those [ rules] which are relevant in each particular context. Determination of relevance will have to be based on further facts and rules, but the question will again arise as to which facts and rules are relevant for making each particular determination. One could always invoke further facts and rules to answer this question, but of course these must be only the relevant ones. And so it goes. It seems that AI workers will never be able to get started here unless they can settle the problem of relevance beforehand by cataloguing types of context and listing just those facts which are relevant in each. (Dreyfus & Dreyfus, 1986, p. 80)Perhaps the single most important idea to artificial intelligence is that there is no fundamental difference between form and content, that meaning can be captured in a set of symbols such as a semantic net. (G. Johnson, 1986, p. 250)Artificial intelligence is based on the assumption that the mind can be described as some kind of formal system manipulating symbols that stand for things in the world. Thus it doesn't matter what the brain is made of, or what it uses for tokens in the great game of thinking. Using an equivalent set of tokens and rules, we can do thinking with a digital computer, just as we can play chess using cups, salt and pepper shakers, knives, forks, and spoons. Using the right software, one system (the mind) can be mapped into the other (the computer). (G. Johnson, 1986, p. 250)19) A Statement of the Primary and Secondary Purposes of Artificial IntelligenceThe primary goal of Artificial Intelligence is to make machines smarter.The secondary goals of Artificial Intelligence are to understand what intelligence is (the Nobel laureate purpose) and to make machines more useful (the entrepreneurial purpose). (Winston, 1987, p. 1)The theoretical ideas of older branches of engineering are captured in the language of mathematics. We contend that mathematical logic provides the basis for theory in AI. Although many computer scientists already count logic as fundamental to computer science in general, we put forward an even stronger form of the logic-is-important argument....AI deals mainly with the problem of representing and using declarative (as opposed to procedural) knowledge. Declarative knowledge is the kind that is expressed as sentences, and AI needs a language in which to state these sentences. Because the languages in which this knowledge usually is originally captured (natural languages such as English) are not suitable for computer representations, some other language with the appropriate properties must be used. It turns out, we think, that the appropriate properties include at least those that have been uppermost in the minds of logicians in their development of logical languages such as the predicate calculus. Thus, we think that any language for expressing knowledge in AI systems must be at least as expressive as the first-order predicate calculus. (Genesereth & Nilsson, 1987, p. viii)21) Perceptual Structures Can Be Represented as Lists of Elementary PropositionsIn artificial intelligence studies, perceptual structures are represented as assemblages of description lists, the elementary components of which are propositions asserting that certain relations hold among elements. (Chase & Simon, 1988, p. 490)Artificial intelligence (AI) is sometimes defined as the study of how to build and/or program computers to enable them to do the sorts of things that minds can do. Some of these things are commonly regarded as requiring intelligence: offering a medical diagnosis and/or prescription, giving legal or scientific advice, proving theorems in logic or mathematics. Others are not, because they can be done by all normal adults irrespective of educational background (and sometimes by non-human animals too), and typically involve no conscious control: seeing things in sunlight and shadows, finding a path through cluttered terrain, fitting pegs into holes, speaking one's own native tongue, and using one's common sense. Because it covers AI research dealing with both these classes of mental capacity, this definition is preferable to one describing AI as making computers do "things that would require intelligence if done by people." However, it presupposes that computers could do what minds can do, that they might really diagnose, advise, infer, and understand. One could avoid this problematic assumption (and also side-step questions about whether computers do things in the same way as we do) by defining AI instead as "the development of computers whose observable performance has features which in humans we would attribute to mental processes." This bland characterization would be acceptable to some AI workers, especially amongst those focusing on the production of technological tools for commercial purposes. But many others would favour a more controversial definition, seeing AI as the science of intelligence in general-or, more accurately, as the intellectual core of cognitive science. As such, its goal is to provide a systematic theory that can explain (and perhaps enable us to replicate) both the general categories of intentionality and the diverse psychological capacities grounded in them. (Boden, 1990b, pp. 1-2)Because the ability to store data somewhat corresponds to what we call memory in human beings, and because the ability to follow logical procedures somewhat corresponds to what we call reasoning in human beings, many members of the cult have concluded that what computers do somewhat corresponds to what we call thinking. It is no great difficulty to persuade the general public of that conclusion since computers process data very fast in small spaces well below the level of visibility; they do not look like other machines when they are at work. They seem to be running along as smoothly and silently as the brain does when it remembers and reasons and thinks. On the other hand, those who design and build computers know exactly how the machines are working down in the hidden depths of their semiconductors. Computers can be taken apart, scrutinized, and put back together. Their activities can be tracked, analyzed, measured, and thus clearly understood-which is far from possible with the brain. This gives rise to the tempting assumption on the part of the builders and designers that computers can tell us something about brains, indeed, that the computer can serve as a model of the mind, which then comes to be seen as some manner of information processing machine, and possibly not as good at the job as the machine. (Roszak, 1994, pp. xiv-xv)The inner workings of the human mind are far more intricate than the most complicated systems of modern technology. Researchers in the field of artificial intelligence have been attempting to develop programs that will enable computers to display intelligent behavior. Although this field has been an active one for more than thirty-five years and has had many notable successes, AI researchers still do not know how to create a program that matches human intelligence. No existing program can recall facts, solve problems, reason, learn, and process language with human facility. This lack of success has occurred not because computers are inferior to human brains but rather because we do not yet know in sufficient detail how intelligence is organized in the brain. (Anderson, 1995, p. 2)Historical dictionary of quotations in cognitive science > Artificial Intelligence
-
128 plant
1) завод; фабрика; предприятие2) установка; агрегат3) электрическая станция, электростанция, ЭС (см. тж
station)4) энергоблок5) цех; отделение; мастерская6) установка сейсмоприёмника в грунте || устанавливать сейсмоприёмник в грунт•-
absorption plant
-
absorption refrigerating plant
-
accumulator plant
-
acetylene compressing plant
-
acid recovery acid restoring plant
-
acid recovery plant
-
adsorption plant
-
aerodrome accumulator plant
-
agglomeration plant
-
air separation plant
-
air-cooled refrigerating plant
-
aircraft development plant
-
aircraft manufacturing plant
-
aircraft overhaul plant
-
aircraft plant
-
aircraft washing plant
-
air-storage gas turbine plant
-
air-storage power plant
-
alkylation plant
-
A-plant
-
arc-furnace plant
-
arc-welding plant
-
asphalt plant
-
assembly plant
-
atomic marine plant
-
atomic power plant
-
automatic flour handling plant
-
auto-shredding plant
-
auxiliary gas turbine power plant
-
back-pressure heat generation plant
-
bakery plant
-
baling plant
-
basic arc-furnace plant
-
basic slag-grinding plant
-
batching plant
-
batch-weighing plant
-
Bessemer plant
-
biogas producing plant
-
blackout plant
-
blast-furnace plant
-
blending plant
-
bob-tail plant
-
boiler plant
-
bow-type plant
-
box plant
-
bread-making plant
-
breaking plant
-
brick-making plant
-
brine refrigerating plant
-
bulk plant
-
butter-making plant
-
by-product coke plant
-
by-product recovery plant
-
by-products plant
-
can-making plant
-
canning plant
-
captive plant
-
car assembly plant
-
carbon dioxide refrigerating plant
-
carbon plant
-
car-repair plant
-
casinghead gasoline plant
-
casting plant
-
CDQ plant
-
cell plant
-
centralized photovoltaic power plant
-
central-mixing plant
-
centrifugal refrigerating plant
-
centrifuge isotope separation plant
-
charge preparation plant
-
cheese-making plant
-
chemical desalting plant
-
chemical separation plant
-
circulation degassing plant
-
clarification plant
-
clay-drying plant
-
closed-cycle cryogenic plant
-
coal gasification-gas cleaning plant
-
coal-cleaning plant
-
coal-conveying plant
-
coal-fired plant
-
coal-injection plant
-
coal-liquefaction plant
-
coal-preparation plant
-
coal-pulverizing plant
-
coal-reduction plant
-
coal-to-methanol plant
-
coal-washing plant
-
cogeneration plant
-
coke dry-quenching plant
-
coke-handling plant
-
coke-pitch plant
-
coke-quenching plant
-
coking plant
-
combination topping and cracking plant
-
combined heat power plant
-
combined photovoltaic-deolian electric plant
-
combined-cycle plant
-
combined-cycle steam plant
-
combiner plant
-
compressor plant
-
concentration plant
-
concrete product plant
-
concrete-mixing plant
-
concreting plant
-
condensate liquid recovery plant
-
condensate purification plant
-
condensing plant
-
confectionary producing plant
-
confectionary plant
-
constant-head plant
-
contactor centrifuge acid treating plant
-
continuous-casting plant
-
conventional power plant
-
converter plant
-
cooling plant
-
copper-smelting plant
-
countercurrent ion exchange plant
-
CR plant
-
crushing plant
-
cryogenic freezing plant
-
cryogenic power generation plant
-
crystal drawing plant
-
cutting and shearing plant
-
cycle-degassing plant
-
cycling plant
-
deaerating plant
-
degreasing plant
-
dendro-thermal power plant
-
desalting plant
-
desinfection plant
-
detinning plant
-
dewatering plant
-
diesel engine power plant
-
direct-expansion refrigerating plant
-
disposal plant
-
distilling plant
-
district-heating plant
-
diversion plant
-
double-strand plant
-
drainage pumping plant
-
drop-hammer plant
-
dry-process plant
-
dual-purpose turbine plant
-
dust extraction plant
-
dust handling plant
-
earth-freezing plant
-
earth-moving plant
-
EBM plant
-
EBR plant
-
ECM plant
-
edible fat plant
-
EDR plant
-
effluent treatment plant
-
eight-strand plant
-
ejector refrigerating plant
-
electric pig-iron plant
-
electric power plant
-
electrical propulsion plant
-
electricity distribution plant
-
electrochemical machining plant
-
electrodialysis plant
-
electrodialysis reversal plant
-
electrolytic tinning plant
-
electron-beam-melting plant
-
electron-beam-refining plant
-
electrostatic precipitation desalting plant
-
engineering plant
-
evaporation plant
-
extraction plant
-
extra-terrestrial power plant
-
fabric-dipping plant
-
feed milling
-
fermentation plant
-
filter plant
-
finishing plant
-
fish processing plant
-
fission power plant
-
fixed plant
-
fixed-head power plant
-
flexible manufacturing plant
-
flexing generating plant
-
floating nuclear power plant
-
floating pile-driving plant
-
floating power plant
-
flotation plant
-
flour milling plant
-
folding carton plant
-
food concentrate plant
-
force ventilation plant
-
formcoke plant
-
fossil-fuel plant
-
fractional horsepower refrigerating plant
-
fractional ton refrigerating plant
-
fragmentation plant
-
freezing plant
-
fruit-and-vegetable processing plant
-
fuel-pulverizing plant
-
full-fashioned sweater plant
-
full-scale plant
-
fume-cleaning plant
-
fume-extraction plant
-
furniture plant
-
fusion power plant
-
galvanizing plant
-
gas absorption plant
-
gas fire extinguishing plant
-
gas fractionation plant
-
gas liquids plant
-
gas plant
-
gas turbine power plant
-
gas turbine plant
-
gas-and-oil-buming power plant
-
gas-carburizing plant
-
gas-cleaning plant
-
gas-compressor plant
-
gaseous-diffusion plant
-
gas-fired plant
-
gas-generator plant
-
gasification-based combined cycle plant
-
gasifier-combined cycle plant
-
gasoline plant
-
gas-producer plant
-
gas-treating plant
-
gas-washing plant
-
generating plant
-
geothermal power plant
-
glass-manufacturing plant
-
glass-recycling plant
-
grading plant
-
graphite plant
-
graphite recovery plant
-
grease plant
-
hardening plant
-
H-cycle plant
-
heat power plant
-
heat pump plant
-
heat raising plant
-
heat-electric generating plant
-
heating and power plant
-
heating network plant
-
heating plant
-
heating-water converter plant
-
heavy-water plant
-
high-capacity refrigerating plant
-
high-head power plant
-
H-iron plant
-
hot dip filming plant
-
hot water peaking boiler plant
-
hybrid wind-photovoltaic plant
-
hydroelectric power plant
-
hydroelectric plant
-
hydroelectric pumped storage power plant
-
hydro-photovoltaic plant
-
ice plant
-
incinerator plant
-
indicator plant
-
industrial power plant
-
industrial steam plant
-
industrial waste treatment plant
-
industrial-scale plant
-
in-house printing plant
-
intake plant
-
integral coal gasification combined cycle plant
-
integrated steel plant
-
interlocking plant
-
intermediate solar plant
-
internal combustion power plant
-
ion-exchange plant
-
ion-exchange softening plant
-
iron powder plant
-
iron-ore pelletizing plant
-
isolated generating plant
-
isotope separation plant
-
jobbing plant
-
Kaldo-steelmaking plant
-
Kaldo plant
-
killing plant
-
laboratory-scale plant
-
ladle degassing plant
-
ladle-spraying plant
-
LD plant
-
LDAC oxygen-steelmaking plant
-
light plant
-
liquefied natural gas plant
-
liquefied petroleum gas plant
-
liquid freezing plant
-
liquor plant
-
loading plant
-
local plant
-
locomobile power plant
-
locomotive repair plant
-
loop plant
-
low-capacity refrigerating plant
-
low-head power plant
-
lube plant
-
machine tool plant
-
magnetohydrodynamic power plant
-
main propulsion machinery plant
-
marine reactor plant
-
marine refrigerating plant
-
meat packing plant
-
meat producing plant
-
mechanical air-conditioning plant
-
mechanical drive gas turbine plant
-
mechanical refrigerating plant
-
medium-head power plant
-
merchant-coke plant
-
metals-recovery plant
-
MHD power plant
-
midget power plant
-
milk plant
-
milling plant
-
mine-mouth power plant
-
mixed pumped-storage plant
-
mixing plant
-
mobile power plant
-
mold degassing plant
-
mold hydraulic cleaning plant
-
mortar-mixing plant
-
muck-shifting plant
-
mud-mixing plant
-
multiple-unit power plant
-
multipurpose sea-water desalination plant
-
multistrand plant
-
multiunit power plant
-
naphtha-treating plant
-
natural gasoline plant
-
natural gas-sweetening plant
-
noncondensing power plant
-
nonintegrated steel plant
-
nonterrestrial power plant
-
nuclear cogeneration plant
-
nuclear gas turbine plant
-
nuclear heating plant
-
nuclear power plant
-
nuclear steam power plant
-
oil shale retorting plant
-
oil-and-gas gathering plant
-
oil-burning power plant
-
oil-desulfurization plant
-
oil-extraction plant
-
oil-fired plant
-
oil-reclamation plant
-
oil-treating plant
-
on-line gas plant
-
open-coil annealing plant
-
open-cycle gas turbine plant
-
open-hearth plant
-
orbital power plant
-
orbital solar power plant
-
ore-bedding plant
-
ore-blending plant
-
ore-breaker plant
-
ore-conditioning plant
-
ore-dressing plant
-
ore-roasting plant
-
ore-washing plant
-
outdoor-type power plant
-
oxidizing plant
-
oxygen-converter plant
-
ozone plant
-
packaged power plant
-
packaged refrigerating plant
-
packing plant
-
paint varnish and lacquer plant
-
pallet conveyor mold-type plant
-
paperboard plant
-
peaking power plant
-
peaking boiler plant
-
peak-shaving liquefied natural gas plant
-
pellet plant
-
petroleum chemical plant
-
photovoltaic power plant
-
physical plant
-
pickling plant
-
pig-casting plant
-
pilot plant
-
plating plant
-
plywood manufacturing plant
-
polymerization plant
-
pontoon pile-driving plant
-
power plant
-
preserving plant
-
printing plant
-
process gas turbine plant
-
processing plant
-
Prolerizing plant
-
propulsion plant
-
public utility power plant
-
public-service power plant
-
pulverized-coal-fired plant
-
pulverizing plant
-
pump plant
-
pumped-storage plant
-
pumping plant
-
pumping-generating plant
-
quick-freezing plant
-
radiant freeze-drying plant
-
ready-mix plant
-
recovery plant
-
reforming plant
-
refrigerating plant
-
refuse-fired plant
-
regasifying plant
-
regenerative gas turbine plant
-
relift pumping plant
-
rendering plant
-
retreading plant
-
reverse osmosis plant
-
rolling plant
-
route interlocking plant
-
run-of-river plant
-
sack filling plant
-
salt plant
-
sand-preparing plant
-
satellite printing plant
-
scrap-shredding plant
-
screening plant
-
sea-water desalting plant
-
sedimentation plant
-
self-contained rail welding plant
-
self-contained refrigerating plant
-
self-sufficient plant
-
semiclosed-cycle gas turbine plant
-
semiunderground plant
-
separating plant
-
sewage disposal plant
-
simple-cycle gas turbine plant
-
simulated power plant
-
single-pool power plant
-
single-strand plant
-
single-unit plant
-
sinking plant
-
sintering plant
-
sizing plant
-
skimming plant
-
slab-producting plant
-
slag-expanding plant
-
slag-screening plant
-
slaughtering and meat processing plant
-
slaughtering plant
-
sludge filtration plant
-
small-size refrigerating plant
-
smoke extractor plant
-
soap plant
-
solar ice plant
-
solar plant
-
solar power plant
-
solar tower plant
-
solvent-extraction plant
-
split-shaft gas turbine plant
-
sputtering plant
-
stabilization plant
-
stand-alone solar power plant
-
standby plant
-
stationary gas turbine plant
-
stationary refrigerating plant
-
steam condensing plant
-
steam plant
-
steam power plant
-
steam-electric-turbine plant
-
steaming plant
-
steel continuous casting plant
-
steel plant
-
storage plant
-
stream degassing plant
-
stripping plant
-
sugar refining plant
-
sulfur recovery plant
-
sunken-type plant
-
superposed plant
-
supplementary fired combined cycle plant
-
supplementary heating plant
-
sweater knitting plant
-
tap-degassing plant
-
tar-boiling plant
-
tea plant
-
television plant
-
tertiary plant
-
thermal power plant
-
thermal plant
-
thermodynamic solar power plant
-
thermoelectric refrigerating plant
-
tidal power plant
-
tiger topping plant
-
tinning plant
-
tin-refining plant
-
tin-smelting plant
-
tonnage oxygen plant
-
top-blown oxygen vessel plant
-
topping plant
-
tower-type plant
-
train washing plant
-
transformer plant
-
trash-fired power plant
-
traveling pneumatic grain-discharging plant
-
treatment plant
-
tritium removal plant
-
turbine plant
-
turbo-refrigerating plant
-
two-axes focusing solar plant
-
two-shaft plant
-
ultrafiltration concentration plant
-
undercar power plant
-
underground nuclear power plant
-
underwater nuclear power plant
-
unit refrigerating plant
-
uranium enrichment plant
-
vacuum casting plant
-
vacuum degassing plant
-
vacuum dezincing plant
-
vacuum gas turbine plant
-
vacuum metallothermic plant
-
vacuum molding plant
-
vacuum-decarburization plant
-
variable-head power plant
-
variable-load power plant
-
vertical plant
-
vulcanizing plant
-
washing plant
-
waste disposal plant
-
waste-to-energy cogeneration plant
-
waste-to-energy plant
-
water demineralization plant
-
water softening plant
-
water treatment plant
-
water-cooling plant
-
waterpower plant
-
wave energy plant
-
wax plant
-
wet-process plant
-
wind-mill electric generating plant
-
wire-drawing plant
-
year-round air-conditioning plant
-
zero-discharge plant
-
zinc ore roasting plant
-
zinc-smelting plant
См. также в других словарях:
Engineering — The Watt steam engine, a major driver in the Industrial Revolution, underscores the importance of engineering in modern history. This model is on display at the main building of the ETSIIM in Madrid, Spain. Engineering is the discipline, art,… … Wikipedia
Engineering design process — An engineering design process is a process used by engineers to help develop products. the engineering design is defined as … the process of devising a system, component or process to meet desired needs. It is a decision making process (often… … Wikipedia
Engineering tolerance — is the permissible limit or limits of variation in a physical dimension, a measured value or physical property of a material, manufactured object, system, or service, other measured values (such as temperature, humidity, etc.). in engineering and … Wikipedia
Engineering economics — Engineering economics, previously known as engineering economy, is a subset of economics for application to engineering projects. Engineers seek solutions to problems, and the economic viability of each potential solution is normally considered… … Wikipedia
Engineering ethics — is the field of applied ethics which examines and sets standards for engineers obligations to the public, their clients, employers and the profession. This article addresses the subject for both professional engineers and other… … Wikipedia
Engineering college — Engineering colleges generally refer to institutes of higher education which offer an engineering course at degree (undergraduate) level. The duration of the course is four to five years depending upon the university to which the college is… … Wikipedia
Engineering Science — is a multidisciplinary program designed to integrate the sciences with areas of traditional engineering such as research, design and analysis. A core of basic courses in mathematics, physics and chemistry forms the foundation of the curriculum… … Wikipedia
Engineering vehicle — Engineering vehicles, known by the other terms: construction equipment, earth movers, heavy equipment or just plain equipment, are machines, specifically designed to execute civil engineering and construction engineering tasks. The scope of the… … Wikipedia
Basic Linear Algebra Subprograms — (BLAS) is a de facto application programming interface standard for publishing libraries to perform basic linear algebra operations such as vector and matrix multiplication. They were first published in 1979, and are used to build larger packages … Wikipedia
Engineering Aide (US Navy) — Engineering Aide (abbreviated as EA) is a United States Navy occupational rating.Engineering Aides plan, supervise and perform tasks required in construction surveying, construction drafting, planning and estimating and quality control; prepare… … Wikipedia
Engineering analysis — Engineering analysis, when applied in the context of engineered systems, involves the application of scientific analytic principles and processes to reveal the properties and state of the system. Engineering analysis is decompositional, it… … Wikipedia