-
61 цикл
( годографа) circuit, cycle, ( обработки) operation, ( временного объединения цифровых сигналов) frame, loop вчт., nucleus, period, run, ring, sequence машиностр.* * *цикл м.1. ( временной или пространственный интервал повторения событий) cycle; ( промежуток времени) periodвосстана́вливать цикл — reset the cycleопи́сывать цикл в прямо́м или обра́тном направле́нии ( в термодинамике) — traverse a cycle in the direct or reverse senseопи́сывать цикл по часово́й стре́лке или про́тив часово́й стре́лки ( в термодинамике) — traverse a cycle clockwise or anticlockwiseрабо́тать ци́клами — to cycleсоверша́ть цикл — to cycle2. вчт. loop; loop of instructionsвыходи́ть из ци́кла — come out of a loopповторя́ть цикл — cycle a loop (of instructions)повторя́ть цикл многокра́тно — cycle round a loop repeatedlyцикл автома́та повто́рного включе́ния эл. — recloser sequenceбина́рный цикл — binary cycleвло́женный цикл — nested loopводоро́дный цикл яд. физ. — hydrogen-helium cycleцикл в ци́кле — loop-within-loopцикл вы́борки кома́нды вчт. — instruction cycleвы́емочный цикл горн. — cycle of goal getting, winning cycleцикл выполне́ния кома́нды вчт. — execution cycleцикл дви́гателя — engine cycleцикл движе́ния — cycle of motionцикл д. в. с. со сгора́нием при постоя́нном давле́нии — Diesel cycleцикл д. в. с. со сгора́нием при постоя́нном объё́ме — Otto cycleдвухта́ктный цикл — two(-stroke) cycleдействи́тельный цикл — actual [real] cycleза́мкнутый цикл1. closed cycleвключа́ть (обору́дование) в за́мкнутый цикл — run (a machine) in closed circuit with (another machine)рабо́тать в за́мкнутом ци́кле с … — be close-circuited with2. closed loopцикл за́писи вчт. — write cycleцикл за́пуска д. в. с. — cranking cycleидеа́льный цикл ( в термодинамике) — ideal cycleитерацио́нный цикл — iteration loopвыполня́ть итерацио́нный цикл — traverse an iteration loopцикл Карно́ ( в термодинамике) — Carnot cycleцикл Карно́, обра́тный ( в термодинамике) — reverse Carnot cycleцикл Карно́, прямо́й ( в термодинамике) — Carnot cycleкинемати́ческий цикл — kinematic cycleкома́ндный цикл вчт. — instruction cycleкриоге́нный цикл ( в термодинамике) — cryogenic cycleцикл ла́вы — wall cycleмагни́тный цикл — magnetic cycleмагнитогидродинами́ческий цикл ( в газодинамике) — magnetohydrodynamic [MHD] cycleмаши́нный цикл вчт. — machine cycleмаши́нный, основно́й цикл вчт. — basic machine cycleцикл нагре́ва ( в термодинамике) — heating cycleцикл намагни́чивания — cycle of magnetizationцикл намагни́чивания, преде́льный эл. — major cyclic hysteresis loopцикл напряже́ний мех. — stress cycleнеза́мкнутый цикл — open cycleнейтро́нный цикл яд. физ. — neutron cycleнеобрати́мый цикл ( в термодинамике) — irreversible cycleнепреры́вный цикл ( в термодинамике) — uninterrupted cycleобрати́мый цикл ( в термодинамике) — reversible cycleцикл обраще́ния к па́мяти вчт. — memory [storage] cycleокисли́тельно-восстанови́тельный цикл — oxidation-reduction cycleосновно́й цикл ( в термодинамике) — basic cycleохва́тывающий цикл — outer loonцикл охлажде́ния — cooling cycleпароводяно́й цикл — water-flow cycle; water-steam circuitпарово́й цикл — vapour cycleпарога́зовый цикл — supercharged boiler [exhaust-fired-boiler] cycleпаросилово́й цикл — steam power cycleпаротурби́нный цикл — steam turbine cycleцикл перемагни́чивания — cycle of magnetizationцикл пла́вки от вы́пуска до вы́пуска — tap-to-tap cycleповто́рный цикл — recycleцикл по́иска вчт. — search cycleпоса́дочный цикл горн. — cycle of caving, caving cycleпреде́льный цикл эл. — limit cycleцикл програ́ммы вчт. — loop of instructionsцикл програ́ммы, бесконе́чный (напр. в результате ошибки) вчт. — infinite loop (of instructions)прото́нный цикл — proton-proton chainпрохо́дческий цикл — sinking cycleцикл рабо́ты (напр. оборудования) — operation periodцикл рабо́ты вяза́льного аппара́та текст. — knotting cycleцикл рабо́ты запомина́ющего устро́йства вчт. — storage cycleрабо́чий цикл1. working [running] cycle2. вчт. machine cycleразо́мкнутый цикл1. open cycle2. open loopцикл Ра́нкина тепл. — Rankine cycleрегенерати́вный цикл тепл. — regenerative cycleрегенерати́вный, преде́льный цикл тепл. — complete regenerative cycleцикл Ре́нкина тепл. — Rankine cycleцикл с воспламене́нием от сжа́тия — Diesel cycleсло́жный цикл1. ( в термодинамике) compound cycle2. loop-within-loopцикл со втори́чным перегре́вом па́ра — reheat cycleцикл с одни́м отбо́ром па́ра — one-point extraction cycleцикл со сгора́нием при постоя́нном давле́нии — Diesel cycleцикл со сгора́нием при постоя́нном объё́ме — Otto cycleцикл с промежу́точным перегре́вом па́ра — reheat cycleцикл стира́ния вчт. — erase cycleсу́точный цикл — diurnal cycleцикл счи́тывания вчт. — read cycleцикл счи́тывания и за́писи вчт. — readwrite cycleтеорети́ческий цикл ( в термодинамике) — theoretical [ideal] cycleтеплово́й цикл — thermal cycleтермодинами́ческий цикл — thermodynamic cycleуглеро́дный цикл яд. физ. — carbon(-nitrogen) cycleхолоди́льный цикл — refrigeration cycleхолоди́льный, абсорбцио́нный цикл — absorption refrigeration cycleхолоди́льный, компрессио́нный цикл — compression refrigeration cycleцикл хрони́рования элк., вчт. — timing cycleчетырёхта́ктный цикл двс. — four-stroke cycle -
62 камера
chamber
- (фото) — camera
-, вихревая (форсунки) — swirl /vortex/ chamber
- вытяжного парашюта (основного купола грузового парашюта) — retarder parachute bucket
- динамического давления (приемника г18д) (рис. 83) — total pressure chamber, pitot (pressure) chamber
-, завихрительная (форсунки) — swirl chamber
-, компенсационная — balance chamber
- нагнетания — pressure chamber
-, натяжная, высотного компенсирующего костюма — pressure suit capstan
-, парашютная (рис. 108) — parachute bucket
а part of supplies-dropping parachute which houses the parachute pack.
- плавучести (надувного плота) — buoyancy chamber
- полного давления (приемника пвд (рис. 83) — totaf pressure chamber, pitot (pressure) chamber
- пневматика (колеса) — tire inner tube
-, поплавковая — float chamber
-, разгрузочная гтд — (pressure) balance chamber
- сгорания (гтд и пд) — combustion chamber
- сгорания (раздел рэ 72-40) — combustion section
- сгорания (узеп гтд) — combustion section
- сгорания, вихревая — swirl /vortex/ combustion с hamber
- сгорания, индивидуальная — can-type combustion chamber
трубчатая камера сгорания, имеющая отдельный подвод воздуха и топлива.
- сгорания, кольцевая — annular combustion chamber
камера, у которой в кольцевом пространстве между наружным и внутренним кожухами размещается одна общая жаровая труба. — annular chamber is formed by the combustion outer casing and engine intermediate casing.
- сгорания, куполообразная (пд) — dome-shaped combustion chamber
- сгорания, отдельная — can-type combustion chamber
- сгорания, полусферическая (пд) — hemispherical combustion chamber
- сгорания, противоточная (ггд) — reverse-flow combustion chamber
- сгорания, прямоточная — straight-flow combustion chamber
- сгорания, трубчатая — can-type combustion chamber
состоит из наружного кожуха и жаровой трубы.
- сгорания, трубчато-кольцевая — cannular combustion chamber
состоит из ряда отдельных жаровых труб, размещенных в кольцевой полости.
- сжатия — compression chamber
-, смесительная — mixing chamber
- статического давления (приемника пвд) (рис. 83) — static pressure chamber
- торможения (воздушного потока приемника температуры) — stagnation chamber
-, тормозная (пневматического тормоза колеса) — brake expander tube
-, тепла — not chamber
-, термическая — temperature chamber
-, форсажная — afterburner, reheat unit, thrust augmentor
камера за последней ступенью турбины гтд, в которой производится сжигание дополнительного топлива для повышения тяги двигателя, — the afterburner (or reheat unit) is used to augment the basic thrust of an engine to improve the take-off, climb, or combat performance.
-, форсажная, всережимная — regulated /modulated/ afterburner
-, форсажная, однорежимная (нерегулируемая) — off/on afterburner
-, фотографическая — photographic camera
-, фоторегистрирующая — recording camera
- холода — cold chamber
- шины (пневматика) — tire (inner) tube
потери в к. сгорания — combustion chamber losses
прогар к. сгорания — combustion chamber burnout
монтировать к. (шины) в покрышку — insert the tube into the tireРусско-английский сборник авиационно-технических терминов > камера
-
63 ограничения
limitations
(раздел 2, рлэ)
данный раздел должен содержать ограничения no весам, летным характернстикам, нагрузке на пол кабин, центровке, силовой установке, скорости полета. — this section should contain the following limitations: weights, performance limitations, floor loading. center of gravity, powerplant, airspeed and mach number, miscellaneous.
- взлетного веса по градиенту набора высота — takeoff weight permitted by climb gradient limitations
- взлетного веса по достаточноcти располагаемых длин прерванного и продолженного взлета, и длины разбега и прерванного взлета — takeoff weight permitted by takeoff field length limitations
-, временные — temporary limitations
-, дополнительные (параграф раздела 2, рлэ) — additional limitations
например, ограничения, связанные с регулированием наддува кабин или обогрева лобовых стекол, а также ограничения по маневрированию ла на земле, обеспечивающие безопасность эксплуатации. — limitations which may be associated with such matters as control of cabin pressurization or windshield heating and limitations covering ground operations which may affect aircraft airworthiness.
- на взлете и посадке (параграф раздела 2, рлэ) — performance limitations
ограничения по взлетному и посадочному весам, дистанции прерванного взлета, взлетной дистанции, разбегу, a также no высоте, температуре окружающего воздуха, скорости и направлению ветра, уклону впп. — the limitations should be listed in respect to: takeoff weight, landing weight, accelerate-stop distance, takeoff distance, takeoff run, if applicable, altitude, atmospheric temperatures. wind speed and direction, runway slope.
- no весу — weight limits
- no весу и загрузке — weight and loading distribution limitations
- no весу и центровка — weight and center of gravity limits
- no времени (работы на к-л. режиме:... минут, без ограничений, кратковременно) — (operating condition) time limits (... minutes, no limit, momentarily)
- по вспомогательной силовой установке (всу) — apu operating limitations
- по давлению масла (теплива) — oil (fuel) pressure limits
- по закрылкам — flaps setting limits
- по заправке и эксплуатации топливной системы — fuel loading and management limitations
- по летной годности — airworthiness limitations
- по летным данным — performance limitations
- по маневрированию (параграф раздела 2 рлэ) — maneuvers
- по массам (ла) — mass /weight/ limits
- по наземной эксплуатации (ла) — ground operation limitations
- по положению (агрегата) — limitations in mounting attitude
- по прочности (нагрузке) — load limitations
- по прочности конструкции ограничения, связанные с максимальными нагрузками на пол отсеков и распределением этих нагрузок. — structural limitations the maximum loads on the floor of the compartments and the structural limitations on their distribution.
- no силовой установке — power plant limitations
- по силовой установке (параграф раздела 2, рлэ) — power plant
ограничения, обеспечивающие безопасность эксплуатации двигателя, возд. винтов и агрегатов силовой установки, — the limitations to ensure the safe operation of the engine, propellers, and power plant accessories as installed in the airplane.
- no скорости — airspeed limitations
- no скорости и числам м (параграф раздела 2, рлэ) — airspeed and mach number limitations
ограничения по скорости и числам м должны выражаться в виде приборной скорости или приборного числа м. — airspeed limitations should be stated in terms of indicated airspeed (i.a.s.) and/or indicated mach number.
- по температуре газов за турбиной — exhaust gas temperature (egt) limits
- по температуре наружного воздуха — ambient (air) temperature limitations
- по управлению — (airplane) control system limitations
- no центровкам — center of gravity limits
- no шасси — landing gear operating limitations
- по электрооборудованию (или эпектросистеме) (параграф раздела 2, рлэ) — electrical system limitations the basic limitations affecting the safety of the airplane which are associated with the electrical system.
-, прочие — miscellaneous limitations
-, прочие (& разд. 2 рлэ) — miscellaneous
-, рабочие — operating limitations
-, разные (& разд. 2 рлэ) — miscellaneous
данный параграф должен включать: сертификационный статус, виды эксплуатации, ограничения no маневрированию, минимальный состав экипажа, максимальное числo лиц на борту ла, максимальную высоту полета, ограничения по курению и эксплуатации электрооборудования и автопилота, необходимые трафареты и надписи, и дополнительные ограничения. — this sub-section should include the following: certification status, type of operation, maneuvers, minimum crew, maximum number of occupants, maximum altitude, smoking, electrical system limitations, automatic pilot limitations, markings and placards, additional timitations.
-, регулировочные — adjustment limitations
-, установочные — installation limitations
-, утвержденные эксплуатационные — approved operating limitations the engine operates within approved operating limitations.
-, эксплуатационные — operating limitations
эксплуатационные ограничения, обеспечивающие безопасность эксплуатации, должны указываться в руководстве пo летной эксплуатации в виде надписей и трафаретов. без о. (о продолжительности режима работы) — the operating limitations necessary for safe operation must be included in flight manual, expressed in markings and placards. no limitРусско-английский сборник авиационно-технических терминов > ограничения
-
64 форсаж
power augmentation
(форсирование)
кратковременное повышение мощности или тяги двигателя. — power augmentation by the use of retrigerant or water methanol or water injection and exhaust reheating.
- (дожиг топлива в форсажной камере) — afterburning, reheating afterburning (or reheat) is a method of augmenting the basic thrust of an engine.
-, всережимный (всережим ной камеры) — fully variable '/modulated/ hoe регулирование форсаж- afterburnin
-, полный (пф) (двиг.) — full reheat
- тяги (двигателя) — thrust augmentation
- тяги путем дожигания топлива за турбиной — afterburning, (exhaust) reheating
увеличение тяги гтд путем подачи топлива в форсажную камеру или реактивное сопло. — а thrust-augmentation technique also known as tail-pipe burning wherein extra fuel is injected into the jet engine exhaust system.Русско-английский сборник авиационно-технических терминов > форсаж
-
65 Henson, William Samuel
SUBJECT AREA: Aerospace[br]b. 3 May 1812 Nottingham, Englandd. 22 March 1888 New Jersey, USA[br]English (naturalized American) inventor who patented a design for an "aerial steam carriage" and combined with John Stringfellow to build model aeroplanes.[br]William Henson worked in the lacemaking industry and in his spare time invented many mechanical devices, from a breech-loading cannon to an ice-machine. It could be claimed that he invented the airliner, for in 1842 he prepared a patent (granted in 1843) for an "aerial steam carriage". The patent application was not just a vague outline, but contained detailed drawings of a large monoplane with an enclosed fuselage to accommodate the passengers and crew. It was to be powered by a steam engine driving two pusher propellers aft of the wing. Henson had followed the lead give by Sir George Cayley in his basic layout, but produced a very much more advanced structural design with cambered wings strengthened by streamlined bracing wires: the intended wing-span was 150 ft (46 m). Henson probably discussed the design of the steam engine and boiler with his friend John Stringfellow (who was also in the lacemaking industry). Stringfellow joined Henson and others to found the Aerial Transit Company, which was set up to raise the finance needed to build Henson's machine. A great publicity campaign was mounted with artists' impressions of the "aerial steam carriage" flying over London, India and even the pyramids. Passenger-carrying services to India and China were proposed, but the whole project was far too optimistic to attract support from financiers and the scheme foundered. Henson and Stringfellow drew up an agreement in December 1843 to construct models which would prove the feasibility of an "aerial machine". For the next five years they pursued this aim, with no real success. In 1848 Henson and his wife emigrated to the United States to further his career in textiles. He became an American citizen and died there at the age of 75.[br]BibliographyHenson's diary is preserved by the Institute of Aeronautical Sciences in the USA. Henson's patent of 1842–3 is reproduced in Balantyne and Pritchard (1956) and Davy (1931) (see below).Further ReadingH.Penrose, 1988, An Ancient Air: A Biography of John Stringfellow, Shrewsbury.A.M.Balantyne and J.L.Pritchard, 1956, "The lives and work of William Samuel Henson and John Stringfellow", Journal of the Royal Aeronautical Society (June) (an attempt to analyse conflicting evidence; includes a reproduction of Henson's patent).M.J.B.Davy, 1931, Henson and Stringfellow, London (an earlier work with excellent drawings from Henson's patent).JDS -
66 Lee, Revd William
SUBJECT AREA: Textiles[br]d. c. 1615[br]English inventor of the first knitting machine, called the stocking frame.[br]It would seem that most of the stories about Lee's invention of the stocking frame cannot be verified by any contemporary evidence, and the first written accounts do not appear until the second half of the seventeenth century. The claim that he was Master of Arts from St John's College, Cambridge, was first made in 1607 but cannot be checked because the records have not survived. The date for the invention of the knitting machine as being 1589 was made at the same time, but again there is no supporting evidence. There is no evidence that Lee was Vicar of Calverton, nor that he was in Holy Orders at all. Likewise there is no evidence for the existence of the woman, whether she was girlfriend, fiancée or wife, who is said to have inspired the invention, and claims regarding the involvement of Queen Elizabeth I and her refusal to grant a patent because the stockings were wool and not silk are also without contemporary foundation. Yet the first known reference shows that Lee was the inventor of the knitting machine, for the partnership agreement between him and George Brooke dated 6 June 1600 states that "William Lee hath invented a very speedy manner of making works usually wrought by knitting needles as stockings, waistcoats and such like". This agreement was to last for twenty-two years, but terminated prematurely when Brooke was executed for high treason in 1603. Lee continued to try and exploit his invention, for in 1605 he described himself as "Master of Arts" when he petitioned the Court of Aldermen of the City of London as the first inventor of an engine to make silk stockings. In 1609 the Weavers' Company of London recorded Lee as "a weaver of silk stockings by engine". These petitions suggest that he was having difficulty in establishing his invention, which may be why in 1612 there is a record of him in Rouen, France, where he hoped to have better fortune. If he had been invited there by Henry IV, his hopes were dashed by the assassination of the king soon afterwards. He was to supply four knitting machines, and there is further evidence that he was in France in 1615, but it is thought that he died in that country soon afterwards.The machine Lee invented was probably the most complex of its day, partly because the need to use silk meant that the needles were very fine. Henson (1970) in 1831 took five pages in his book to describe knitting on a stocking frame which had over 2,066 pieces. To knit a row of stitches took eleven separate stages, and great care and watchfulness were required to ensure that all the loops were equal and regular. This shows how complex the machines were and points to Lee's great achievement in actually making one. The basic principles of its operation remained unaltered throughout its extraordinarily long life, and a few still remained in use commercially in the early 1990s.[br]Further ReadingJ.T.Millington and S.D.Chapman (eds), 1989, Four Centuries of Machine Knitting, Commemorating William Lee's Invention of the Stocking Frame in 1589, Leicester (N.Harte examines the surviving evidence for the life of William Lee and this must be considered as the most up-to-date biographical information).Dictionary of National Biography (this contains only the old stories).Earlier important books covering Lee's life and invention are G.Henson, 1970, History of the Framework Knitters, reprint, Newton Abbot (orig. pub. 1831); and W.Felkin, 1967, History of the Machine-wrought Hosiery and Lace Manufactures, reprint, Newton Abbot (orig. pub. 1867).M.Palmer, 1984, Framework Knitting, Aylesbury (a simple account of the mechanism of the stocking frame).R.L.Hills, "William Lee and his knitting machine", Journal of the Textile Institute 80(2) (a more detailed account).M.Grass and A.Grass, 1967, Stockings for a Queen. The Life of William Lee, the Elizabethan Inventor, London.RLH -
67 вариант
вариант компоновкиversionвариант смешанного классаmixed class versionвариант типа салонde-luxe versionгрузовой вариантfreighter versionконвертируемый вариантconvertible versionмодифицированный вариантderived versionокончательный вариант двигателяdefinitive engineопытный вариант воздушного судна1. aircraft prototype2. experimental aircraft 3. preproduction aircraft 4. prototype aircraft основной вариантbasic versionосновной вариант воздушного суднаbasic aircraftпассажирский вариант1. civil version2. passenger transport version сельскохозяйственный вариант вертолетаagricultural-version helicopterсерийный вариантproduction versionсерийный вариант воздушного суднаproduction aircraftслужебный вариантbusiness versionспасательный вариантrescue versionстандартный вариантstandard versionтропический вариантtropic versionтуристический вариант1. economy-class version2. tourist class version усовершенствованный вариантdeveloped version -
68 конструкция
конструкция сущ1. construction2. design 3. structure деформация конструкцииstructural distortionдеформация конструкции воздушного суднаaircraft structural deformationдирижабль жесткой конструкцииrigid airshipдирижабль полужесткой конструкцииsemirigid airshipдорабатывать конструкцию воздушного суднаafter an aircraftкессонная конструкцияtorsion box structureконструкция воздушного судна1. aircraft design2. aircraft structure конструкция с работающей обшивкойstressed-skin structureконфигурация конструкции закрылкаflap structural configurationкрыло кессонной конструкцииtorsion box wingмасса конструкции1. deadload2. dead load модульная конструкцияengine module constructionмодульная конструкция двигателяmodular engine designнагружать конструкциюload the structureнесиловой элемент конструкцииsecondary structural memberосновная конструкцияbasic designосновной элемент конструкцииprimary element of structureотказоустойчивая конструкцияfail-safe structureповреждать конструкцию воздушного суднаdamage aircraft structureполомка конструкцииstructural failureсварная конструкцияwelded constructionсиловой элемент конструкцииprimary structural memberстабилизатор кессонной конструкцииtorsion box stabilizerфюзеляж ферменной конструкцииtruss fuselageцельнометаллическая конструкция1. all-metal construction2. all-metal structure элемент конструкцииmemberэлемент конструкции воздушного суднаaircraft componentэлемент несущей конструкцииload-carrying structural member -
69 параметр
параметр сущparameterвыдерживать заданный параметрmaintain the parameterвычислитель параметров автоматического ухода на второй кругauto go around computerвычислитель параметров захода на посадкуapproach computerвычислитель параметров траектории полетаflight-path computerвычислитель параметров ухода на второй круг1. overshoot computer2. go-around computer консультативное сообщение о порядке выдерживания заданных параметровmaintain advisoryкритический расчетный параметрcritical design parameterметеорологический параметрmeteorological parameterосновной параметрbasic parameterосновные технические параметрыbasic technical dataпараметр потока, критический по шумуnoise-critical flow parameterпараметр работы силовой установкиpropulsion parameterрадиолокационный метод определения параметров ветраrawinрасчет эксплуатационных параметровderivation of operating dataрегистратор параметров полета1. black box2. flight data recorder регулировать двигатель до заданных параметровadjust the engineсистема измерения посадочных параметров воздушного суднаaircraft landing measurement systemсистема сбора воздушных параметровflight environment data system(условий полета) эксплуатационный параметрoperational parameter -
70 скорость
скорость сущ1. speed2. velocity аэродинамика малых скоростейlow-speed aerodynamicsаэродинамическая труба больших скоростейhigh-speed wind tunnelаэродинамическая труба околозвуковых скоростейtransonic wind tunnelбезопасная скоростьsafety speedбезопасная скорость взлетаtakeoff safety speedблок датчиков угловых скоростей гироскопаrate gyro unitблок контроля скорости пробега по землеground run monitorвектор воздушной скоростиairspeed vectorвектор путевой скоростиground speed vectorвертикальная скоростьvertical speedвоздушная скоростьairspeedвосстанавливать скоростьregain the speedвыдерживание скоростиspeed holdingвыдерживать требуемую скорость полетаmaintain the flying speedвычислитель воздушной скоростиair-speed computerгаситель скоростиspeedbrakeгасить посадочную скоростьkill the landing speedгасить скорость в полетеdecelerate in the flightгашение скоростейspeed bleedoffгиперзвуковая скоростьhypersonic speedдатчик воздушной скорости1. airspeed transmitter2. airspeed sensor датчик скоростиvelocity sensorдатчик угловой скорости крена1. roll-rate pickup2. roll rate sensor диапазон больших скоростейhigh-speed rangeдиапазон скоростейspeed rangeдозвуковая скоростьsubsonic speedдопустимая скоростьallowable speedдопустимая эксплуатационная скоростьpermissible operating speedединица скорости телеграфной передачиbaudзадавать определенную скоростьset up the speedзаданная скорость1. target speed2. sufficient speed 3. on-speed замедлять скоростьspeed downзапас скоростиspeed marginзаход на посадку с уменьшением скоростиdecelerating approachзона выдерживания скоростиspeed control areaизмеритель угловой скоростиturnmeterизмеритель угловой скорости кренаrate-of-roll meterиндикаторная воздушная скорость1. calibrate airspeed2. rectified airspeed информация о скоростиrate informationисправленная воздушная скоростьcorrected airspeedисправленная скоростьbasic speed(с учетом погрешности измерения) истинная воздушная скоростьtrue airspeedкомбинированный указатель скоростиcombination airspeed indicatorкоммерческая скоростьblock speedкрейсерская скоростьcruising speedкрейсерская скорость для полета максимальной дальностиlong-range cruise speedкритическая скоростьhump speedлинейная скорость1. linear velocity2. linear speed максимальная скорость порываgust peak speed(воздушной массы) максимально допустимая скорость1. maximum limit speed2. never-exceed speed максимально допустимая скорость прохождения порога ВППmaximum threshold speedмгновенная вертикальная скоростьinstantaneous vertical speed(полета) минимальная безопасная скорость взлетаminimum takeoff safety speedминимальная посадочная скоростьminimum landing speedминимальная скорость отрываminimum unstick speedминимальная скорость полетаminimum flying speedминимально допустимая скорость прохождения порога ВППminimum threshold speedнабирать заданную скорость полетаobtain the flying speedнаименьшая начальная скоростьslowest initial speed(полета) на полной скоростиat full speedнаращивать скоростьgather the speedна скорости1. at a speed of2. on the speed ограничение по скорости полетаair-speed limitationоколозвуковая скорость1. transonic speed2. near-sonic speed окружная скоростьcircumferential speedокружная скорость законцовки воздушного винтаpropeller tip speedокружная скорость лопасти воздушного винтаairscrew blade speedокружная скорость лопатки вентилятораfan tip speedотносительная воздушная скоростьrelative airspeedотносительная скоростьrelative velocityпереходить к скорости набора высотыtransit to the climb speedполет на малой скоростиlow-speed flightполет с уменьшением скоростиdecelerating flightпоправка на воздушную скоростьairspeed compensationпосадочная скоростьlanding speedпоступательная скоростьforward speedпредел скоростей на крейсерском режимеcruising speeds rangeпредел скорости ветраwind limitпредельная скоростьtop speedприборная воздушная скорость1. indicated airspeed2. basic airspeed продольная составляющая скоростиlongitudinal velocityпутевая скорость1. ground speed(скорость воздушного судна относительно земли) 2. ground velocity 3. actual speed равнодействующий вектор скоростиresultant velocity vectorразвивать заданную скорость1. gain the speed2. attain the speed 3. pick up the speed разгонять до скоростиaccelerate to the speedрасчетная воздушная скоростьdesign airspeedрасчетная скоростьdesign speedрасчетная скорость полетаreference flight speedрасчетная скорость сходаexit design speed(с ВПП) регистратор воздушной скоростиair-speed recorderрегулируемая скоростьgoverned speedреле максимальной скоростиspeed warning relayсамопроизвольное восстановление скоростиfree speed returnсверхзвуковая скорость1. supersonic speed2. ultrasonic speed сигнализатор достижения предельной скоростиlimit speed switchсистема привода с постоянной скоростьюconstant speed drive systemсистема управления скоростьюspeed control system(полета) скорость аварийного слива топливаfuel dumping rateскорость балансировкиrate of trimскорость бокового движенияsideward flight speed(вертолета) скорость бокового скольжения1. lateral velocity2. rate of sideslip скорость вертикального порываvertical gust speed(воздушной массы) скорость ветраwind speedскорость ветра у поверхностиsurface wind speed(земли) скорость взлетаtakeoff speedскорость воздушного суднаaircraft speedскорость возникновения бафтингаbuffeting onset speedскорость возникновения флаттераflutter onset speedскорость вращенияrotational speedскорость встречного ветраheadwind speedскорость в условиях турбулентности1. rough airspeed2. rough-air speed скорость выпуска - уборки шассиlanding gear operating speedскорость газового потокаgas flow velocityскорость горизонтального полетаlevel-flight speedскорость движения воздушной массыair velocityскорость, заданная подвижным индексомbug speed(прибора) скорость замедленияdecreasing speedскорость заправки топливных баковfuel tank filling rateскорость затуханияdegeneration speed(звукового удара) скорость захода на посадку1. landing approach speed2. approach speed скорость захода на посадку с убранной механизацией крылаno-flap - no-slat approach speedскорость захода на посадку с убранными закрылкамиno-flap approach speedскорость захода на посадку с убранными предкрылкамиno-slat approach speedскорость звука1. sonic speed2. velocity of sound 3. sound velocity скорость изменения бокового отклоненияcrosstrack distance change rateскорость изменения высотыaltitude rateскорость изменения шага винтаpitch-change rateскорость истечения выхлопных газовexhaust velocityскорость истечения выходящих газов на срезе реактивного соплаnozzle exhaust velocityскорость истечения газовexit velocityскорость кренаrate of rollскорость маневрированияmanoeuvring speedскорость набора высотыascensional rateскорость набора высоты при выходе из зоныclimb-out speedскорость набора высоты при полете по маршрутуen-route climb speedскорость набора высоты с убранными закрылками1. flaps-up climbing speed2. flaps-up climb speed 3. no-flap climb speed скорость на начальном участке набора высоты при взлетеspeed at takeoff climbскорость начала торможенияbrake application speedскорость обгонаovertaking speed(воздушного судна) скорость отклонения закрылковrate of flaps motionскорость отработкиfollow-up rateскорость отрываliftoff speed(при разбеге) скорость отрыва носового колесаrotation speed(при взлете) скорость отрыва при взлетеunstick speedскорость парашютированияsink speed(при посадке) скорость первоначального этапа набора высотыinitial climb speedскорость перед сваливаниемprestall speed(на крыло) скорость пикированияdive speedскорость планированияgliding speedскорость полетаflight speedскорость полета на малом газеflight idle speedскорость попутного ветраtailwind speedскорость порываgust velocityскорость по тангажуrate of pitchскорость прецессииprecession rateскорость при аварийном сниженииemergency descent speedскорость при взлетнойspeed in takeoff configuration(конфигурации воздушного судна) скорость при всех работающих двигателяхall engines speedскорость при выпуске закрылковflaps speedскорость при выпущенных интерцепторахspoiler extended speedскорость при касанииtouchdown speed(ВПП) скорость принятия решенияdecision speed(пилотом) скорость при отказе критического двигателяcritical engine failure speedскорость при полностью убранных закрылкахzero flaps speedскорость при посадочнойspeed in landing configuration(конфигурации воздушного судна) скорость протяжки лентыtape speed(бортового регистратора) скорость прохождения порога ВППthreshold speedскорость разворотаrate of turnскорость раскрытияopening speed(парашюта) скорость рассогласованияrate of disagreementскорость реакцииreaction rateскорость руленияtaxiing speedскорость рысканияrate of yawскорость сближения1. closing speed(воздушных судов) 2. rate of closure скорость сваливанияstalling speed(на крыло) скорость скоса потока внизdownwash velocityскорость слива топливаfuel off-load rateскорость снижения1. descent velocity2. rate of descent скорость снижения перед касаниемsink rateскорость снижения при заходе на посадкуapproach rate of descentскорость сносаdrift rateскорость согласованияslaving rateскорость схода с ВППturnoff speedскорость таможенной пошлиныrate of dutyскорость установившегося полетаsteady flight speedскорость установившегося разворотаsustained turn rateскорость ухода гироскопаgyro drift rateснижать скорость воздушного судна доdecelerate the aircraft toсоставляющая скоростиvelocity componentсредняя скоростьmean speedтаблица поправок воздушной скоростиair-speed calibration cardтарировка указателя воздушной скоростиair-speed indicator calibrationтерять заданную скоростьlose the speedточно выдерживать скоростьhold the speed accuratelyтрафарет ограничения воздушной скоростиairspeed placardтреугольник скоростейtriangle of velocitiesувеличение скоростиspeed increaseувеличивать скоростьincrease the speedугловая скорость1. angular speed2. angular velocity 3. angular rate указатель воздушной скорости1. airspeed indicator2. airspeed instrument указатель индикаторной воздушной скоростиcalibrated airspeed indicatorуказатель путевой скоростиground speed indicatorуказатель скоростиspeed pointerуказатель скорости ветраwind speed indicatorуказатель скорости кренаrate-of-roll indicatorуказатель скорости набора высотыvariometerуказатель скорости разворотаrate-of-turn indicatorуказатель скорости рысканияrate-of-yaw indicatorуказатель скорости снижения на ВППrising runway indicatorуказатель скорости сносаspeed-and-drift meterуказатель сноса и скоростиdrift-speed indicatorуменьшать скоростьdecrease the speedуменьшение скоростиdecelerationуменьшение скорости за счет лобового сопротивленияdeceleration due to dragустановившаяся скорость набора высотыsteady rate of climbустойчивость по скоростиspeed stabilityфактическая воздушная скоростьactual airspeedфактическая скоростьdemonstrated speedфактическая скорость истечения выходящих газовactual exhaust velocityэволютивная скоростьcontrol speedМинимально допустимая скорость при сохранении управляемости. эквивалентная воздушная скоростьequivalent airspeedэкономическая скоростьeconomic speed(при минимальном расходе топлива) эксплуатационная скоростьoperating speedэффект скорости поступательного движенияforward speed effect -
71 Cognitive Psychology
The basic reason for studying cognitive processes has become as clear as the reason for studying anything else: because they are there. Our knowledge of the world must be somehow developed from stimulus input.... Cognitive processes surely exist, so it can hardly be unscientific to study them. (Neisser, 1967, p. 5).The task of the cognitive psychologist is a highly inferential one. The cognitive psychologist must proceed from observations of the behavior of humans performing intellectual tasks to conclusions about the abstract mechanisms underlying the behavior. Developing a theory in cognitive psychology is much like developing a model for the working of the engine of a strange new vehicle by driving the vehicle, being unable to open it up to inspect the engine itself....It is well understood from the automata theory... that many different mechanisms can generate the same external behavior. (Anderson, 1980, pp. 12, 17)[Cognitive psychology does not] deal with whole people but with a very special and bizarre-almost Frankensteinian-preparation, which consists of a brain attached to two eyes, two ears, and two index fingers. This preparation is only to be found inside small, gloomy cubicles, outside which red lights burn to warn ordinary people away.... It does not feel hungry or tired or inquisitive; it does not think extraneous thoughts or try to understand what is going on. It is, in short, a computer, made in the image of the larger electronic organism that sends it stimuli and records its responses. (Claxton, 1980, p. 13)4) Cognitive Psychology Has Not Succeeded in Making a Significant Contribution to the Understanding of the Human MindCognitive psychology is not getting anywhere; that in spite of our sophisticated methodology, we have not succeeded in making a substantial contribution toward the understanding of the human mind.... A short time ago, the information processing approach to cognition was just beginning. Hopes were high that the analysis of information processing into a series of discrete stages would offer profound insights into human cognition. But in only a few short years the vigor of this approach was spent. It was only natural that hopes that had been so high should sink low. (Glass, Holyoak & Santa, 1979, p. ix)Cognitive psychology attempts to understand the nature of human intelligence and how people think. (Anderson, 1980, p. 3)6) The Rise of Cognitive Psychology Demonstrates That the Impeccable Peripheralism of Stimulus- Response Theories Could Not LastThe past few years have witnessed a noticeable increase in interest in an investigation of the cognitive processes.... It has resulted from a recognition of the complex processes that mediate between the classical "stimuli" and "responses" out of which stimulus-response learning theories hoped to fashion a psychology that would by-pass anything smacking of the "mental." The impeccable peripheralism of such theories could not last. One might do well to have a closer look at these intervening "cognitive maps." (Bruner, Goodnow & Austin, 1956, p. vii)Historical dictionary of quotations in cognitive science > Cognitive Psychology
-
72 нелегко себе представить
Русско-английский научно-технический словарь переводчика > нелегко себе представить
-
73 общий
см. в более общих выражениях; в общей сложности; в общем случае; иметь мало общего с; иметь много общего с; иметь что-либо общее с; суммарныйII•The aggregate mass of very small asteroids is only a minor fraction of the total.
•The combined effect of creep and slippage is...
•Several tanks with a combined capacity of 10,000 gallons...
•This factor has been included in the overall computation program.
•The equation merely represents the overall transformation by which all bacteria secure energy.
•The overall voltage gain was 5000.
•Seven new centres were opened, making the total number 83.
•This would have less all-round flexibility.
•Ionizing solvents have one property in common, self-ionization.
•The two curves have a point in common (or a common point).
•Several species may have a common ancestry.
•The components of the analyzer are assembled in two basic units, an optical unit and an electronic unit, in a common housing.
•The engine, the transmission and the differential could use one oil reservoir in common.
Русско-английский научно-технический словарь переводчика > общий
-
74 самолет
airplane, plane* * *самолё́т м. ( в соответствии с определением ИКАО)
брит. aeroplane, амер. airplane (Примечание. Согласно ИКАО aircraft — лета́тельный аппара́т, вертолё́т, и др. не попадающие под термин самолё́т.)аттесто́вывать самолё́т по шу́му — certificate an aeroplane for noiseвводи́ть самолё́т в вира́ж — roll an aeroplane into a (banked) turnвести́ самолё́т ( о штурмане) — navigate [guide] an aeroplaneвы́весить самолё́т над землё́й — hold the aeroplane of the groundвыводи́ть самолё́т из стро́я — disable an aeroplane, put an aeroplane out of operation [out of service]выра́внивать самолё́т — ( переводить в горизонтальный полёт) level an aeroplane; ( при посадке) flare out an aeroplaneзаправля́ть самолё́т горю́чим — fuel an aeroplaneзару́ливать самолё́т на стоя́нку — taxi an aeroplane to the parking areaиспы́тывать самолё́т в во́здухе — test-fly [fly-test] an aeroplaneкача́ть самолё́т с крыла́ на крыло́ — rock an aeroplaneсамолё́т лё́гок в управле́нии — the aeroplane handles well [is responsive]самолё́т нахо́дится в во́здухе — the aeroplane is [becomes] airborneоблё́тывать но́вый самолё́т — fly out a new aeroplaneсамолё́т обору́дован, напр. автомати́ческим радиоко́мпасом — the aeroplane carries, e. g., an ADFопознава́ть (национа́льную принадле́жность) самолёт(а) — identify an aeroplaneоставля́ть самолё́т в авари́йной ситуа́ции — escape from an aeroplane in an emergencyсамолё́т отлета́ет, напр. в 13 ч 50 мин — the aeroplane departs at, e. g., 1350 hoursотправля́ть самолё́т на второ́й круг — send an aeroplane aroundсамолё́т отрыва́ется от земли́ ( при взлёте) — the aeroplane breaks groundотрыва́ть самолё́т от земли́ ( при взлёте) — lift [take] an aeroplane off the groundпереобору́довать самолё́т (напр. военный в гражданский) — convert an aeroplaneпилоти́ровать самолё́т — fly [handle] an aeroplaneпокида́ть самолё́т ( об экипаже) — abandon an aeroplaneсамолё́т прибыва́ет, напр. в 16 ч 15 мин — the aeroplane arrives at 1615 hoursсамолё́т разби́лся — the aeroplane crashedразвора́чивать самолё́т по ве́тру — turn an aeroplane downwindразвора́чивать самолё́т про́тив ве́тра — turn an aeroplane into the windсажа́ть самолё́т — land an aeroplaneсажа́ть самолё́т по ве́тру — land an aeroplane downwindсажа́ть самолё́т про́тив ве́тра — land an aeroplane into the windсажа́ть самолё́т с недолё́том или с перелё́том — land an aeroplane short or longсамолё́т сбаланси́рован в, напр. прямолине́йном полё́те — the aeroplane is in trim for, e. g., straight flightснима́ть самолё́т с эксплуата́ции — withdraw [remove] an aeroplane from serviceсамолё́т соверши́л авари́йную поса́дку — the aeroplane crash-landedста́вить самолё́т на коло́дки — chock an aeroplaneсамолё́т те́рпит бе́дствие — the aeroplane is in distressсамолё́т удовлетворя́ет всем тре́бованиям норм лё́тной го́дности — the aeroplane is fully airworthyустана́вливать что-л. на самолё́те — install smth. in an aeroplane [on board an aeroplane]швартова́ть самолё́т — tie down an aeroplaneаэрофотосъё́мочный самолё́т — photographic (survey) aeroplaneбеспило́тный самолё́т — droneсамолё́т вертика́льного взлё́та — vertical take-off [VTO] aeroplaneсамолё́т вертика́льного взлё́та и поса́дки [СВВП] — vertical take-off and landing [VTOL] aeroplaneвинтово́й самолё́т — propeller(-driven) aeroplaneвое́нный самолё́т — military aeroplaneвысо́тный самолё́т — high-altitude aeroplaneгиперзвуково́й самолё́т — hypersonic aeroplaneгражда́нский самолё́т — civil aeroplaneгрузово́й самолё́т — cargo(-type) aeroplaneдозвуково́й самолё́т — subsonic aeroplaneсамолё́т о́бщего назначе́ния — general-purpose aeroplaneпассажи́рский самолё́т — passenger aeroplaneпожа́рный самолё́т — fire aeroplaneпоршнево́й самолё́т — piston-engined aeroplaneреакти́вный самолё́т — jet aeroplaneсанита́рный самолё́т — air ambulanceсамолё́т с большо́й да́льностью полё́та — long-range aeroplaneсверхзвуково́й самолё́т — supersonic aeroplaneсамолё́т с высо́кими лё́тными характери́стиками — high-performance aeroplaneсамолё́т с двойны́м управле́нием — dual-control aeroplaneсельскохозя́йственный самолё́т — agricultural aeroplaneсери́йный самолё́т — production a aeroplaneсамолё́т с двумя́ дви́гателями — twin-engine aeroplaneсамолё́т с колё́сным шасси́ — wheeled aeroplaneсамолё́т с крыло́м изменя́емой геоме́трии — variable-geometry aeroplaneсамолё́т с лы́жным шасси́ — skiplaneсамолё́т со стрелови́дным крыло́м — swept-winged aeroplaneсамолё́т с поворо́тным крыло́м — tilt-wing aeroplaneсамолё́т с поплавко́вым шасси́ — float seaplaneспорти́вный самолё́т — sporting aeroplaneсамолё́т с треуго́льным крыло́м — delta-wing aeroplaneсамолё́т с укоро́ченными взлё́том и поса́дкой — short take-off and landing [STOL] aeroplaneсухопу́тный самолё́т — landplane, land(-based) aeroplaneсамолё́т с шасси́ на возду́шной поду́шке — ground-effect [air-cushion] take-off and landing aeroplaneсамолё́т ти́па «лета́ющее крыло́» — flying wingсамолё́т ти́па «у́тка» — canard, canard-type aeroplaneтра́нспортный самолё́т — transport (aeroplane)тра́нспортный, сверхзвуково́й самолё́т — supersonic transport, SSTтурбовинтово́й самолё́т — turbo-prop aeroplaneтурбореакти́вный самолё́т — turbo-jet aeroplaneуче́бно-трениро́вочный самолё́т — trainer (aeroplane)уче́бный самолё́т — school [basic trainer] aeroplaneцельнодеревя́нный самолё́т — all-wood aeroplaneцельнометалли́ческий самолё́т — all-metal aeroplane* * * -
75 соответствовать установившейся практике
Соответствовать установившейся практике-- The basic composition of the bath corresponds to usual practice. Соответствующий - appropriate (to); associated, involved, applicable, relevant, along the lines of (имеющий отношение к делу); proper, suitable, matching (подходящий); commensurate with, associated, corresponding (связанный зависимостью); corresponding, respective (при сопоставлении нескольких результатов, деталей); conforming to, complying with (подчиняющийся)The appropriate values are shown in Table and Fig.Physical properties appropriate to methanol boiling at atmospheric pressure were used throughout this analysis.It is important to note that the engine contained the normal regenerator disk and associated seals.It is possible that it [resonance] is not recognized as the casual agent and a general beefing-up of the parts involved is undertaken as a fix for the problem.The supplier shall establish procedures for identifying the product from applicable drawings.sT, sr are the stresses to give a specific strain or rupture in the lifetime of the vessel at the relevant temperature.Emergency shower, drench hose, and combination units are not a substitute for proper primary protective devices.A manipulator along the lines of Fig. has been examined by X.It is preferable to accept weaker weld metals with good ductility, rather than a weld metal which has matching strength but poor ductility.The atomizing air is preheated to the same temperature as the heated (temperature commensurate with 100 SSU viscosity) residual fuel oil entering the burner oil tube.Over the past few decades the generator capacity has been increasing steadily, warranting a corresponding increase in the rotor diameter.The initially measured value of the drag coefficient in each run is 10 percent to 12 percent higher than the corresponding steady-state value.Surrounding the stagnation zone are streak lines indicating that the fluid adjacent to the plate surface is flowing outward toward the respective edges.Русско-английский научно-технический словарь переводчика > соответствовать установившейся практике
-
76 тип
type
- (обозначение, шифр изделия) — model
- двигателя (напр., твд) — engine type (e.g. turboprop)
- (характер) отказа — nature of failure
- самолета — type of aircraft, aircraft type
самолеты, имеющие аналогичную основную конструкцию, относятся к одному типу. — aircraft belong to one type, if they are of same basic design.Русско-английский сборник авиационно-технических терминов > тип
-
77 Cayley, Sir George
SUBJECT AREA: Aerospace[br]b. 27 December 1773 Scarborough, Englandd. 15 December 1857 Brompton Hall, Yorkshire, England[br]English pioneer who laid down the basic principles of the aeroplane in 1799 and built a manned glider in 1853.[br]Cayley was born into a well-to-do Yorkshire family living at Brompton Hall. He was encouraged to study mathematics, navigation and mechanics, particularly by his mother. In 1792 he succeeded to the baronetcy and took over the daunting task of revitalizing the run-down family estate.The first aeronautical device made by Cayley was a copy of the toy helicopter invented by the Frenchmen Launoy and Bienvenu in 1784. Cayley's version, made in 1796, convinced him that a machine could "rise in the air by mechanical means", as he later wrote. He studied the aerodynamics of flight and broke away from the unsuccessful ornithopters of his predecessors. In 1799 he scratched two sketches on a silver disc: one side of the disc showed the aerodynamic force on a wing resolved into lift and drag, and on the other side he illustrated his idea for a fixed-wing aeroplane; this disc is preserved in the Science Museum in London. In 1804 he tested a small wing on the end of a whirling arm to measure its lifting power. This led to the world's first model glider, which consisted of a simple kite (the wing) mounted on a pole with an adjustable cruciform tail. A full-size glider followed in 1809 and this flew successfully unmanned. By 1809 Cayley had also investigated the lifting properties of cambered wings and produced a low-drag aerofoil section. His aim was to produce a powered aeroplane, but no suitable engines were available. Steam-engines were too heavy, but he experimented with a gunpowder motor and invented the hot-air engine in 1807. He published details of some of his aeronautical researches in 1809–10 and in 1816 he wrote a paper on airships. Then for a period of some twenty-five years he was so busy with other activities that he largely neglected his aeronautical researches. It was not until 1843, at the age of 70, that he really had time to pursue his quest for flight. The Mechanics' Magazine of 8 April 1843 published drawings of "Sir George Cayley's Aerial Carriage", which consisted of a helicopter design with four circular lifting rotors—which could be adjusted to become wings—and two pusher propellers. In 1849 he built a full-size triplane glider which lifted a boy off the ground for a brief hop. Then in 1852 he proposed a monoplane glider which could be launched from a balloon. Late in 1853 Cayley built his "new flyer", another monoplane glider, which carried his coachman as a reluctant passenger across a dale at Brompton, Cayley became involved in public affairs and was MP for Scarborough in 1832. He also took a leading part in local scientific activities and was co-founder of the British Association for the Advancement of Science in 1831 and of the Regent Street Polytechnic Institution in 1838.[br]BibliographyCayley wrote a number of articles and papers, the most significant being "On aerial navigation", Nicholson's Journal of Natural Philosophy (November 1809—March 1810) (published in three numbers); and two further papers with the same title in Philosophical Magazine (1816 and 1817) (both describe semi-rigid airships).Further ReadingL.Pritchard, 1961, Sir George Cayley, London (the standard work on the life of Cayley).C.H.Gibbs-Smith, 1962, Sir George Cayley's Aeronautics 1796–1855, London (covers his aeronautical achievements in more detail).—1974, "Sir George Cayley, father of aerial navigation (1773–1857)", Aeronautical Journal (Royal Aeronautical Society) (April) (an updating paper).JDS -
78 Rankine, William John Macquorn
SUBJECT AREA: Mechanical, pneumatic and hydraulic engineering[br]b. 5 July 1820 Edinburgh, Scotlandd. 1872[br][br]Rankine was educated at Ayr Academy and Glasgow High School, although he appears to have learned much of his basic mathematics and physics through private study. He attended Edinburgh University and then assisted his father, who was acting as Superintendent of the Edinburgh and Dalkeith Railway. This introduction to engineering practice was followed in 1838 by his appointment as a pupil to Sir John MacNeill, and for the next four years he served under MacNeill on his Irish railway projects. While still in his early twenties, Rankine presented pioneering papers on metal fatigue and other subjects to the Institution of Civil Engineers, for which he won a prize, but he appears to have resigned from the Civils in 1857 after an argument because the Institution would not transfer his Associate Membership into full Membership. From 1844 to 1848 Rankine worked on various projects for the Caledonian Railway Company, but his interests were becoming increasingly theoretical and a series of distinguished papers for learned societies established his reputation as a leading scholar in the new science of thermodynamics. He was elected Fellow of the Royal Society in 1853. At the same time, he remained intimately involved with practical questions of applied science, in shipbuilding, marine engineering and electric telegraphy, becoming associated with the influential coterie of fellow Scots such as the Thomson brothers, Napier, Elder, and Lewis Gordon. Gordon was then the head of a large and successful engineering practice, but he was also Regius Professor of Engineering at the University of Glasgow, and when he retired from the Chair to pursue his business interests, Rankine, who had become his Assistant, was appointed in his place.From 1855 until his premature death in 1872, Rankine built up an impressive engineering department, providing a firm theoretical basis with a series of text books that he wrote himself and most of which remained in print for many decades. Despite his quarrel with the Institution of Civil Engineers, Rankine took a keen interest in the institutional development of the engineering profession, becoming the first President of the Institution of Engineers and Shipbuilders in Scotland, which he helped to establish in 1857. Rankine campaigned vigorously for the recognition of engineering studies as a full university degree at Glasgow, and he achieved this in 1872, the year of his death. Rankine was one of the handful of mid-nineteenth century engineers who virtually created engineering as an academic discipline.[br]Principal Honours and DistinctionsFRS 1853. First President, Institution of Engineers and Shipbuilders in Scotland, 1857.Bibliography1858, Manual of Applied Mechanics.1859, Manual of the Steam Engine and Other Prime Movers.1862, Manual of Civil Engineering.1869, Manual of Machinery and Millwork.Further ReadingJ.Small, 1957, "The institution's first president", Proceedings of the Institution of Engineers and Shipbuilders in Scotland: 687–97.H.B.Sutherland, 1972, Rankine. His Life and Times.ABBiographical history of technology > Rankine, William John Macquorn
-
79 Reichenbach, Georg Friedrich von
SUBJECT AREA: Mechanical, pneumatic and hydraulic engineering, Photography, film and optics, Public utilities[br]b. 24 August 1772 Durlach, Baden, Germanyd. 21 May 1826 Munich, Germany[br]German engineer.[br]While he was attending the Military School at Mannheim, Reichenbach drew attention to himself due to the mathematical instruments that he had designed. On the recommendation of Count Rumford in Munich, the Bavarian government financed a two-year stay in Britain so that Reichenbach could become acquainted with modern mechanical engineering. He returned to Mannheim in 1793, and during the Napoleonic Wars he was involved in the manufacture of arms. In Munich, where he was in the service of the Bavarian state from 1796, he started producing precision instruments in his own time. His basic invention was the design of a dividing machine for circles, produced at the end of the eighteenth century. The astronomic and geodetic instruments he produced excelled all the others for their precision. His telescopes in particular, being perfect in use and of solid construction, soon brought him an international reputation. They were manufactured at the MathematicMechanical Institute, which he had jointly founded with Joseph Utzschneider and Joseph Liebherr in 1804 and which became a renowned training establishment. The glasses and lenses were produced by Joseph Fraunhofer who joined the company in 1807.In the same year he was put in charge of the technical reorganization of the salt-works at Reichenhall. After he had finished the brine-transport line from Reichenhall to Traunstein in 1810, he started on the one from Berchtesgaden to Reichenhall which was an extremely difficult task because of the mountainous area that had to be crossed. As water was the only source of energy available he decided to use water-column engines for pumping the brine in the pipes of both lines. Such devices had been in use for pumping purposes in different mining areas since the middle of the eighteenth century. Reichenbach knew about the one constructed by Joseph Karl Hell in Slovakia, which in principle had just been a simple piston-pump driven by water which did not work satisfactorily. Instead he constructed a really effective double-action water-column engine; this was a short time after Richard Trevithick had constructed a similar machine in England. For the second line he improved the system and built a single-action pump. All the parts of it were made of metal, which made them easy to produce, and the pumps proved to be extremely reliable, working for over 100 years.At the official opening of the line in 1817 the Bavarian king rewarded him generously. He remained in the state's service, becoming head of the department for roads and waterways in 1820, and he contributed to the development of Bavarian industry as well as the public infrastructure in many ways as a result of his mechanical skill and his innovative engineering mind.[br]Further ReadingBauernfeind, "Georg von Reichenbach" Allgemeine deutsche Biographie 27:656–67 (a reliable nineteenth-century account).W.Dyck, 1912, Georg v. Reichenbach, Munich.K.Matschoss, 1941, Grosse Ingenieure, Munich and Berlin, 3rd edn. 121–32 (a concise description of his achievements in the development of optical instruments and engineering).WKBiographical history of technology > Reichenbach, Georg Friedrich von
-
80 Renard, Charles
SUBJECT AREA: Aerospace[br]b. 23 November 1847 Damblain, Vosges, Franced. 13 April 1905 Chalais-Meudon, France[br]French pioneer of military aeronautics who, with A.C.Krebs, built an airship powered by an electric motor.[br]Charles Renard was a French army officer with an interest in aviation. In 1873 he constructed an unusual unmanned glider with ten wings and an automatic stabilizing device to control rolling. This operated by means of a pendulum device linked to moving control surfaces. The model was launched from a tower near Arras, but unfortunately it spiralled into the ground. The control surfaces could not cope with the basic instability of the design, but as an idea for automatic flight control it was ahead of its time.Following a Commission report on the military use of balloons, carrier pigeons and an optical telegraph, an aeronautical establishment was set up in 1877 at Chalais-Meudon, near Paris, under the direction of Charles Renard, who was assisted by his brother Paul. The following year Renard and a colleague, Arthur Krebs, began to plan an airship. They received financial help from Léon Gambetta, a prominent politician who had escaped from Paris by balloon in 1870 during the siege by the Prussians. Renard and Krebs studied earlier airship designs: they used the outside shape of Paul Haenlein's gas-engined airship of 1872 and included Meusnier's internal air-filled ballonnets. The gas-engine had not been a success so they decided on an electric motor. Renard developed lightweight pile batteries while Krebs designed a motor, although this was later replaced by a more powerful Gramme motor of 6.5 kW (9 hp). La France was constructed at Chalais-Meudon and, after a two-month wait for calm conditions, the airship finally ascended on 9 August 1884. The motor was switched on and the flight began. Renard and Krebs found their airship handled well and after twenty-three minutes they landed back at their base. La, France made several successful flights, but its speed of only 24 km/h (15 mph) meant that flights could be made only in calm weather. Parts of La, France, including the electric motor, are preserved in the Musée de l'Air in Paris.Renard remained in charge of the establishment at Chalais-Meudon until his death. Among other things, he developed the "Train Renard", a train of articulated road vehicles for military and civil use, of which a number were built between 1903 and 1911. Towards the end of his life Renard became interested in helicopters, and in 1904 he built a large twin-rotor model which, however, failed to take off.[br]Bibliography1886, Le Ballon dirigeable La France, Paris (a description of the airship).Further ReadingDescriptions of Renard and Kreb's airship are given in most books on the history of lighter-than-air flight, e.g.L.T.C.Rolt, 1966, The Aeronauts, London; pub. in paperback 1985.C.Bailleux, c. 1988, Association pour l'Histoire de l'Electricité en France, (a detailed account of the conception and operations of La France).1977, Centenaire de la recherche aéronautique à Chalais-Meudon, Paris (an official memoir on the work of Chalais-Meudon with a chapter on Renard).JDS
См. также в других словарях:
Engine City Technical Institute — is an accredited, diesel technology school located in South Plainfield, New Jersey, a short distance off of Interstate 287. It is currently the only such school in the Northeastern United States, and, as such, its graduates are in high demand… … Wikipedia
Engine control unit — An engine control unit (ECU) is an electronic control unit which controls various aspects of an internal combustion engine s operation. The simplest ECUs control only the quantity of fuel injected into each cylinder each engine cycle. More… … Wikipedia
Basic Analysis And Security Engine — est une interface web permettant la gestion des alertes générées par l IDS Snort. Elle permet le classement des alertes en groupe, l affichage de diagrammes et la recherche des alertes selon différents critères. BASE est un programme sous licence … Wikipédia en Français
Basic analysis and security engine — est une interface web permettant la gestion des alertes générées par l IDS Snort. Elle permet le classement des alertes en groupe, l affichage de diagrammes et la recherche des alertes selon différents critères. BASE est un programme sous licence … Wikipédia en Français
Basic aircraft empty weight — is the weight of an aircraft without taking into account any baggage, passengers, or usable fuel. Basic empty weight includes all fluids necessary for operation such as engine oil, engine coolant, and unusable fuel.Some manufacturers define Basic … Wikipedia
Engine cooling — is cooling an engine, typically using either air or liquid.OverviewHeat engines generate mechanical power by extracting energy from heat flows, much as a water wheel extracts mechanical power from a flow of mass falling through a distance.… … Wikipedia
Basic Analysis and Security Engine — est une interface web permettant la gestion des alertes générées par l IDS Snort. Elle permet le classement des alertes en groupe, l affichage de diagrammes et la recherche des alertes selon différents critères. BASE est un programme sous licence … Wikipédia en Français
Engine Sentai Go-onger — Titre original 炎神戦隊ゴーオンジャー Translittération Enjin Sentai Gō Onjā Genre Sentai Pays d’origine Japon Chaîne d’origine … Wikipédia en Français
Engine Alley — formed in 1989 in the shape of Kilkenny boys, Canice Kenealy (Vocals), Brian Kenealy (Guitar) and Eamonn Byrne (Bass). Moving to Dublinthey recruited drummer Emmaline Duffy Fallon and the line up was completed in 1991 with the addition of Ken… … Wikipedia
Engine swap — Warning: in some jurisdictions with strict smog rules it may not be possible to register a late model vehicle with an engine swap, even if it can be proven that it produces less pollution than the original engine (owing to visual inspection… … Wikipedia
Engine displacement — One complete cycle of a four cylinder, four stroke engine. The volume displaced is marked in orange. Engine displacement is the volume swept by all the pistons inside the cylinders of an internal combustion engine in a single movement from top… … Wikipedia