Перевод: со всех языков на английский

с английского на все языки

basic+engine

  • 61 цикл

    ( годографа) circuit, cycle, ( обработки) operation, ( временного объединения цифровых сигналов) frame, loop вчт., nucleus, period, run, ring, sequence машиностр.
    * * *
    цикл м.
    восстана́вливать цикл — reset the cycle
    опи́сывать цикл в прямо́м или обра́тном направле́нии ( в термодинамике) — traverse a cycle in the direct or reverse sense
    опи́сывать цикл по часово́й стре́лке или про́тив часово́й стре́лки ( в термодинамике) — traverse a cycle clockwise or anticlockwise
    рабо́тать ци́клами — to cycle
    соверша́ть цикл — to cycle
    2. вчт. loop; loop of instructions
    выходи́ть из ци́кла — come out of a loop
    повторя́ть цикл — cycle a loop (of instructions)
    повторя́ть цикл многокра́тно — cycle round a loop repeatedly
    цикл автома́та повто́рного включе́ния эл.recloser sequence
    бина́рный цикл — binary cycle
    вло́женный цикл — nested loop
    водоро́дный цикл яд. физ.hydrogen-helium cycle
    цикл в ци́кле — loop-within-loop
    цикл вы́борки кома́нды вчт.instruction cycle
    вы́емочный цикл горн. — cycle of goal getting, winning cycle
    цикл выполне́ния кома́нды вчт.execution cycle
    цикл дви́гателя — engine cycle
    цикл движе́ния — cycle of motion
    цикл д. в. с. со сгора́нием при постоя́нном давле́нии — Diesel cycle
    цикл д. в. с. со сгора́нием при постоя́нном объё́ме — Otto cycle
    двухта́ктный цикл — two(-stroke) cycle
    действи́тельный цикл — actual [real] cycle
    за́мкнутый цикл
    1. closed cycle
    включа́ть (обору́дование) в за́мкнутый цикл — run (a machine) in closed circuit with (another machine)
    рабо́тать в за́мкнутом ци́кле с … — be close-circuited with
    2. closed loop
    цикл за́писи вчт.write cycle
    цикл за́пуска д. в. с. — cranking cycle
    идеа́льный цикл ( в термодинамике) — ideal cycle
    итерацио́нный цикл — iteration loop
    выполня́ть итерацио́нный цикл — traverse an iteration loop
    цикл Карно́ ( в термодинамике) — Carnot cycle
    цикл Карно́, обра́тный ( в термодинамике) — reverse Carnot cycle
    цикл Карно́, прямо́й ( в термодинамике) — Carnot cycle
    кинемати́ческий цикл — kinematic cycle
    кома́ндный цикл вчт.instruction cycle
    криоге́нный цикл ( в термодинамике) — cryogenic cycle
    цикл ла́вы — wall cycle
    магни́тный цикл — magnetic cycle
    магнитогидродинами́ческий цикл ( в газодинамике) — magnetohydrodynamic [MHD] cycle
    маши́нный цикл вчт.machine cycle
    маши́нный, основно́й цикл вчт.basic machine cycle
    цикл нагре́ва ( в термодинамике) — heating cycle
    цикл намагни́чивания — cycle of magnetization
    цикл намагни́чивания, преде́льный эл.major cyclic hysteresis loop
    цикл напряже́ний мех.stress cycle
    неза́мкнутый цикл — open cycle
    нейтро́нный цикл яд. физ.neutron cycle
    необрати́мый цикл ( в термодинамике) — irreversible cycle
    непреры́вный цикл ( в термодинамике) — uninterrupted cycle
    обрати́мый цикл ( в термодинамике) — reversible cycle
    цикл обраще́ния к па́мяти вчт. — memory [storage] cycle
    окисли́тельно-восстанови́тельный цикл — oxidation-reduction cycle
    основно́й цикл ( в термодинамике) — basic cycle
    охва́тывающий цикл — outer loon
    цикл охлажде́ния — cooling cycle
    пароводяно́й цикл — water-flow cycle; water-steam circuit
    парово́й цикл — vapour cycle
    парога́зовый цикл — supercharged boiler [exhaust-fired-boiler] cycle
    паросилово́й цикл — steam power cycle
    паротурби́нный цикл — steam turbine cycle
    цикл перемагни́чивания — cycle of magnetization
    цикл пла́вки от вы́пуска до вы́пуска — tap-to-tap cycle
    повто́рный цикл — recycle
    цикл по́иска вчт.search cycle
    поса́дочный цикл горн. — cycle of caving, caving cycle
    преде́льный цикл эл.limit cycle
    цикл програ́ммы вчт.loop of instructions
    цикл програ́ммы, бесконе́чный (напр. в результате ошибки) вчт.infinite loop (of instructions)
    прото́нный цикл — proton-proton chain
    прохо́дческий цикл — sinking cycle
    цикл рабо́ты (напр. оборудования) — operation period
    цикл рабо́ты вяза́льного аппара́та текст.knotting cycle
    цикл рабо́ты запомина́ющего устро́йства вчт.storage cycle
    рабо́чий цикл
    1. working [running] cycle
    2. вчт. machine cycle
    разо́мкнутый цикл
    1. open cycle
    2. open loop
    цикл Ра́нкина тепл.Rankine cycle
    регенерати́вный цикл тепл.regenerative cycle
    регенерати́вный, преде́льный цикл тепл.complete regenerative cycle
    цикл Ре́нкина тепл.Rankine cycle
    цикл с воспламене́нием от сжа́тия — Diesel cycle
    сло́жный цикл
    1. ( в термодинамике) compound cycle
    2. loop-within-loop
    цикл со втори́чным перегре́вом па́ра — reheat cycle
    цикл с одни́м отбо́ром па́ра — one-point extraction cycle
    цикл со сгора́нием при постоя́нном давле́нии — Diesel cycle
    цикл со сгора́нием при постоя́нном объё́ме — Otto cycle
    цикл с промежу́точным перегре́вом па́ра — reheat cycle
    цикл стира́ния вчт.erase cycle
    су́точный цикл — diurnal cycle
    цикл счи́тывания вчт.read cycle
    цикл счи́тывания и за́писи вчт.readwrite cycle
    теорети́ческий цикл ( в термодинамике) — theoretical [ideal] cycle
    теплово́й цикл — thermal cycle
    термодинами́ческий цикл — thermodynamic cycle
    углеро́дный цикл яд. физ.carbon(-nitrogen) cycle
    холоди́льный цикл — refrigeration cycle
    холоди́льный, абсорбцио́нный цикл — absorption refrigeration cycle
    холоди́льный, компрессио́нный цикл — compression refrigeration cycle
    цикл хрони́рования элк., вчт.timing cycle
    четырёхта́ктный цикл двс.four-stroke cycle

    Русско-английский политехнический словарь > цикл

  • 62 камера


    chamber
    - (фото)camera
    -, вихревая (форсунки) — swirl /vortex/ chamber
    - вытяжного парашюта (основного купола грузового парашюта)retarder parachute bucket
    - динамического давления (приемника г18д) (рис. 83) — total pressure chamber, pitot (pressure) chamber
    -, завихрительная (форсунки) — swirl chamber
    -, компенсационная — balance chamber
    - нагнетанияpressure chamber
    -, натяжная, высотного компенсирующего костюма — pressure suit capstan
    -, парашютная (рис. 108) — parachute bucket

    а part of supplies-dropping parachute which houses the parachute pack.
    - плавучести (надувного плота)buoyancy chamber
    - полного давления (приемника пвд (рис. 83) — totaf pressure chamber, pitot (pressure) chamber
    - пневматика (колеса)tire inner tube
    -, поплавковая — float chamber
    -, разгрузочная гтд — (pressure) balance chamber
    - сгорания (гтд и пд)combustion chamber
    - сгорания (раздел рэ 72-40)combustion section
    - сгорания (узеп гтд)combustion section
    - сгорания, вихревая — swirl /vortex/ combustion с hamber
    - сгорания, индивидуальная — can-type combustion chamber
    трубчатая камера сгорания, имеющая отдельный подвод воздуха и топлива.
    - сгорания, кольцевая — annular combustion chamber
    камера, у которой в кольцевом пространстве между наружным и внутренним кожухами размещается одна общая жаровая труба. — annular chamber is formed by the combustion outer casing and engine intermediate casing.
    - сгорания, куполообразная (пд) — dome-shaped combustion chamber
    - сгорания, отдельная — can-type combustion chamber
    - сгорания, полусферическая (пд) — hemispherical combustion chamber
    - сгорания, противоточная (ггд) — reverse-flow combustion chamber
    - сгорания, прямоточная — straight-flow combustion chamber
    - сгорания, трубчатая — can-type combustion chamber
    состоит из наружного кожуха и жаровой трубы.
    - сгорания, трубчато-кольцевая — cannular combustion chamber
    состоит из ряда отдельных жаровых труб, размещенных в кольцевой полости.
    - сжатияcompression chamber
    -, смесительная — mixing chamber
    - статического давления (приемника пвд) (рис. 83) — static pressure chamber
    - торможения (воздушного потока приемника температуры)stagnation chamber
    -, тормозная (пневматического тормоза колеса) — brake expander tube
    -, тепла — not chamber
    -, термическая — temperature chamber
    -, форсажная — afterburner, reheat unit, thrust augmentor
    камера за последней ступенью турбины гтд, в которой производится сжигание дополнительного топлива для повышения тяги двигателя, — the afterburner (or reheat unit) is used to augment the basic thrust of an engine to improve the take-off, climb, or combat performance.
    -, форсажная, всережимная — regulated /modulated/ afterburner
    -, форсажная, однорежимная (нерегулируемая) — off/on afterburner
    -, фотографическая — photographic camera
    -, фоторегистрирующая — recording camera
    - холодаcold chamber
    - шины (пневматика)tire (inner) tube
    потери в к. сгорания — combustion chamber losses
    прогар к. сгорания — combustion chamber burnout
    монтировать к. (шины) в покрышку — insert the tube into the tire

    Русско-английский сборник авиационно-технических терминов > камера

  • 63 ограничения


    limitations
    (раздел 2, рлэ)
    данный раздел должен содержать ограничения no весам, летным характернстикам, нагрузке на пол кабин, центровке, силовой установке, скорости полета. — this section should contain the following limitations: weights, performance limitations, floor loading. center of gravity, powerplant, airspeed and mach number, miscellaneous.
    - взлетного веса по градиенту набора высотаtakeoff weight permitted by climb gradient limitations
    - взлетного веса по достаточноcти располагаемых длин прерванного и продолженного взлета, и длины разбега и прерванного взлета — takeoff weight permitted by takeoff field length limitations
    -, временные — temporary limitations
    -, дополнительные (параграф раздела 2, рлэ) — additional limitations
    например, ограничения, связанные с регулированием наддува кабин или обогрева лобовых стекол, а также ограничения по маневрированию ла на земле, обеспечивающие безопасность эксплуатации. — limitations which may be associated with such matters as control of cabin pressurization or windshield heating and limitations covering ground operations which may affect aircraft airworthiness.
    - на взлете и посадке (параграф раздела 2, рлэ) — performance limitations
    ограничения по взлетному и посадочному весам, дистанции прерванного взлета, взлетной дистанции, разбегу, a также no высоте, температуре окружающего воздуха, скорости и направлению ветра, уклону впп. — the limitations should be listed in respect to: takeoff weight, landing weight, accelerate-stop distance, takeoff distance, takeoff run, if applicable, altitude, atmospheric temperatures. wind speed and direction, runway slope.
    - no весуweight limits
    - no весу и загрузкеweight and loading distribution limitations
    - no весу и центровкаweight and center of gravity limits
    - no времени (работы на к-л. режиме:... минут, без ограничений, кратковременно) — (operating condition) time limits (... minutes, no limit, momentarily)
    - по вспомогательной силовой установке (всу)apu operating limitations
    - по давлению масла (теплива)oil (fuel) pressure limits
    - по закрылкамflaps setting limits
    - по заправке и эксплуатации топливной системыfuel loading and management limitations
    - по летной годностиairworthiness limitations
    - по летным даннымperformance limitations
    - по маневрированию (параграф раздела 2 рлэ)maneuvers
    - по массам (ла) — mass /weight/ limits
    - по наземной эксплуатации (ла)ground operation limitations
    - по положению (агрегата)limitations in mounting attitude
    - по прочности (нагрузке)load limitations
    - по прочности конструкции ограничения, связанные с максимальными нагрузками на пол отсеков и распределением этих нагрузок. — structural limitations the maximum loads on the floor of the compartments and the structural limitations on their distribution.
    - no силовой установкеpower plant limitations
    - по силовой установке (параграф раздела 2, рлэ) — power plant
    ограничения, обеспечивающие безопасность эксплуатации двигателя, возд. винтов и агрегатов силовой установки, — the limitations to ensure the safe operation of the engine, propellers, and power plant accessories as installed in the airplane.
    - no скоростиairspeed limitations
    - no скорости и числам м (параграф раздела 2, рлэ) — airspeed and mach number limitations
    ограничения по скорости и числам м должны выражаться в виде приборной скорости или приборного числа м. — airspeed limitations should be stated in terms of indicated airspeed (i.a.s.) and/or indicated mach number.
    - по температуре газов за турбинойexhaust gas temperature (egt) limits
    - по температуре наружного воздухаambient (air) temperature limitations
    - по управлению(airplane) control system limitations
    - no центровкамcenter of gravity limits
    - no шассиlanding gear operating limitations
    - по электрооборудованию (или эпектросистеме) (параграф раздела 2, рлэ) — electrical system limitations the basic limitations affecting the safety of the airplane which are associated with the electrical system.
    -, прочие — miscellaneous limitations
    -, прочие (& разд. 2 рлэ) — miscellaneous
    -, рабочие — operating limitations
    -, разные (& разд. 2 рлэ) — miscellaneous
    данный параграф должен включать: сертификационный статус, виды эксплуатации, ограничения no маневрированию, минимальный состав экипажа, максимальное числo лиц на борту ла, максимальную высоту полета, ограничения по курению и эксплуатации электрооборудования и автопилота, необходимые трафареты и надписи, и дополнительные ограничения. — this sub-section should include the following: certification status, type of operation, maneuvers, minimum crew, maximum number of occupants, maximum altitude, smoking, electrical system limitations, automatic pilot limitations, markings and placards, additional timitations.
    -, регулировочные — adjustment limitations
    -, установочные — installation limitations
    -, утвержденные эксплуатационные — approved operating limitations the engine operates within approved operating limitations.
    -, эксплуатационные — operating limitations
    эксплуатационные ограничения, обеспечивающие безопасность эксплуатации, должны указываться в руководстве пo летной эксплуатации в виде надписей и трафаретов. без о. (о продолжительности режима работы) — the operating limitations necessary for safe operation must be included in flight manual, expressed in markings and placards. no limit

    Русско-английский сборник авиационно-технических терминов > ограничения

  • 64 форсаж


    power augmentation
    (форсирование)
    кратковременное повышение мощности или тяги двигателя. — power augmentation by the use of retrigerant or water methanol or water injection and exhaust reheating.
    - (дожиг топлива в форсажной камере) — afterburning, reheating afterburning (or reheat) is a method of augmenting the basic thrust of an engine.
    -, всережимный (всережим ной камеры) — fully variable '/modulated/ hoe регулирование форсаж- afterburnin
    -, полный (пф) (двиг.) — full reheat
    - тяги (двигателя)thrust augmentation
    - тяги путем дожигания топлива за турбиной — afterburning, (exhaust) reheating
    увеличение тяги гтд путем подачи топлива в форсажную камеру или реактивное сопло. — а thrust-augmentation technique also known as tail-pipe burning wherein extra fuel is injected into the jet engine exhaust system.

    Русско-английский сборник авиационно-технических терминов > форсаж

  • 65 Henson, William Samuel

    SUBJECT AREA: Aerospace
    [br]
    b. 3 May 1812 Nottingham, England
    d. 22 March 1888 New Jersey, USA
    [br]
    English (naturalized American) inventor who patented a design for an "aerial steam carriage" and combined with John Stringfellow to build model aeroplanes.
    [br]
    William Henson worked in the lacemaking industry and in his spare time invented many mechanical devices, from a breech-loading cannon to an ice-machine. It could be claimed that he invented the airliner, for in 1842 he prepared a patent (granted in 1843) for an "aerial steam carriage". The patent application was not just a vague outline, but contained detailed drawings of a large monoplane with an enclosed fuselage to accommodate the passengers and crew. It was to be powered by a steam engine driving two pusher propellers aft of the wing. Henson had followed the lead give by Sir George Cayley in his basic layout, but produced a very much more advanced structural design with cambered wings strengthened by streamlined bracing wires: the intended wing-span was 150 ft (46 m). Henson probably discussed the design of the steam engine and boiler with his friend John Stringfellow (who was also in the lacemaking industry). Stringfellow joined Henson and others to found the Aerial Transit Company, which was set up to raise the finance needed to build Henson's machine. A great publicity campaign was mounted with artists' impressions of the "aerial steam carriage" flying over London, India and even the pyramids. Passenger-carrying services to India and China were proposed, but the whole project was far too optimistic to attract support from financiers and the scheme foundered. Henson and Stringfellow drew up an agreement in December 1843 to construct models which would prove the feasibility of an "aerial machine". For the next five years they pursued this aim, with no real success. In 1848 Henson and his wife emigrated to the United States to further his career in textiles. He became an American citizen and died there at the age of 75.
    [br]
    Bibliography
    Henson's diary is preserved by the Institute of Aeronautical Sciences in the USA. Henson's patent of 1842–3 is reproduced in Balantyne and Pritchard (1956) and Davy (1931) (see below).
    Further Reading
    H.Penrose, 1988, An Ancient Air: A Biography of John Stringfellow, Shrewsbury.
    A.M.Balantyne and J.L.Pritchard, 1956, "The lives and work of William Samuel Henson and John Stringfellow", Journal of the Royal Aeronautical Society (June) (an attempt to analyse conflicting evidence; includes a reproduction of Henson's patent).
    M.J.B.Davy, 1931, Henson and Stringfellow, London (an earlier work with excellent drawings from Henson's patent).
    JDS

    Biographical history of technology > Henson, William Samuel

  • 66 Lee, Revd William

    SUBJECT AREA: Textiles
    [br]
    d. c. 1615
    [br]
    English inventor of the first knitting machine, called the stocking frame.
    [br]
    It would seem that most of the stories about Lee's invention of the stocking frame cannot be verified by any contemporary evidence, and the first written accounts do not appear until the second half of the seventeenth century. The claim that he was Master of Arts from St John's College, Cambridge, was first made in 1607 but cannot be checked because the records have not survived. The date for the invention of the knitting machine as being 1589 was made at the same time, but again there is no supporting evidence. There is no evidence that Lee was Vicar of Calverton, nor that he was in Holy Orders at all. Likewise there is no evidence for the existence of the woman, whether she was girlfriend, fiancée or wife, who is said to have inspired the invention, and claims regarding the involvement of Queen Elizabeth I and her refusal to grant a patent because the stockings were wool and not silk are also without contemporary foundation. Yet the first known reference shows that Lee was the inventor of the knitting machine, for the partnership agreement between him and George Brooke dated 6 June 1600 states that "William Lee hath invented a very speedy manner of making works usually wrought by knitting needles as stockings, waistcoats and such like". This agreement was to last for twenty-two years, but terminated prematurely when Brooke was executed for high treason in 1603. Lee continued to try and exploit his invention, for in 1605 he described himself as "Master of Arts" when he petitioned the Court of Aldermen of the City of London as the first inventor of an engine to make silk stockings. In 1609 the Weavers' Company of London recorded Lee as "a weaver of silk stockings by engine". These petitions suggest that he was having difficulty in establishing his invention, which may be why in 1612 there is a record of him in Rouen, France, where he hoped to have better fortune. If he had been invited there by Henry IV, his hopes were dashed by the assassination of the king soon afterwards. He was to supply four knitting machines, and there is further evidence that he was in France in 1615, but it is thought that he died in that country soon afterwards.
    The machine Lee invented was probably the most complex of its day, partly because the need to use silk meant that the needles were very fine. Henson (1970) in 1831 took five pages in his book to describe knitting on a stocking frame which had over 2,066 pieces. To knit a row of stitches took eleven separate stages, and great care and watchfulness were required to ensure that all the loops were equal and regular. This shows how complex the machines were and points to Lee's great achievement in actually making one. The basic principles of its operation remained unaltered throughout its extraordinarily long life, and a few still remained in use commercially in the early 1990s.
    [br]
    Further Reading
    J.T.Millington and S.D.Chapman (eds), 1989, Four Centuries of Machine Knitting, Commemorating William Lee's Invention of the Stocking Frame in 1589, Leicester (N.Harte examines the surviving evidence for the life of William Lee and this must be considered as the most up-to-date biographical information).
    Dictionary of National Biography (this contains only the old stories).
    Earlier important books covering Lee's life and invention are G.Henson, 1970, History of the Framework Knitters, reprint, Newton Abbot (orig. pub. 1831); and W.Felkin, 1967, History of the Machine-wrought Hosiery and Lace Manufactures, reprint, Newton Abbot (orig. pub. 1867).
    M.Palmer, 1984, Framework Knitting, Aylesbury (a simple account of the mechanism of the stocking frame).
    R.L.Hills, "William Lee and his knitting machine", Journal of the Textile Institute 80(2) (a more detailed account).
    M.Grass and A.Grass, 1967, Stockings for a Queen. The Life of William Lee, the Elizabethan Inventor, London.
    RLH

    Biographical history of technology > Lee, Revd William

  • 67 вариант

    вариант компоновки
    version
    вариант смешанного класса
    mixed class version
    вариант типа салон
    de-luxe version
    грузовой вариант
    freighter version
    конвертируемый вариант
    convertible version
    модифицированный вариант
    derived version
    окончательный вариант двигателя
    definitive engine
    опытный вариант воздушного судна
    1. aircraft prototype
    2. experimental aircraft 3. preproduction aircraft 4. prototype aircraft основной вариант
    basic version
    основной вариант воздушного судна
    basic aircraft
    пассажирский вариант
    1. civil version
    2. passenger transport version сельскохозяйственный вариант вертолета
    agricultural-version helicopter
    серийный вариант
    production version
    серийный вариант воздушного судна
    production aircraft
    служебный вариант
    business version
    спасательный вариант
    rescue version
    стандартный вариант
    standard version
    тропический вариант
    tropic version
    туристический вариант
    1. economy-class version
    2. tourist class version усовершенствованный вариант
    developed version

    Русско-английский авиационный словарь > вариант

  • 68 конструкция

    конструкция сущ
    1. construction
    2. design 3. structure деформация конструкции
    structural distortion
    деформация конструкции воздушного судна
    aircraft structural deformation
    дирижабль жесткой конструкции
    rigid airship
    дирижабль полужесткой конструкции
    semirigid airship
    дорабатывать конструкцию воздушного судна
    after an aircraft
    кессонная конструкция
    torsion box structure
    конструкция воздушного судна
    1. aircraft design
    2. aircraft structure конструкция с работающей обшивкой
    stressed-skin structure
    конфигурация конструкции закрылка
    flap structural configuration
    крыло кессонной конструкции
    torsion box wing
    масса конструкции
    1. deadload
    2. dead load модульная конструкция
    engine module construction
    модульная конструкция двигателя
    modular engine design
    нагружать конструкцию
    load the structure
    несиловой элемент конструкции
    secondary structural member
    основная конструкция
    basic design
    основной элемент конструкции
    primary element of structure
    отказоустойчивая конструкция
    fail-safe structure
    повреждать конструкцию воздушного судна
    damage aircraft structure
    поломка конструкции
    structural failure
    сварная конструкция
    welded construction
    силовой элемент конструкции
    primary structural member
    стабилизатор кессонной конструкции
    torsion box stabilizer
    фюзеляж ферменной конструкции
    truss fuselage
    цельнометаллическая конструкция
    1. all-metal construction
    2. all-metal structure элемент конструкции
    member
    элемент конструкции воздушного судна
    aircraft component
    элемент несущей конструкции
    load-carrying structural member

    Русско-английский авиационный словарь > конструкция

  • 69 параметр

    параметр сущ
    parameter
    выдерживать заданный параметр
    maintain the parameter
    вычислитель параметров автоматического ухода на второй круг
    auto go around computer
    вычислитель параметров захода на посадку
    approach computer
    вычислитель параметров траектории полета
    flight-path computer
    вычислитель параметров ухода на второй круг
    1. overshoot computer
    2. go-around computer консультативное сообщение о порядке выдерживания заданных параметров
    maintain advisory
    критический расчетный параметр
    critical design parameter
    метеорологический параметр
    meteorological parameter
    основной параметр
    basic parameter
    основные технические параметры
    basic technical data
    параметр потока, критический по шуму
    noise-critical flow parameter
    параметр работы силовой установки
    propulsion parameter
    радиолокационный метод определения параметров ветра
    rawin
    расчет эксплуатационных параметров
    derivation of operating data
    регистратор параметров полета
    1. black box
    2. flight data recorder регулировать двигатель до заданных параметров
    adjust the engine
    система измерения посадочных параметров воздушного судна
    aircraft landing measurement system
    система сбора воздушных параметров
    flight environment data system
    (условий полета) эксплуатационный параметр
    operational parameter

    Русско-английский авиационный словарь > параметр

  • 70 скорость

    скорость сущ
    1. speed
    2. velocity аэродинамика малых скоростей
    low-speed aerodynamics
    аэродинамическая труба больших скоростей
    high-speed wind tunnel
    аэродинамическая труба околозвуковых скоростей
    transonic wind tunnel
    безопасная скорость
    safety speed
    безопасная скорость взлета
    takeoff safety speed
    блок датчиков угловых скоростей гироскопа
    rate gyro unit
    блок контроля скорости пробега по земле
    ground run monitor
    вектор воздушной скорости
    airspeed vector
    вектор путевой скорости
    ground speed vector
    вертикальная скорость
    vertical speed
    воздушная скорость
    airspeed
    восстанавливать скорость
    regain the speed
    выдерживание скорости
    speed holding
    выдерживать требуемую скорость полета
    maintain the flying speed
    вычислитель воздушной скорости
    air-speed computer
    гаситель скорости
    speedbrake
    гасить посадочную скорость
    kill the landing speed
    гасить скорость в полете
    decelerate in the flight
    гашение скоростей
    speed bleedoff
    гиперзвуковая скорость
    hypersonic speed
    датчик воздушной скорости
    1. airspeed transmitter
    2. airspeed sensor датчик скорости
    velocity sensor
    датчик угловой скорости крена
    1. roll-rate pickup
    2. roll rate sensor диапазон больших скоростей
    high-speed range
    диапазон скоростей
    speed range
    дозвуковая скорость
    subsonic speed
    допустимая скорость
    allowable speed
    допустимая эксплуатационная скорость
    permissible operating speed
    единица скорости телеграфной передачи
    baud
    задавать определенную скорость
    set up the speed
    заданная скорость
    1. target speed
    2. sufficient speed 3. on-speed замедлять скорость
    speed down
    запас скорости
    speed margin
    заход на посадку с уменьшением скорости
    decelerating approach
    зона выдерживания скорости
    speed control area
    измеритель угловой скорости
    turnmeter
    измеритель угловой скорости крена
    rate-of-roll meter
    индикаторная воздушная скорость
    1. calibrate airspeed
    2. rectified airspeed информация о скорости
    rate information
    исправленная воздушная скорость
    corrected airspeed
    исправленная скорость
    basic speed
    (с учетом погрешности измерения) истинная воздушная скорость
    true airspeed
    комбинированный указатель скорости
    combination airspeed indicator
    коммерческая скорость
    block speed
    крейсерская скорость
    cruising speed
    крейсерская скорость для полета максимальной дальности
    long-range cruise speed
    критическая скорость
    hump speed
    линейная скорость
    1. linear velocity
    2. linear speed максимальная скорость порыва
    gust peak speed
    (воздушной массы) максимально допустимая скорость
    1. maximum limit speed
    2. never-exceed speed максимально допустимая скорость прохождения порога ВПП
    maximum threshold speed
    мгновенная вертикальная скорость
    instantaneous vertical speed
    (полета) минимальная безопасная скорость взлета
    minimum takeoff safety speed
    минимальная посадочная скорость
    minimum landing speed
    минимальная скорость отрыва
    minimum unstick speed
    минимальная скорость полета
    minimum flying speed
    минимально допустимая скорость прохождения порога ВПП
    minimum threshold speed
    набирать заданную скорость полета
    obtain the flying speed
    наименьшая начальная скорость
    slowest initial speed
    (полета) на полной скорости
    at full speed
    наращивать скорость
    gather the speed
    на скорости
    1. at a speed of
    2. on the speed ограничение по скорости полета
    air-speed limitation
    околозвуковая скорость
    1. transonic speed
    2. near-sonic speed окружная скорость
    circumferential speed
    окружная скорость законцовки воздушного винта
    propeller tip speed
    окружная скорость лопасти воздушного винта
    airscrew blade speed
    окружная скорость лопатки вентилятора
    fan tip speed
    относительная воздушная скорость
    relative airspeed
    относительная скорость
    relative velocity
    переходить к скорости набора высоты
    transit to the climb speed
    полет на малой скорости
    low-speed flight
    полет с уменьшением скорости
    decelerating flight
    поправка на воздушную скорость
    airspeed compensation
    посадочная скорость
    landing speed
    поступательная скорость
    forward speed
    предел скоростей на крейсерском режиме
    cruising speeds range
    предел скорости ветра
    wind limit
    предельная скорость
    top speed
    приборная воздушная скорость
    1. indicated airspeed
    2. basic airspeed продольная составляющая скорости
    longitudinal velocity
    путевая скорость
    1. ground speed
    (скорость воздушного судна относительно земли) 2. ground velocity 3. actual speed равнодействующий вектор скорости
    resultant velocity vector
    развивать заданную скорость
    1. gain the speed
    2. attain the speed 3. pick up the speed разгонять до скорости
    accelerate to the speed
    расчетная воздушная скорость
    design airspeed
    расчетная скорость
    design speed
    расчетная скорость полета
    reference flight speed
    расчетная скорость схода
    exit design speed
    (с ВПП) регистратор воздушной скорости
    air-speed recorder
    регулируемая скорость
    governed speed
    реле максимальной скорости
    speed warning relay
    самопроизвольное восстановление скорости
    free speed return
    сверхзвуковая скорость
    1. supersonic speed
    2. ultrasonic speed сигнализатор достижения предельной скорости
    limit speed switch
    система привода с постоянной скоростью
    constant speed drive system
    система управления скоростью
    speed control system
    (полета) скорость аварийного слива топлива
    fuel dumping rate
    скорость балансировки
    rate of trim
    скорость бокового движения
    sideward flight speed
    (вертолета) скорость бокового скольжения
    1. lateral velocity
    2. rate of sideslip скорость вертикального порыва
    vertical gust speed
    (воздушной массы) скорость ветра
    wind speed
    скорость ветра у поверхности
    surface wind speed
    (земли) скорость взлета
    takeoff speed
    скорость воздушного судна
    aircraft speed
    скорость возникновения бафтинга
    buffeting onset speed
    скорость возникновения флаттера
    flutter onset speed
    скорость вращения
    rotational speed
    скорость встречного ветра
    headwind speed
    скорость в условиях турбулентности
    1. rough airspeed
    2. rough-air speed скорость выпуска - уборки шасси
    landing gear operating speed
    скорость газового потока
    gas flow velocity
    скорость горизонтального полета
    level-flight speed
    скорость движения воздушной массы
    air velocity
    скорость, заданная подвижным индексом
    bug speed
    (прибора) скорость замедления
    decreasing speed
    скорость заправки топливных баков
    fuel tank filling rate
    скорость затухания
    degeneration speed
    (звукового удара) скорость захода на посадку
    1. landing approach speed
    2. approach speed скорость захода на посадку с убранной механизацией крыла
    no-flap - no-slat approach speed
    скорость захода на посадку с убранными закрылками
    no-flap approach speed
    скорость захода на посадку с убранными предкрылками
    no-slat approach speed
    скорость звука
    1. sonic speed
    2. velocity of sound 3. sound velocity скорость изменения бокового отклонения
    crosstrack distance change rate
    скорость изменения высоты
    altitude rate
    скорость изменения шага винта
    pitch-change rate
    скорость истечения выхлопных газов
    exhaust velocity
    скорость истечения выходящих газов на срезе реактивного сопла
    nozzle exhaust velocity
    скорость истечения газов
    exit velocity
    скорость крена
    rate of roll
    скорость маневрирования
    manoeuvring speed
    скорость набора высоты
    ascensional rate
    скорость набора высоты при выходе из зоны
    climb-out speed
    скорость набора высоты при полете по маршруту
    en-route climb speed
    скорость набора высоты с убранными закрылками
    1. flaps-up climbing speed
    2. flaps-up climb speed 3. no-flap climb speed скорость на начальном участке набора высоты при взлете
    speed at takeoff climb
    скорость начала торможения
    brake application speed
    скорость обгона
    overtaking speed
    (воздушного судна) скорость отклонения закрылков
    rate of flaps motion
    скорость отработки
    follow-up rate
    скорость отрыва
    liftoff speed
    (при разбеге) скорость отрыва носового колеса
    rotation speed
    (при взлете) скорость отрыва при взлете
    unstick speed
    скорость парашютирования
    sink speed
    (при посадке) скорость первоначального этапа набора высоты
    initial climb speed
    скорость перед сваливанием
    prestall speed
    (на крыло) скорость пикирования
    dive speed
    скорость планирования
    gliding speed
    скорость полета
    flight speed
    скорость полета на малом газе
    flight idle speed
    скорость попутного ветра
    tailwind speed
    скорость порыва
    gust velocity
    скорость по тангажу
    rate of pitch
    скорость прецессии
    precession rate
    скорость при аварийном снижении
    emergency descent speed
    скорость при взлетной
    speed in takeoff configuration
    (конфигурации воздушного судна) скорость при всех работающих двигателях
    all engines speed
    скорость при выпуске закрылков
    flaps speed
    скорость при выпущенных интерцепторах
    spoiler extended speed
    скорость при касании
    touchdown speed
    (ВПП) скорость принятия решения
    decision speed
    (пилотом) скорость при отказе критического двигателя
    critical engine failure speed
    скорость при полностью убранных закрылках
    zero flaps speed
    скорость при посадочной
    speed in landing configuration
    (конфигурации воздушного судна) скорость протяжки ленты
    tape speed
    (бортового регистратора) скорость прохождения порога ВПП
    threshold speed
    скорость разворота
    rate of turn
    скорость раскрытия
    opening speed
    (парашюта) скорость рассогласования
    rate of disagreement
    скорость реакции
    reaction rate
    скорость руления
    taxiing speed
    скорость рыскания
    rate of yaw
    скорость сближения
    1. closing speed
    (воздушных судов) 2. rate of closure скорость сваливания
    stalling speed
    (на крыло) скорость скоса потока вниз
    downwash velocity
    скорость слива топлива
    fuel off-load rate
    скорость снижения
    1. descent velocity
    2. rate of descent скорость снижения перед касанием
    sink rate
    скорость снижения при заходе на посадку
    approach rate of descent
    скорость сноса
    drift rate
    скорость согласования
    slaving rate
    скорость схода с ВПП
    turnoff speed
    скорость таможенной пошлины
    rate of duty
    скорость установившегося полета
    steady flight speed
    скорость установившегося разворота
    sustained turn rate
    скорость ухода гироскопа
    gyro drift rate
    снижать скорость воздушного судна до
    decelerate the aircraft to
    составляющая скорости
    velocity component
    средняя скорость
    mean speed
    таблица поправок воздушной скорости
    air-speed calibration card
    тарировка указателя воздушной скорости
    air-speed indicator calibration
    терять заданную скорость
    lose the speed
    точно выдерживать скорость
    hold the speed accurately
    трафарет ограничения воздушной скорости
    airspeed placard
    треугольник скоростей
    triangle of velocities
    увеличение скорости
    speed increase
    увеличивать скорость
    increase the speed
    угловая скорость
    1. angular speed
    2. angular velocity 3. angular rate указатель воздушной скорости
    1. airspeed indicator
    2. airspeed instrument указатель индикаторной воздушной скорости
    calibrated airspeed indicator
    указатель путевой скорости
    ground speed indicator
    указатель скорости
    speed pointer
    указатель скорости ветра
    wind speed indicator
    указатель скорости крена
    rate-of-roll indicator
    указатель скорости набора высоты
    variometer
    указатель скорости разворота
    rate-of-turn indicator
    указатель скорости рыскания
    rate-of-yaw indicator
    указатель скорости снижения на ВПП
    rising runway indicator
    указатель скорости сноса
    speed-and-drift meter
    указатель сноса и скорости
    drift-speed indicator
    уменьшать скорость
    decrease the speed
    уменьшение скорости
    deceleration
    уменьшение скорости за счет лобового сопротивления
    deceleration due to drag
    установившаяся скорость набора высоты
    steady rate of climb
    устойчивость по скорости
    speed stability
    фактическая воздушная скорость
    actual airspeed
    фактическая скорость
    demonstrated speed
    фактическая скорость истечения выходящих газов
    actual exhaust velocity
    эволютивная скорость
    control speed
    Минимально допустимая скорость при сохранении управляемости. эквивалентная воздушная скорость
    equivalent airspeed
    экономическая скорость
    economic speed
    (при минимальном расходе топлива) эксплуатационная скорость
    operating speed
    эффект скорости поступательного движения
    forward speed effect

    Русско-английский авиационный словарь > скорость

  • 71 Cognitive Psychology

       The basic reason for studying cognitive processes has become as clear as the reason for studying anything else: because they are there. Our knowledge of the world must be somehow developed from stimulus input.... Cognitive processes surely exist, so it can hardly be unscientific to study them. (Neisser, 1967, p. 5).
       The task of the cognitive psychologist is a highly inferential one. The cognitive psychologist must proceed from observations of the behavior of humans performing intellectual tasks to conclusions about the abstract mechanisms underlying the behavior. Developing a theory in cognitive psychology is much like developing a model for the working of the engine of a strange new vehicle by driving the vehicle, being unable to open it up to inspect the engine itself....
       It is well understood from the automata theory... that many different mechanisms can generate the same external behavior. (Anderson, 1980, pp. 12, 17)
       [Cognitive psychology does not] deal with whole people but with a very special and bizarre-almost Frankensteinian-preparation, which consists of a brain attached to two eyes, two ears, and two index fingers. This preparation is only to be found inside small, gloomy cubicles, outside which red lights burn to warn ordinary people away.... It does not feel hungry or tired or inquisitive; it does not think extraneous thoughts or try to understand what is going on. It is, in short, a computer, made in the image of the larger electronic organism that sends it stimuli and records its responses. (Claxton, 1980, p. 13)
       4) Cognitive Psychology Has Not Succeeded in Making a Significant Contribution to the Understanding of the Human Mind
       Cognitive psychology is not getting anywhere; that in spite of our sophisticated methodology, we have not succeeded in making a substantial contribution toward the understanding of the human mind.... A short time ago, the information processing approach to cognition was just beginning. Hopes were high that the analysis of information processing into a series of discrete stages would offer profound insights into human cognition. But in only a few short years the vigor of this approach was spent. It was only natural that hopes that had been so high should sink low. (Glass, Holyoak & Santa, 1979, p. ix)
       Cognitive psychology attempts to understand the nature of human intelligence and how people think. (Anderson, 1980, p. 3)
       The past few years have witnessed a noticeable increase in interest in an investigation of the cognitive processes.... It has resulted from a recognition of the complex processes that mediate between the classical "stimuli" and "responses" out of which stimulus-response learning theories hoped to fashion a psychology that would by-pass anything smacking of the "mental." The impeccable peripheralism of such theories could not last. One might do well to have a closer look at these intervening "cognitive maps." (Bruner, Goodnow & Austin, 1956, p. vii)

    Historical dictionary of quotations in cognitive science > Cognitive Psychology

  • 72 нелегко себе представить

    Русско-английский научно-технический словарь переводчика > нелегко себе представить

  • 73 общий

    II

    The aggregate mass of very small asteroids is only a minor fraction of the total.

    The combined effect of creep and slippage is...

    Several tanks with a combined capacity of 10,000 gallons...

    The equation merely represents the overall transformation by which all bacteria secure energy.

    The overall voltage gain was 5000.

    Seven new centres were opened, making the total number 83.

    III

    Ionizing solvents have one property in common, self-ionization.

    The two curves have a point in common (or a common point).

    The components of the analyzer are assembled in two basic units, an optical unit and an electronic unit, in a common housing.

    The engine, the transmission and the differential could use one oil reservoir in common.

    Русско-английский научно-технический словарь переводчика > общий

  • 74 самолет

    airplane, plane
    * * *
    самолё́т м. ( в соответствии с определением ИКАО)
    брит. aeroplane, амер. airplane (Примечание. Согласно ИКАО aircraft — лета́тельный аппара́т, вертолё́т, и др. не попадающие под термин самолё́т.)
    аттесто́вывать самолё́т по шу́му — certificate an aeroplane for noise
    вводи́ть самолё́т в вира́ж — roll an aeroplane into a (banked) turn
    вести́ самолё́т ( о штурмане) — navigate [guide] an aeroplane
    вы́весить самолё́т над землё́й — hold the aeroplane of the ground
    выводи́ть самолё́т из стро́я — disable an aeroplane, put an aeroplane out of operation [out of service]
    выра́внивать самолё́т — ( переводить в горизонтальный полёт) level an aeroplane; ( при посадке) flare out an aeroplane
    заправля́ть самолё́т горю́чим — fuel an aeroplane
    зару́ливать самолё́т на стоя́нку — taxi an aeroplane to the parking area
    испы́тывать самолё́т в во́здухе — test-fly [fly-test] an aeroplane
    кача́ть самолё́т с крыла́ на крыло́ — rock an aeroplane
    самолё́т лё́гок в управле́нии — the aeroplane handles well [is responsive]
    самолё́т нахо́дится в во́здухе — the aeroplane is [becomes] airborne
    облё́тывать но́вый самолё́т — fly out a new aeroplane
    самолё́т обору́дован, напр. автомати́ческим радиоко́мпасом — the aeroplane carries, e. g., an ADF
    опознава́ть (национа́льную принадле́жность) самолёт(а) — identify an aeroplane
    оставля́ть самолё́т в авари́йной ситуа́ции — escape from an aeroplane in an emergency
    самолё́т отлета́ет, напр. в 13 ч 50 мин — the aeroplane departs at, e. g., 1350 hours
    отправля́ть самолё́т на второ́й круг — send an aeroplane around
    самолё́т отрыва́ется от земли́ ( при взлёте) — the aeroplane breaks ground
    отрыва́ть самолё́т от земли́ ( при взлёте) — lift [take] an aeroplane off the ground
    переобору́довать самолё́т (напр. военный в гражданский) — convert an aeroplane
    пилоти́ровать самолё́т — fly [handle] an aeroplane
    покида́ть самолё́т ( об экипаже) — abandon an aeroplane
    самолё́т прибыва́ет, напр. в 16 ч 15 мин — the aeroplane arrives at 1615 hours
    самолё́т разби́лся — the aeroplane crashed
    развора́чивать самолё́т по ве́тру — turn an aeroplane downwind
    развора́чивать самолё́т про́тив ве́тра — turn an aeroplane into the wind
    сажа́ть самолё́т — land an aeroplane
    сажа́ть самолё́т по ве́тру — land an aeroplane downwind
    сажа́ть самолё́т про́тив ве́тра — land an aeroplane into the wind
    сажа́ть самолё́т с недолё́том или с перелё́том — land an aeroplane short or long
    самолё́т сбаланси́рован в, напр. прямолине́йном полё́те — the aeroplane is in trim for, e. g., straight flight
    снима́ть самолё́т с эксплуата́ции — withdraw [remove] an aeroplane from service
    самолё́т соверши́л авари́йную поса́дку — the aeroplane crash-landed
    ста́вить самолё́т на коло́дки — chock an aeroplane
    самолё́т те́рпит бе́дствие — the aeroplane is in distress
    самолё́т удовлетворя́ет всем тре́бованиям норм лё́тной го́дности — the aeroplane is fully airworthy
    устана́вливать что-л. на самолё́те — install smth. in an aeroplane [on board an aeroplane]
    швартова́ть самолё́т — tie down an aeroplane
    аэрофотосъё́мочный самолё́т — photographic (survey) aeroplane
    беспило́тный самолё́т — drone
    самолё́т вертика́льного взлё́та — vertical take-off [VTO] aeroplane
    самолё́т вертика́льного взлё́та и поса́дки [СВВП] — vertical take-off and landing [VTOL] aeroplane
    винтово́й самолё́т — propeller(-driven) aeroplane
    вое́нный самолё́т — military aeroplane
    высо́тный самолё́т — high-altitude aeroplane
    гиперзвуково́й самолё́т — hypersonic aeroplane
    гражда́нский самолё́т — civil aeroplane
    грузово́й самолё́т — cargo(-type) aeroplane
    дозвуково́й самолё́т — subsonic aeroplane
    самолё́т о́бщего назначе́ния — general-purpose aeroplane
    пассажи́рский самолё́т — passenger aeroplane
    пожа́рный самолё́т — fire aeroplane
    поршнево́й самолё́т — piston-engined aeroplane
    реакти́вный самолё́т — jet aeroplane
    санита́рный самолё́т — air ambulance
    самолё́т с большо́й да́льностью полё́та — long-range aeroplane
    сверхзвуково́й самолё́т — supersonic aeroplane
    самолё́т с высо́кими лё́тными характери́стиками — high-performance aeroplane
    самолё́т с двойны́м управле́нием — dual-control aeroplane
    сельскохозя́йственный самолё́т — agricultural aeroplane
    сери́йный самолё́т — production a aeroplane
    самолё́т с двумя́ дви́гателями — twin-engine aeroplane
    самолё́т с колё́сным шасси́ — wheeled aeroplane
    самолё́т с крыло́м изменя́емой геоме́трии — variable-geometry aeroplane
    самолё́т с лы́жным шасси́ — skiplane
    самолё́т со стрелови́дным крыло́м — swept-winged aeroplane
    самолё́т с поворо́тным крыло́м — tilt-wing aeroplane
    самолё́т с поплавко́вым шасси́ — float seaplane
    спорти́вный самолё́т — sporting aeroplane
    самолё́т с треуго́льным крыло́м — delta-wing aeroplane
    самолё́т с укоро́ченными взлё́том и поса́дкой — short take-off and landing [STOL] aeroplane
    сухопу́тный самолё́т — landplane, land(-based) aeroplane
    самолё́т с шасси́ на возду́шной поду́шке — ground-effect [air-cushion] take-off and landing aeroplane
    самолё́т ти́па «лета́ющее крыло́» — flying wing
    самолё́т ти́па «у́тка» — canard, canard-type aeroplane
    тра́нспортный самолё́т — transport (aeroplane)
    тра́нспортный, сверхзвуково́й самолё́т — supersonic transport, SST
    турбовинтово́й самолё́т — turbo-prop aeroplane
    турбореакти́вный самолё́т — turbo-jet aeroplane
    уче́бно-трениро́вочный самолё́т — trainer (aeroplane)
    уче́бный самолё́т — school [basic trainer] aeroplane
    цельнодеревя́нный самолё́т — all-wood aeroplane
    цельнометалли́ческий самолё́т — all-metal aeroplane
    * * *

    Русско-английский политехнический словарь > самолет

  • 75 соответствовать установившейся практике

    Соответствовать установившейся практике-- The basic composition of the bath corresponds to usual practice. Соответствующий - appropriate (to); associated, involved, applicable, relevant, along the lines of (имеющий отношение к делу); proper, suitable, matching (подходящий); commensurate with, associated, corresponding (связанный зависимостью); corresponding, respective (при сопоставлении нескольких результатов, деталей); conforming to, complying with (подчиняющийся)
     The appropriate values are shown in Table and Fig.
     Physical properties appropriate to methanol boiling at atmospheric pressure were used throughout this analysis.
     It is important to note that the engine contained the normal regenerator disk and associated seals.
     It is possible that it [resonance] is not recognized as the casual agent and a general beefing-up of the parts involved is undertaken as a fix for the problem.
     The supplier shall establish procedures for identifying the product from applicable drawings.
     sT, sr are the stresses to give a specific strain or rupture in the lifetime of the vessel at the relevant temperature.
     Emergency shower, drench hose, and combination units are not a substitute for proper primary protective devices.
     A manipulator along the lines of Fig. has been examined by X.
     It is preferable to accept weaker weld metals with good ductility, rather than a weld metal which has matching strength but poor ductility.
     The atomizing air is preheated to the same temperature as the heated (temperature commensurate with 100 SSU viscosity) residual fuel oil entering the burner oil tube.
     Over the past few decades the generator capacity has been increasing steadily, warranting a corresponding increase in the rotor diameter.
     The initially measured value of the drag coefficient in each run is 10 percent to 12 percent higher than the corresponding steady-state value.
     Surrounding the stagnation zone are streak lines indicating that the fluid adjacent to the plate surface is flowing outward toward the respective edges.

    Русско-английский научно-технический словарь переводчика > соответствовать установившейся практике

  • 76 тип


    type
    - (обозначение, шифр изделия) — model
    - двигателя (напр., твд) — engine type (e.g. turboprop)
    - (характер) отказаnature of failure
    - самолета — type of aircraft, aircraft type
    самолеты, имеющие аналогичную основную конструкцию, относятся к одному типу. — aircraft belong to one type, if they are of same basic design.

    Русско-английский сборник авиационно-технических терминов > тип

  • 77 Cayley, Sir George

    SUBJECT AREA: Aerospace
    [br]
    b. 27 December 1773 Scarborough, England
    d. 15 December 1857 Brompton Hall, Yorkshire, England
    [br]
    English pioneer who laid down the basic principles of the aeroplane in 1799 and built a manned glider in 1853.
    [br]
    Cayley was born into a well-to-do Yorkshire family living at Brompton Hall. He was encouraged to study mathematics, navigation and mechanics, particularly by his mother. In 1792 he succeeded to the baronetcy and took over the daunting task of revitalizing the run-down family estate.
    The first aeronautical device made by Cayley was a copy of the toy helicopter invented by the Frenchmen Launoy and Bienvenu in 1784. Cayley's version, made in 1796, convinced him that a machine could "rise in the air by mechanical means", as he later wrote. He studied the aerodynamics of flight and broke away from the unsuccessful ornithopters of his predecessors. In 1799 he scratched two sketches on a silver disc: one side of the disc showed the aerodynamic force on a wing resolved into lift and drag, and on the other side he illustrated his idea for a fixed-wing aeroplane; this disc is preserved in the Science Museum in London. In 1804 he tested a small wing on the end of a whirling arm to measure its lifting power. This led to the world's first model glider, which consisted of a simple kite (the wing) mounted on a pole with an adjustable cruciform tail. A full-size glider followed in 1809 and this flew successfully unmanned. By 1809 Cayley had also investigated the lifting properties of cambered wings and produced a low-drag aerofoil section. His aim was to produce a powered aeroplane, but no suitable engines were available. Steam-engines were too heavy, but he experimented with a gunpowder motor and invented the hot-air engine in 1807. He published details of some of his aeronautical researches in 1809–10 and in 1816 he wrote a paper on airships. Then for a period of some twenty-five years he was so busy with other activities that he largely neglected his aeronautical researches. It was not until 1843, at the age of 70, that he really had time to pursue his quest for flight. The Mechanics' Magazine of 8 April 1843 published drawings of "Sir George Cayley's Aerial Carriage", which consisted of a helicopter design with four circular lifting rotors—which could be adjusted to become wings—and two pusher propellers. In 1849 he built a full-size triplane glider which lifted a boy off the ground for a brief hop. Then in 1852 he proposed a monoplane glider which could be launched from a balloon. Late in 1853 Cayley built his "new flyer", another monoplane glider, which carried his coachman as a reluctant passenger across a dale at Brompton, Cayley became involved in public affairs and was MP for Scarborough in 1832. He also took a leading part in local scientific activities and was co-founder of the British Association for the Advancement of Science in 1831 and of the Regent Street Polytechnic Institution in 1838.
    [br]
    Bibliography
    Cayley wrote a number of articles and papers, the most significant being "On aerial navigation", Nicholson's Journal of Natural Philosophy (November 1809—March 1810) (published in three numbers); and two further papers with the same title in Philosophical Magazine (1816 and 1817) (both describe semi-rigid airships).
    Further Reading
    L.Pritchard, 1961, Sir George Cayley, London (the standard work on the life of Cayley).
    C.H.Gibbs-Smith, 1962, Sir George Cayley's Aeronautics 1796–1855, London (covers his aeronautical achievements in more detail).
    —1974, "Sir George Cayley, father of aerial navigation (1773–1857)", Aeronautical Journal (Royal Aeronautical Society) (April) (an updating paper).
    JDS

    Biographical history of technology > Cayley, Sir George

  • 78 Rankine, William John Macquorn

    [br]
    b. 5 July 1820 Edinburgh, Scotland
    d. 1872
    [br]
    [br]
    Rankine was educated at Ayr Academy and Glasgow High School, although he appears to have learned much of his basic mathematics and physics through private study. He attended Edinburgh University and then assisted his father, who was acting as Superintendent of the Edinburgh and Dalkeith Railway. This introduction to engineering practice was followed in 1838 by his appointment as a pupil to Sir John MacNeill, and for the next four years he served under MacNeill on his Irish railway projects. While still in his early twenties, Rankine presented pioneering papers on metal fatigue and other subjects to the Institution of Civil Engineers, for which he won a prize, but he appears to have resigned from the Civils in 1857 after an argument because the Institution would not transfer his Associate Membership into full Membership. From 1844 to 1848 Rankine worked on various projects for the Caledonian Railway Company, but his interests were becoming increasingly theoretical and a series of distinguished papers for learned societies established his reputation as a leading scholar in the new science of thermodynamics. He was elected Fellow of the Royal Society in 1853. At the same time, he remained intimately involved with practical questions of applied science, in shipbuilding, marine engineering and electric telegraphy, becoming associated with the influential coterie of fellow Scots such as the Thomson brothers, Napier, Elder, and Lewis Gordon. Gordon was then the head of a large and successful engineering practice, but he was also Regius Professor of Engineering at the University of Glasgow, and when he retired from the Chair to pursue his business interests, Rankine, who had become his Assistant, was appointed in his place.
    From 1855 until his premature death in 1872, Rankine built up an impressive engineering department, providing a firm theoretical basis with a series of text books that he wrote himself and most of which remained in print for many decades. Despite his quarrel with the Institution of Civil Engineers, Rankine took a keen interest in the institutional development of the engineering profession, becoming the first President of the Institution of Engineers and Shipbuilders in Scotland, which he helped to establish in 1857. Rankine campaigned vigorously for the recognition of engineering studies as a full university degree at Glasgow, and he achieved this in 1872, the year of his death. Rankine was one of the handful of mid-nineteenth century engineers who virtually created engineering as an academic discipline.
    [br]
    Principal Honours and Distinctions
    FRS 1853. First President, Institution of Engineers and Shipbuilders in Scotland, 1857.
    Bibliography
    1858, Manual of Applied Mechanics.
    1859, Manual of the Steam Engine and Other Prime Movers.
    1862, Manual of Civil Engineering.
    1869, Manual of Machinery and Millwork.
    Further Reading
    J.Small, 1957, "The institution's first president", Proceedings of the Institution of Engineers and Shipbuilders in Scotland: 687–97.
    H.B.Sutherland, 1972, Rankine. His Life and Times.
    AB

    Biographical history of technology > Rankine, William John Macquorn

  • 79 Reichenbach, Georg Friedrich von

    [br]
    b. 24 August 1772 Durlach, Baden, Germany
    d. 21 May 1826 Munich, Germany
    [br]
    German engineer.
    [br]
    While he was attending the Military School at Mannheim, Reichenbach drew attention to himself due to the mathematical instruments that he had designed. On the recommendation of Count Rumford in Munich, the Bavarian government financed a two-year stay in Britain so that Reichenbach could become acquainted with modern mechanical engineering. He returned to Mannheim in 1793, and during the Napoleonic Wars he was involved in the manufacture of arms. In Munich, where he was in the service of the Bavarian state from 1796, he started producing precision instruments in his own time. His basic invention was the design of a dividing machine for circles, produced at the end of the eighteenth century. The astronomic and geodetic instruments he produced excelled all the others for their precision. His telescopes in particular, being perfect in use and of solid construction, soon brought him an international reputation. They were manufactured at the MathematicMechanical Institute, which he had jointly founded with Joseph Utzschneider and Joseph Liebherr in 1804 and which became a renowned training establishment. The glasses and lenses were produced by Joseph Fraunhofer who joined the company in 1807.
    In the same year he was put in charge of the technical reorganization of the salt-works at Reichenhall. After he had finished the brine-transport line from Reichenhall to Traunstein in 1810, he started on the one from Berchtesgaden to Reichenhall which was an extremely difficult task because of the mountainous area that had to be crossed. As water was the only source of energy available he decided to use water-column engines for pumping the brine in the pipes of both lines. Such devices had been in use for pumping purposes in different mining areas since the middle of the eighteenth century. Reichenbach knew about the one constructed by Joseph Karl Hell in Slovakia, which in principle had just been a simple piston-pump driven by water which did not work satisfactorily. Instead he constructed a really effective double-action water-column engine; this was a short time after Richard Trevithick had constructed a similar machine in England. For the second line he improved the system and built a single-action pump. All the parts of it were made of metal, which made them easy to produce, and the pumps proved to be extremely reliable, working for over 100 years.
    At the official opening of the line in 1817 the Bavarian king rewarded him generously. He remained in the state's service, becoming head of the department for roads and waterways in 1820, and he contributed to the development of Bavarian industry as well as the public infrastructure in many ways as a result of his mechanical skill and his innovative engineering mind.
    [br]
    Further Reading
    Bauernfeind, "Georg von Reichenbach" Allgemeine deutsche Biographie 27:656–67 (a reliable nineteenth-century account).
    W.Dyck, 1912, Georg v. Reichenbach, Munich.
    K.Matschoss, 1941, Grosse Ingenieure, Munich and Berlin, 3rd edn. 121–32 (a concise description of his achievements in the development of optical instruments and engineering).
    WK

    Biographical history of technology > Reichenbach, Georg Friedrich von

  • 80 Renard, Charles

    SUBJECT AREA: Aerospace
    [br]
    b. 23 November 1847 Damblain, Vosges, France
    d. 13 April 1905 Chalais-Meudon, France
    [br]
    French pioneer of military aeronautics who, with A.C.Krebs, built an airship powered by an electric motor.
    [br]
    Charles Renard was a French army officer with an interest in aviation. In 1873 he constructed an unusual unmanned glider with ten wings and an automatic stabilizing device to control rolling. This operated by means of a pendulum device linked to moving control surfaces. The model was launched from a tower near Arras, but unfortunately it spiralled into the ground. The control surfaces could not cope with the basic instability of the design, but as an idea for automatic flight control it was ahead of its time.
    Following a Commission report on the military use of balloons, carrier pigeons and an optical telegraph, an aeronautical establishment was set up in 1877 at Chalais-Meudon, near Paris, under the direction of Charles Renard, who was assisted by his brother Paul. The following year Renard and a colleague, Arthur Krebs, began to plan an airship. They received financial help from Léon Gambetta, a prominent politician who had escaped from Paris by balloon in 1870 during the siege by the Prussians. Renard and Krebs studied earlier airship designs: they used the outside shape of Paul Haenlein's gas-engined airship of 1872 and included Meusnier's internal air-filled ballonnets. The gas-engine had not been a success so they decided on an electric motor. Renard developed lightweight pile batteries while Krebs designed a motor, although this was later replaced by a more powerful Gramme motor of 6.5 kW (9 hp). La France was constructed at Chalais-Meudon and, after a two-month wait for calm conditions, the airship finally ascended on 9 August 1884. The motor was switched on and the flight began. Renard and Krebs found their airship handled well and after twenty-three minutes they landed back at their base. La, France made several successful flights, but its speed of only 24 km/h (15 mph) meant that flights could be made only in calm weather. Parts of La, France, including the electric motor, are preserved in the Musée de l'Air in Paris.
    Renard remained in charge of the establishment at Chalais-Meudon until his death. Among other things, he developed the "Train Renard", a train of articulated road vehicles for military and civil use, of which a number were built between 1903 and 1911. Towards the end of his life Renard became interested in helicopters, and in 1904 he built a large twin-rotor model which, however, failed to take off.
    [br]
    Bibliography
    1886, Le Ballon dirigeable La France, Paris (a description of the airship).
    Further Reading
    Descriptions of Renard and Kreb's airship are given in most books on the history of lighter-than-air flight, e.g.
    L.T.C.Rolt, 1966, The Aeronauts, London; pub. in paperback 1985.
    C.Bailleux, c. 1988, Association pour l'Histoire de l'Electricité en France, (a detailed account of the conception and operations of La France).
    1977, Centenaire de la recherche aéronautique à Chalais-Meudon, Paris (an official memoir on the work of Chalais-Meudon with a chapter on Renard).
    JDS

    Biographical history of technology > Renard, Charles

См. также в других словарях:

  • Engine City Technical Institute — is an accredited, diesel technology school located in South Plainfield, New Jersey, a short distance off of Interstate 287. It is currently the only such school in the Northeastern United States, and, as such, its graduates are in high demand… …   Wikipedia

  • Engine control unit — An engine control unit (ECU) is an electronic control unit which controls various aspects of an internal combustion engine s operation. The simplest ECUs control only the quantity of fuel injected into each cylinder each engine cycle. More… …   Wikipedia

  • Basic Analysis And Security Engine — est une interface web permettant la gestion des alertes générées par l IDS Snort. Elle permet le classement des alertes en groupe, l affichage de diagrammes et la recherche des alertes selon différents critères. BASE est un programme sous licence …   Wikipédia en Français

  • Basic analysis and security engine — est une interface web permettant la gestion des alertes générées par l IDS Snort. Elle permet le classement des alertes en groupe, l affichage de diagrammes et la recherche des alertes selon différents critères. BASE est un programme sous licence …   Wikipédia en Français

  • Basic aircraft empty weight — is the weight of an aircraft without taking into account any baggage, passengers, or usable fuel. Basic empty weight includes all fluids necessary for operation such as engine oil, engine coolant, and unusable fuel.Some manufacturers define Basic …   Wikipedia

  • Engine cooling — is cooling an engine, typically using either air or liquid.OverviewHeat engines generate mechanical power by extracting energy from heat flows, much as a water wheel extracts mechanical power from a flow of mass falling through a distance.… …   Wikipedia

  • Basic Analysis and Security Engine — est une interface web permettant la gestion des alertes générées par l IDS Snort. Elle permet le classement des alertes en groupe, l affichage de diagrammes et la recherche des alertes selon différents critères. BASE est un programme sous licence …   Wikipédia en Français

  • Engine Sentai Go-onger — Titre original 炎神戦隊ゴーオンジャー Translittération Enjin Sentai Gō Onjā Genre Sentai Pays d’origine  Japon Chaîne d’origine …   Wikipédia en Français

  • Engine Alley — formed in 1989 in the shape of Kilkenny boys, Canice Kenealy (Vocals), Brian Kenealy (Guitar) and Eamonn Byrne (Bass). Moving to Dublinthey recruited drummer Emmaline Duffy Fallon and the line up was completed in 1991 with the addition of Ken… …   Wikipedia

  • Engine swap — Warning: in some jurisdictions with strict smog rules it may not be possible to register a late model vehicle with an engine swap, even if it can be proven that it produces less pollution than the original engine (owing to visual inspection… …   Wikipedia

  • Engine displacement — One complete cycle of a four cylinder, four stroke engine. The volume displaced is marked in orange. Engine displacement is the volume swept by all the pistons inside the cylinders of an internal combustion engine in a single movement from top… …   Wikipedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»