Перевод: со всех языков на английский

с английского на все языки

at+80+mph

  • 121 Maxim, Sir Hiram Stevens

    [br]
    b. 5 February 1840 Brockway's Mills, Maine, USA
    d. 24 November 1916 Streatham, London, England
    [br]
    American (naturalized British) inventor; designer of the first fully automatic machine gun and of an experimental steam-powered aircraft.
    [br]
    Maxim was born the son of a pioneer farmer who later became a wood turner. Young Maxim was first apprenticed to a carriage maker and then embarked on a succession of jobs before joining his uncle in his engineering firm in Massachusetts in 1864. As a young man he gained a reputation as a boxer, but it was his uncle who first identified and encouraged Hiram's latent talent for invention.
    It was not, however, until 1878, when Maxim joined the first electric-light company to be established in the USA, as its Chief Engineer, that he began to make a name for himself. He developed an improved light filament and his electric pressure regulator not only won a prize at the first International Electrical Exhibition, held in Paris in 1881, but also resulted in his being made a Chevalier de la Légion d'honneur. While in Europe he was advised that weapons development was a more lucrative field than electricity; consequently, he moved to England and established a small laboratory at Hatton Garden, London. He began by investigating improvements to the Gatling gun in order to produce a weapon with a faster rate of fire and which was more accurate. In 1883, by adapting a Winchester carbine, he successfully produced a semi-automatic weapon, which used the recoil to cock the gun automatically after firing. The following year he took this concept a stage further and produced a fully automatic belt-fed weapon. The recoil drove barrel and breechblock to the vent. The barrel then halted, while the breechblock, now unlocked from the former, continued rearwards, extracting the spent case and recocking the firing mechanism. The return spring, which it had been compressing, then drove the breechblock forward again, chambering the next round, which had been fed from the belt, as it did so. Keeping the trigger pressed enabled the gun to continue firing until the belt was expended. The Maxim gun, as it became known, was adopted by almost every army within the decade, and was to remain in service for nearly fifty years. Maxim himself joined forces with the large British armaments firm of Vickers, and the Vickers machine gun, which served the British Army during two world wars, was merely a refined version of the Maxim gun.
    Maxim's interests continued to occupy several fields of technology, including flight. In 1891 he took out a patent for a steam-powered aeroplane fitted with a pendulous gyroscopic stabilizer which would maintain the pitch of the aeroplane at any desired inclination (basically, a simple autopilot). Maxim decided to test the relationship between power, thrust and lift before moving on to stability and control. He designed a lightweight steam-engine which developed 180 hp (135 kW) and drove a propeller measuring 17 ft 10 in. (5.44 m) in diameter. He fitted two of these engines into his huge flying machine testrig, which needed a wing span of 104 ft (31.7 m) to generate enough lift to overcome a total weight of 4 tons. The machine was not designed for free flight, but ran on one set of rails with a second set to prevent it rising more than about 2 ft (61 cm). At Baldwyn's Park in Kent on 31 July 1894 the huge machine, carrying Maxim and his crew, reached a speed of 42 mph (67.6 km/h) and lifted off its rails. Unfortunately, one of the restraining axles broke and the machine was extensively damaged. Although it was subsequently repaired and further trials carried out, these experiments were very expensive. Maxim eventually abandoned the flying machine and did not develop his idea for a stabilizer, turning instead to other projects. At the age of almost 70 he returned to the problems of flight and designed a biplane with a petrol engine: it was built in 1910 but never left the ground.
    In all, Maxim registered 122 US and 149 British patents on objects ranging from mousetraps to automatic spindles. Included among them was a 1901 patent for a foot-operated suction cleaner. In 1900 he became a British subject and he was knighted the following year. He remained a larger-than-life figure, both physically and in character, until the end of his life.
    [br]
    Principal Honours and Distinctions
    Chevalier de la Légion d'Honneur 1881. Knighted 1901.
    Bibliography
    1908, Natural and Artificial Flight, London. 1915, My Life, London: Methuen (autobiography).
    Further Reading
    Obituary, 1916, Engineer (1 December).
    Obituary, 1916, Engineering (1 December).
    P.F.Mottelay, 1920, The Life and Work of Sir Hiram Maxim, London and New York: John Lane.
    Dictionary of National Biography, 1912–1921, 1927, Oxford: Oxford University Press.
    CM / JDS

    Biographical history of technology > Maxim, Sir Hiram Stevens

  • 122 Mikoyan, Artem Ivanovich

    SUBJECT AREA: Aerospace
    [br]
    b. 5 August 1905 Sanain, Armenia
    d. 9 December 1970 Moscow, Russia
    [br]
    Armenian aircraft designer.
    [br]
    Mikoyan graduated from the Zhukovsky Military Aircraft Academy in 1936. His first major design project was in response to an official requirement, issued in December 1940, for a single-engined fighter with performance equating to those then in service with the British, French and German air forces. In conjunction with M.L. Gurevich, a mathematician, and in a bare four months, he produced a flying prototype, with a top speed of 401 mph (645 km/h), that entered service as the MiG-1 in 1941. The Mikoyan and Gurevich MiG-3 and MiG-5 followed, and they then designed the MiG-7 high-altitude fighter; however, the latter never came into service on account of the decline of the German air force.
    The Second World War MiG fighters were characterized by high speed, good protection and armament, but they had poor manoeuvrability. In 1945, however, Mikoyan began to study Western developments in jet-powered aircraft. The result was a series of jet fighters, beginning with the MiG-9A, through the MiG-11, to the MiG-15 that gave the Allied air forces such a shock when it first appeared during the Korean War. The last in the series in which Mikoyan himself was involved was the MiG-23, which entered service in 1967. The MiG series lived on after both his and Gurevich's (1976) deaths, with one of the latest models being the MiG-31.
    [br]
    Principal Honours and Distinctions
    Deputy to the Supreme Soviet 1950, 1954, 1958. Corresponding Member of the Soviet Academy of Sciences 1953. Member of the Council of Nationalities 1962. Three Stalin Prizes and other decorations.
    CM

    Biographical history of technology > Mikoyan, Artem Ivanovich

  • 123 Miller, Patrick

    SUBJECT AREA: Ports and shipping
    [br]
    b. 1731 Glasgow, Scotland
    d. 9 December 1815 Dalswinton, Dumfriesshire, Scotland
    [br]
    Scottish merchant and banker, early experimenter in powered navigation and in ship form.
    [br]
    In his own words, Patrick Miller was "without a sixpence" in his early youth; this is difficult to prove one way or another as he ended his life as Director and Deputy Governor of the Bank of Scotland. One thing is clear however, that from his earliest days, in common with most of his counterparts of the late eighteenth century, he was interested in experimental and applied science. Having acquired a substantial income from other sources, Miller was able to indulge his interest in ships and engineering. His first important vessel was the trimaran Edinburgh, designed by him and launched at Leith in 1786. Propulsion was man-powered using paddle wheels positioned in the spaces between the outer and central hulls. This led to several trials of similar craft on the Forth in the 1780s, and ultimately to the celebrated Dalswinton Loch trials. In 1785 Miller had purchased the Dumfriesshire estate of Dalswinton and commenced a series of experiments on agricultural development and other matters. With the help of William Symington he built a double-hull steamship with internal paddle wheels which was tested on the Loch in 1788. The 7.6 m (25 ft) long ship travelled at 5 mph (8 km/h) on her trials, and according to unsubstantiated tradition carried a group of well-known people including the poet Robert Burns (1759–1796).
    Miller carried out many more important experiments and in 1796 obtained a patent for the design of shallow-drafted ships able to carry substantial cargo on flat bottoms. His main achievement may have been to stimulate William Symington, who at the beginning of the nineteenth century went on to design and build two of the world's first important steamships, each named Charlotte Dundas, for service on the Forth and Clyde Canal.
    [br]
    Further Reading
    H.Philip Spratt, 1958, The Birth of the Steamboat, London: Griffiths. W.S.Harvey and G.Downs-Rose, 1980, William Symington, Inventor and Engine
    Builder, London: Northgate.
    F.M.Walker, 1984, Song of the Clyde. A History of Clyde Shipbuilding, Cambridge: PSL.
    FMW

    Biographical history of technology > Miller, Patrick

  • 124 Morris, William Richard, Viscount Nuffield

    [br]
    b. 10 October 1877 Worcester, England
    d. 22 August 1963 Nuffield Place, England
    [br]
    English industrialist, car manufacturer and philanthropist.
    [br]
    Morris was the son of Frederick Morris, then a draper. He was the eldest of a family of seven, all of whom, except for one sister, died in childhood. When he was 3 years old, his father moved to Cowley, near Oxford, where he attended the village school. After a short time with a local bicycle firm he set up on his own at the age of 16 with a capital of £4. He manufactured pedal cycles and by 1902 he had designed a motor cycle and was doing car-repair work. By 1912, at the Motor Show, he was able to announce his first car, the 8.9 hp, two-seater Morris Oxford with its characteristic "bull-nose". It could perform at up to 50 mph (80 km/h) and 50 mpg (5.65 1/100 km). It cost £165.
    Though untrained, Morris was a born engineer as well as a natural judge of character. This enabled him to build up a reliable team of assistants in his growing business, with an order for four hundred cars at the Motor Show in 1912. Much of his business was built up in the assembly of components manufactured by outside suppliers. In he moved out of his initial premises by New College in Longwall and bought land at Cowley, where he brought out his second model, the 11.9hp Morris Oxford. This was after the First World War, during which car production was reduced to allow the manufacture of tanks and munitions. He was awarded the OBE in 1917 for his war work. Morris Motors Ltd was incorporated in 1919, and within fifteen months sales of cars had reached over 3,000 a year. By 1923 he was producing 20,000 cars a year, and in 1926 50,000, equivalent to about one-third of Britain's output. With the slump, a substantial overdraft, and a large stock of unsold cars, Morris took the bold decision to cut the prices of cars in stock, which then sold out within three weeks. Other makers followed suit, but Morris was ahead of them.
    Morris was part-founder of the Pressed Steel Company, set up to produce car bodies at Cowley. A clever operation with the shareholding of the Morris Motors Company allowed Morris a substantial overall profit to provide expansion capital. By 1931 his "empire" comprised, in addition to Morris Motors, the MG Car Company, the Wolseley Company, the SU Carburettor Company and Morris Commercial Cars. In 1936, the value of Morris's financial interest in the business was put at some £16 million.
    William Morris was a frugal man and uncomplicated, having little use for all the money he made except to channel it to charitable purposes. It is said that in all he gave away some £30 million during his lifetime, much of it invested by the recipients to provide long-term benefits. He married Elizabeth Anstey in 1904 and lived for thirty years at Nuffield Place. He lived modestly, and even after retirement, when Honorary President of the British Motor Corporation, the result of a merger between Morris Motors and the Austin Motor Company, he drove himself to work in a modest 10 hp Wolseley. His generosity benefited many hospitals in London, Oxford, Birmingham and elsewhere. Oxford Colleges were another class of beneficiary from his largesse.
    [br]
    Principal Honours and Distinctions
    Viscount 1938; Baron (Lord Nuffield) 1934; Baronet 1929; OBE 1917; GBE 1941; CH 1958. FRS 1939. He was a doctor of seven universities and an honorary freeman of seven towns.
    Further Reading
    R.Jackson, 1964, The Nuffield Story.
    P.W.S.Andrews and E.Brunner, The Life of Lord Nuffield.
    IMcN

    Biographical history of technology > Morris, William Richard, Viscount Nuffield

  • 125 Moulton, Alexander

    [br]
    b. 9 April 1920 Stratford-on-Avon
    [br]
    English inventor of vehicle suspension systems and the Moulton bicycle.
    [br]
    He spent his childhood at The Hall in Bradfordon-Avon. He was educated at Marlborough College, and in 1937 was apprenticed to the Sentinel Steam Wagon Company of Shrewsbury. About that same time he went to King's College, Cambridge, where he took the Mechanical Sciences Tripos. It was then wartime, and he did research on aero-engines at the Bristol Aeroplane Company, where he became Personal Assistant to Sir Roy Fedden. He left Bristol's in 1945 to join his family firm, Spencer \& Moulton, of which he eventually became Technical Director and built up the Research Department. In 1948 he invented his first suspension unit, the "Flexitor", in which an inner shaft and an outer shell were separated by an annular rubber body which was bonded to both.
    In 1848 his great-grandfather had founded the family firm in an old woollen mill, to manufacture vulcanized rubber products under Charles Goodyear's patent. The firm remained a family business with Spencer's, consultants in railway engineering, until 1956 when it was sold to the Avon Rubber Company. He then formed Moulton Developments to continue his work on vehicle suspensions in the stables attached to The Hall. Sponsored by the British Motor Corporation (BMC) and the Dunlop Rubber Company, he invented a rubber cone spring in 1951 which was later used in the BMC Mini (see Issigonis, Sir Alexander Arnold Constantine): by 1994 over 4 million Minis had been fitted with these springs, made by Dunlop. In 1954 he patented the Hydrolastic suspension system, in which all four wheels were independently sprung with combined rubber springs and damper assembly, the weight being supported by fluid under pressure, and the wheels on each side being interconnected, front to rear. In 1962 he formed Moulton Bicycles Ltd, having designed an improved bicycle system for adult use. The conventional bicycle frame was replaced by a flat-sided oval steel tube F-frame on a novel rubber front and rear suspension, with the wheel size reduced to 41 cm (16 in.) with high-pressure tyres. Raleigh Industries Ltd having refused his offer to produce the Moulton Bicycle under licence, he set up his own factory on his estate, producing 25,000 bicycles between 1963 and 1966. In 1967 he sold out to Raleigh and set up as Bicycle Consultants Ltd while continuing the suspension development of Moulton Developments Ltd. In the 1970s the combined firms employed some forty staff, nearly 50 per cent of whom were graduates.
    He won the Queen's Award for Industry in 1967 for technical innovation in Hydrolastic car suspension and the Moulton Bicycle. Since that time he has continued his innovative work on suspensions and the bicycle. In 1983 he introduced the AM bicycle series of very sophisticated space-frame design with suspension and 43 cm (17 in.) wheels; this machine holds the world speed record fully formed at 82 km/h (51 mph). The current Rover 100 and MGF use his Hydragas interconnected suspension. By 1994 over 7 million cars had been fitted with Moulton suspensions. He has won many design awards and prizes, and has been awarded three honorary doctorates of engineering. He is active in engineering and design education.
    [br]
    Principal Honours and Distinctions
    Queen's Award for Industry 1967; CBE; RDI. Fellow of the Royal Academy of Engineering.
    Further Reading
    P.R.Whitfield, 1975, Creativity in Industry, London: Penguin Books.
    IMcN

    Biographical history of technology > Moulton, Alexander

  • 126 Murdock (Murdoch), William

    [br]
    b. 21 August 1754 Cumnock, Ayrshire, Scotland
    d. 15 November 1839 Handsworth, Birmingham, England
    [br]
    Scottish engineer and inventor, pioneer in coal-gas production.
    [br]
    He was the third child and the eldest of three boys born to John Murdoch and Anna Bruce. His father, a millwright and joiner, spelled his name Murdock on moving to England. He was educated for some years at Old Cumnock Parish School and in 1777, with his father, he built a "wooden horse", supposed to have been a form of cycle. In 1777 he set out for the Soho manufactory of Boulton \& Watt, where he quickly found employment, Boulton supposedly being impressed by the lad's hat. This was oval and made of wood, and young William had turned it himself on a lathe of his own manufacture. Murdock quickly became Boulton \& Watt's representative in Cornwall, where there was a flourishing demand for steam-engines. He lived at Redruth during this period.
    It is said that a number of the inventions generally ascribed to James Watt are in fact as much due to Murdock as to Watt. Examples are the piston and slide valve and the sun-and-planet gearing. A number of other inventions are attributed to Murdock alone: typical of these is the oscillating cylinder engine which obviated the need for an overhead beam.
    In about 1784 he planned a steam-driven road carriage of which he made a working model. He also planned a high-pressure non-condensing engine. The model carriage was demonstrated before Murdock's friends and travelled at a speed of 6–8 mph (10–13 km/h). Boulton and Watt were both antagonistic to their employees' developing independent inventions, and when in 1786 Murdock set out with his model for the Patent Office, having received no reply to a letter he had sent to Watt, Boulton intercepted him on the open road near Exeter and dissuaded him from going any further.
    In 1785 he married Mary Painter, daughter of a mine captain. She bore him four children, two of whom died in infancy, those surviving eventually joining their father at the Soho Works. Murdock was a great believer in pneumatic power: he had a pneumatic bell-push at Sycamore House, his home near Soho. The pattern-makers lathe at the Soho Works worked for thirty-five years from an air motor. He also conceived the idea of a vacuum piston engine to exhaust a pipe, later developed by the London Pneumatic Despatch Company's railway and the forerunner of the atmospheric railway.
    Another field in which Murdock was a pioneer was the gas industry. In 1791, in Redruth, he was experimenting with different feedstocks in his home-cum-office in Cross Street: of wood, peat and coal, he preferred the last. He designed and built in the backyard of his house a prototype generator, washer, storage and distribution plant, and publicized the efficiency of coal gas as an illuminant by using it to light his own home. In 1794 or 1795 he informed Boulton and Watt of his experimental work and of its success, suggesting that a patent should be applied for. James Watt Junior was now in the firm and was against patenting the idea since they had had so much trouble with previous patents and had been involved in so much litigation. He refused Murdock's request and for a short time Murdock left the firm to go home to his father's mill. Boulton \& Watt soon recognized the loss of a valuable servant and, in a short time, he was again employed at Soho, now as Engineer and Superintendent at the increased salary of £300 per year plus a 1 per cent commission. From this income, he left £14,000 when he died in 1839.
    In 1798 the workshops of Boulton and Watt were permanently lit by gas, starting with the foundry building. The 180 ft (55 m) façade of the Soho works was illuminated by gas for the Peace of Paris in June 1814. By 1804, Murdock had brought his apparatus to a point where Boulton \& Watt were able to canvas for orders. Murdock continued with the company after the death of James Watt in 1819, but retired in 1830 and continued to live at Sycamore House, Handsworth, near Birmingham.
    [br]
    Principal Honours and Distinctions
    Royal Society Rumford Gold Medal 1808.
    Further Reading
    S.Smiles, 1861, Lives of the Engineers, Vol. IV: Boulton and Watt, London: John Murray.
    H.W.Dickinson and R.Jenkins, 1927, James Watt and the Steam Engine, Oxford: Clarendon Press.
    J.A.McCash, 1966, "William Murdoch. Faithful servant" in E.G.Semler (ed.), The Great Masters. Engineering Heritage, Vol. II, London: Institution of Mechanical Engineers/Heinemann.
    IMcN

    Biographical history of technology > Murdock (Murdoch), William

  • 127 Poniatoff, Alexander Mathew

    [br]
    b. 25 March 1892 Kazan District, Russia
    d. 24 October 1980
    [br]
    Russian (naturalized American in 1932) electrical engineer responsible for the development of the professional tape recorder and the first commercially-successful video tape recorder (VTR).
    [br]
    Poniatoff was educated at the University of Kazan, the Imperial College in Moscow, and the Technische Hochschule in Karlsruhe, gaining degrees in mechanical and electrical engineering. He was in Germany when the First World War broke out, but he managed to escape back to Russia, where he served as an Air Force pilot with the Imperial Russian Navy. During the Russian Revolution he was a pilot with the White Russian Forces, and escaped into China in 1920; there he found work as an assistant engineer in the Shanghai Power Company. In 1927 he immigrated to the USA, becoming a US citizen in 1932. He obtained a post in the research and development department of the General Electric Company in Schenectady, New York, and later at Dalmo Victor, San Carlos, California. During the Second World War he was involved in the development of airborne radar for the US Navy.
    In 1944, taking his initials to form the title, Poniatoff founded the AMPEX Corporation to manufacture components for the airborne radar developed at General Electric, but in 1946 he turned to the production of audio tape recorders developed from the German wartime Telefunken Magnetophon machine (the first tape recorder in the truest sense). In this he was supported by the entertainer Bing Crosby, who needed high-quality replay facilities for broadcasting purposes, and in 1947 he was able to offer a professional-quality product and the business prospered.
    With the rapid post-war boom in television broadcasting in the USA, a need soon arose for a video recorder to provide "time-shifting" of live TV programmes between the different US time zones. Many companies therefore endeavoured to produce a video tape recorder (VTR) using the same single-track, fixed-head, longitudinal-scan system used for audio, but the very much higher bandwidth required involved an unacceptably high tape-speed. AMPEX attempted to solve the problem by using twelve parallel tracks and a machine was demonstrated in 1952, but it proved unsatisfactory.
    The development team, which included Charles Ginsburg and Ray Dolby, then devised a four-head transverse-scan system in which a quadruplex head rotating at 14,400 rpm was made to scan across the width of a 2 in. (5 cm) tape with a tape-to-head speed of the order of 160 ft/sec (about 110 mph; 49 m/sec or 176 km/h) but with a longitudinal tape speed of only 15 in./sec (0.38 m/sec). In this way, acceptable picture quality was obtained with an acceptable tape consumption. Following a public demonstration on 14 April 1956, commercial produc-tion of studio-quality machines began to revolutionize the production and distribution of TV programmes, and the perfecting of time-base correctors which could stabilize the signal timing to a few nanoseconds made colour VTRs a practical proposition. However, AMPEX did not rest on its laurels and in the face of emerging competition from helical scan machines, where the tracks are laid diagonally on the tape, the company was able to demonstrate its own helical machine in 1957. Another development was the Videofile system, in which 250,000 pages of facsimile could be recorded on a single tape, offering a new means of archiving information. By 1986, quadruplex VTRs were obsolete, but Poniatoff's role in making television recording possible deserves a place in history.
    Poniatoff was President of AMPEX Corporation until 1955 and then became Chairman of the Board, a position he held until 1970.
    [br]
    Further Reading
    A.Abrahamson, 1953, "A short history of television recording", Part I, JSMPTE 64:73; 1973, Part II, Journal of the Society of Motion Picture and Television Engineers, 82:188 (provides a fuller background).
    Audio Biographies, 1961, ed. G.A.Briggs, Wharfedale Wireless Works, pp. 255–61 (contains a few personal details about Poniatoff's escape from Germany to join the Russian Navy).
    E.Larsen, 1971, A History of Invention.
    Charles Ginsburg, 1981, "The horse or the cowboy. Getting television on tape", Journal of the Royal Television Society 18:11 (a brief account of the AMPEX VTR story).
    KF / GB-N

    Biographical history of technology > Poniatoff, Alexander Mathew

  • 128 Renard, Charles

    SUBJECT AREA: Aerospace
    [br]
    b. 23 November 1847 Damblain, Vosges, France
    d. 13 April 1905 Chalais-Meudon, France
    [br]
    French pioneer of military aeronautics who, with A.C.Krebs, built an airship powered by an electric motor.
    [br]
    Charles Renard was a French army officer with an interest in aviation. In 1873 he constructed an unusual unmanned glider with ten wings and an automatic stabilizing device to control rolling. This operated by means of a pendulum device linked to moving control surfaces. The model was launched from a tower near Arras, but unfortunately it spiralled into the ground. The control surfaces could not cope with the basic instability of the design, but as an idea for automatic flight control it was ahead of its time.
    Following a Commission report on the military use of balloons, carrier pigeons and an optical telegraph, an aeronautical establishment was set up in 1877 at Chalais-Meudon, near Paris, under the direction of Charles Renard, who was assisted by his brother Paul. The following year Renard and a colleague, Arthur Krebs, began to plan an airship. They received financial help from Léon Gambetta, a prominent politician who had escaped from Paris by balloon in 1870 during the siege by the Prussians. Renard and Krebs studied earlier airship designs: they used the outside shape of Paul Haenlein's gas-engined airship of 1872 and included Meusnier's internal air-filled ballonnets. The gas-engine had not been a success so they decided on an electric motor. Renard developed lightweight pile batteries while Krebs designed a motor, although this was later replaced by a more powerful Gramme motor of 6.5 kW (9 hp). La France was constructed at Chalais-Meudon and, after a two-month wait for calm conditions, the airship finally ascended on 9 August 1884. The motor was switched on and the flight began. Renard and Krebs found their airship handled well and after twenty-three minutes they landed back at their base. La, France made several successful flights, but its speed of only 24 km/h (15 mph) meant that flights could be made only in calm weather. Parts of La, France, including the electric motor, are preserved in the Musée de l'Air in Paris.
    Renard remained in charge of the establishment at Chalais-Meudon until his death. Among other things, he developed the "Train Renard", a train of articulated road vehicles for military and civil use, of which a number were built between 1903 and 1911. Towards the end of his life Renard became interested in helicopters, and in 1904 he built a large twin-rotor model which, however, failed to take off.
    [br]
    Bibliography
    1886, Le Ballon dirigeable La France, Paris (a description of the airship).
    Further Reading
    Descriptions of Renard and Kreb's airship are given in most books on the history of lighter-than-air flight, e.g.
    L.T.C.Rolt, 1966, The Aeronauts, London; pub. in paperback 1985.
    C.Bailleux, c. 1988, Association pour l'Histoire de l'Electricité en France, (a detailed account of the conception and operations of La France).
    1977, Centenaire de la recherche aéronautique à Chalais-Meudon, Paris (an official memoir on the work of Chalais-Meudon with a chapter on Renard).
    JDS

    Biographical history of technology > Renard, Charles

См. также в других словарях:

  • MPH Bookstores — (Acronym: Malaysian Publishing House) is the largest bookstores chain in Malaysia. MPH Bookstores currently has 29 outlets in Malaysia: 19 in the Klang Valley, 3 in Johor, 2 in Negeri Sembilan, 1 each in Perak, Pulau Pinang, Melaka, Kedah and… …   Wikipedia

  • MPH Group — (M) Sdn Bhd Type Private limited company (subsidiary of Syed Mokhtar Al Bukhary s conglomerate) Industry Retail (Specialty) Founded …   Wikipedia

  • MPH (ATSC) — MPH (Mobile Pedestrian Handheld) inband mobile digital television is a technology jointly developed by Harris Corporation, LG Electronics, Inc. and its U.S. research subsidiary, Zenith Electronics. The MPH system uses Harris Corporation’s… …   Wikipedia

  • MPH (disambiguation) — mph is a three letter acronym that refers to miles per hour, a measurement of speedMPH may also refer to: * Master of Public Health, a Master s degree in public health * Methylphenidate, an amphetamine like prescription stimulant commonly used to …   Wikipedia

  • mph — miles per hour; used to describe the speed of a vehicle: • The car reaches 60 mph in eight seconds. * * * mph UK US noun TRANSPORT ► ABBREVIATION for miles per hour: a way of calculating the speed at which a vehicle or plane is travelling or can… …   Financial and business terms

  • Mph — Cette page d’homonymie répertorie les différents sujets et articles partageant un même nom. {{{image}}}   Sigles d une seule lettre   Sigles de deux lettres > Sigles de trois lettres …   Wikipédia en Français

  • MPH Tourist Home — (Эрнакулам,Индия) Категория отеля: 1 звездочный отель Адрес: Vazhakala,Kakkannad, 6 …   Каталог отелей

  • mph — is written after a number to indicate the speed of something such as a vehicle. mph is an abbreviation for miles per hour . Inside these zones, traffic speeds are restricted to 20 mph …   English dictionary

  • mph —   [empiː eɪtʃ], Einheitenzeichen für die angloamerikanische Geschwindigkeitseinheit mile per hour (»Meile pro Stunde«); 1 mph = 1,609 km/h …   Universal-Lexikon

  • mph — [ˌem pi: ˈeıtʃ] miles per hour used to describe the speed of something, especially a vehicle or the wind ▪ high winds of up to 140 mph …   Dictionary of contemporary English

  • MPH Entertainment, Inc. — MPH Entertainment, Inc. is an American production company, focusing on feature films, television series, and specials. It was founded in January 1996 by Jim Milio, Melissa Jo Peltier and Mark Hufnail. They are best known for being co executive… …   Wikipedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»