Перевод: с английского на все языки

со всех языков на английский

aqueducts

  • 1 aqueducts

    Aqueducts

    Большой англо-русский и русско-английский словарь > aqueducts

  • 2 aqueducts

    • akvadukty

    English-Czech dictionary > aqueducts

  • 3 aqueducts

    n
    აკვედუკები

    English-Georgian dictionary > aqueducts

  • 4 pipe aqueducts

    акведукт

    English-Bulgarian polytechnical dictionary > pipe aqueducts

  • 5 Roebling, John Augustus

    SUBJECT AREA: Civil engineering
    [br]
    b. 12 July 1806 Muhlhausen, Prussia
    d. 22 July 1869 Brooklyn, New York, USA
    [br]
    German/American bridge engineer and builder.
    [br]
    The son of Polycarp Roebling, a tobacconist, he studied mathematics at Dr Unger's Pedagogium in Erfurt and went on to the Royal Polytechnic Institute in Berlin, from which he graduated in 1826 with honours in civil engineering. He spent the next three years working for the Prussian government on the construction of roads and bridges. With his brother and a group of friends, he emigrated to the United States, sailing from Bremen on 23 May 1831 and docking in Philadelphia eleven weeks later. They bought 7,000 acres (2,800 hectares) in Butler County, western Pennsylvania, and established a village, at first called Germania but later known as Saxonburg. Roebling gave up trying to establish himself as a farmer and found work for the state of Pennsylvania as Assistant Engineer on the Beaver River canal and others, then surveying a railroad route across the Allegheny Mountains. During his canal work, he noted the failings of the hemp ropes that were in use at that time, and recalled having read of wire ropes in a German journal; he built a rope-walk at his Saxonburg farm, bought a supply of iron wire and trained local labour in the method of wire twisting.
    At this time, many canals crossed rivers by means of aqueducts. In 1844, the Pennsylvania Canal aqueduct across the Allegheny River was due to be renewed, having become unsafe. Roebling made proposals which were accepted by the canal company: seven wooden spans of 162 ft (49 m) each were supported on either side by a 7 in. (18 cm) diameter cable, Roebling himself having to devise all the machinery required for the erection. He subsequently built four more suspension aqueducts, one of which was converted to a toll bridge and was still in use a century later.
    In 1849 he moved to Trenton, New Jersey, where he set up a new wire rope plant. In 1851 he started the construction (completed in 1855) of an 821 ft (250 m) long suspension railroad bridge across the Niagara River, 245 ft (75 m) above the rapids; each cable consisted of 3,640 wrought iron wires. A lower deck carried road traffic. He also constructed a bridge across the Ohio River between Cincinnati and Covington, a task which was much protracted due to the Civil War; this bridge was finally completed in 1866.
    Roebling's crowning achievement was to have been the design and construction of the bridge over the Hudson River between Brooklyn and Staten Island, New York, but he did not live to see its completion. It had a span of 1,595 ft (486 m), designed to bear a load of 18,700 tons (19,000 tonnes) with a headroom of 135 ft (41 m). The work of building had barely started when, at the Brooklyn wharf, a boat crushed Roebling's foot against the timbering and he died of tetanus three weeks later. His son, Washington Augustus Roebling, then took charge of this great work.
    [br]
    Further Reading
    D.B.Steinman and S.R.Watson, 1941, Bridges and their Builders, New York: Dover Books.
    D.McCullough, 1982, The Great Bridge: The Epic Story of the Building of the Brooklyn Bridge, New York: Simon \& Schuster.
    IMcN

    Biographical history of technology > Roebling, John Augustus

  • 6 aqueduct

    N
    1. कृत्रिम\aqueductजल\aqueductसेतु
    One should build aqueducts for carrying water to the areas which have water scarcity.

    English-Hindi dictionary > aqueduct

  • 7 courses

    Синонимический ряд:
    1. channels (noun) aqueducts; canals; channels; conduits; ducts; watercourses
    2. headings (noun) bearings; headings; vectors
    3. lines (noun) approaches; attacks; lines; plans; policies; polities; procedures; programs; tacks; techniques
    4. progresses (noun) advances; progresses; progressions
    5. successions (noun) alternations; chains; orders; rows; runs; sequels; sequences; series; strings; successions; suites; trains
    6. ways (noun) passages; paths; roads; routes; ways
    7. careers (verb) careers; chases; races; rushes; speeds; tears
    8. wells (verb) circulates; flows; gushes; pours; runs; streams; surges; wells

    English-Russian base dictionary > courses

  • 8 Bateman, John Frederick La Trobe

    [br]
    b. 30 May 1810 Lower Wyke, near Halifax, Yorkshire, England
    d. 10 June 1889 Moor Park, Farnham, Surrey, England
    [br]
    English civil engineer whose principal works were concerned with reservoirs, water-supply schemes and pipelines.
    [br]
    Bateman's maternal grandfather was a Moravian missionary, and from the age of 7 he was educated at the Moravian schools at Fairfield and Ockbrook. At the age of 15 he was apprenticed to a "civil engineer, land surveyor and agent" in Oldham. After this apprenticeship, Bateman commenced his own practice in 1833. One of his early schemes and reports was in regard to the flooding of the river Medlock in the Manchester area. He came to the attention of William Fairbairn, the engine builder and millwright of Canal Street, Ancoats, Manchester. Fairbairn used Bateman as his site surveyor and as such he prepared much of the groundwork for the Bann reservoirs in Northern Ireland. Whilst the reports on the proposals were in the name of Fairbairn, Bateman was, in fact, appointed by the company as their engineer for the execution of the works. One scheme of Bateman's which was carried forward was the Kendal Reservoirs. The Act for these was signed in 1845 and was implemented not for the purpose of water supply but for the conservation of water to supply power to the many mills which stood on the river Kent between Kentmere and Morecambe Bay. The Kentmere Head dam is the only one of the five proposed for the scheme to survive, although not all the others were built as they would have retained only small volumes of water.
    Perhaps the greatest monument to the work of J.F.La Trobe Bateman is Manchester's water supply; he was consulted about this in 1844, and construction began four years later. He first built reservoirs in the Longdendale valley, which has a very complicated geological stratification. Bateman favoured earth embankment dams and gravity feed rather than pumping; the five reservoirs in the valley that impound the river Etherow were complex, cored earth dams. However, when completed they were greatly at risk from landslips and ground movement. Later dams were inserted by Bateman to prevent water loss should the older dams fail. The scheme was not completed until 1877, by which time Manchester's population had exceeded the capacity of the original scheme; Thirlmere in Cumbria was chosen by Manchester Corporation as the site of the first of the Lake District water-supply schemes. Bateman, as Consulting Engineer, designed the great stone-faced dam at the west end of the lake, the "gothic" straining well in the middle of the east shore of the lake, and the 100-mile (160 km) pipeline to Manchester. The Act for the Thirlmere reservoir was signed in 1879 and, whilst Bateman continued as Consulting Engineer, the work was supervised by G.H. Hill and was completed in 1894.
    Bateman was also consulted by the authorities in Glasgow, with the result that he constructed an impressive water-supply scheme derived from Loch Katrine during the years 1856–60. It was claimed that the scheme bore comparison with "the most extensive aqueducts in the world, not excluding those of ancient Rome". Bateman went on to superintend the waterworks of many cities, mainly in the north of England but also in Dublin and Belfast. In 1865 he published a pamphlet, On the Supply of Water to London from the Sources of the River Severn, based on a survey funded from his own pocket; a Royal Commission examined various schemes but favoured Bateman's.
    Bateman was also responsible for harbour and dock works, notably on the rivers Clyde and Shannon, and also for a number of important water-supply works on the Continent of Europe and beyond. Dams and the associated reservoirs were the principal work of J.F.La Trobe Bateman; he completed forty-three such schemes during his professional career. He also prepared many studies of water-supply schemes, and appeared as professional witness before the appropriate Parliamentary Committees.
    [br]
    Principal Honours and Distinctions
    FRS 1860. President, Institution of Civil Engineers 1878, 1879.
    Bibliography
    Among his publications History and Description of the Manchester Waterworks, (1884, London), and The Present State of Our Knowledge on the Supply of Water to Towns, (1855, London: British Association for the Advancement of Science) are notable.
    Further Reading
    Obituary, 1889, Proceedings of the Royal Society 46:xlii-xlviii. G.M.Binnie, 1981, Early Victorian Water Engineers, London.
    P.N.Wilson, 1973, "Kendal reservoirs", Transactions of the Cumberland and Westmorland Antiquarian and Archaeological Society 73.
    KM / LRD

    Biographical history of technology > Bateman, John Frederick La Trobe

  • 9 Longbotham, John

    SUBJECT AREA: Canals
    [br]
    b. mid-seventeenth century Halifax (?), Yorkshire, England d. 1801
    [br]
    English canal engineer.
    [br]
    The nature of Longbotham's career before 1766 is unknown, although he was associated with Smeaton as a pupil and thus became acquainted with canal engineering. In 1766 he suggested a canal linking Leeds and Liverpool across the Pennines. The suggestion was accepted and in 1767–8 he surveyed the line of the Leeds \& Liverpool Canal. This was approved by the promoters and by Brindley, who had been called in as an assessor. The Act was obtained in 1770 and Longbotham was first appointed as Clerk of Works under Brindley as Chief Engineer. As the latter did not take up the appointment, Longbotham became Chief Engineer and from 1770 to 1775 was responsible for the design of locks and aqueducts. He also prepared contracts and supervised construction. Meanwhile, in 1768 he had proposed a canal from the Calder and Hebble to Halifax. In 1773 he was elected to the Smeatonian Society of Civil Engineers. As soon as a part of the Leeds and Liverpool Canal was opened he started a passenger packet service, but in 1775, after completing both 50 miles (80 km) of the canal and the Bradford Canal, he was dismissed from his post because of discrepancies in his accounts. However, in the early 1790s he again advised the Leeds and Liverpool proprietors, who were in difficulties on the summit level. Longbotham had colliery interests in the Uphol-land area of Wigan, and in 1787 he surveyed a proposed route for the Lancaster Canal. In 1792 he was also associated with the Grand Western Canal. Details of his later life are scarce, but it is known that he died in poverty in 1801 and that the Leeds \& Liverpool company paid his funeral expenses.
    JHB

    Biographical history of technology > Longbotham, John

  • 10 Robinson, George J.

    SUBJECT AREA: Textiles
    [br]
    b. 1712 Scotland
    d. 1798 England
    [br]
    Scottish manufacturer who installed the first Boulton \& Watt rotative steam-engine in a textile mill.
    [br]
    George Robinson is said to have been a Scots migrant who settled at Burwell, near Nottingham, in 1737, but there is no record of his occupation until 1771, when he was noticed as a bleacher. By 1783 he and his son were describing themselves as "merchants and thread manufacturers" as well as bleachers. For their thread, they were using the system of spinning on the waterframe, but it is not known whether they held a licence from Arkwright. Between 1776 and 1791, the firm G.J. \& J.Robinson built a series of six cotton mills with a complex of dams and aqueducts to supply them in the relatively flat land of the Leen valley, near Papplewick, to the north of Nottingham. By careful conservation they were able to obtain considerable power from a very small stream. Castle mill was not only the highest one owned by the Robinsons, but it was also the highest mill on the stream and was fed from a reservoir. The Robinsons might therefore have expected to have enjoyed uninterrupted use of the water, but above them lived Lord Byron in his estate of Newstead Priory. The fifth Lord Byron loved making ornamental ponds on his property so that he could have mock naval battles with his servants, and this tampered with the water supplies so much that the Robinsons found they were unable to work their mills.
    In 1785 they decided to order a rotative steam engine from the firm of Boulton \& Watt. It was erected by John Rennie; however, misfortune seemed to dog this engine, for parts went astray to Manchester and when the engine was finally running at the end of February 1786 it was found to be out of alignment so may not have been very successful. At about the same time, the lawsuit against Lord Byron was found in favour of the Robinsons, but the engine continued in use for at least twelve years and was the first of the type which was to power virtually all steamdriven mills until the 1850s to be installed in a textile mill. It was a low-pressure double-acting condensing beam engine, with a vertical cylinder, parallel motion connecting the piston toone end of a rocking beam, and a connecting rod at the other end of the beam turning the flywheel. In this case Watt's sun and planet motion was used in place of a crank.
    [br]
    Further Reading
    R.L.Hills, 1970, Power in the Industrial Revolution, Manchester (for an account of the installation of this engine).
    D.M.Smith, 1965, Industrial Archaeology of the East Midlands, Newton Abbot (describes the problems which the Robinsons had with the water supplies to power their mills).
    S.D.Chapman, 1967, The Early Factory Masters, Newton Abbot (provides details of the business activities of the Robinsons).
    J.D.Marshall, 1959, "Early application of steam power: the cotton mills of the Upper Leen", Transactions of the Thoroton Society of Nottinghamshire 60 (mentions the introduction of this steam-engine).
    RLH

    Biographical history of technology > Robinson, George J.

  • 11 Vauban, Sébastien de

    SUBJECT AREA: Canals, Civil engineering
    [br]
    b. 15 May 1633 St-Léger-de-Fougeret, Château Chinon, Nièvre, France
    d. 20 March 1707 Paris, France
    [br]
    French civil and military engineer.
    [br]
    Born of impecunious parents, Vauban joined Condé's regiment as a cadet in 1651, at the age of 17, although he had apparently acquired some knowledge of mathematics and fortifications in the Carmelite College of Semur-en-Auxois. In the war of the Fronde he was captured by the Royal troops in 1653 and was converted to the king's service. He was soon recognized as having engineering ability and was given the task of repairing the fortifications of Sainte-Menehould. During the next few years he was engaged on fortification repairs and assisting at sieges, including Ypres, Gravelines and Oudenarde in 1658. Vauban found favour with the king, Louis XIV, and was responsible for the fortifications of Lille, which had been captured in 1667; he commenced the defensive structures of the citadel and the town in 1668. These were completed in 1674 and consisted of a vast pentagonal fort with bastions and further detached works surrounded by water defences. In 1692 he was present at the siege of Namur and was responsible for its capture. He was then put in charge of re-establishing and improving the defences. He next developed a line of fortresses along the French border. He later was abandoned by the king, whom he had served so well, and, with his advice being ignored by the French forces, they suffered defeat after defeat in Marlborough's wars.
    Meanwhile he had been called in to inspect the recently completed Canal du Midi and subsequently made recommendations for its improvement. These included the extension of the Montagne Noire feeder, and the construction of the Cesse and Orbiel aqueducts which were carried out to his design and under his supervision in 1686–7. In 1700 he was consulted on and produced a plan for a canal across France from north to south, providing a barge waterway from Nîmes to Dunkirk, but this was not carried out.
    In 1703 he was created maréchal de France, and two years later he devised vast schemes for the development of the canal system in Flanders. Owing to determined opposition from the local people, these schemes were abandoned and not revived until 1770, by which time the locals were prepared to accept them.
    [br]
    Further Reading
    Sir Reginald Blomfield, 1938, Sébastien lePrestre de Vauban, 1633–1707, Methuen. D.Halevy, 1924, Vauban. Builder of Fortresses, trans. C.J.C.Street, Geoffrey Bles.
    JHB

    Biographical history of technology > Vauban, Sébastien de

  • 12 Vitruvius Pollio

    [br]
    b. early first century BC
    d. c. 25 BC
    [br]
    Roman writer on architecture and engineering subjects.
    [br]
    Nothing is known of Vitruvius apart from what can be gleaned from his only known work, the treatise De architectura. He seems to have been employed in some capacity by Julius Caesar and continued to serve under his heir, Octavianus, later Emperor Augustus, to whom he dedicated his book. It was written towards the end of his life, after Octavianus became undisputed ruler of the Empire by his victory at Actium in 31 BC, and was based partly on his own experience and partly on earlier, Hellenistic, writers.
    The De architectura is divided into ten books. The first seven books expound the general principles of architecture and the planning, design and construction of various types of building, public and domestic, including a consideration of techniques and materials. Book 7 deals with interior decoration, including stucco work and painting, while Book 8 treats water supply, from the location of sources to the transport of water by aqueducts, tunnels and pipes. Book 9, after a long and somewhat confused account of the astronomical theories of the day, describes various forms of clock and sundial. Finally, Book 10 deals with mechanical devices for handling building materials and raising and pumping water, for which Vitruvius draws on the earlier Greek authors Ctesibius and Hero.
    Although this may seem a motley assembly of subjects, to the Roman architect and builder it was a logical compendium of the subjects he was expected to know about. At the time, Vitruvius' rigid rules for the design of buildings such as temples seem to have had little influence, but his accounts of more practical matters of building materials and techniques were widely used. His illustrations to the original work were lost in antiquity, for no later manuscript includes them. Through the Middle Ages, manuscript copies were made in monastic scriptoria, although the architectural style in vogue had little relevance to those in Vitruvius: these came into their own with the Italian Renaissance. Alberti, writing the first great Renaissance treatise on architecture from 1452 to 1467, drew heavily on De architectura; those who sought to revive the styles of antiquity were bound to regard the only surviving text on the subject as authoritative. The appearance of the first printed edition in 1486 only served to extend its influence.
    During the sixteenth and seventeenth centuries, Vitruvius was used as a handbook for constructing machines and instruments. For the modern historian of technology and architecture the work is a source of prime importance, although it must be remembered that the illustrations in the early printed editions are of contemporary reproductions of ancient devices using the techniques of the time, rather than authentic representations of ancient technology.
    [br]
    Bibliography
    Of the several critical editions of De architectura there are the Teubner edition, 1899. ed. V.Rose, Leipzig; the Loeb Classical Library edition, 1962, ed. F.Granger, London: Heinemann, (with English trans. and notes); and the Collection Guillaume Budé with French trans. and full commentary, 10 vols, Paris (in progress).
    Further Reading
    Apart from the notes to the printed editions, see also: H.Plommer, 1973, Vitruvius and Later Roman Building Manuals, London. A.G.Drachmann, 1963, The Mechanical Technology of Greek and Roman Antiquity Copenhagen and London.
    S.L.Gibbs, 1976, Greek and Roman Sundials, New Haven and London.
    LRD

    Biographical history of technology > Vitruvius Pollio

См. также в других словарях:

  • aqueducts —    Water channels that carry freshwater from lakes or streams to distant towns. The Arabic word for aqueduct was qanat; the Persian word was kariz. In ancient Mesopotamia, the Assyrians and the Persians built aqueducts, mainly underground.    See …   Ancient Mesopotamia dictioary

  • aqueducts — ➡ canals * * * …   Universalium

  • aqueducts — aq·ue·duct || ækwɪdÊŒkt n. manmade canal for carrying water flow …   English contemporary dictionary

  • Inkan Aqueducts — The People of Tiwantinsuyu were great architects. They built many aqueducts for many purposes, such as drinking water or irrigation. Many aqueducts were cut directly into the stone of the ground. [ [http://www.rediscovermachupicchu.com/aqueducts.h… …   Wikipedia

  • List of aqueducts in the city of Rome — This page is a list of ancient Roman aqueducts in the city of Rome.IntroductionIn order to meet the massive water needs of its huge population, the city of Rome itself was supplied with 11 aqueducts. Their combined capacity was capable of… …   Wikipedia

  • List of canal aqueducts in the United Kingdom — This list of canal aqueducts in the United Kingdom covers aqueducts which have articles in Wikipedia. The actual number of canal aqueducts is much greater. Canal aqueducts in EnglandCanal aqueducts in ScotlandCanal aqueducts in Walesee also*… …   Wikipedia

  • List of Roman aqueducts by date — This is a list of Roman aqueducts listed in chronological order of their construction. Ancient Rome * Aqua Appia ** built in 312 B.C. ** source: springs convert|10|mi|km to the east of Rome ** length: convert|10|mi|km; underground from its source …   Wikipedia

  • List of aqueducts in the Roman Empire — This is a list of Roman aqueducts outside the city of Rome itself, sorted by modern country.IntroductionThe Romans built aqueducts in most sufficiently large cities in the Empire. Their remains (in some cases still functioning) may be found today …   Wikipedia

  • Shilhim —    Aqueducts, a town in the south of Judah (Josh. 15:32); called also Sharuhen and Shaaraim (19:6) …   Easton's Bible Dictionary

  • Aqueduct — An aqueduct is an artificial channel that is constructed to convey water from one location to another. The word is derived from the Latin aqua , water, and ducere ( to lead ). The word is also used for any bridge that carries water, similar to… …   Wikipedia

  • Sextus Julius Frontinus — (ca. 40 103 AD) was one of the most distinguished Roman aristocrats of the late first century AD, but is best known to the post Classical world as an author of technical treatises, especially one dealing with the aqueducts of Rome.In 70 he was… …   Wikipedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»