Перевод: со всех языков на английский

с английского на все языки

aerospace+war

  • 1 воздушно-космическая война

    1) Military: aerospace war
    2) Astronautics: aerospace warfare

    Универсальный русско-английский словарь > воздушно-космическая война

  • 2 боевые действия в воздушно-космическом пространстве

    Military: aerospace war

    Универсальный русско-английский словарь > боевые действия в воздушно-космическом пространстве

  • 3 боевые операции в воздушно-космическом пространстве

    Military: aerospace war

    Универсальный русско-английский словарь > боевые операции в воздушно-космическом пространстве

  • 4 Cobham, Sir Alan John

    SUBJECT AREA: Aerospace
    [br]
    b. 6 May 1894 London, England
    d. 21 October 1973 British Virgin Islands
    [br]
    English pilot who pioneered worldwide air routes and developed an in-flight refuelling system which is in use today.
    [br]
    Alan Cobham was a man of many parts. He started as a veterinary assistant in France during the First World War, but transferred to the Royal Flying Corps in 1917. After the war he continued flying, by giving joy-rides and doing aerial photography work. In 1921 he joined the De Havilland Aircraft Company (see de Havilland, Geoffrey) as a test and charter pilot; he was also successful in a number of air races. During the 1920s Cobham made many notable flights to distant parts of the British Empire, pioneering possible routes for airline operations. During the early 1930s Sir Alan (he was knighted in 1926) devoted his attention to generating a public interest in aviation and to campaigning for more airfields. Cobham's Flying Circus toured the country giving flying displays and joy-rides, which for thousands of people was their first experience of flying.
    In 1933 Cobham planned a non-stop flight to India by refuelling his aircraft while flying: this was not a new idea but the process was still experimental. The flight was unsuccessful due to a fault in his aircraft, unrelated to the in-flight refuelling system. The following year Flight Refuelling Ltd was founded, and by 1939 two Short flying boats were operating the first inflight-refuelled service across the Atlantic. Inflight refuelling was not required during the early years of the Second World War, so Cobham turned to other projects such as thermal de-icing of wings, and a scheme which was not carried out, for delivering fighters to the Middle East by towing them behind Wellington bombers.
    After the Second World War the fortunes of Flight Refuelling Ltd were at a low ebb, especially when British South American Airways abandoned the idea of using in-flight refuelling. Then an American contract and the use of their tanker aircraft to ferry oil during the Berlin Airlift saved the day. In 1949 Cobham's chief designer, Peter Macgregor, came up with an idea for refuelling fighters using a probe and drogue system. A large tanker aircraft trailed a hose with a conical drogue at the free end. The fighter pilot manoeuvred the probe, fitted to his aircraft, so that it locked into the drogue, enabling fuel to be transferred. Since the 1950s this system has become the effective world standard.
    [br]
    Principal Honours and Distinctions
    Knighted 1926. Air Force Cross 1926.
    Bibliography
    1978, A Time to Fly, ed. C.Derrick, London; pub. in paperback 1986 (Cobham's memoirs).
    Flight to the Cape and Back, 1926, London; Australia and Back, 1926, London;
    Twenty Thousand Miles in a Flying Boat, 1930, London.
    Further Reading
    Peter G.Proctor, 1975, "The life and work of Sir Alan Cobham", Aerospace (RAeS) (March).
    JDS

    Biographical history of technology > Cobham, Sir Alan John

  • 5 Sopwith, Sir Thomas (Tommy) Octave Murdoch

    SUBJECT AREA: Aerospace
    [br]
    b. 18 January 1888 London, England
    d. 27 January 1989 Stockbridge, Hampshire, England
    [br]
    English aeronautical engineer and industrialist.
    [br]
    Son of a successful mining engineer, Sopwith did not shine at school and, having been turned down by the Royal Navy as a result, attended an engineering college. His first interest was motor cars and, while still in his teens, he set up a business in London with a friend in order to sell them; he also took part in races and rallies.
    Sopwith's interest in aviation came initially through ballooning, and in 1906 he purchased his own balloon. Four years later, inspired by the recent flights across the Channel to France and after a joy-ride at Brooklands, he bought an Avis monoplane, followed by a larger biplane, and taught himself to fly. He was awarded the Royal Aero Society's Aviator Certificate No. 31 on 21 November 1910, and he quickly distinguished himself in flying competitions on both sides of the Atlantic and started his own flying school. In his races he was ably supported by his friend Fred Sigrist, a former motor engineer. Among the people Sopwith taught to fly were an Australian, Harry Hawker, and Major Hugh Trenchard, who later became the "father" of the RAF.
    In 1912, depressed by the poor quality of the aircraft on trial for the British Army, Sopwith, in conjunction with Hawker and Sigrist, bought a skating rink in Kingston-upon-Thames and, assisted by Fred Sigrist, started to design and build his first aircraft, the Sopwith Hybrid. He sold this to the Royal Navy in 1913, and the following year his aviation manufacturing company became the Sopwith Aviation Company Ltd. That year a seaplane version of his Sopwith Tabloid won the Schneider Trophy in the second running of this speed competition. During 1914–18, Sopwith concentrated on producing fighters (or "scouts" as they were then called), with the Pup, the Camel, the 1½ Strutter, the Snipe and the Sopwith Triplane proving among the best in the war. He also pioneered several ideas to make flying easier for the pilot, and in 1915 he patented his adjustable tailplane and his 1 ½ Strutter was the first aircraft to be fitted with air brakes. During the four years of the First World War, Sopwith Aviation designed thirty-two different aircraft types and produced over 16,000 aircraft.
    The end of the First World War brought recession to the aircraft industry and in 1920 Sopwith, like many others, put his company into receivership; none the less, he immediately launched a new, smaller company with Hawker, Sigrist and V.W.Eyre, which they called the H.G. Hawker Engineering Company Ltd to avoid any confusion with the former company. He began by producing cars and motor cycles under licence, but was determined to resume aircraft production. He suffered an early blow with the death of Hawker in an air crash in 1921, but soon began supplying aircraft to the Royal Air Force again. In this he was much helped by taking on a new designer, Sydney Camm, in 1923, and during the next decade they produced a number of military aircraft types, of which the Hart light bomber and the Fury fighter, the first to exceed 200 mph (322 km/h), were the best known. In the mid-1930s Sopwith began to build a large aviation empire, acquiring first the Gloster Aircraft Company and then, in quick succession, Armstrong-Whitworth, Armstrong-Siddeley Motors Ltd and its aero-engine counterpart, and A.V.Roe, which produced Avro aircraft. Under the umbrella of the Hawker Siddeley Aircraft Company (set up in 1935) these companies produced a series of outstanding aircraft, ranging from the Hawker Hurricane, through the Avro Lancaster to the Gloster Meteor, Britain's first in-service jet aircraft, and the Hawker Typhoon, Tempest and Hunter. When Sopwith retired as Chairman of the Hawker Siddeley Group in 1963 at the age of 75, a prototype jump-jet (the P-1127) was being tested, later to become the Harrier, a for cry from the fragile biplanes of 1910.
    Sopwith also had a passion for yachting and came close to wresting the America's Cup from the USA in 1934 when sailing his yacht Endeavour, which incorporated a number of features years ahead of their time; his greatest regret was that he failed in his attempts to win this famous yachting trophy for Britain. After his retirement as Chairman of the Hawker Siddeley Group, he remained on the Board until 1978. The British aviation industry had been nationalized in April 1977, and Hawker Siddeley's aircraft interests merged with the British Aircraft Corporation to become British Aerospace (BAe). Nevertheless, by then the Group had built up a wide range of companies in the field of mechanical and electrical engineering, and its board conferred on Sopwith the title Founder and Life President.
    [br]
    Principal Honours and Distinctions
    Knighted 1953. CBE 1918.
    Bibliography
    1961, "My first ten years in aviation", Journal of the Royal Aeronautical Society (April) (a very informative and amusing paper).
    Further Reading
    A.Bramson, 1990, Pure Luck: The Authorized Biography of Sir Thomas Sopwith, 1888– 1989, Wellingborough: Patrick Stephens.
    B.Robertson, 1970, Sopwith. The Man and His Aircraft, London (a detailed publication giving plans of all the Sopwith aircraft).
    CM / JDS

    Biographical history of technology > Sopwith, Sir Thomas (Tommy) Octave Murdoch

  • 6 Messerschmitt, Willi E.

    SUBJECT AREA: Aerospace
    [br]
    b. 26 June 1898 Frankfurt-am-Main, Germany
    d. 17 September 1978 Munich, Germany
    [br]
    German aircraft designer noted for successful fighters such as the Bf 109, one of the world's most widely produced aircraft.
    [br]
    Messerschmitt studied engineering at the Munich Institute of Tchnology and obtained his degree in 1923. By 1926 he was Chief Designer at the Bayerische Flugzeugwerke in Augsburg. Due to the ban on military aircraft in Germany following the First World War, his early designs included gliders, light aircraft, and a series of high-wing airliners. He began to make a major impact on German aircraft design once Hitler came to power and threw off the shackles of the Treaty of Versailles, which so restricted Germany's armed forces. In 1932 he bought out the now-bankrupt Bayerische Flugzeugwerke, but initially, because of enmity between himself and the German aviation minister, was not invited to compete for an air force contract for a single-engined fighter. However, in 1934 Messerschmitt designed the Bf 108 Taifun, a small civil aircraft with a fighter-like appearance. This displayed the quality of his design and the German air ministry was forced to recognize him. As a result, he unveiled the famous Bf 109 fighter which first flew in August 1935; it was used during the Spanish Civil War in 1936–9, and was to become one of the foremost combat aircraft of the Second World War. In 1938, after several name changes, the company became Messerschmitt Aktien-Gesellschaft (and hence a change of prefix from Bf to Me). During April 1939 a Messerschmitt aircraft broke the world air-speed record at 755.14 km/h (469.32 mph): it was entered in the FAI records as a Bf 109R, but was more accurately a new design designated Me 209V-1.
    During the Second World War, the 5/70P was progressively improved, and eventually almost 35,000 were built. Other successful fighters followed, such as the twin-engined Me 110 which also served as a bomber and night fighter. The Messerschmitt Me 262 twin-engined jet fighter, the first jet aircraft in the world to enter service, flew during the early years of the war, but it was never given a high priority by the High Command and only a small number were in service when the war ended. Another revolutionary Messerschmitt AG design was the Me 163 Komet, the concept of Professor Alexander Lippisch who had joined Messerschmitt's company in 1939; this was the first rocket-propelled fighter to enter service. It was a small tailless design capable of 880 km/hr (550 mph), but its duration under power was only about 10 minutes and it was very dangerous to fly. From late 1944 onwards it was used to intercept the United States Air Force bombers during their daylight raids. At the other end of the scale, Messerschmitt produced the Me 321 Gigant, a huge transport glider which was towed behind a flight of three Me 110s. Later it was equipped with six engines, but it was an easy target for allied fighters. This was a costly white elephant, as was his high-speed twin-engined Me 210 fighter-bomber project which nearly made his company bankrupt. Nevertheless, he was certainly an innovator and was much admired by Hitler, who declared that he had "the skull of a genius", because of the Me 163 Komet rocket-powered fighter and the Me 262.
    At the end of the war Messerschmitt was detained by the Americans for two years. In 1952 Messerschmitt became an aviation adviser to the Spanish government, and his Bf109 was produced in Spain as the Hispano Buchon for a number of years and was powered by Rolls-Royce Merlin engines. A factory was also constructed in Egypt to produce aircraft to Messerschmitt's designs. His German company, banned from building aircraft, produced prefabricated houses, sewing machines and, from 1953 to 1962, a series of bubble-cars: the KR 175 (1953–55) and the KR 200 (1955–62) were single-cylinder three-wheeled bubble-cars, and the Tiger (1958–62) was a twin-cylinder, 500cc four-wheeler. In 1958 Messerschmitt resumed aircraft construction in Germany and later became the Honorary Chairman of the merged Messerschmitt-Bölkow-Blohm company (now part of the Franco-German Eurocopter company).
    [br]
    Further Reading
    van Ishoven, 1975, Messerschmitt. Aircraft Designer, London. J.Richard Smith, 1971, Messerschmitt. An Air-craft Album, London.
    Anthony Pritchard, 1975, Messerschmitt, London (describes Messerschmitt aircraft).
    JDS / CM

    Biographical history of technology > Messerschmitt, Willi E.

  • 7 система воздушно-космической обороны

    Military: aerospace defense system (англ. термин взят из кн.: Barnett J.R. Future War: An Assessment of Aerospace Campaigns in 2010. - DIANE Publishing, 1998. - 169 p.)

    Универсальный русско-английский словарь > система воздушно-космической обороны

  • 8 Camm, Sir Sydney

    [br]
    b. 5 August 1893 Windsor, Berkshire, England
    d. 12 March 1966 Richmond, Surrey, England
    [br]
    English military aircraft designer.
    [br]
    He was the eldest of twelve children and his father was a journeyman carpenter, in whose footsteps Camm followed as an apprentice woodworker. He developed an early interest in aircraft, becoming a keen model maker in his early teens and taking a major role in founding a local society to this end, and in 1912 he designed and built a glider able to carry people. During the First World War he worked as a draughtsman for the aircraft firm Martinsyde, but became increasingly involved in design matters as the war progressed. In 1923 Camm was recruited by Sopwith to join his Hawker Engineering Company as Senior Draughtsman, but within two years had risen to be Chief Designer. His first important contribution was to develop a method of producing metal aircraft, using welded steel tubes, and in 1926 he designed his first significant aircraft, the Hawker Horsley torpedo-bomber, which briefly held the world long-distance record before it was snatched by Charles Lindbergh in his epic New York-Paris flight in 1927. His Hawker Hart light bomber followed in 1928, after which came his Hawker Fury fighter.
    By the mid-1930s Camm's reputation as a designer was such that he was able to wield significant influence on the Air Ministry when Royal Air Force (RAF) aircraft specifications were being drawn up. His outstanding contribution came, however, with the unveiling of his Hawker Hurricane in 1935. This single-seater fighter was to prove one of the backbones of the RAF during 1939–45, but during the war he also designed two other excellent fighters: the Tempest and the Typhoon. After the Second World War Camm turned to jet aircraft, producing in 1951 the Hawker Hunter fighter/ground-attack aircraft, which saw lengthy service in the RAF and many other air forces. His most revolutionary contribution was the design of the Harrier jump-jet, beginning with the P.1127 prototype in 1961, followed by the Kestrel three years later. These were private ventures, but eventually the Government saw the enormous merit in the vertical take-off and landing concept, and the Harrier came to fruition in 1967. Sadly Camm, who was on the Board of Sopwith Hawker Siddeley Group, died before the aircraft came into service. He is permanently commemorated in the Camm Memorial Hall at the RAF Museum, Hendon, London.
    [br]
    Principal Honours and Distinctions
    CBE 1941. Knighted 1953. Associate Fellow of the Royal Aeronautical Society 1918, Fellow 1932, President 1954–5, Gold Medal 1958. Daniel Guggenheim Medal (USA) 1965.
    Further Reading
    Alan Bramson, 1990, Pure Luck: The Authorized Biography of Sir Thomas Sopwith, 1888–1989, Wellingborough: Patrick Stephens (provides information about Camm and his association with Sopwith).
    Dictionary of National Biography, 1961–70.
    CM

    Biographical history of technology > Camm, Sir Sydney

  • 9 Dassault (Bloch), Marcel

    SUBJECT AREA: Aerospace
    [br]
    b. 22 January 1892 Paris, France
    d. 18 April 1986 Paris, France
    [br]
    French aircraft designer and manufacturer, best known for his jet fighters the Mystère and Mirage.
    [br]
    During the First World War, Marcel Bloch (he later changed his name to Dassault) worked on French military aircraft and developed a very successful propeller. With his associate, Henri Potez, he set up a company to produce their Eclair wooden propeller in a furniture workshop in Paris. In 1917 they produced a two-seater aircraft which was ordered but then cancelled when the war ended. Potez continued to built aircraft under his own name, but Bloch turned to property speculation, at which he was very successful. In 1930 Bloch returned to the aviation business with an unsuccessful bomber followed by several moderately effective airliners, including the Bloch 220 of 1935, which was similar to the DC-3. He was involved in the design of a four-engined airliner, the SNCASE Languedoc, which flew in September 1939. During the Second World War, Bloch and his brothers became important figures in the French Resistance Movement. Marcel Bloch was eventually captured but survived; however, one of his brothers was executed, and after the war Bloch changed his name to Dassault, which had been his brother's code name in the Resistance. During the 1950s, Avions Marcel Dassault rapidly grew to become Europe's foremost producer of jet fighters. The Ouragon was followed by the Mystère, Etendard and then the outstanding Mirage series. The basic delta-winged Mirage III, with a speed of Mach 2, was soon serving in twenty countries around the world. From this evolved a variable geometry version, a vertical-take-off aircraft, an enlarged light bomber capable of carrying a nuclear bomb, and a swept-wing version for the 1970s. Dassault also produced a successful series of jet airliners starting with the Fan Jet Falcon of 1963. When the Dassault and Breguet companies merged in 1971, Marcel Dassault was still a force to be reckoned with.
    [br]
    Principal Honours and Distinctions
    Guggenheim Medal. Deputy, Assemblée nationale 1951–5 and 1958–86.
    Bibliography
    1971, Le Talisman, Paris: Editions J'ai lu (autobiography).
    Further Reading
    1976, "The Mirage Maker", Sunday Times Magazine (1 June).
    Jane's All the World's Aircraft, London: Jane's (details of Bloch and Dassault aircraft can be found in various years' editions).
    JDS

    Biographical history of technology > Dassault (Bloch), Marcel

  • 10 Flettner, Anton

    SUBJECT AREA: Aerospace
    [br]
    b. 1 November 1885 Eddersheim-am-Main, Germany
    d. 29 December 1961 New York, USA
    [br]
    German engineer and inventor who produced a practical helicopter for the German navy in 1940.
    [br]
    Anton Flettner was an engineer with a great interest in hydraulics and aerodynamics. At the beginning of the First World War Flettner was recruited by Zeppelin to investigate the possibility of radio-controlled airships as guided missiles. In 1915 he constructed a small radio-controlled tank equipped to cut barbed-wire defences; the military experts rejected it, but he was engaged to investigate radio-controlled pilotless aircraft and he invented a servo-control device to assist their control systems. These servo-controls, or trim tabs, were used on large German bombers towards the end of the war. In 1924 he invented a sailing ship powered by rotating cylinders, but although one of these crossed the Atlantic they were never a commercial success. He also invented a windmill and a marine rudder. In the late 1920s Flettner turned his attention to rotating-wing aircraft, and in 1931 he built a helicopter with small engines mounted on the rotor blades. Progress was slow and it was abandoned after being damaged during testing in 1934. An autogiro followed in 1936, but it caught fire on a test flight and was destroyed. Undeterred, Flettner continued his development work on helicopters and in 1937 produced the Fl 185, which had a single rotor to provide lift and two propellers on outriggers to combat the torque and provide forward thrust. This arrangement was not a great success, so he turned to twin contra-rotating rotors, as used by his rival Focke, but broke new ground by using intermeshing rotors to make a more compact machine. The Fl 265 with its "egg-beater" rotors was ordered by the German navy in 1938 and flew the following year. After exhaustive testing, Flettner improved his design and produced the two-seater Fl 282 Kolibri, which flew in 1940 and became the only helicopter to be used operationally during the Second World War.
    After the war, Flettner moved to the United States where his intermeshing-rotor idea was developed by the Kaman Aircraft Corporation.
    [br]
    Bibliography
    1926, Mein Weg zum Rotor, Leipzig; also published as The Story of the Rotor, New York (describes his early work with rotors—i.e. cylinders).
    Further Reading
    W.Gunston and J.Batchelor, 1977, Helicopters 1900–1960, London.
    R.N.Liptrot, 1948, Rotating Wing Activities in Germany during the Period 1939–45, London.
    K.von Gersdorff and K.Knobling, 1982, Hubschrauber und Tragschrauber, Munich (a more recent publication, in German).
    JDS

    Biographical history of technology > Flettner, Anton

  • 11 Fokker, Anthony Herman Gerard

    SUBJECT AREA: Aerospace
    [br]
    b. 6 April 1890 Kediri, Java, Dutch East Indies (now Indonesia)
    d. 23 December 1939 New York, USA
    [br]
    Dutch designer of German fighter aircraft during the First World War and of many successful airliners during the 1920s and 1930s.
    [br]
    Anthony Fokker was born in Java, where his Dutch father had a coffee plantation. The family returned to the Netherlands and, after schooling, young Anthony went to Germany to study aeronautics. With the aid of a friend he built his first aeroplane, the Spin, in 1910: this was a monoplane capable of short hops. By 1911 Fokker had improved the Spin and gained a pilot's licence. In 1912 he set up a company called Fokker Aeroplanbau at Johannistal, outside Berlin, and a series of monoplanes followed.
    When war broke out in 1914 Fokker offered his designs to both sides, and the Germans accepted them. His E I monoplane of 1915 caused a sensation with its manoeuvrability and forward-firing machine gun. Fokker and his collaborators improved on the French deflector system introduced by Raymond Saulnier by fitting an interrupter gear which synchronized the machine gun to fire between the blades of the rotating propeller. The Fokker Dr I triplane and D VII biplane were also outstanding German fighters of the First World War. Fokker's designs were often the work of an employee who received little credit: nevertheless, Fokker was a gifted pilot and a great organizer. After the war, Fokker moved back to the Netherlands and set up the Fokker Aircraft Works in Amsterdam. In 1922, however, he emigrated to the USA and established the Atlantic Aircraft Corporation in New Jersey. His first significant success there came the following year when one of his T-2 monoplanes became the first aircraft to fly non-stop across the USA, from New York to San Diego. He developed a series of civil aircraft using the well-proven method of construction he used for his fighters: fuselages made from steel tubes and thick, robust wooden wings. Of these, probably the most famous was the F VII/3m, a high-wing monoplane with three engines and capable of carrying about ten passengers. From 1925 the F VII/3m airliner was used worldwide and made many record-breaking flights, such as Lieutenant-Commander Richard Byrd's first flight over the North Pole in 1926 and Charles Kingsford-Smith's first transpacific flight in 1928. By this time Fokker had lost interest in military aircraft and had begun to see flight as a means of speeding up global communications and bringing people together. His last years were spent in realizing this dream, and this was reflected in his concentration on the design and production of passenger aircraft.
    [br]
    Principal Honours and Distinctions
    Royal Netherlands Aeronautical Society Gold Medal 1932.
    Bibliography
    1931, The Flying Dutchman: The Life of Anthony Fokker, London: Routledge \& Sons (an interesting, if rather biased, autobiography).
    Further Reading
    A.R.Weyl, 1965, Fokker: The Creative Years, London; reprinted 1988 (a very detailed account of Fokker's early work).
    Thijs Postma, 1979, Fokker: Aircraft Builders to the World, Holland; 1980, English edn, London (a well-illustrated history of Fokker and the company).
    Henri Hegener, 1961, Fokker: The Man and His Aircraft, Letchworth, Herts.
    JDS / CM

    Biographical history of technology > Fokker, Anthony Herman Gerard

  • 12 Handley Page, Sir Frederick

    SUBJECT AREA: Aerospace
    [br]
    b. 15 November 1885 Cheltenham, England
    d. 21 April 1962 London, England
    [br]
    English aviation pioneer, specialist in large aircraft and developer of the slotted wing for safer slow flying.
    [br]
    Frederick Handley Page trained as an electrical engineer but soon turned his attention to the more exciting world of aeronautics. He started by manufacturing propellers for aeroplanes and airships, and then in 1909 he founded a public company. His first aeroplane, the Bluebird, was not a success, but an improved version flew well. It was known as the "Yellow Peril" because of its yellow doped finish and made a notable flight across London from Barking to Brooklands. In 1910 Handley Page became one of the first college lecturers in aeronautical engineering. During the First World War Handley Page concentrated on the production of large bombers. The 0/100 was a biplane with a wing span of 100 ft (30 m) and powered by two engines: it entered service in 1916. In 1918 an improved version, the 0/400, entered service and a larger four-engined bomber made its first flight. This was the V/1500, which was designed to bomb Berlin, but the war ended before this raid took place. After the war, Handley Page turned his attention to airline operations with the great advantage of having at his disposal large bombers which could be adapted to carry passengers. Handley Page Air Transport Ltd was formed in 1919 and provided services to several European cities. Eventually this company became part of Imperial Airways, but Handley Page continued to supply them with large airliners. Probably the most famous was the majestic HP 42 four-engined biplane, which set very high standards of comfort and safety. Safety was always important to Handley Page and in 1920 he developed a wing with a slot along the leading edge: this made slow flying safer by delaying the stall. Later versions used separate aerofoil-shaped slats on the leading edge that were sometimes fixed, sometimes retractable. The HP 42 was fitted with these slats. From the 1930s Handley Page produced a series of bombers, such as the Heyford, Hampden, Harrow and, most famous of all, the Halifax, which played a major role in the Second World War. Then followed the Victor V-bomber of 1952 with its distinctive "crescent" wing and high tailplane. Sir Frederick's last venture was the Herald short-haul airliner of 1955; designed to replace the ubiquitous Douglas DC-3, it was only a limited success.
    [br]
    Principal Honours and Distinctions
    Knighted 1942. CBE 1918. Lord Lieutenant of the County of Middlesex 1956–60. Honorary Fellow of the Royal Aeronautical Society.
    Bibliography
    1950, "Towards slower and safer flying, improved take-off and landing and cheaper airports", Journal of the Royal Aeronautical Society.
    Further Reading
    D.C.Clayton, 1970, Handley Page: An Aircraft Album, London (for details of his aircraft).
    C.H.Barnes, 1976, Handley Page Aircraft since 1907, London.
    JDS

    Biographical history of technology > Handley Page, Sir Frederick

  • 13 Heinkel, Ernst

    [br]
    b. 24 January 1888 Grünbach, Remstal, Germany
    d. 30 January 1958 Stuttgart, Germany
    [br]
    German aeroplane designer who was responsible for the first jet aeroplane to fly.
    [br]
    The son of a coppersmith, as a young man Ernst Heinkel was much affected by seeing the Zeppelin LZ 4 crash and burn out at Echterdringen, near Stuttgart. After studying engineering, in 1910 he designed his first aeroplane, but it crashed; he was more successful the following year when he made a flight in it, with an engine on hire from the Daimler company. After a period working for a firm near Munich and for LVG at Johannisthal, near Berlin, he moved to the Albatros Company of Berlin with a monthly salary of 425 marks. In May 1913 he moved to Lake Constance to work on the design of sea-planes and in May 1914 he moved again, this time to the Brandenburg Company, where he remained as a designer until 1922, when he founded his own company, Ernst Heinkel Flugzeugwerke. Following the First World War, German companies were not allowed to build military aircraft, which was frustrating for Heinkel whose main interest was high-speed aircraft. His sleek He 70 airliner, built for Lufthansa, was designed to carry four passengers at high speeds: indeed it broke many records in 1933. Lufthansa decided it needed a larger version capable of carrying ten passengers, so Heinkel produced his most famous aeroplane, the He 111. Although it was designed as a twin-engined airliner on the surface, secretly Heinkel was producing a bomber. The airliner version first flew on Lufthansa routes in 1936, and by 1939 almost 1,000 bombers were in service with the Luftwaffe. A larger four-engined bomber, the He 177, ran into development problems and it did not see service until late in the Second World War. Heinkel's quest for speed led to the He 176 rocket-powered research aeroplane which flew on 20 June 1939, but Hitler and Goering were not impressed. The He 178, with Dr Hans von Ohain's jet engine, made its historic first flight a few weeks later on 27 August 1939; this was almost two years before the maiden flight in Britain of the Gloster E 28/39, powered by Whittle's jet engine. This project was a private venture by Heinkel and was carried out in great secrecy, so the world's first jet aircraft went almost unnoticed. Heinkel's jet fighters, the He 280 and the He 162, were never fully operational. After the war, Heinkel in 1950 set up a new company which made bicycles, motor cycles and "bubble" cars.
    [br]
    Bibliography
    1956, He 1000, trans. M.Savill, London: Hutchinson (the English edition of his autobiography).
    Further Reading
    Jane's Fighting Aircraft of World War II, London: Jane's; reprinted 1989.
    P. St J.Turner, 1970, Heinkel: An Aircraft Album, London.
    H.J.Nowarra, 1975, Heinkel und seine Flugzeuge, Munich (a comprehensive record of his aircraft).
    JDS / IMcN

    Biographical history of technology > Heinkel, Ernst

  • 14 Oberth, Hermann Julius

    SUBJECT AREA: Aerospace
    [br]
    b. 25 June 1894 Nagyszeben, Transylvania (now Sibiu, Romania)
    d. 29 December 1989 Nuremberg, Germany
    [br]
    Austro-Hungarian lecturer who is usually regarded, with Robert Goddard, as one of the "fathers" of modern astronautics.
    [br]
    The son of a physician, Oberth originally studied medicine in Munich, but his education was interrupted by the First World War and service in the Austro-Hungarian Army. Wounded, he passed the time by studying astronautics. He apparently simulated weightlessness and worked out the design for a long-range liquid-propelled rocket, but his ideas were rejected by the War Office; after the war he submitted them as a dissertation for a PhD at Heidelberg University, but this was also rejected. Consequently, in 1923, whilst still an unknown mathematics teacher, he published his ideas at his own expense in the book The Rocket into Interplanetary Space. These included a description of how rockets could achieve a sufficient velocity to escape the gravitational field of the earth. As a result he gained international prestige almost overnight and learned of the work of Robert Goddard and Konstantin Tsiolkovsky. After correspondence with the Goddard and Tsiolkovsky, Oberth published a further work in 1929, The Road to Space Travel, in which he acknowledged the priority of Goddard's and Tsiolkovski's calculations relating to space travel; he went on to anticipate by more than thirty years the development of electric and ionic propulsion and to propose the use of giant mirrors to control the weather. For this he was awarded the annual Hirsch Prize of 10,000 francs. From 1925 to 1938 he taught at a college in Mediasch, Transylvania, where he carried out experiments with petroleum and liquid-air rockets. He then obtained a lecturing post at Vienna Technical University, moving two years later to Dresden University and becoming a German citizen. In 1941 he became assistant to the German rocket engineer Werner von Braun at the rocket development centre at Peenemünde, and in 1943 he began work on solid propellants. After the Second World War he spent a year in Switzerland as a consultant, then in 1950 he moved to Italy to develop solid-propellant anti-aircraft rockets for the Italian Navy. Five years later he moved to the USA to carry out advanced rocket research for the US Army at Huntsville, Alabama, and in 1958 he retired to Feucht, near Nuremberg, Germany, where he wrote his autobiography.
    [br]
    Principal Honours and Distinctions
    French Astronautical Society REP-Hirsch Prize 1929. German Society for Space Research Medal 1950. Diesel German Inventors Medal 1954. American Astronautical Society Award 1955. German Federal Republic Award 1961. Institute of Aviation and Astronautics Medal 1969.
    Bibliography
    1923, Die Rakete zu den Planetenraumen; repub. 1934 as The Rocket into Interplanetary Space (autobiography).
    1929, Wege zur Raumschiffahrt [Road to Space Travel].
    1959, Stoff und Leben [Material and Life].
    Further Reading
    R.Spangenburg and D.Moser, 1990, Space People from A to Z, New York: Facts on File. H.Wulforst, 1991, The Rocketmakers: The Dreamers who made Spaceflight a Reality, New York: Crown Publishers.
    KF / IMcN

    Biographical history of technology > Oberth, Hermann Julius

  • 15 Wallis, Sir Barnes Neville

    [br]
    b. 26 September 1887 Ripley, Derbyshire, England
    d. 30 October 1979 Leatherhead, Surrey, England
    [br]
    English aeronautical designer and inventor.
    [br]
    Wallis was apprenticed first at Thames Engineering Works, and then, in 1908, at John Samuel White's shipyard at Cowes. In 1913, the Government, spurred on by the accelerating development of the German Zeppelins (see Zeppelin, Ferdinand von), ordered an airship from Vickers; Wallis was invited to join the design team. Thus began his long association with aeronautical design and with Vickers. This airship, and the R80 that followed it, were successfully completed, but the military lost interest in them.
    In 1924 the Government initiated a programme for the construction of two airships to settle once and for all their viability for long-dis-tance air travel. The R101 was designed by a Government-sponsored team, but the R100 was designed by Wallis working for a subsidiary of Vickers. The R100 took off on 29 July 1930 for a successful round trip to Canada, but the R101 crashed on its first flight on 4 October, killing many of its distinguished passengers. The shock of this disaster brought airship development in Britain to an abrupt end and forced Wallis to direct his attention to aircraft.
    In aircraft design, Wallis is known for his use of geodesic construction, which combined lightness with strength. It was applied first to the single-engined "Wellesley" and then the twin-en-gined "Wellington" bomber, which first flew in 1936. With successive modifications, it became the workhorse of RAF Bomber Command during the Second World War until the autumn of 1943, when it was replaced by four-engined machines. In other areas, it remained in service until the end of the war and, in all, no fewer than 11,461 were built.
    Wallis is best known for his work on bomb design, first the bouncing bomb that was used to breach the Möhne and Eder dams in the Ruhr district of Germany in 1943, an exploit immortalized in the film Dambusters. Encouraged by this success, the authorities then allowed Wallis to realize an idea he had long urged, that of heavy, penetration bombs. In the closing stages of the war, Tallboy, of 12,000 lb (5,400 kg), and the 10-ton Grand Slam were used to devastating effect.
    After the Second World War, Wallis returned to aeronautical design and was given his own department at Vickers to promote his ideas, principally on variable-geometry or swing-wing aircraft. Over the next thirteen years he battled towards the prototype stage of this revolutionary concept. That never came, however; changing conditions and requirements and increasing costs led to the abandonment of the project. Bit-terly disappointed, Wallis continued his researches into high-speed aircraft until his retirement from Vickers (by then the British Aircraft Corporation), in 1971.
    [br]
    Principal Honours and Distinctions
    Knighted 1968. FRS 1945.
    Further Reading
    J.Morpurgo, 1972, Barnes Wallis: A Biography, London: Longman (a readable account, rather biased in Wallis's favour).
    C.J.Heap, 1987, The Papers of Sir Barnes Wallis (1887–1979) in the Science Museum Library, London: Science Museum; with a biographical introd. by L.R.Day.
    LRD

    Biographical history of technology > Wallis, Sir Barnes Neville

  • 16 Watson-Watt, Sir Robert Alexander

    [br]
    b. 13 April 1892 Brechin, Angus, Scotland
    d. 6 December 1973 Inverness, Scotland
    [br]
    Scottish engineer and scientific adviser known for his work on radar.
    [br]
    Following education at Brechin High School, Watson-Watt entered University College, Dundee (then a part of the University of St Andrews), obtaining a BSc in engineering in 1912. From 1912 until 1921 he was Assistant to the Professor of Natural Philosophy at St Andrews, but during the First World War he also held various posts in the Meteorological Office. During. this time, in 1916 he proposed the use of cathode ray oscillographs for radio-direction-finding displays. He joined the newly formed Radio Research Station at Slough when it was opened in 1924, and 3 years later, when it amalgamated with the Radio Section of the National Physical Laboratory, he became Superintendent at Slough. At this time he proposed the name "ionosphere" for the ionized layer in the upper atmosphere. With E.V. Appleton and J.F.Herd he developed the "squegger" hard-valve transformer-coupled timebase and with the latter devised a direction-finding radio-goniometer.
    In 1933 he was asked to investigate possible aircraft counter-measures. He soon showed that it was impossible to make the wished-for radio "death-ray", but had the idea of using the detection of reflected radio-waves as a means of monitoring the approach of enemy aircraft. With six assistants he developed this idea and constructed an experimental system of radar (RAdio Detection And Ranging) in which arrays of aerials were used to detect the reflected signals and deduce the bearing and height. To realize a practical system, in September 1936 he was appointed Director of the Bawdsey Research Station near Felixstowe and carried out operational studies of radar. The result was that within two years the East Coast of the British Isles was equipped with a network of radar transmitters and receivers working in the 7–14 metre band—the so-called "chain-home" system—which did so much to assist the efficient deployment of RAF Fighter Command against German bombing raids on Britain in the early years of the Second World War.
    In 1938 he moved to the Air Ministry as Director of Communications Development, becoming Scientific Adviser to the Air Ministry and Ministry of Aircraft Production in 1940, then Deputy Chairman of the War Cabinet Radio Board in 1943. After the war he set up Sir Robert Watson-Watt \& Partners, an industrial consultant firm. He then spent some years in relative retirement in Canada, but returned to Scotland before his death.
    [br]
    Principal Honours and Distinctions
    Knighted 1942. CBE 1941. FRS 1941. US Medal of Merit 1946. Royal Society Hughes Medal 1948. Franklin Institute Elliot Cresson Medal 1957. LLD St Andrews 1943. At various times: President, Royal Meteorological Society, Institute of Navigation and Institute of Professional Civil Servants; Vice-President, American Institute of Radio Engineers.
    Bibliography
    1923, with E.V.Appleton \& J.F.Herd, British patent no. 235,254 (for the "squegger"). 1926, with J.F.Herd, "An instantaneous direction reading radio goniometer", Journal of
    the Institution of Electrical Engineers 64:611.
    1933, The Cathode Ray Oscillograph in Radio Research.
    1935, Through the Weather Hours (autobiography).
    1936, "Polarisation errors in direction finders", Wireless Engineer 13:3. 1958, Three Steps to Victory.
    1959, The Pulse of Radar.
    1961, Man's Means to his End.
    Further Reading
    S.S.Swords, 1986, Technical History of the Beginnings of Radar, Stevenage: Peter Peregrinus.
    KF

    Biographical history of technology > Watson-Watt, Sir Robert Alexander

  • 17 Zeppelin, Count Ferdinand von

    SUBJECT AREA: Aerospace
    [br]
    b. 8 July 1838 Konstanz, Germany
    d. 8 March 1917 Berlin, Germany
    [br]
    German designer of rigid airships, which became known as Zeppelins.
    [br]
    Zeppelin served in the German Army and retired with the rank of General in 1890. While in the army, he was impressed by the use of balloons in the American Civil War and during the Siege of Paris. By the time he retired, non-rigid airships were just beginning to make their mark. Zeppelin decided to build an airship with a rigid framework to support the gas bags. Plans were drawn up in 1893 with the assistance of Theodore Kober, an engineer, but the idea was rejected by the authorities. A company was founded in 1898 and construction began. The Luftschiff Zeppelin No. 1 (LZ1) made its first flight on 2 July 1900. Modifications were needed and the second flight took place in October. A reporter called Hugo Eckener covered this and later flights: his comments and suggestions so impressed Zeppelin that Eckener eventually became his partner, publicist, fund-raiser and pilot.
    The performance of the subsequent Zeppelins gradually improved, but there was limited military interest. In November 1909 a company with the abbreviated name DELAG was founded to operate passenger-carrying Zeppelins. The service was opened by LZ 7 Deutschland in mid-June 1910, and the initial network of Frankfurt, Baden- Baden and Düsseldorf was expanded. Eckener became a very efficient Director of Flight Operations, and by the outbreak of war in 1914 some 35,000 passengers had been carried without any fatalities. During the First World War many Zeppelins were built and they carried out air-raids on Britain. Despite their menacing reputation, they were very vulnerable to attack by fighters. Zeppelin, now in his seventies, turned his attention to large bombers, following the success of Sikorsky's Grand, but he died in 1917. Eckener continued to instruct crews and improve the Zeppelin designs. When the war ended Eckener arranged to supply the Americans with an airship as part of German reparations: this became the Los Angeles. In 1928 a huge new airship, the Graf Zeppelin, was completed and Eckener took command. He took the Graf Zeppelin on many successful flights, including a voyage around the world in 1929.
    [br]
    Bibliography
    Further Reading
    There are many books on the history of airships, and on Graf von Zeppelin in particular. Of note are: H.Eckener, 1938, Count Zeppelin: The Man and His Work, London.
    ——1958, My Zeppelins, London.
    P.W.Brooks, 1992, Zeppelin: Rigid Airships 1893–1940, London.
    T.Nielson, 1955, The Zeppelin Story: The Life of Hugo Eckener, English edn, London (written as a novel in direct speech).
    M.Goldsmith, 1931, Zeppelin: A Biography, New York.
    W.R.Nitshe, 1977, The Zeppelin Story, New York.
    F.Gütschow, 1985, Das Luftschiff, Stuttgart (a record of all the airships).
    JDS

    Biographical history of technology > Zeppelin, Count Ferdinand von

  • 18 Boeing, William Edward

    SUBJECT AREA: Aerospace
    [br]
    b. 1 October 1881 Detroit, Michigan, USA
    d. 28 September 1956 USA
    [br]
    American aircraft designer, creator of one of the most successful aircraft manufacturing companies in the world.
    [br]
    In 1915 William E.Boeing and his friend Commander Conrad Westervelt decided that they could improve on the aeroplanes then being produced in the United States. Boeing was a prominent Seattle businessman with interests in land and timber, while Westervelt was an officer in the US Navy. They bought a Martin Model T float-plane in order to gain some experience and then produced their own design, the B \& W, which first flew in June 1916. Westervelt was transferred to the East, leaving Boeing to continue the production of the B \& W floatplanes, for which purpose he set up the Pacific Aero Products Company. On 26 April 1917 this became the Boeing Airplane Company, which prospered following the US involvement in the First World War.
    In March 1919 Boeing and Edward Hubbard inaugurated the world's first international airmail service between Seattle and Vancouver, British Columbia, Canada. The Boeing Company then had to face the slump in aircraft manufacturing after the war: they survived, and by 1922 they had started producing a successful series of fighters while continuing to develop their flying-boat and floatplane designs. Boeing set up the Boeing Air Transport Corporation to tender for lucrative airmail contracts and then produced aircraft which could out-perform those of his rivals. The company went from strength to strength and by the end of the 1920s a huge conglomerate had been built up: the United Aircraft and Transport Corporation. They produced an advanced high-speed monoplane mailplane, the model 200 Monomail in 1930, which saw the birth of a new era of Boeing designs.
    The Wall Street crash of 1929 and legislation in 1934, which banned any company from both building aeroplanes and running an airline, were setbacks which the Boeing Airplane Company overcame, moving ahead to become world leaders. William E.Boeing decided that it was time he retired, but he returned to work during the Second World War.
    [br]
    Principal Honours and Distinctions
    Guggenheim Medal 1934.
    Further Reading
    C.Chant, 1982, Boeing: The World's Greatest Planemakers, Hadley Wood, England (describes William E.Boeing's part in the founding and building up of the Boeing Company).
    P.M.Bowers, 1990, Boeing Aircraft since 1916, 3rd edn, London (covers Boeing's aircraft).
    Boeing Company, 1977, Pedigree of Champions: Boeing since 1916, Seattle.
    JDS

    Biographical history of technology > Boeing, William Edward

  • 19 Caproni, Giovanni Battista (Gianni), Conte di Taliedo

    SUBJECT AREA: Aerospace
    [br]
    b. 3 June 1886 Massone, Italy
    d. 29 October 1957 Rome, Italy
    [br]
    Italian aircraft designer and manufacturer, well known for his early large-aircraft designs.
    [br]
    Gianni Caproni studied civil and electrical engineering in Munich and Liège before moving on to Paris, where he developed an interest in aeronautics. He built his first aircraft in 1910, a biplane with a tricycle undercarriage (which has been claimed as the world's first tricycle undercarriage). Caproni and his brother, Dr Fred Caproni, set up a factory at Malpensa in northern Italy and produced a series of monoplanes and biplanes. In 1913 Caproni astounded the aviation world with his Ca 30 three-engined biplane bomber. There followed many variations, of which the most significant were the Ca 32 of 1915, the first large bomber to enter service in significant numbers, and the Ca 42 triplane of 1917 with a wing span of almost 30 metres.
    After the First World War, Caproni designed an even larger aircraft with three pairs of triplane wings (i.e. nine wings each of 30 metres span) and eight engines. This Ca 60 flying boat was designed to carry 100 passengers. In 1921 it made one short flight lightly loaded; however, with a load of sandbags representing sixty passengers, it crashed soon after take-off. The project was abandoned but Caproni's company prospered and expanded to become one of the largest groups of companies in Italy. In the 1930s Caproni aircraft twice broke the world altitude record. Several Caproni types were in service when Italy entered the Second World War, and an unusual research aircraft was under development. The Caproni-Campini No. 1 (CC2) was a jet, but it did not have a gas-turbine engine. Dr Campini's engine used a piston engine to drive a compressor which forced air out through a nozzle, and by burning fuel in this airstream a jet was produced. It flew with limited success in August 1940, amid much publicity: the first German jet (1939) and the first British jet (1941) were both flown in secret. Caproni retained many of his early aircraft for his private museum, including some salvaged parts from his monstrous flying boat.
    [br]
    Principal Honours and Distinctions
    Created Conte di Taliedo 1940.
    Further Reading
    Dizionario biografico degli Italiani, 1976, Vol. XIX.
    The Caproni Museum has published two books on the Caproni aeroplanes: Gli Aeroplani Caproni -1909–1935 and Gli Aeroplani Caproni dal 1935 in poi. See also Jane's
    fighting Aircraft of World War 1; 1919, republished 1990.
    JDS

    Biographical history of technology > Caproni, Giovanni Battista (Gianni), Conte di Taliedo

  • 20 Curtiss, Glenn Hammond

    SUBJECT AREA: Aerospace
    [br]
    b. 21 May 1878 Hammondsport, New York, USA
    d. 23 July 1930 Buffalo, New York, USA
    [br]
    American designer of aeroplanes, especially seaplanes.
    [br]
    Curtiss started his career in the bicycle business, then became a designer of motor-cycle engines, and in 1904 he designed and built an airship engine. The success of his engine led to him joining the Aerial Experimental Association (AEA), founded by the inventor Alexander Graham Bell. Working with the AEA, Curtiss built several engines and designed a biplane, June Bug, in which he won a prize for the first recorded flight of over 1 km (1,100yd) in the USA. In 1909 Curtiss joined forces with Augustus M.Herring, who had earlier flown Octave Chanute's gliders, to form the Herring-Curtiss Company. Their Gold Bug was a success and led to the Golden Flyer, in which Glenn Curtiss won the Gordon Bennett Cup at Rheims in France with a speed of 75.7 km/h (47 mph). At this time the Wright brothers accused Curtiss and the new Curtiss Aeroplane Company of infringing their patent rights, and a bitter lawsuit ensued. The acrimony subsided during the First World War and in 1929 the two companies merged to form the Curtiss-Wright Corporation.
    Curtiss had started experimenting with water-based aircraft in 1908, but it was not until 1911 that he managed to produce a successful float-plane. He then co-operated with the US Navy in developing catapults to launch aircraft from ships at sea. During the First World War, Curtiss produced the JN-4 Jenny trainer, which became probably his best-known design. This sturdy bi-plane continued in service long after the war and was extensively used by "barnstorming" pilots at air shows and for early mail flights. In 1919 a Navy-Curtiss NC-4 flying boat achieved the first flight across the Atlantic, having made the crossing in stages, refuelling en route. Curtiss himself, however, had little interest in aviation in his later years and turned his attention to real-estate development in Florida.
    [br]
    Principal Honours and Distinctions
    Robert J.Collier Trophy 1911, 1912. US Aero Club Gold Medal 1911, 1912. Smithsonian Institution Langley Gold Medal 1913.
    Further Reading
    L.S.Casey, 1981, Curtiss: The Hammondsport Era 1907–1915, New York. C.R.Roseberry, 1972, Glenn Curtiss, Pioneer of Flight, New York.
    R.Taylor and Walter S.Taylor, 1968, Overland and Sea, New York (biography). Alden Heath, 1942, Glenn Curtiss: Pioneer of Naval Aviation, New York.
    JDS

    Biographical history of technology > Curtiss, Glenn Hammond

См. также в других словарях:

  • Aerospace Defense Command — Emblem of Aerospace Defense Command (1969 1979) Active 1946–1980 Country …   Wikipedia

  • aerospace engineering — aerospace engineer. the branch of engineering that deals with the design, development, testing, and production of aircraft and related systems (aeronautical engineering) and of spacecraft, missiles, rocket propulsion systems, and other equipment… …   Universalium

  • Aerospace engineering — Aerospace Engineer NASA engineers, the ones depicted in the film Apollo 13, worked diligently to protect the lives of the astronauts on the mission. Occupation Names engineer aerospace engineer …   Wikipedia

  • aerospace medicine — n. AVIATION MEDICINE * * * Branch of medicine, pioneered by Paul Bert, dealing with atmospheric flight (aviation medicine) and space flight (space medicine). Intensive preflight simulator training and attention to design of equipment and… …   Universalium

  • aerospace industry — Introduction       assemblage of manufacturing concerns that deal with vehicular flight within and beyond the Earth s atmosphere. (The term aerospace is derived from the words aeronautics and spaceflight.) The aerospace industry is engaged in the …   Universalium

  • Aerospace Industries Association — For other uses, see AIA (disambiguation). Aerospace Industries Association of America Type Non Profit trade Association Industry Aerospace Defense Founded …   Wikipedia

  • AeroSpace and Defence Industries Association of Europe — Die Association Européenne des Constructeurs de Matériel Aérospatial (AECMA) später The European Association of AeroSpace Industries ist eine Interessenorganisation der europäischen Luftfahrtindustrie gewesen, deren Wurzeln auf der 1950… …   Deutsch Wikipedia

  • Aerospace and Defence Industries Association of Europe — Die Association Européenne des Constructeurs de Matériel Aérospatial (AECMA) später The European Association of AeroSpace Industries ist eine Interessenorganisation der europäischen Luftfahrtindustrie gewesen, deren Wurzeln auf der 1950… …   Deutsch Wikipedia

  • Aerospace Maintenance and Regeneration Center — Abgestellte F 4 im AMARC. Verschrottung von B 52 Bombern im AMARC. Das Aerospace Maintenance and Regeneration Center …   Deutsch Wikipedia

  • Planet Aerospace — war ein Print Magazin und eine Internet Webseite, das alle wichtigen Produkte und Programme des europäischen Luft und Raumfahrtkonzerns EADS dokumentierte. Es wurde 2008 eingestellt.[1] Allgemeines Das Konzept dieses Magazin war es, eine sehr… …   Deutsch Wikipedia

  • North American Aerospace Defense Command — NORAD redirects here. For other uses, see NORAD (disambiguation). North American Aerospace Defense Command Colorado Springs, Colorado …   Wikipedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»