Перевод: со всех языков на английский

с английского на все языки

advanced+education

  • 121 Babbage, Charles

    [br]
    b. 26 December 1791 Walworth, Surrey, England
    d. 18 October 1871 London, England
    [br]
    English mathematician who invented the forerunner of the modern computer.
    [br]
    Charles Babbage was the son of a banker, Benjamin Babbage, and was a sickly child who had a rather haphazard education at private schools near Exeter and later at Enfield. Even as a child, he was inordinately fond of algebra, which he taught himself. He was conversant with several advanced mathematical texts, so by the time he entered Trinity College, Cambridge, in 1811, he was ahead of his tutors. In his third year he moved to Peterhouse, whence he graduated in 1814, taking his MA in 1817. He first contributed to the Philosophical Transactions of the Royal Society in 1815, and was elected a fellow of that body in 1816. He was one of the founders of the Astronomical Society in 1820 and served in high office in it.
    While he was still at Cambridge, in 1812, he had the first idea of calculating numerical tables by machinery. This was his first difference engine, which worked on the principle of repeatedly adding a common difference. He built a small model of an engine working on this principle between 1820 and 1822, and in July of the latter year he read an enthusiastically received note about it to the Astronomical Society. The following year he was awarded the Society's first gold medal. He submitted details of his invention to Sir Humphry Davy, President of the Royal Society; the Society reported favourably and the Government became interested, and following a meeting with the Chancellor of the Exchequer Babbage was awarded a grant of £1,500. Work proceeded and was carried on for four years under the direction of Joseph Clement.
    In 1827 Babbage went abroad for a year on medical advice. There he studied foreign workshops and factories, and in 1832 he published his observations in On the Economy of Machinery and Manufactures. While abroad, he received the news that he had been appointed Lucasian Professor of Mathematics at Cambridge University. He held the Chair until 1839, although he neither resided in College nor gave any lectures. For this he was paid between £80 and £90 a year! Differences arose between Babbage and Clement. Manufacture was moved from Clement's works in Lambeth, London, to new, fireproof buildings specially erected by the Government near Babbage's house in Dorset Square, London. Clement made a large claim for compensation and, when it was refused, withdrew his workers as well as all the special tools he had made up for the job. No work was possible for the next fifteen months, during which Babbage conceived the idea of his "analytical engine". He approached the Government with this, but it was not until eight years later, in 1842, that he received the reply that the expense was considered too great for further backing and that the Government was abandoning the project. This was in spite of the demonstration and perfectly satisfactory operation of a small section of the analytical engine at the International Exhibition of 1862. It is said that the demands made on manufacture in the production of his engines had an appreciable influence in improving the standard of machine tools, whilst similar benefits accrued from his development of a system of notation for the movements of machine elements. His opposition to street organ-grinders was a notable eccentricity; he estimated that a quarter of his mental effort was wasted by the effect of noise on his concentration.
    [br]
    Principal Honours and Distinctions
    FRS 1816. Astronomical Society Gold Medal 1823.
    Bibliography
    Babbage wrote eighty works, including: 1864, Passages from the Life of a Philosopher.
    July 1822, Letter to Sir Humphry Davy, PRS, on the Application of Machinery to the purpose of calculating and printing Mathematical Tables.
    Further Reading
    1961, Charles Babbage and His Calculating Engines: Selected Writings by Charles Babbage and Others, eds Philip and Emily Morrison, New York: Dover Publications.
    IMcN

    Biographical history of technology > Babbage, Charles

  • 122 Branly, Edouard Eugène

    [br]
    b. 23 October 1844 Amiens, France
    d. 24 March 1940 Paris, France
    [br]
    French electrical engineer, who c.1890 invented the coherer for detecting radio waves.
    [br]
    Branly received his education at the Lycée de Saint Quentin in the Département de l'Aisne and at the Henri IV College of Paris University, where he became a Fellow of the University, graduating as a Doctor of Physics in 1873. That year he was appointed a professor at the College of Bourges and Director of Physics Instruction at the Sorbonne. Three years later he moved to the Free School in Paris as Professor of Advanced Studies. In addition to these responsibilities, he qualified as an MD in 1882 and practised medicine from 1896 to 1916. Whilst carrying out experiments with Hertzian (radio) waves in 1890, Branly discovered that a tube of iron filings connected to a source of direct voltage only became conductive when the radio waves were present. This early form of rectifier, which he called a coherer and which needed regular tapping to maintain its response, was used to operate a relay when the waves were turned on and off by Morse signals, thus providing the first practical radio communication.
    [br]
    Principal Honours and Distinctions
    Papal Order of Commander of St George 1899. Légion d'honneur, Chevalier 1900, Commandeur 1925. Osiris Prize (jointly with Marie Curie) 1903. Argenteuil Prize and Associate of the Royal Belgian Academy 1910. Member of the Academy of Science 1911. State Funeral at Notre Dame Cathedral.
    Bibliography
    Amongst his publications in Comptes rendus were "Conductivity of mediocre conductors", "Conductivity of gases", "Telegraphic conduction without wires" and "Conductivity of imperfect conductors realised at a distance by wireless by spark discharge of a capacitor".
    Further Reading
    E.Hawkes, 1927, Pioneers of Wireless, London: Methuen. E.Larien, 1971, A History of Invention, London: Victor Gollancz.
    V.J.Phillips: 1980, Early Radio Wave Detectors, London: Peter Peregrinus.
    KF

    Biographical history of technology > Branly, Edouard Eugène

  • 123 Jeanneret, Charles-Edouard (Le Corbusier)

    [br]
    b. 6 October 1887 La Chaux-de-Fonds, Switzerland
    d. 27 August 1965 Cap Martin, France
    [br]
    Swiss/French architect.
    [br]
    The name of Le Corbusier is synonymous with the International style of modern architecture and city planning, one utilizing functionalist designs carried out in twentieth-century materials with modern methods of construction. Charles-Edouard Jeanneret, born in the watch-making town of La Chaux-de-Fonds in the Jura mountain region, was the son of a watch engraver and dial painter. In the years before 1918 he travelled widely, studying building in many countries. He learned about the use of reinforced concrete in the studio of Auguste Perret and about industrial construction under Peter Behrens. In 1917 he went to live in Paris and spent the rest of his life in France; in 1920 he adopted the name of Le Corbusier, one derived from that of his ancestors (Le Corbesier), and ten years later became a French citizen.
    Le Corbusier's long working life spanned a career divided into three distinct parts. Between 1905 and 1916 he designed a number of simple and increasingly modern houses; the years 1921 to 1940 were ones of research and debate; and the twenty years from 1945 saw the blossoming of his genius. After 1917 Le Corbusier gained a reputation in Paris as an architect of advanced originality. He was particularly interested in low-cost housing and in improving accommodation for the poor. In 1923 he published Vers une architecture, in which he planned estates of mass-produced houses where all extraneous and unnecessary features were stripped away and the houses had flat roofs and plain walls: his concept of "a machine for living in". These white boxes were lifted up on stilts, his pilotis, and double-height living space was provided internally, enclosed by large areas of factory glazing. In 1922 Le Corbusier exhibited a city plan, La Ville contemporaine, in which tall blocks made from steel and concrete were set amongst large areas of parkland, replacing the older concept of city slums with the light and air of modern living. In 1925 he published Urbanisme, further developing his socialist ideals. These constituted a major reform of the industrial-city pattern, but the ideas were not taken up at that time. The Depression years of the 1930s severely curtailed architectural activity in France. Le Corbusier designed houses for the wealthy there, but most of his work prior to 1945 was overseas: his Centrosoyus Administration Building in Moscow (1929–36) and the Ministry of Education Building in Rio de Janeiro (1943) are examples. Immediately after the end of the Second World War Le Corbusier won international fame for his Unité d'habitation theme, the first example of which was built in the boulevard Michelet in Marseille in 1947–52. His answer to the problem of accommodating large numbers of people in a small space at low cost was to construct an immense all-purpose block of pre-cast concrete slabs carried on a row of massive central supports. The Marseille Unité contains 350 apartments in eight double storeys, with a storey for shops half-way up and communal facilities on the roof. In 1950 he published Le Modular, which described a system of measurement based upon the human male figure. From this was derived a relationship of human and mathematical proportions; this concept, together with the extensive use of various forms of concrete, was fundamental to Le Corbusier's later work. In the world-famous and highly personal Pilgrimage Church of Notre Dame du Haut at Ronchamp (1950–5), Le Corbusier's work was in Expressionist form, a plastic design in massive rough-cast concrete, its interior brilliantly designed and lit. His other equally famous, though less popular, ecclesiastical commission showed a contrasting theme, of "brutalist" concrete construction with uncompromisingly stark, rectangular forms. This is the Dominican Convent of Sainte Marie de la Tourette at Eveux-sur-l'Arbresle near Lyon, begun in 1956. The interior, in particular, is carefully worked out, and the lighting, from both natural and artificial sources, is indirect, angled in many directions to illuminate vistas and planes. All surfaces are carefully sloped, the angles meticulously calculated to give optimum visual effect. The crypt, below the raised choir, is painted in bright colours and lit from ceiling oculi.
    One of Le Corbusier's late works, the Convent is a tour de force.
    [br]
    Principal Honours and Distinctions
    Honorary Doctorate Zurich University 1933. Honorary Member RIBA 1937. Chevalier de la Légion d'honneur 1937. American Institute of Architects Gold Medal 1961. Honorary Degree University of Geneva 1964.
    Bibliography
    His chief publications, all of which have been numerously reprinted and translated, are: 1923, Vers une architecture.
    1935, La Ville radieuse.
    1946, Propos d'urbanisme.
    1950, Le Modular.
    Further Reading
    P.Blake, 1963, Le Corbusier: Architecture and Form, Penguin. R.Furneaux-Jordan, 1972, Le Corbusier, Dent.
    W.Boesiger, 1970, Le Corbusier, 8 vols, Thames and Hudson.
    ——1987, Le Corbusier: Architect of the Century, Arts Council of Great Britain.
    DY

    Biographical history of technology > Jeanneret, Charles-Edouard (Le Corbusier)

  • 124 Linton, Hercules

    SUBJECT AREA: Ports and shipping
    [br]
    b. 1 January 1836 Inverbervie, Kincardineshire, Scotland
    d. 15 May 1900 Inverbervie, Kincardineshire, Scotland
    [br]
    Scottish naval architect and shipbuilder; designer of the full-rigged ship Cutty Sark.
    [br]
    Linton came from a north-east Scottish family with shipbuilding connections. After education at Arbuthnott and then Arbroath Academy, he followed his father by becoming an apprentice at the Aberdeen shipyard of Alex Hall in January 1855. Thus must have been an inspiring time for him as the shipyards of Aberdeen were at the start of their rise to world renown. Hall's had just introduced the hollow, lined Aberdeen Bow which heralded the great years of the Aberdeen Clippers. Linton stayed on with Hall's until around 1863, when he joined the Liverpool Under-writers' Register as a ship surveyor; he then worked for similar organizations in different parts of England and Scotland. Early in 1868 Linton joined in partnership with William Dundas Scott and the shipyard of Scott and Linton was opened on the banks of the River Leven, a tributary of the Clyde, at Dumbarton. The operation lasted for about three years until bankruptcy forced closure, the cause being the age-old shipbuilder's problem of high capital investment with slow cash flow. Altogether, nine ships were built, the most remarkable being the record-breaking composite-built clipper ship Cutty Sark. At the time of the closure the tea clipper was in an advanced state of outfitting and was towed across the water to Denny's shipyard for completion. Linton worked for a while with Gourlay Brothers of Dundee, and then with the shipbuilders Oswald Mordaunt, of Woolston near Southampton, before returning to the Montrose area in 1884. His wife died the following year and thereafter Linton gradually reduced his professional commitments.
    [br]
    Further Reading
    Robert E.Brettle, 1969, The Cutty Sark, Her Designer and Builder. Hercules Linton 1836–1900, Cambridge: Heffer.
    Frank C.G.Carr, "The restoration of the Cutty Sark", Transactions of the Royal Institution
    of Naval Architects 108:193–216.
    Fred M.Walker, 1984, Song of the Clyde. A History of Clyde Shipbuilding, Cambridge: PSL.
    FMW

    Biographical history of technology > Linton, Hercules

  • 125 Meek, Marshall

    SUBJECT AREA: Ports and shipping
    [br]
    b. 22 April 1925 Auchtermuchty, Fife, Scotland
    [br]
    Scottish naval architect and leading twentieth-century exponent of advanced maritime technology.
    [br]
    After early education at Cupar in Fife, Meek commenced training as a naval architect, taking the then popular sandwich apprenticeship of alternate half years at the University of Glasgow (with a Caird Scholarship) and at a shipyard, in his case the Caledon of Dundee. On leaving Dundee he worked for five years with the British Ship Research Association before joining Alfred Holt \& Co., owners of the Blue Funnel Line. During his twenty-five years at Liverpool, he rose to Chief Naval Architect and Director and was responsible for bringing the cargo-liner concept to its ultimate in design. When the company had become Ocean Fleets, it joined with other British shipowners and looked to Meek for the first purpose-built containership fleet in the world. This required new ship designs, massive worldwide investment in port facilities and marketing to win public acceptance of freight containers, thereby revolutionizing dry-cargo shipping. Under the houseflag of OCL (now POCL), this pioneer service set the highest standards of service and safety and continues to operate on almost every ocean.
    In 1979 Meek returned to the shipbuilding industry when he became Head of Technology at British Shipbuilders. Closely involved in contemporary problems of fuel economy and reduced staffing, he held the post for five years before his appointment as Managing Director of the National Maritime Institute. He was deeply involved in the merger with the British Ship Research Association to form British Maritime Technology (BMT), an organization of which he became Deputy Chairman.
    Marshall Meek has held many public offices, and is one of the few to have been President of two of the United Kingdom's maritime institutions. He has contributed over forty papers to learned societies, has acted as Visiting Professor to Strathclyde University and University College London, and serves on advisory committees to the Ministry of Defence, the Department of Transport and Lloyd's Register of Shipping. While in Liverpool he served as a Justice of the Peace.
    [br]
    Principal Honours and Distinctions
    CBE 1989. Fellow of the Royal Academy of Engineering 1990. President, Royal Institution of Naval Architects 1990–3; North East Coast Institution of Engineers and Shipbuilders 1984–6. Royal Designer for Industry (RDI) 1986. Royal Institution of Naval Architects Silver Medal (on two occasions).
    Bibliography
    1970, "The first OCL containerships", Transactions of the Royal Institution of Naval Architects.
    FMW

    Biographical history of technology > Meek, Marshall

  • 126 Oberth, Hermann Julius

    SUBJECT AREA: Aerospace
    [br]
    b. 25 June 1894 Nagyszeben, Transylvania (now Sibiu, Romania)
    d. 29 December 1989 Nuremberg, Germany
    [br]
    Austro-Hungarian lecturer who is usually regarded, with Robert Goddard, as one of the "fathers" of modern astronautics.
    [br]
    The son of a physician, Oberth originally studied medicine in Munich, but his education was interrupted by the First World War and service in the Austro-Hungarian Army. Wounded, he passed the time by studying astronautics. He apparently simulated weightlessness and worked out the design for a long-range liquid-propelled rocket, but his ideas were rejected by the War Office; after the war he submitted them as a dissertation for a PhD at Heidelberg University, but this was also rejected. Consequently, in 1923, whilst still an unknown mathematics teacher, he published his ideas at his own expense in the book The Rocket into Interplanetary Space. These included a description of how rockets could achieve a sufficient velocity to escape the gravitational field of the earth. As a result he gained international prestige almost overnight and learned of the work of Robert Goddard and Konstantin Tsiolkovsky. After correspondence with the Goddard and Tsiolkovsky, Oberth published a further work in 1929, The Road to Space Travel, in which he acknowledged the priority of Goddard's and Tsiolkovski's calculations relating to space travel; he went on to anticipate by more than thirty years the development of electric and ionic propulsion and to propose the use of giant mirrors to control the weather. For this he was awarded the annual Hirsch Prize of 10,000 francs. From 1925 to 1938 he taught at a college in Mediasch, Transylvania, where he carried out experiments with petroleum and liquid-air rockets. He then obtained a lecturing post at Vienna Technical University, moving two years later to Dresden University and becoming a German citizen. In 1941 he became assistant to the German rocket engineer Werner von Braun at the rocket development centre at Peenemünde, and in 1943 he began work on solid propellants. After the Second World War he spent a year in Switzerland as a consultant, then in 1950 he moved to Italy to develop solid-propellant anti-aircraft rockets for the Italian Navy. Five years later he moved to the USA to carry out advanced rocket research for the US Army at Huntsville, Alabama, and in 1958 he retired to Feucht, near Nuremberg, Germany, where he wrote his autobiography.
    [br]
    Principal Honours and Distinctions
    French Astronautical Society REP-Hirsch Prize 1929. German Society for Space Research Medal 1950. Diesel German Inventors Medal 1954. American Astronautical Society Award 1955. German Federal Republic Award 1961. Institute of Aviation and Astronautics Medal 1969.
    Bibliography
    1923, Die Rakete zu den Planetenraumen; repub. 1934 as The Rocket into Interplanetary Space (autobiography).
    1929, Wege zur Raumschiffahrt [Road to Space Travel].
    1959, Stoff und Leben [Material and Life].
    Further Reading
    R.Spangenburg and D.Moser, 1990, Space People from A to Z, New York: Facts on File. H.Wulforst, 1991, The Rocketmakers: The Dreamers who made Spaceflight a Reality, New York: Crown Publishers.
    KF / IMcN

    Biographical history of technology > Oberth, Hermann Julius

  • 127 Percy, John

    SUBJECT AREA: Metallurgy
    [br]
    b. 23 March 1817 Nottingham, England
    d. 19 June 1889 London, England
    [br]
    English metallurgist, first Professor of Metallurgy at the School of Mines, London.
    [br]
    After a private education, Percy went to Paris in 1834 to study medicine and to attend lectures on chemistry by Gay-Lussac and Thenard. After 1838 he studied medicine at Edinburgh, obtaining his MD in 1839. In that year he was appointed Professor of Chemistry at Queen's College, Birmingham, moving to Queen's Hospital at Birmingham in 1843. During his time at Birmingham, Percy became well known for his analysis of blast furnace slags, and was involved in the manufacture of optical glass. On 7 June 1851 Percy was appointed Metallurgical Professor and Teacher at the Museum of Practical Geology established in Jermyn Street, London, and opened in May 1851. In November of 1851, when the Museum became the Government (later Royal) School of Mines, Percy was appointed Lecturer in Metallurgy. In addition to his work at Jermyn Street, Percy lectured on metallurgy to the Advanced Class of Artillery at Woolwich from 1864 until his death, and from 1866 he was Superintendent of Ventilation at the Houses of Parliament. He served from 1861 to 1864 on the Special Committee on Iron set up to examine the performance of armour-plate in relation to its purity, composition and structure.
    Percy is best known for his metallurgical text books, published by John Murray. Volume I of Metallurgy, published in 1861, dealt with fuels, fireclays, copper, zinc and brass; Volume II, in 1864, dealt with iron and steel; a volume on lead appeared in 1870, followed by one on fuels and refractories in 1875, and the first volume on gold and silver in 1880. Further projected volumes on iron and steel, noble metals, and on copper, did not materialize. In 1879 Percy resigned from his School of Mines appointment in protest at the proposed move from Jermyn Street to South Kensington. The rapid growth of Percy's metallurgical collection, started in 1839, eventually forced him to move to a larger house. After his death, the collection was bought by the South Kensington (later Science) Museum. Now comprising 3,709 items, it provides a comprehensive if unselective record of nineteenth-century metallurgy, the most interesting specimens being those of the first sodium-reduced aluminium made in Britain and some of the first steel produced by Bessemer in Baxter House. Metallurgy for Percy was a technique of chemical extraction, and he has been criticized for basing his system of metallurgical instruction on this assumption. He stood strangely aloof from new processes of steel making such as that of Gilchrist and Thomas, and tended to neglect early developments in physical metallurgy, but he was the first in Britain to teach metallurgy as a discipline in its own right.
    [br]
    Principal Honours and Distinctions
    FRS 1847. President, Iron and Steel Institute 1885, 1886.
    Bibliography
    1861–80, Metallurgy, 5 vols, London: John Murray.
    Further Reading
    S.J.Cackett, 1989, "Dr Percy and his metallurgical collection", Journal of the Hist. Met. Society 23(2):92–8.
    RLH

    Biographical history of technology > Percy, John

  • 128 Smith, Sir Francis Pettit

    SUBJECT AREA: Ports and shipping
    [br]
    b. 9 February 1808 Copperhurst Farm, near Hythe, Kent, England
    d. 12 February 1874 South Kensington, London, England
    [br]
    English inventor of the screw propeller.
    [br]
    Smith was the only son of Charles Smith, Postmaster at Hythe, and his wife Sarah (née Pettit). After education at a private school in Ashford, Kent, he took to farming, first on Romney Marsh, then at Hendon, Middlesex. As a boy, he showed much skill in the construction of model boats, especially in devising their means of propulsion. He maintained this interest into adult life and in 1835 he made a model propelled by a screw driven by a spring. This worked so well that he became convinced that the screw propeller offered a better method of propulsion than the paddle wheels that were then in general use. This notion so fired his enthusiasm that he virtually gave up farming to devote himself to perfecting his invention. The following year he produced a better model, which he successfully demonstrated to friends on his farm at Hendon and afterwards to the public at the Adelaide Gallery in London. On 31 May 1836 Smith was granted a patent for the propulsion of vessels by means of a screw.
    The idea of screw propulsion was not new, however, for it had been mooted as early as the seventeenth century and since then several proposals had been advanced, but without successful practical application. Indeed, simultaneously but quite independently of Smith, the Swedish engineer John Ericsson had invented the ship's propeller and obtained a patent on 13 July 1836, just weeks after Smith. But Smith was completely unaware of this and pursued his own device in the belief that he was the sole inventor.
    With some financial and technical backing, Smith was able to construct a 10 ton boat driven by a screw and powered by a steam engine of about 6 hp (4.5 kW). After showing it off to the public, Smith tried it out at sea, from Ramsgate round to Dover and Hythe, returning in stormy weather. The screw performed well in both calm and rough water. The engineering world seemed opposed to the new method of propulsion, but the Admiralty gave cautious encouragement in 1839 by ordering that the 237 ton Archimedes be equipped with a screw. It showed itself superior to the Vulcan, one of the fastest paddle-driven ships in the Navy. The ship was put through its paces in several ports, including Bristol, where Isambard Kingdom Brunel was constructing his Great Britain, the first large iron ocean-going vessel. Brunel was so impressed that he adapted his ship for screw propulsion.
    Meanwhile, in spite of favourable reports, the Admiralty were dragging their feet and ordered further trials, fitting Smith's four-bladed propeller to the Rattler, then under construction and completed in 1844. The trials were a complete success and propelled their lordships of the Admiralty to a decision to equip twenty ships with screw propulsion, under Smith's supervision.
    At last the superiority of screw propulsion was generally accepted and virtually universally adopted. Yet Smith gained little financial reward for his invention and in 1850 he retired to Guernsey to resume his farming life. In 1860 financial pressures compelled him to accept the position of Curator of Patent Models at the Patent Museum in South Kensington, London, a post he held until his death. Belated recognition by the Government, then headed by Lord Palmerston, came in 1855 with the grant of an annual pension of £200. Two years later Smith received unofficial recognition when he was presented with a national testimonial, consisting of a service of plate and nearly £3,000 in cash subscribed largely by the shipbuilding and engineering community. Finally, in 1871 Smith was honoured with a knighthood.
    [br]
    Principal Honours and Distinctions
    Knighted 1871.
    Further Reading
    Obituary, 1874, Illustrated London News (7 February).
    1856, On the Invention and Progress of the Screw Propeller, London (provides biographical details).
    Smith and his invention are referred to in papers in Transactions of the Newcomen Society, 14 (1934): 9; 19 (1939): 145–8, 155–7, 161–4, 237–9.
    LRD

    Biographical history of technology > Smith, Sir Francis Pettit

См. также в других словарях:

  • College of Advanced Education — The College of Advanced Education (CAE) was a class of Australian tertiary education institution that existed from 1967 until the early 1990s. They ranked below universities, but above Colleges of Technical and Further Education (TAFE) which… …   Wikipedia

  • Sydney College of Advanced Education — The Sydney College of Advanced Education was an educational institution in Sydney, New South Wales, Australia that existed from 1981 to 1989. The Commonwealth government announced recommendations for a consolidation of higher education provision… …   Wikipedia

  • Minister of Advanced Education and Literacy (Manitoba) — The Minister of Advanced Education and Literacy is a cabinet minister in the province of Manitoba, Canada. The department s primary responsibility is oversight of Manitoba s post secondary institutions. The ministry is the successor the Ministry… …   Wikipedia

  • Ministry of Advanced Education — The portfolio of Minister of Advanced Education exists in the Executive Council of the Canadian provinces of Alberta, and British Columbia, and under a similar name in Saskatchewan and Manitoba. This person is usually responsible for all post… …   Wikipedia

  • Alberta Advanced Education and Technology — is a ministry in the Executive Council of the Canadian province of Alberta. The ministry is usually responsible for all post secondary institutions in their respective jurisdictions. See also Minister of Advanced Education and Literacy (Manitoba) …   Wikipedia

  • Warrnambool Institute of Advanced Education — was a college of advanced education in Warrnambool, Victoria, Australia. It operated for twenty years, from 1970 1990. It offered undergraduate and postgraduate programs in aquaculture, arts, business, nursing, municipal engineering, and teaching …   Wikipedia

  • Department of Advanced Education and Labour (New Brunswick) — The Department of Advanced Education and Labour was a part of the Government of New Brunswick. It was charged with the administration of post secondary education and the enforcement of labour standards and facilitating relations between employers …   Wikipedia

  • Darling Downs Institute of Advanced Education — The Darling Downs Institute of Advanced Education (DDIAE) was a tertiary education facility offering undergraduate (Bachelor level and below) degrees and certificates in Toowoomba, Queensland Australia, from the 1967 until it was elevated to… …   Wikipedia

  • Education in Chad — is challenging due to the nation s dispersed population and a certain degree of reluctance on the part of parents to send their children to school. Although attendance is compulsory, only 68% of boys continue past primary school, and more than… …   Wikipedia

  • Advanced practice nurse — Advanced Practice Nurses (APNs), also known as Advanced Practice Registered Nurses (APRNs), are Registered Nurses with advanced education, knowledge, skills, and scope of practice. [cite web|url=http://nursingworld.org/readroom/fsadvprc.htm|title …   Wikipedia

  • education — /ej oo kay sheuhn/, n. 1. the act or process of imparting or acquiring general knowledge, developing the powers of reasoning and judgment, and generally of preparing oneself or others intellectually for mature life. 2. the act or process of… …   Universalium

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»