Перевод: с английского на все языки

со всех языков на английский

a+subject+for+discussion

  • 101 lead up

    ˈli:dʌp введение, подготовка, приготовление (to) вести куда-л. - the stairs * to the top floor ступеньки ведут на верхний этаж - which path will lead us up to the top of the hill какая тропка выведет нас к вершине горы собираться разыграть карту - I could see that my partner was leading up to the king of diamonds я видел, что мой партнер вот-вот сыграет бубновым королем приводить к чему-л.;
    быть причиной чего-л. - these events led up to his dismissal эти события привели к его увольнению наводить (разговор и т. п.) - to * the subject of discussion постепенно перейти к предмету обсуждения - this led up to a request for money это закончилось просьбой о деньгах

    Большой англо-русский и русско-английский словарь > lead up

  • 102 lead up

    [ʹli:dʹʌp] phr v (to)
    1. вести куда-л.

    which path will lead us up to the top of the hill? - какая тропка выведет нас к вершине горы?

    2. собираться разыграть карту

    I could see that my partner was leading up to the king of diamonds - я видел, что мой партнёр вот-вот сыграет бубновым королём

    3. приводить к чему-л.; быть причиной чего-л.

    these events led up to his dismissal - эти события привели к его увольнению

    4. наводить (разговор и т. п.); подводить к чему-л.

    to lead up to the subject of discussion - постепенно перейти к предмету обсуждения

    НБАРС > lead up

  • 103 topic

    noun
    Thema, das

    topic of debate/conversation — Diskussions-/Gesprächsthema, das

    * * *
    ['topik]
    (something spoken or written about; a subject: They discussed the weather and other topics.) das Thema
    - academic.ru/75618/topical">topical
    - topically
    * * *
    top·ic
    [ˈtɒpɪk, AM ˈtɑ:p-]
    n Thema nt
    * * *
    ['tɒpɪk]
    n
    Thema nt
    * * *
    topic [ˈtɒpık; US ˈtɑ-] s
    1. Thema n, Gegenstand m:
    topic of conversation Gesprächsthema;
    topic for discussion Diskussionsthema
    2. PHIL Topik f (Lehre von den Sätzen und Schlüssen, mit denen argumentiert werden kann)
    * * *
    noun
    Thema, das

    topic of debate/conversation — Diskussions-/Gesprächsthema, das

    * * *
    n.
    Fragenkomplex m.
    Inhalt -e m.
    Thema Themen n.
    Überbegriff m.

    English-german dictionary > topic

  • 104 bring up

    vt
    ( carry up) przynosić (przynieść perf) ( na górę); children wychowywać (wychować perf); question, subject podnosić (podnieść perf); food zwracać (zwrócić perf)
    * * *
    1) (to rear or educate: Her parents brought her up to be polite.) wychowywać
    2) (to introduce (a matter) for discussion: Bring the matter up at the next meeting.) poruszyć

    English-Polish dictionary > bring up

  • 105 bring up

    vt
    1) ( carry up)
    to \bring up up <-> sth/sb etw/jdn heraufbringen
    2) ( rear)
    to \bring up up <-> sb jdn großziehen [o aufziehen];
    we brought them up to respect other people's rights wir erzogen sie dazu, die Rechte anderer Menschen zu respektieren;
    to be brought up a Catholic katholisch erzogen werden;
    a well/ badly brought-up child ein gut/schlecht erzogenes Kind
    3) ( mention)
    to \bring up up <-> sth etw zur Sprache bringen;
    don't \bring up up that old subject again fang nicht wieder mit diesem alten Thema an;
    to \bring up up sth for discussion etw zur Diskussion stellen
    4) (fam: vomit)
    to \bring up up one's breakfast/ lunch das Frühstück/Mittagessen ausspucken ( fam)
    5) mil ( convey)
    to \bring up up reinforcements/ supplies die Front mit Verstärkung/Vorräten versorgen
    to \bring up up a menu/ dialog box ein Menü/Dialogfenster aufrufen
    PHRASES:
    to \bring up up the rear das Schlusslicht bilden;
    to \bring up sb up short jdn plötzlich zum Anhalten bringen

    English-German students dictionary > bring up

  • 106 reserve

    I n
    1. запас, резерв; pl економічні ресурси
    - formal reserves листи, які супроводжують вручення вірчих грамот
    - tacit reserve мовчазне застереження, застереження подумки
    - without reserve беззастережно, цілком
    II v
    1. відкладати (на майбутнє), переносити (на тривалий час)
    2. зберігати за собою, резервувати (право тощо)
    - to reserve one's decision відкласти прийняття рішення, зарезервувати за собою право приймати рішення пізніше
    - to reserve one's position with regard to/ on a matter of smth. резервувати свою позицію/ свою думку стосовно певного питання
    - to reserve one's right резервувати/ залишати за собою право

    English-Ukrainian diplomatic dictionary > reserve

  • 107 reserve

    English-russian dctionary of diplomacy > reserve

  • 108 Kay (of Bury), John

    SUBJECT AREA: Textiles
    [br]
    b. 16 July 1704 Walmersley, near Bury, Lancashire, England
    d. 1779 France
    [br]
    English inventor of the flying shuttle.
    [br]
    John Kay was the youngest of five sons of a yeoman farmer of Walmersley, near Bury, Lancashire, who died before his birth. John was apprenticed to a reedmaker, and just before he was 21 he married a daughter of John Hall of Bury and carried on his trade in that town until 1733. It is possible that his first patent, taken out in 1730, was connected with this business because it was for an engine that made mohair thread for tailors and twisted and dressed thread; such thread could have been used to bind up the reeds used in looms. He also improved the reeds by making them from metal instead of cane strips so they lasted much longer and could be made to be much finer. His next patent in 1733, was a double one. One part of it was for a batting machine to remove dust from wool by beating it with sticks, but the patent is better known for its description of the flying shuttle. Kay placed boxes to receive the shuttle at either end of the reed or sley. Across the open top of these boxes was a metal rod along which a picking peg could slide and drive the shuttle out across the loom. The pegs at each end were connected by strings to a stick that was held in the right hand of the weaver and which jerked the shuttle out of the box. The shuttle had wheels to make it "fly" across the warp more easily, and ran on a shuttle race to support and guide it. Not only was weaving speeded up, but the weaver could produce broader cloth without any aid from a second person. This invention was later adapted for the power loom. Kay moved to Colchester and entered into partnership with a baymaker named Solomon Smith and a year later was joined by William Carter of Ballingdon, Essex. His shuttle was received with considerable hostility in both Lancashire and Essex, but it was probably more his charge of 15 shillings a year for its use that roused the antagonism. From 1737 he was much involved with lawsuits to try and protect his patent, particularly the part that specified the method of winding the thread onto a fixed bobbin in the shuttle. In 1738 Kay patented a windmill for working pumps and an improved chain pump, but neither of these seems to have been successful. In 1745, with Joseph Stell of Keighley, he patented a narrow fabric loom that could be worked by power; this type may have been employed by Gartside in Manchester soon afterwards. It was probably through failure to protect his patent rights that Kay moved to France, where he arrived penniless in 1747. He went to the Dutch firm of Daniel Scalongne, woollen manufacturers, in Abbeville. The company helped him to apply for a French patent for his shuttle, but Kay wanted the exorbitant sum of £10,000. There was much discussion and eventually Kay set up a workshop in Paris, where he received a pension of 2,500 livres. However, he was to face the same problems as in England with weavers copying his shuttle without permission. In 1754 he produced two machines for making card clothing: one pierced holes in the leather, while the other cut and sharpened the wires. These were later improved by his son, Robert Kay. Kay returned to England briefly, but was back in France in 1758. He was involved with machines to card both cotton and wool and tried again to obtain support from the French Government. He was still involved with developing textile machines in 1779, when he was 75, but he must have died soon afterwards. As an inventor Kay was a genius of the first rank, but he was vain, obstinate and suspicious and was destitute of business qualities.
    [br]
    Bibliography
    1730, British patent no. 515 (machine for making mohair thread). 1733, British patent no. 542 (batting machine and flying shuttle). 1738, British patent no. 561 (pump windmill and chain pump). 1745, with Joseph Stell, British patent no. 612 (power loom).
    Further Reading
    B.Woodcroft, 1863, Brief Biographies of Inventors or Machines for the Manufacture of Textile Fabrics, London.
    J.Lord, 1903, Memoir of John Kay, (a more accurate account).
    Descriptions of his inventions may be found in A.Barlow, 1878, The History and Principles of Weaving by Hand and by Power, London; R.L. Hills, 1970, Power in the
    Industrial Revolution, Manchester; and C.Singer (ed.), 1957, A History of
    Technology, Vol. III, Oxford: Clarendon Press. The most important record, however, is in A.P.Wadsworth and J. de L. Mann, 1931, The Cotton Trade and Industrial
    Lancashire, Manchester.
    RLH

    Biographical history of technology > Kay (of Bury), John

  • 109 Riley, James

    SUBJECT AREA: Metallurgy
    [br]
    b. 1840 Halifax, England
    d. 15 July 1910 Harrogate, England
    [br]
    English steelmaker who promoted the manufacture of low-carbon bulk steel by the open-hearth process for tin plate and shipbuilding; pioneer of nickel steels.
    [br]
    After working as a millwright in Halifax, Riley found employment at the Ormesby Ironworks in Middlesbrough until, in 1869, he became manager of the Askam Ironworks in Cumberland. Three years later, in 1872, he was appointed Blast-furnace Manager at the pioneering Siemens Steel Company's works at Landore, near Swansea in South Wales. Using Spanish ore, he produced the manganese-rich iron (spiegeleisen) required as an additive to make satisfactory steel. Riley was promoted in 1874 to be General Manager at Landore, and he worked with William Siemens to develop the use of the latter's regenerative furnace for the production of open-hearth steel. He persuaded Welsh makers of tin plate to use sheets rolled from lowcarbon (mild) steel instead of from charcoal iron and, partly by publishing some test results, he was instrumental in influencing the Admiralty to build two naval vessels of mild steel, the Mercury and the Iris.
    In 1878 Riley moved north on his appointment as General Manager of the Steel Company of Scotland, a firm closely associated with Charles Tennant that was formed in 1872 to make steel by the Siemens process. Already by 1878, fourteen Siemens melting furnaces had been erected, and in that year 42,000 long tons of ingots were produced at the company's Hallside (Newton) Works, situated 8 km (5 miles) south-east of Glasgow. Under Riley's leadership, steelmaking in open-hearth furnaces was initiated at a second plant situated at Blochairn. Plates and sections for all aspects of shipbuilding, including boilers, formed the main products; the company also supplied the greater part of the steel for the Forth (Railway) Bridge. Riley was associated with technical modifications which improved the performance of steelmaking furnaces using Siemens's principles. He built a gasfired cupola for melting pig-iron, and constructed the first British "universal" plate mill using three-high rolls (Lauth mill).
    At the request of French interests, Riley investigated the properties of steels containing various proportions of nickel; the report that he read before the Iron and Steel Institute in 1889 successfully brought to the notice of potential users the greatly enhanced strength that nickel could impart and its ability to yield alloys possessing substantially lower corrodibility.
    The Steel Company of Scotland paid dividends in the years to 1890, but then came a lean period. In 1895, at the age of 54, Riley moved once more to another employer, becoming General Manager of the Glasgow Iron and Steel Company, which had just laid out a new steelmaking plant at Wishaw, 25 km (15 miles) south-east of Glasgow, where it already had blast furnaces. Still the technical innovator, in 1900 Riley presented an account of his experiences in introducing molten blast-furnace metal as feed for the open-hearth steel furnaces. In the early 1890s it was largely through Riley's efforts that a West of Scotland Board of Conciliation and Arbitration for the Manufactured Steel Trade came into being; he was its first Chairman and then its President.
    In 1899 James Riley resigned from his Scottish employment to move back to his native Yorkshire, where he became his own master by acquiring the small Richmond Ironworks situated at Stockton-on-Tees. Although Riley's 1900 account to the Iron and Steel Institute was the last of the many of which he was author, he continued to contribute to the discussion of papers written by others.
    [br]
    Principal Honours and Distinctions
    President, West of Scotland Iron and Steel Institute 1893–5. Vice-President, Iron and Steel Institute, 1893–1910. Iron and Steel Institute (London) Bessemer Gold Medal 1887.
    Bibliography
    1876, "On steel for shipbuilding as supplied to the Royal Navy", Transactions of the Institute of Naval Architects 17:135–55.
    1884, "On recent improvements in the method of manufacture of open-hearth steel", Journal of the Iron and Steel Institute 2:43–52 plus plates 27–31.
    1887, "Some investigations as to the effects of different methods of treatment of mild steel in the manufacture of plates", Journal of the Iron and Steel Institute 1:121–30 (plus sheets II and III and plates XI and XII).
    27 February 1888, "Improvements in basichearth steel making furnaces", British patent no. 2,896.
    27 February 1888, "Improvements in regenerative furnaces for steel-making and analogous operations", British patent no. 2,899.
    1889, "Alloys of nickel and steel", Journal of the Iron and Steel Institute 1:45–55.
    Further Reading
    A.Slaven, 1986, "James Riley", in Dictionary of Scottish Business Biography 1860–1960, Volume 1: The Staple Industries (ed. A.Slaven and S. Checkland), Aberdeen: Aberdeen University Press, 136–8.
    "Men you know", The Bailie (Glasgow) 23 January 1884, series no. 588 (a brief biography, with portrait).
    J.C.Carr and W.Taplin, 1962, History of the British Steel Industry, Harvard University Press (contains an excellent summary of salient events).
    JKA

    Biographical history of technology > Riley, James

  • 110 Roberts, Richard

    [br]
    b. 22 April 1789 Carreghova, Llanymynech, Montgomeryshire, Wales
    d. 11 March 1864 London, England
    [br]
    Welsh mechanical engineer and inventor.
    [br]
    Richard Roberts was the son of a shoemaker and tollkeeper and received only an elementary education at the village school. At the age of 10 his interest in mechanics was stimulated when he was allowed by the Curate, the Revd Griffith Howell, to use his lathe and other tools. As a young man Roberts acquired a considerable local reputation for his mechanical skills, but these were exercised only in his spare time. For many years he worked in the local limestone quarries, until at the age of 20 he obtained employment as a pattern-maker in Staffordshire. In the next few years he worked as a mechanic in Liverpool, Manchester and Salford before moving in 1814 to London, where he obtained employment with Henry Maudslay. In 1816 he set up on his own account in Manchester. He soon established a reputation there for gear-cutting and other general engineering work, especially for the textile industry, and by 1821 he was employing about twelve men. He built machine tools mainly for his own use, including, in 1817, one of the first planing machines.
    One of his first inventions was a gas meter, but his first patent was obtained in 1822 for improvements in looms. His most important contribution to textile technology was his invention of the self-acting spinning mule, patented in 1825. The normal fourteen-year term of this patent was extended in 1839 by a further seven years. Between 1826 and 1828 Roberts paid several visits to Alsace, France, arranging cottonspinning machinery for a new factory at Mulhouse. By 1826 he had become a partner in the firm of Sharp Brothers, the company then becoming Sharp, Roberts \& Co. The firm continued to build textile machinery, and in the 1830s it built locomotive engines for the newly created railways and made one experimental steam-carriage for use on roads. The partnership was dissolved in 1843, the Sharps establishing a new works to continue locomotive building while Roberts retained the existing factory, known as the Globe Works, where he soon after took as partners R.G.Dobinson and Benjamin Fothergill (1802–79). This partnership was dissolved c. 1851, and Roberts continued in business on his own for a few years before moving to London as a consulting engineer.
    During the 1840s and 1850s Roberts produced many new inventions in a variety of fields, including machine tools, clocks and watches, textile machinery, pumps and ships. One of these was a machine controlled by a punched-card system similar to the Jacquard loom for punching rivet holes in plates. This was used in the construction of the Conway and Menai Straits tubular bridges. Roberts was granted twenty-six patents, many of which, before the Patent Law Amendment Act of 1852, covered more than one invention; there were still other inventions he did not patent. He made his contribution to the discussion which led up to the 1852 Act by publishing, in 1830 and 1833, pamphlets suggesting reform of the Patent Law.
    In the early 1820s Roberts helped to establish the Manchester Mechanics' Institute, and in 1823 he was elected a member of the Literary and Philosophical Society of Manchester. He frequently contributed to their proceedings and in 1861 he was made an Honorary Member. He was elected a Member of the Institution of Civil Engineers in 1838. From 1838 to 1843 he served as a councillor of the then-new Municipal Borough of Manchester. In his final years, without the assistance of business partners, Roberts suffered financial difficulties, and at the time of his death a fund for his aid was being raised.
    [br]
    Principal Honours and Distinctions
    Member, Institution of Civil Engineers 1838.
    Further Reading
    There is no full-length biography of Richard Roberts but the best account is H.W.Dickinson, 1945–7, "Richard Roberts, his life and inventions", Transactions of the Newcomen Society 25:123–37.
    W.H.Chaloner, 1968–9, "New light on Richard Roberts, textile engineer (1789–1864)", Transactions of the Newcomen Society 41:27–44.
    RTS

    Biographical history of technology > Roberts, Richard

  • 111 Arnold, Aza

    SUBJECT AREA: Textiles
    [br]
    b. 4 October 1788 Smithfield, Pawtucket, Rhode Island, USA
    d. 1865 Washington, DC, USA
    [br]
    American textile machinist who applied the differential motion to roving frames, solving the problem of winding on the delicate cotton rovings.
    [br]
    He was the son of Benjamin and Isabel Arnold, but his mother died when he was 2 years old and after his father's second marriage he was largely left to look after himself. After attending the village school he learnt the trade of a carpenter, and following this he became a machinist. He entered the employment of Samuel Slater, but left after a few years to engage in the unsuccessful manufacture of woollen blankets. He became involved in an engineering shop, where he devised a machine for taking wool off a carding machine and making it into endless slivers or rovings for spinning. He then became associated with a cotton-spinning mill, which led to his most important invention. The carded cotton sliver had to be reduced in thickness before it could be spun on the final machines such as the mule or the waterframe. The roving, as the mass of cotton fibres was called at this stage, was thin and very delicate because it could not be twisted to give strength, as this would not allow it to be drawn out again during the next stage. In order to wind the roving on to bobbins, the speed of the bobbin had to be just right but the diameter of the bobbin increased as it was filled. Obtaining the correct reduction in speed as the circumference increased was partially solved by the use of double-coned pulleys, but the driving belt was liable to slip owing to the power that had to be transmitted.
    The final solution to the problem came with the introduction of the differential drive with bevel gears or a sun-and-planet motion. Arnold had invented this compound motion in 1818 but did not think of applying it to the roving frame until 1820. It combined the direct-gearing drive from the main shaft of the machine with that from the cone-drum drive so that the latter only provided the difference between flyer and bobbin speeds, which meant that most of the transmission power was taken away from the belt. The patent for this invention was issued to Arnold on 23 January 1823 and was soon copied in Britain by Henry Houldsworth, although J.Green of Mansfield may have originated it independendy in the same year. Arnold's patent was widely infringed in America and he sued the Proprietors of the Locks and Canals, machine makers for the Lowell manufacturers, for $30,000, eventually receiving $3,500 compensation. Arnold had his own machine shop but he gave it up in 1838 and moved the Philadelphia, where he operated the Mulhausen Print Works. Around 1850 he went to Washington, DC, and became a patent attorney, remaining as such until his death. On 24 June 1856 he was granted patent for a self-setting and self-raking saw for sawing machines.
    [br]
    Bibliography
    28 June 1856, US patent no. 15,163 (self-setting and self-raking saw for sawing machines).
    Further Reading
    Dictionary of American Biography, Vol. 1.
    W.English, 1969, The Textile Industry, London (a description of the principles of the differential gear applied to the roving frame).
    D.J.Jeremy, 1981, Transatlantic Industrial Revolution. The Diffusion of Textile Technologies Between Britain and America, 1790–1830, Oxford (a discussion of the introduction and spread of Arnold's gear).
    RLH

    Biographical history of technology > Arnold, Aza

  • 112 Samuda, Joseph d'Aguilar

    [br]
    b. 21 May 1813 London, England
    d. 27 April 1885 London, England
    [br]
    English shipbuilder and promoter of atmospheric traction for railways.
    [br]
    Joseph Samuda studied as a engineer under his elder brother Jacob and formed a partnership with him in 1832 as builders of marine steam engines. In 1838, with Samuel Clegg, they took out a patent for an atmospheric railway system. In this system a cast-iron tube, with a continuous sealed slot along the top, was laid between the rails; trains were attached to a piston within the tube by an arm, the slot being opened and resealed before and behind it. The tube ahead of the piston was exhausted by a stationary steam engine and the train propelled by atmospheric pressure. The system appeared to offer clean, fast travel and was taken up by noted contemporary railway engineers such as I.K. Brunel and C.B. Vignoles, but it eventually proved a failure as no satisfactory means of sealing the slot could at that time be found. It did, however, lead to experiments in the 1860s with underground, pneumatic-tube railways, in which the vehicle would be its own piston, and Samuda Bros, supplied cast-iron tubes for such a line. Meanwhile, Samuda Bros, had commenced building iron steamships in 1843, and although Jacob Samuda lost his life in 1844 as the result of an accident aboard one of the earliest built, the firm survived to become noted London builders of steamships of many types over the ensuing four decades. Joseph Samuda became a founder member of the Institution of Naval Architects in 1860, and was MP for Tavistock from 1865 to 1868 and for Tower Hamlets from 1868 to 1880.
    [br]
    Bibliography
    1838, jointly with Jacob Samuda and Samuel Clegg, British patent no. 7,920 (atmospheric traction).
    1861–2, "On the form and materials for iron plated ships", Minutes of Proceedings of the Institution of Civil Engineers 21.
    Further Reading
    Obituary, Minutes of Proceedings of the Institution of Civil Engineers 81:334 (provides good coverage of his career).
    C.Hadfield, 1967, Atmospheric Railways, Newton Abbot: David \& Charles (includes a discussion of his railway work).
    PJGR

    Biographical history of technology > Samuda, Joseph d'Aguilar

  • 113 Pihl, Carl Abraham

    [br]
    b. 16 January 1825 Stavanger, Norway
    d. 14 September 1897 Kristiania (now Oslo), Norway
    [br]
    Norwegian railway engineer, protagonist of narrow-gauge railways.
    [br]
    Pihl trained as an engineer at Göteborg, Sweden, and then moved to London, where he worked under Robert Stephenson during 1845 and 1846. In 1850 he returned to Norway and worked with the English contractors building the first railway in Norway, the Norwegian Trunk Railway from Kristiania to Eidsvold, for which the English standard gauge was used. Subsequently he worked in England for a year, but in 1856 joined the Norwegian government's Road Department, which was to have responsibility for railways. In 1865 a distinct Railway Department was set up, and Pihl became Director for State Railway Construction. Because of the difficulties of the terrain and limited traffic, Pihl recommended that in the case of two isolated lines to be built the outlay involved in ordinary railways would not be justified, and that they should be built to the narrow gauge of 3 ft 6 in. (1.07 m). His recommendation was accepted by the Government in 1857 and the two lines were built to this gauge and opened during 1861–4. Six of their seven locomotives, and all their rolling stock, were imported from Britain. The lines cost £3,000 and £5,000 per mile, respectively; a standard-gauge line built in the same period cost £6,400 per mile.
    Subsequently, many hundreds of miles of Norwegian railways were built to 3 ft 6 in. (1.07 m) gauge under Pihl's direction. They influenced construction of railways to this gauge in Australia, Southern Africa, New Zealand, Japan and elsewhere. However, in the late 1870s controversy arose in Norway over the economies that could in fact be gained from the 3 ft 6 in. (1,07 m) gauge. This controversy in the press, in discussion and in the Norwegian parliament became increasingly acrimonious during the next two decades; the standard-gauge party may be said to have won with the decision in 1898, the year after Pihl's death, to build the Bergen-Oslo line to standard gauge.
    [br]
    Principal Honours and Distinctions
    Knight of the Order of St Olaf 1862; Commander of the Order of St Olaf 1877. Commander of the Royal Order of Vasa 1867. Royal Order of the Northern Star 1882.
    Further Reading
    P.Allen and P.B.Whitehouse, 1959, Narrow Gauge Railways of Europe, Ian Allan (describes the Norwegian Battle of the Gauges).
    PJGR

    Biographical history of technology > Pihl, Carl Abraham

  • 114 Wollaston, William Hyde

    SUBJECT AREA: Metallurgy
    [br]
    b. 6 August 1766 East Dereham, Norfolk, England
    d. 22 December 1828 London, England
    [br]
    English chemist and metallurgist who discovered palladium and rhodium, pioneer in the fabrication of platinum.
    [br]
    Wollaston qualified in medicine at Cambridge University but gave up his practice in 1800 to devote himself to chemistry and metallurgy, funded from the profits from making malleable platinum. In partnership with Smithson Tennant, a friend from his Cambridge days, he worked on the extraction of platinum by dissolving it in aqua regia. In 1802 he found that in addition to platinum the solution contained a new metal, which he named palladium. Two years later he identified another new metal, rhodium.
    Wollaston developed a method of forming platinum by means of powder metallurgy and was the first to produce malleable and ductile platinum on a commercial scale. He produced platinum vessels for sulphuric acid manufacture and scientific apparatus such as crucibles. He devised an elegant method for forming fine platinum wire. He also applied his inventive talents to improving scientific apparatus, including the sextant and microscope and a reflecting goniometer for measuring crystal angles. In 1807 he was appointed Joint Secretary of the Royal Society with Sir Humphry Davy, which entailed a heavy workload and required them to referee all the papers submitted to the Society for publication.
    Wollaston's output of platinum began to decline after 1822. Due to ill health he ceased business operations in 1828 and at last made public the details of his secret platinum fabrication process. It was fully described in the Bakerian Lecture he delivered to the Royal Society on 28 November 1828, shortly before his death.
    [br]
    Principal Honours and Distinctions
    FRS 1793.
    Bibliography
    His scientific papers were published in various journals, nearly all listed in the Royal Society Catalogue of Scientific Papers.
    Further Reading
    There is no good general biography, the best general account being the entry in
    Dictionary of Scientific Biography.
    D.McDonald, 1960, A History of Platinum from the Earliest Times to the Eighteen- Eighties, London (provides a good discussion of his work on platinum).
    M.E.Weeks, 1939, "The discovery of the elements", Journal of Chemical Education: 184–5.
    ASD

    Biographical history of technology > Wollaston, William Hyde

  • 115 Lenoir, Jean Joseph Etienne

    [br]
    b. 1822 Mussey-la-Ville, Belgium
    d. 1900 Verenna Saint-Hildar, France
    [br]
    Belgian (naturalized French in 1870) inventor of internal combustion engines, an electroplating process and railway telegraphy systems.
    [br]
    Leaving his native village for Paris at the age of 16, Lenoir became a metal enameller. Experiments with various electroplating processes provided a useful knowledge of electricity that showed in many of his later ideas. Electric ignition, although somewhat unreliable, was a feature of the Lenoir gas engine which appeared in 1860. Resembling the steam engine of the day, Lenoir engines used a non-compression cycle of operations, in which the gas-air mixture of about atmospheric pressure was being ignited at one-third of the induction stroke. The engines were double acting. About five hundred of Lenoir's engines were built, mostly in Paris by M.Hippolyte Marinoni and by Lefébvre; the Reading Ironworks in England built about one hundred. Many useful applications of the engine are recorded, but the explosive shock that occurred on ignition, together with the unreliable ignition systems, prevented large-scale acceptance of the engine in industry. However, Lenoir's effort and achievements stimulated much discussion, and N.A. Otto is reported to have carried out his first experiments on a Lenoir engine.
    [br]
    Principal Honours and Distinctions
    Académie des Sciences Prix Montyon Prize 1870. Société d'Encouragement, Silver Prize of 12,000 francs. Légion d'honneur 1881 (for his work in telegraphy).
    Bibliography
    8 February 1860, British patent no. 335 (the first Lenoir engine).
    1861, British patent no. 107 (the Lenoir engine).
    Further Reading
    Dugald Clerk, 1895, The Gas and Oil Engine, 6th edn, London, pp. 13–15, 30, 118, 203.
    World Who's Who in Science, 1968 (for an account of Lenoir's involvement in technology).
    KAB

    Biographical history of technology > Lenoir, Jean Joseph Etienne

  • 116 Saniter, Ernest Henry

    SUBJECT AREA: Metallurgy
    [br]
    b. 1863 Middlesbrough, England
    d. 2 November 1934 Rotherham, Yorkshire
    [br]
    English chemist and metallurgist who introduced a treatment to remove sulphur from molten iron.
    [br]
    Saniter spent three years as a pupil in J.E.Stead's chemical laboratory in Middlesbrough, and then from 1883 was employed in the same town as Assistant Chemist at the new North-Eastern Steelworks. In 1890 he became Chief Chemist to the Wigan Coal and Iron Company in Lancashire. There he devised a desulphurizing treatment for molten iron and steel, based upon the presence of abundant lime together with calcium chloride. Between 1898 and 1904 he was in the Middlesbrough district once more, employed by Dorman Long \& Co. and Bell Brothers in experiments which led to the establishment of Teesside's first large-scale basic open-hearth steel plant. Calcium fluoride (fluorspar), mentioned in Saniter's 1892 patent, soon came to replace the calcium chloride; with this modification, his method retained wide applicability throughout the era of open-hearth steel. In 1904 Saniter became chief metallurgist to Steel, Peech \& Tozer Limited of Sheffield, and he remained in this post until 1928. Throughout the last forty years of his life he participated in the discussion of steelmaking developments and practices.
    [br]
    Principal Honours and Distinctions
    Vice-President, Iron and Steel Institute 1927–34. Iron and Steel Institute (London) Bessemer Gold Medal 1910.
    Bibliography
    1892. "A new process for the purification of iron and steel from sulphur", Journal of the Iron and Steel Institute 2:216–22.
    1893. "A supplementary paper on a new process for desulphurising iron and steel", Journal of the Iron and Steel Institute 1:73–7. 29 October 1892, British patent no. 8,612.
    15 October 1892, British patent no. 8,612A. 29 July 1893, British patent no. 17, 692.
    28 October 1893, British patent no. 23,534.
    Further Reading
    K.C.Barraclough, 1990, Steelmaking: 1850–1900 458, London: Institute of Metals, 271– 8.
    JKA

    Biographical history of technology > Saniter, Ernest Henry

  • 117 Ader, Clément

    SUBJECT AREA: Aerospace
    [br]
    b. 2 April 1841 Muret, France
    d. 3 May 1925 Toulouse, France
    [br]
    French engineer who made a short "hop" in a powered aeroplane in 1890.
    [br]
    Ader was a distinguished engineer and versatile inventor who was involved with electrical developments, including the telephone and air-cushion vehicles. In the field of aeronautics he became the centre of a long-lasting controversy: did he, or did he not, fly before the Wright brothers' flight of 1903? In 1882 Ader started work on his first aeroplane, the Eole (god of the winds), which was bat-like in appearance and powered by a very well-designed lightweight steam engine developing about 15 kW (20 hp). On 9 October 1890 the Eole was ready, and with Ader as pilot it increased speed over a level surface and lifted off the ground. It was airborne for about 5 seconds and covered some 50 m (164 ft), reaching a height of 20 cm (8 in.). Whether such a short hop constituted a flight has caused much discussion and argument over the years. An even greater controversy followed Ader's claim in 1906 that his third aeroplane (Avion III) had made a flight of 300 m (328 yd) in 1897. He repeated this claim in his book written in 1907, and many historians accepted his account of the "flight". C.H.Gibbs-Smith, an eminent aviation historian, investigated the Ader controversy and in his book published in 1966 came to the conclusion that the Avion III did not fly at all. Avion III was donated to the Museum of the Conservatoire des Arts et Métiers in Paris, and still survives. From 1906 onwards Ader concentrated his inventive efforts elsewhere, but he did mount a successful campaign to persuade the French War Ministry to create an air force.
    [br]
    Principal Honours and Distinctions
    In 1990 the French Government accepted him as the "Father of Aviation who gave wings to the world".
    Bibliography
    1890, patent no. 205, 155 (included a description of the Eole).
    1907, La Première étape de l'aviation militaire en France, Paris (the most significant of his published books and articles).
    Further Reading
    C.H.Gibbs-Smith, 1968, Clément Ader: His Flight Claims and His Place in History, London.
    The centenary of Ader's 1890 flight resulted in several French publications, including: C.Carlier, 1990, L'Affaire Clément Ader: la vérité rétablie, Paris; Pierre Lissarrague, 1990, Clément Ader: inventeur d'avions, Toulouse.
    JDS

    Biographical history of technology > Ader, Clément

  • 118 Jia Sixie (Chia Ssu-Hsieh)

    [br]
    b. sixth century AD China
    d. sixth century AD China
    [br]
    Chinese writer on agricultural practice.
    [br]
    Jia Sixie was the author of the Qi Min Yao Shu (Chhi Min Yao Shu), the earliest complete Chinese agricultural treatise to have survived. The survey quotes from over 160 other texts and the author himself relates how he collected from a wide range of sources, including folk songs and the anecdotes of old men. Little is known of Jia Sixie. It is assumed that he was a middle-ranking official and that his agricultural experience derives from his own work in the Shantung region. In addition to husbandry information, the treatise deals with the problems of running an agricultural estate. Details of experiments are also given, indicating that the text may have been aimed more at the estate owner than the peasant farmer. Culinary matters are also commented upon. Discussions of the range of crops available to the Chinese farmer, and of the-rotational practices implemented to make best use of those crops, give a clear indication that a much higher productivity was being achieved than in Europe at that time or for almost another thousand years. Crop diversity and rotations, as well as technologies such as green manuring and implements such as rollers and seed-drills, were combined to achieve these substantial yields.
    [br]
    Further Reading
    F.Bray, vol. VI.2 of J.Needham (ed.), Science and Civilisation in China (provides a comprehensive discussion on Chinese agricultural practice, and an early chapter gives details of her sources).
    AP

    Biographical history of technology > Jia Sixie (Chia Ssu-Hsieh)

  • 119 Todd, Leonard Jennett

    [br]
    fl. 1885 London, England
    [br]
    English (?) patentee of steam engines incorporating the uniflow principle.
    [br]
    In a uniflow system, the steam enters a steam engine cylinder at one end, pushes the pistons along, and exhausts through a ring of ports at the centre of the cylinder that are uncovered by movement of the piston. The piston is returned by steam then entering the other end of the cylinder, moving the piston arrangement back, and again making its exit through the central ports. This gave the thermodynamic advantage of the cylinder ends remaining hot and the centre colder with reheating the ends of the cylinder through compression of the residual steam. The principle was first patented by Jacob Perkins in England in 1827 and was tried in America in 1856.
    Little is known about Todd. The addresses given in his patent specifications show that he was living first at South Hornsey and then Stoke Newington, both in Middlesex (now in London). No obituary notices have been traced. He took out a patent in 1885 for a "terminal exhaust engine" and followed this with two more in 1886 and 1887. His aim was to "produce a double acting steam engine which shall work more efficiently, which shall produce and maintain within itself an improved gradation of temperature extending from each of its two Hot Inlets to its common central Cold Outlet". His later patents show the problems he faced with finding suitable valve gears and the compression developing during the return stroke of the piston. It was this last problem, particularly when starting a condensing engine, that probably defeated him through excessive compression pressures. There is some evidence that he hoped to apply his engines to railway locomotives.
    [br]
    Bibliography
    1885, British patent no. 7,301 (terminal exhaust engine). 1886, British patent no. 2,132.
    1887, British patent no. 6,666.
    Further Reading
    R.L.Hills, 1989, Power from Steam. A History of the Stationary Steam Engine, Cambridge University Press (provides the fullest discussion of his patents). H.W.Dickinson, 1938, A Short History of the Steam Engine, Cambridge University Press.
    J.Stumpf, 1912, The Una-Flow Steam Engine, Munich: R.Oldenbourg.
    RLH

    Biographical history of technology > Todd, Leonard Jennett

  • 120 Tull, Jethro

    [br]
    b. 30 March 1674 Basildon, Essex, England
    d. February 1741 Hungerford, Berkshire, England
    [br]
    English farmer who developed and publicized a system of row crop husbandry.
    [br]
    Jethro Tull was born into an English landowning family. He was educated at St John's College, Oxford, but left without a degree at the age of 17. He then spent three years on the Grand Tour before returning to study law at Gray's Inn in London. After six years he was admitted to the Bar, but he never practised, moving instead to one of his father's farms near Oxford.
    Because of labour problems he chose to plant sainfoin (Onobrychis viciaefolia) as a forage crop because it required less frequent reseeding than grass. The seed itself was expensive and of poor fertility, so he began to experiment. He discovered that the depth of sowing as well as the planting rate influenced germination and the rate of growth, he found the optimum rate could be gained with one plant per ft2, a much lower density than could be achieved by broadcasting. His experiments created labour problems. He is traditionally and incorrectly credited with the invention of the seed drill, but he did develop and use a drill on his own farm to achieve the planting rate and depth he needed without having to rely on his workforce.
    In 1711 Tull became ill and went to France, having first sold his original farm and moved to "Properous", near Hungerford. In France he developed a husbandry technique that used a horse hoe to stir the soil between the rows of plants achieved with his drill. He incorrectly believed that his increased yields were the result of nutrients released from the soil by this method, whereas they were more likely to have been the result of a reduction in weed competition as a result of the repeated cultivation.
    [br]
    Bibliography
    1731, The New Horse-Hoeing Husbandry, or an Essay on the Principals of Tillage and Vegetation (sets out the ideas and innovations for which he was already well known).
    Further Reading
    T.H.Marshall, 1929, "Jethro Tull and the new husbandry of the 18th century", Economic History Review 11:41–60 (the relevance and significance of Tull's work was already under discussion before his death; Marshall discusses the controversy).
    G.E.Fussell, 1973, Jethro Tull. His Influence on Mechanised Agriculture (presents a pro- Tull account).
    AP

    Biographical history of technology > Tull, Jethro

См. также в других словарях:

  • Request for Discussion — Eine Charta einer Usenet Newsgroup legt zusammen mit der Tagline (Kurzbeschreibung) fest, welche Inhalte dort hingehören und bei manchen Newsgroups auch wie sie gepostet (veröffentlicht) werden dürfen. Chartas regeln nicht nur eine thematische… …   Deutsch Wikipedia

  • topic for discussion — index matter (subject) Burton s Legal Thesaurus. William C. Burton. 2006 …   Law dictionary

  • discussion — noun ADJECTIVE ▪ detailed, extensive, full, in depth, thorough (esp. AmE) ▪ They had a detailed discussion of the issues. ▪ extended, lengthy …   Collocations dictionary

  • subject — sub|ject1 W2S2 [ˈsʌbdʒıkt] n ▬▬▬▬▬▬▬ 1¦(thing talked about)¦ 2¦(at school)¦ 3¦(in art)¦ 4¦(in a test)¦ 5¦(grammar)¦ 6¦(citizen)¦ ▬▬▬▬▬▬▬ [Date: 1300 1400; : Old French; Origin: Latin subjectus, from subicere …   Dictionary of contemporary English

  • subject — subjectable, adj. subjectability, n. subjectedly, adv. subjectedness, n. subjectless, adj. subjectlike, adj. n., adj. /sub jikt/; v. /seuhb jekt /, n. 1. that which forms a basic matter of thought, discussion, investigation, etc.: a subject of… …   Universalium

  • subject — [sub′jikt, sub′jekt΄; ] for v. [ səb jekt′] adj. [ME suget < OFr < L subjectus, pp. of subjicere, to place under, put under, subject < sub , under + jacere, to throw: see JET1] 1. under the authority or control of, or owing allegiance to …   English World dictionary

  • subject — n 1 *citizen, national Antonyms: sovereign 2 Subject, matter, subject matter, argument, topic, text, theme, motive, motif, leitmotiv can mean the basic idea or the principal object of thought or attention in a discourse or artistic composition.… …   New Dictionary of Synonyms

  • Subject — Sub*ject , n. [From L. subjectus, through an old form of F. sujet. See {Subject}, a.] 1. That which is placed under the authority, dominion, control, or influence of something else. [1913 Webster] 2. Specifically: One who is under the authority… …   The Collaborative International Dictionary of English

  • For Dummies — Cover of Wikis for Dummies, ISBN 978 0 470 04399 8 Author Various Illustrator Rich Tennant …   Wikipedia

  • subject — I (New American Roget s College Thesaurus) n. topic, theme; matter; liege, vassal, citizen. See grammar, thought, servant, teaching. v. t. reduce, control, restrain, tame; treat, expose. See subjection, thought. adj. liable, conditioned (upon).… …   English dictionary for students

  • subject — I adj. (cannot stand alone) subject to (subject to change) II n. topic, theme 1) to bring up, broach; pursue; tackle a subject 2) to address, cover, deal with, discuss, take up, treat a subject 3) to dwell on; exhaust; go into a subject 4) to… …   Combinatory dictionary

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»