Перевод: со всех языков на английский

с английского на все языки

a+study+of+royal

  • 61 Domingos, Antônio de Segueira

    (1768-1837)
       From a modest background, Domingos was educated at the Casa Pia of Lisbon, after which he attended the design and figure drawing course at the Aula Régia. In 1788, while working as a decorator, he received a scholarship from Queen Maria I to study at the Portuguese Academy in Rome, where he took classes from Antônio Cavallucci. Later, he studied at the Academy of San Luca. He returned to Lisbon in 1795. He was named court painter in 1802, and codirected the decoration of the Palace of Ajudá. In 1803, he was professor of drawing and painting to the royal princesses and, in 1806, director of drawing in Oporto. His works included patriotic allegories and portraits. He contributed to the cause of Portuguese nationalism through his art. He painted Junot Protecting Lisbon (1808), Apotheosis of Wellington (1811), and, in 1821, the portraits of 33 liberal deputies.
       After the return of absolutist King Miguel I (1802-66) in 1828, Domingos went into exile in France, where he showed his work at the Louvre alongside that of other romantic painters, such as Eugéne Delacroix. His Death of Camões won a gold medal. In 1826, he settled in Rome, where he dedicated himself to religious painting, the Life of Christ (1828) and Final Judgement (1830) being the best of these. He died in Rome without returning to Portugal in 1837. His work is considered transitional from neoclassicism to romanticism.

    Historical dictionary of Portugal > Domingos, Antônio de Segueira

  • 62 Herculano, Alexandre

    (1810-1877)
       One of Portugal's greatest historians and one of its giants in 19th-century writing and literature. Born in Lisbon to a middle-class family, Herculano studied commerce and diplomacy. At age 21, he enlisted in the liberal armed forces of King Pedro IV but was forced to flee to exile in Great Britain and then France. Later, he was part of the victorious liberal expeditionary force that landed near Oporto. He began his serious studies in Oporto, but soon relocated to Lisbon, where he worked as a journalist. In 1839, he was named to the post of director of the Royal Library at Ajudá Palace and at Necessidades Palace, and thus began to prepare to write his classic work, História de Portugal, a major study that when completed took the history of the country only up to the end of the 13th century. The first volume of this work, with which his fame as a historian is most closely associated, was published in 1846, but Herculano was a versatile writer who wrote novels, essays, and poetry as well as history.
       In addition to being a man of words, he was a man of action who was active in exchanges with other literati and who did government service. Herculano, for example, was on the commission that revised the civil code of Portugal. His histori cal writings influenced future generations of writers because of his literary style, because he broke through the legend and myth that had surrounded ancient and medieval Portuguese history, and above all because of his objective, scientific approach to research and conclusions. Dissatisfied with politics and public life, Herculano retired to a farm in the country (at Vale de Lobos) in 1859 and worked as a farmer until 1866.

    Historical dictionary of Portugal > Herculano, Alexandre

  • 63 Keil, Alfredo

    (1854-1907)
       Portuguese composer, musician, and painter of German descent who wrote the music for [I]A[/I] Portuguesa, the official national anthem of Portugal since 1911. Kiel began his studies in Germany, where he won bronze and silver medals for his work. He also showed his work in Rio de Janeiro, Brazil. In 1890, he opened an atelier on the Avenida da Liberdade, Lisbon, where he presented his seascapes, landscapes, and portraits. These works sold well, and some were even acquired by King Luís I for the royal art collection: A Saída da Igreja, A Primavera, Marinha, and Pôr-do-Sol.
       Having learned to play the piano, Keil began to study music with Hungarian pianist Oscar de le Cinne. Professor Ernesto Vieira taught him instrumentation and harmonization. Keil's first musical works were Aurora, Teus Olhos Negros, and Roses, Pompons e Romança. These were followed by Morenita, Souvenir de Vienne, and Carnaval. Well received, these works encouraged Keil to try his hand at opera. In 1882, he presented Suzana, a comic opera in one act. This was followed by other musical works, such as Recueil, melodies for the piano; Pátria, a work for piano and singer; Orientais, a symphony with chorus and solos; and D. Branca, an opera in four acts with a libretto taken from the poem by Almeida Garrett of the same title.
       D. Branca, presented in 1888, was wildly popular, which inspired Keil to write more operas: Irene (1893), and Serrana (1902). In 1902, he wrote the Hino do Infante D. Henriques for a festival marking the birthday of Prince Henry of Aviz (Prince Henry the Navigator), which was played by four military bands and sung by massed choruses. Additional patriotic music included, in 1895, a march titled Marcha de Gualdim Pais and A Portuguesa, with words by Lopes de Mendonça, which became the Portuguese national anthem in 1911.

    Historical dictionary of Portugal > Keil, Alfredo

  • 64 Bakewell, Robert

    [br]
    b. 23 May 1725 Loughborough, England
    d. 1 October 1795 Loughborough, England
    [br]
    English livestock breeder who pioneered the practice of progeny testing for selecting breeding stock; he is particularly associated with the development of the Improved Leicester breed of sheep.
    [br]
    Robert Bakewell was the son of the tenant farming the 500-acre (200 hectare) Dishley Grange Farm, near Loughborough, where he was born. The family was sufficiently wealthy to allow Robert to travel, which he began to do at an early age, exploring the farming methods of the West Country, Norfolk, Ireland and Holland. On taking over the farm he continued the development of the irrigation scheme begun by his father. Arthur Young visited the farm during his tour of east England in 1771. At that time it consisted of 440 acres (178 hectares), 110 acres (45 hectares) of which were arable, and carried a stock of 60 horses, 400 sheep and 150 other assorted beasts. Of the arable land, 30 acres (12 hectares) were under root crops, mainly turnips.
    Bakewell was not the first to pioneer selective breeding, but he was the first successfully to apply selection to both the efficiency with which an animal utilized its food, and its physical appearance. He always had a clear idea of the animal he wanted, travelled extensively to collect a range of animals possessing the characteristics he sought, and then bred from these towards his goal. He was aware of the dangers of inbreeding, but would often use it to gain the qualities he wanted. His early experiments were with Longhorn cattle, which he developed as a meat rather than a draught animal, but his most famous achievement was the development of the Improved Leicester breed of sheep. He set out to produce an animal that would put on the most meat in the least time and with the least feeding. As his base he chose the Old Leicester, but there is still doubt as to which other breeds he may have introduced to produce the desired results. The Improved Leicester was smaller than its ancestor, with poorer wool quality but with greatly improved meat-production capacity.
    Bakewell let out his sires to other farms and was therefore able to study their development under differing conditions. However, he made stringent rules for those who hired these animals, requiring the exclusive use of his rams on the farms concerned and requiring particular dietary conditions to be met. To achieve this control he established the Dishley Society in 1783. Although his policies led to accusations of closed access to his stock, they enabled him to keep a close control of all offspring. He thereby pioneered the process now recognized as "progeny testing".
    Bakewell's fame and that of his farm spread throughout the country and overseas. He engaged in an extensive correspondence and acted as host to all of influence in British and overseas agriculture, but it would appear that he was an over-generous host, since he is known to have been in financial difficulties in about 1789. He was saved from bankruptcy by a public subscription raised to allow him to continue with his breeding experiments; this experience may well have been the reason why he was such a staunch advocate of State funding of agricultural research.
    [br]
    Further Reading
    William Houseman, 1894, biography, Journal of the Royal Agricultural Society. 1–31. H.C.Parsons, 1957, Robert Bakewell (contains a more detailed account).
    R.Trow Smith, 1957, A History of British Livestock Husbandry to 1700, London: Routledge \& Kegan Paul.
    —A History of British Livestock Husbandry 1700 to 1900 (places Bakewell within the context of overall developments).
    M.L.Ryder, 1983, Sheep and Man, Duckworth (a scientifically detailed account which deals with Bakewell within the context of its particular subject).
    AP

    Biographical history of technology > Bakewell, Robert

  • 65 Bell, Alexander Graham

    SUBJECT AREA: Telecommunications
    [br]
    b. 3 March 1847 Edinburgh, Scotland
    d. 3 August 1922 Beinn Bhreagh, Baddeck, Cape Breton Island, Nova Scotia, Canada
    [br]
    Scottish/American inventor of the telephone.
    [br]
    Bell's grandfather was a professor of elocution in London and his father an authority on the physiology of the voice and on elocution; Bell was to follow in their footsteps. He was educated in Edinburgh, leaving school at 13. In 1863 he went to Elgin, Morayshire, as a pupil teacher in elocution, with a year's break to study at Edinburgh University; it was in 1865, while still in Elgin, that he first conceived the idea of the electrical transmission of speech. He went as a master to Somersetshire College, Bath (now in Avon), and in 1867 he moved to London to assist his father, who had taken up the grandfather's work in elocution. In the same year, he matriculated at London University, studying anatomy and physiology, and also began teaching the deaf. He continued to pursue the studies that were to lead to the invention of the telephone. At this time he read Helmholtz's The Sensations of Tone, an important work on the theory of sound that was to exert a considerable influence on him.
    In 1870 he accompanied his parents when they emigrated to Canada. His work for the deaf gained fame in both Canada and the USA, and in 1873 he was apponted professor of vocal physiology and the mechanics of speech at Boston University, Massachusetts. There, he continued to work on his theory that sound wave vibrations could be converted into a fluctuating electric current, be sent along a wire and then be converted back into sound waves by means of a receiver. He approached the problem from the background of the theory of sound and voice production rather than from that of electrical science, and by 1875 he had succeeded in constructing a rough model. On 7 March 1876 Bell spoke the famous command to his assistant, "Mr Watson, come here, I want you": this was the first time a human voice had been transmitted along a wire. Only three days earlier, Bell's first patent for the telephone had been granted. Almost simultaneously, but quite independently, Elisha Gray had achieved a similar result. After a period of litigation, the US Supreme Court awarded Bell priority, although Gray's device was technically superior.
    In 1877, three years after becoming a naturalized US citizen, Bell married the deaf daughter of his first backer. In August of that year, they travelled to Europe to combine a honeymoon with promotion of the telephone. Bell's patent was possibly the most valuable ever issued, for it gave birth to what later became the world's largest private service organization, the Bell Telephone Company.
    Bell had other scientific and technological interests: he made improvements in telegraphy and in Edison's gramophone, and he also developed a keen interest in aeronautics, working on Curtiss's flying machine. Bell founded the celebrated periodical Science.
    [br]
    Principal Honours and Distinctions
    Legion of Honour; Hughes Medal, Royal Society, 1913.
    Further Reading
    Obituary, 7 August 1922, The Times. Dictionary of American Biography.
    R.Burlingame, 1964, Out of Silence into Sound, London: Macmillan.
    LRD

    Biographical history of technology > Bell, Alexander Graham

  • 66 Brotan, Johann

    [br]
    b. 24 June 1843 Kattau, Bohemia (now in the Czech Republic)
    d. 20 November 1923 Vienna, Austria
    [br]
    Czech engineer, pioneer of the watertube firebox for steam locomotive boilers.
    [br]
    Brotan, who was Chief Engineer of the main workshops of the Royal Austrian State Railways at Gmund, found that locomotive inner fireboxes of the usual type were both expensive, because the copper from which they were made had to be imported, and short-lived, because of corrosion resulting from the use of coal with high sulphur content. He designed a firebox of which the side and rear walls comprised rows of vertical watertubes, expanded at their lower ends into a tubular foundation ring and at the top into a longitudinal water/steam drum. This projected forward above the boiler barrel (which was of the usual firetube type, though of small diameter), to which it was connected. Copper plates were eliminated, as were firebox stays.
    The first boiler to incorporate a Brotan firebox was built at Gmund under the inventor's supervision and replaced the earlier boiler of a 0−6−0 in 1901. The increased radiantly heated surface was found to produce a boiler with very good steaming qualities, while the working pressure too could be increased, with consequent fuel economies. Further locomotives in Austria and, experimentally, elsewhere were equipped with Brotan boilers.
    Disadvantages of the boiler were the necessity of keeping the tubes clear of scale, and a degree of structural weakness. The Swiss engineer E. Deffner improved the latter aspect by eliminating the forward extension of the water/steam drum, replacing it with a large-diameter boiler barrel with the rear section of tapered wagon-top type so that the front of the water/steam drum could be joined directly to the rear tubeplate. The first locomotives to be fitted with this Brotan-Deffner boiler were two 4−6−0s for the Swiss Federal Railways in 1908 and showed very favourable results. However, steam locomotive development ceased in Switzerland a few years later in favour of electrification, but boilers of the Brotan-Deffner type and further developments of it were used in many other European countries, notably Hungary, where more than 1,000 were built. They were also used experimentally in the USA: for instance, Samuel Vauclain, as President of Baldwin Locomotive Works, sent his senior design engineer to study Hungarian experience and then had a high-powered 4−8−0 built with a watertube firebox. On stationary test this produced the very high figure of 4,515 ihp (3,370 kW), but further development work was frustrated by the trade depression commencing in 1929. In France, Gaston du Bousquet had obtained good results from experimental installations of Brotan-Deffner-type boilers, and incorporated one into one of his high-powered 4−6−4s of 1910. Experiments were terminated suddenly by his death, followed by the First World War, but thirty-five years later André Chapelon proposed using a watertube firebox to obtain the high pressure needed for a triple-expansion, high-powered, steam locomotive, development of which was overtaken by electrification.
    [br]
    Further Reading
    G.Szontagh, 1991, "Brotan and Brotan-Deffner type fireboxes and boilers applied to steam locomotives", Transactions of the Newcomen Society 62 (an authoritative account of Brotan boilers).
    PJGR

    Biographical history of technology > Brotan, Johann

  • 67 Cayley, Sir George

    SUBJECT AREA: Aerospace
    [br]
    b. 27 December 1773 Scarborough, England
    d. 15 December 1857 Brompton Hall, Yorkshire, England
    [br]
    English pioneer who laid down the basic principles of the aeroplane in 1799 and built a manned glider in 1853.
    [br]
    Cayley was born into a well-to-do Yorkshire family living at Brompton Hall. He was encouraged to study mathematics, navigation and mechanics, particularly by his mother. In 1792 he succeeded to the baronetcy and took over the daunting task of revitalizing the run-down family estate.
    The first aeronautical device made by Cayley was a copy of the toy helicopter invented by the Frenchmen Launoy and Bienvenu in 1784. Cayley's version, made in 1796, convinced him that a machine could "rise in the air by mechanical means", as he later wrote. He studied the aerodynamics of flight and broke away from the unsuccessful ornithopters of his predecessors. In 1799 he scratched two sketches on a silver disc: one side of the disc showed the aerodynamic force on a wing resolved into lift and drag, and on the other side he illustrated his idea for a fixed-wing aeroplane; this disc is preserved in the Science Museum in London. In 1804 he tested a small wing on the end of a whirling arm to measure its lifting power. This led to the world's first model glider, which consisted of a simple kite (the wing) mounted on a pole with an adjustable cruciform tail. A full-size glider followed in 1809 and this flew successfully unmanned. By 1809 Cayley had also investigated the lifting properties of cambered wings and produced a low-drag aerofoil section. His aim was to produce a powered aeroplane, but no suitable engines were available. Steam-engines were too heavy, but he experimented with a gunpowder motor and invented the hot-air engine in 1807. He published details of some of his aeronautical researches in 1809–10 and in 1816 he wrote a paper on airships. Then for a period of some twenty-five years he was so busy with other activities that he largely neglected his aeronautical researches. It was not until 1843, at the age of 70, that he really had time to pursue his quest for flight. The Mechanics' Magazine of 8 April 1843 published drawings of "Sir George Cayley's Aerial Carriage", which consisted of a helicopter design with four circular lifting rotors—which could be adjusted to become wings—and two pusher propellers. In 1849 he built a full-size triplane glider which lifted a boy off the ground for a brief hop. Then in 1852 he proposed a monoplane glider which could be launched from a balloon. Late in 1853 Cayley built his "new flyer", another monoplane glider, which carried his coachman as a reluctant passenger across a dale at Brompton, Cayley became involved in public affairs and was MP for Scarborough in 1832. He also took a leading part in local scientific activities and was co-founder of the British Association for the Advancement of Science in 1831 and of the Regent Street Polytechnic Institution in 1838.
    [br]
    Bibliography
    Cayley wrote a number of articles and papers, the most significant being "On aerial navigation", Nicholson's Journal of Natural Philosophy (November 1809—March 1810) (published in three numbers); and two further papers with the same title in Philosophical Magazine (1816 and 1817) (both describe semi-rigid airships).
    Further Reading
    L.Pritchard, 1961, Sir George Cayley, London (the standard work on the life of Cayley).
    C.H.Gibbs-Smith, 1962, Sir George Cayley's Aeronautics 1796–1855, London (covers his aeronautical achievements in more detail).
    —1974, "Sir George Cayley, father of aerial navigation (1773–1857)", Aeronautical Journal (Royal Aeronautical Society) (April) (an updating paper).
    JDS

    Biographical history of technology > Cayley, Sir George

  • 68 Chain, Ernst Boris

    SUBJECT AREA: Medical technology
    [br]
    b. 19 June 1906 Berlin, Germany
    d. 12 August 1979 Ireland
    [br]
    Anglo-German biochemist and physiologist, co-worker with Florey in the isolation of sufficient supplies of the antibiotic penicillin for clinical use during wartime.
    [br]
    Chain graduated in Berlin at the Charite Hospital in 1930. A refugee from political persecution, in 1933 he went to the School of Biochemistry in Cambridge, and in 1935 moved to the School of Pathology at Oxford. He became a British subject in 1939. His interests had involved the study of enzymes and the isolation of physiologically active substances from natural sources. In 1938 he drew Florey's attention to Fleming's note of 1929 reporting the bacterial growth inhibiting qualities of Penicillium mould. Using makeshift equipment and with little initial support, they isolated small quantities of penicillin, which they were then able to use clinically with dramatic effect.
    Chain had always hoped for adequate resources to develop penicillin and other antibiotics in Britain. This was not forthcoming, however, and in 1948 a research chair and institute was created for him in Rome, at the International Research Centre for Chemical Microbiology. In 1961 he returned to London to the Chair of Biochemistry at Imperial College. There, with the help of a large donation from the Wolfson Foundation, an appropriate building with facilities for the large-scale development and production of biochemical substances was finally made available. His co-equal part in the development of penicillin was recognized by the sharing of the Nobel Prize for Medicine between Florey, Fleming and himself, and he received numerous honours and honorary degrees from a large number of governments and international institutions.
    [br]
    Principal Honours and Distinctions
    Knighted 1944. Nobel Prize for Medicine (jointly with H.W.Florey and A.Fleming) 1945. Fellow of the Royal Society 1949. Ehrlich Prize 1954.
    Bibliography
    1941, "Penicillin as a chemotherapeutic agent", Lancet (with Florey). 1941, "Further observations on penicillin", Lancet.
    1949, Antibiotics, Oxford, (with Florey et al.) MG

    Biographical history of technology > Chain, Ernst Boris

  • 69 Cobbett, William

    [br]
    b. 9 March 1762 Farnham, Surrey, England
    d. 17 June 1835 Guildford, Surrey, England
    [br]
    English political writer and activist; writer on rural affairs, with a particular concern for the conditions of the agricultural worker; a keen experimental farmer who claimed responsibility for the import of Indian maize to Britain.
    [br]
    The son of a smallholder farmer and self-taught surveyor, William Cobbett was brought up to farm work from an early age. In 1783 he took employment as an attorney's clerk in London, but not finding this to his liking he travelled to Chatham with the intention of joining the Navy. A mistake in "taking the King's shilling" found him in an infantry regiment. After a year's training he was sent out to Nova Scotia and quickly gained the rank of sergeant major. On leaving the Army he brought corruption charges against three officers in his regiment, but did not press with the prosecution. England was not to his taste, and he returned to North America with his wife.
    In America Cobbett taught English to the growing French community displaced by the French Revolution. He found American criticism of Britain ill-balanced and in 1796 began to publish a daily newspaper under the title Porcupine's Gazetteer, in which he wrote editorials in defence of Britain. His writings won him little support from the Americans. However, on returning to London in 1800 he was offered, but turned down, the management of a Government newspaper. Instead he began to produce a daily paper called the Porcupine, which was superseded in 1802 by Cobbett's Political Register, this publication continued on a weekly basis until after his death. In 1803 he also began the Parliamentary Debates, which later merged into Hansard, the official report of parliamentary proceedings.
    In 1805 Cobbett took a house and 300-acre (120-hectare) farm in Hampshire, from which he continued to write, but at the same time followed the pursuits he most enjoyed. In 1809 his criticism of the punishment given to mutineers in the militia at Ely resulted in his own imprisonment. On his release in 1812 he decided that the only way to remain an independent publisher was to move back to the USA. He bought a farm at Hampstead, Long Island, New York, and published A Year's Residence in America, which contains, amongst other things, an interesting account of a farmer's year.
    Returning to Britain in the easier political climate of the 1820s, Cobbett bought a small seed farm in Kensington, then outside London. From there he made a number of journeys around the country, publishing accounts of them in his famous Rural Rides. His experiments and advice on the sowing and cultivation of crops, particularly turnips and swedes, and on forestry, were an important mechanism for the spread of ideas within the UK. He also claimed that he was the first to introduce the acacia and Indian maize to Britain. Much of his writing expresses a concern for the rural poor and he was firmly convinced that only parliamentary reform would achieve the changes needed. His political work and writing led to his election as Member of Parlaiment for Oldham in the 1835 election, which followed the Reform Act of 1832. However, by this time his energy was failing rapidly and he died peacefully at Normandy Farm, near Guildford, at the age of 73.
    [br]
    Bibliography
    Cobbett's Observations on Priestley's Emigration, published in 1794, was the first of his pro-British tracts written in America. On the basis of his stay in that country he wrote A Year's Residence in America. His books on agricultural practice included Woodlands (1825) and Treatise on Cobbett's Corn (1828). Dealing with more social problems he wrote an English Grammar for the use of Apprentices, Plough Boys, Soldiers and Sailors in 1818, and Cottage Economy in 1821.
    Further Reading
    Albert Pell, 1902, article in Journal of the Royal Agricultural Society of England 63:1–26 (describes the life and writings of William Cobbett).
    James Sambrook, 1973, William Cobbett, London: Routledge (a more detailed study).
    AP

    Biographical history of technology > Cobbett, William

  • 70 Craufurd, Henry William

    SUBJECT AREA: Metallurgy
    [br]
    fl. 1830s
    [br]
    English patentee of the process of coating iron with zinc (galvanized iron).
    [br]
    Although described as Commander of the Royal Navy, other personal details of Craufurd appear to be little known. His process for coating sheet iron with a protective layer of zinc, conveyed as a communication from abroad, was granted a patent in 1837. The details closely resembled, indeed are believed to have been based upon, those developed and patented in France in 1836 by Sorel, who had worked in collaboration with Ledru. There had been French interest in substituting zinc for tin as a coating for iron from 1742 with work by Malouin. Zinc-coated iron saucepans were produced in Rouen in the 1780s, but the work was later abandoned. Craufurd's patent directed that iron objects should be dipped into molten zinc, protected from volatilization by a layer of sal ammoniac (ammonium chloride, NH4Cl which also served as a flux. The quite misleading term "galvanizing" had already been introduced by Sorel for his process. Later its pro-tective properties were discovered to depend for effectiveness on the formation of a thin layer of zinc-iron alloy between the iron sheet and its zinc coating. Craufurd's patent was infringed in England soon after being granted, and was followed by several improvements, particularly those of Edmund Morewood, collaborating with George Rogers in five patents, of which four referred to methods of corrugation. The resulting production of zinc-coated iron implements, together with corrugated iron sheeting quickly adopted for building purposes, developed into an important industry of the West Midlands, Bristol, London and other parts of Britain.
    [br]
    Bibliography
    1837, British patent no. 7,355 (coating sheet iron with zinc).
    Further Reading
    H.W.Dickinson, 1943–4, "A study of galvanised and corrugated sheet metal", Transactions of the Newcomen Society 24:27–36 (the best and most concise account).
    JD

    Biographical history of technology > Craufurd, Henry William

  • 71 Douglas, Donald Wills

    SUBJECT AREA: Aerospace
    [br]
    b. 6 April 1892 Brooklyn, New York, USA
    d. 1 February 1981 Palm Springs, California, USA
    [br]
    American aircraft designer best known for bis outstanding airliner', the DC-3.
    [br]
    In 1912 Donald Douglas went to the Massachusetts Institute of Technology to study aeronautical engineering. After graduating in this relatively new subject he joined the Glenn L.Martin Company as Chief Engineer. In 1920 he founded the Davis-Douglas Company in California to build an aircraft capable of flying across America non-stop: unfortunately, the Cloudster failed to achieve its target. Douglas reorganized the company in 1921 as the Douglas Company (later it became the Douglas Aircraft Company). In 1924 a team of US Army personnel made the first round-the-world flight in specially designed Douglas World Cruisers, a feat which boosted Douglas's reputation considerably. This reputation was further enhanced by his airliner, designed in 1935, that revolutionized air travel: the Douglas Commercial 3, or DC-3, of which some 13,000 were built. A series of piston-engined airliners followed, culminating in the DC-7. Meanwhile, in the military field, Douglas aircraft played a major part in the Second World War. In the jet age Douglas continued to produce a wide range of successful civil and military aircraft, and the company also moved into the rocket and guided missile business. In 1966 Donald W. Douglas was still Chairman of the company, with Donald W.Douglas Jr as President. In 1967 the company merged with the McDonnell Aircraft Company to become the giant McDonnell Douglas Corporation.
    [br]
    Principal Honours and Distinctions
    American Institute of Aeronautics and Astronautics; Daniel Guggenheim Medal 1939.
    Bibliography
    1935, "The development and reliability of the modern multi-engined airliner", Journal of the Royal Aeronautical Society, London (lecture).
    Further Reading
    B.Yenne, 1985, McDonnell Douglas: A Tale of Two Giants, London (pays some attention to both Douglas and McDonnell, but also covers the history of the companies and the aircraft they produced).
    René J.Francillon, 1979, McDonnell Douglas Aircraft since 1920, London; 1988, 2nd edn (a comprehensive history of the company's aircraft).
    JDS

    Biographical history of technology > Douglas, Donald Wills

  • 72 Ehrlich, Paul

    SUBJECT AREA: Medical technology
    [br]
    b. 14 March 1854 Strehlen, Silesia, Germany
    d. 20 August 1915 Homburg, Saarland, Germany
    [br]
    German medical scientist who laid the foundations of intra-vital staining in histology, and of chemotherapy.
    [br]
    After studying medicine at a number of schools in Germany, Ehrlich graduated from Leipzig in 1878. After some years at the Charite in Berlin, an attack of tuberculosis compelled a three-year sojourn in Egypt for treatment. Upon his return in 1890, he was invited by Koch to work at the new Institute for Infectious Diseases. There he commenced his work on immunity, having already, while a student, discovered the mast cells in the blood (1877) and then developed the techniques of differential staining which identified the other white cells of the blood. In 1882 he established the diazo reaction in the urine of typhoid patients, and in the same year he identified the acid-fast staining reactions of the tubercle bacillus. He then moved to the study of immunity in infectious disease, which led him to the search for synthetic chemical substances which would act on the causative organism without harming the patient's tissue. The outcome of his specific investigation of syphilis was the discovery of the first two specific chemotherapeutic agents: salvarsan (being the 606th compound to be tested); and the later, but less toxic, neosalvarsan (the 909th). In 1896 he became Director of the State Institute for Serum Research, and in 1906 Director of the new Royal Institute for Experimental Therapy at Frankfurt-am-Main. He received numerous awards and honours from governments and learned societies.
    [br]
    Principal Honours and Distinctions
    Nobel Prize for Medicine or Physiology (jointly with E.Metchnikov) 1908.
    Bibliography
    1879, "Beiträge für Kentnis der granulierten Bindegewabszellen und der Eosinophilen Leucocythen" Arch. Anat. Physiol. Abt.
    1914, Paul Ehrlich: eine Darstellung seines wissenschaftlichen Wirkens, Festschrift zum
    60. Geburtstage des Forschers.
    Further Reading
    M.Marquardt, 1924, Paul Ehrlich als Mensch und Arbeiter.
    MG

    Biographical history of technology > Ehrlich, Paul

  • 73 Florey, Howard Walter

    SUBJECT AREA: Medical technology
    [br]
    b. 24 September 1898 Adelaide, Australia
    d. 21 February 1968 Oxford, England
    [br]
    Australian pathologist who contributed to the research and technology resulting in the practical clinical availability of penicillin.
    [br]
    After graduating MB and BS from Adelaide University in 1921, he went to Oxford University, England, as a Rhodes Scholar in 1922. Following a period at Cambridge and as a Rockefeller Fellow in the USA, he returned to Cambridge as Lecturer in Pathology. He was appointed to the Chair of Pathology at Sheffield at the age of 33, and to the Sir William Dunne Chair of Pathology at Oxford in 1935.
    Although historically his name is inseparable from that of penicillin, his experimental interests and achievements covered practically the whole range of general pathology. He was a determined advocate of the benefits to research of maintaining close contact between different disciplines. He was an early believer in the need to study functional changes in cells as much as the morphological changes that these brought about.
    With E. Chain, Florey perceived the potential of Fleming's 1929 note on the bacteria-inhibiting qualities of Penicillium mould. His forthright and dynamic character played a vital part in developing what was perceived to be not just a scientific and medical discovery of unparalleled importance, but a matter of the greatest significance in a war of survival. Between them, Florey and Chain were able to establish the technique of antibiotic isolation and made their findings available to those implementing large-scale fermentation production processes in the USA.
    Despite being domiciled in England, he played an active role in Australian medical and educational affairs and was installed as Chancellor of the Australian National University in 1966.
    [br]
    Principal Honours and Distinctions
    Life peer 1965. Order of Merit 1965. Knighted 1944. FRS 1941. President, Royal Society 1960–5. Nobel Prize for Medicine or Physiology (jointly with E.B.Chain and A.Fleming) 1945. Copley Medal 1957. Commander, Légion d'honneur 1946. British Medical Association Gold Medal 1964.
    Bibliography
    1940, "Penicillin as a chemotherapeutic agent", Lancet (with Chain). 1949, Antibiotics, Oxford (with Chain et al.).
    1962, General Pathology, Oxford.
    MG

    Biographical history of technology > Florey, Howard Walter

  • 74 Fokker, Anthony Herman Gerard

    SUBJECT AREA: Aerospace
    [br]
    b. 6 April 1890 Kediri, Java, Dutch East Indies (now Indonesia)
    d. 23 December 1939 New York, USA
    [br]
    Dutch designer of German fighter aircraft during the First World War and of many successful airliners during the 1920s and 1930s.
    [br]
    Anthony Fokker was born in Java, where his Dutch father had a coffee plantation. The family returned to the Netherlands and, after schooling, young Anthony went to Germany to study aeronautics. With the aid of a friend he built his first aeroplane, the Spin, in 1910: this was a monoplane capable of short hops. By 1911 Fokker had improved the Spin and gained a pilot's licence. In 1912 he set up a company called Fokker Aeroplanbau at Johannistal, outside Berlin, and a series of monoplanes followed.
    When war broke out in 1914 Fokker offered his designs to both sides, and the Germans accepted them. His E I monoplane of 1915 caused a sensation with its manoeuvrability and forward-firing machine gun. Fokker and his collaborators improved on the French deflector system introduced by Raymond Saulnier by fitting an interrupter gear which synchronized the machine gun to fire between the blades of the rotating propeller. The Fokker Dr I triplane and D VII biplane were also outstanding German fighters of the First World War. Fokker's designs were often the work of an employee who received little credit: nevertheless, Fokker was a gifted pilot and a great organizer. After the war, Fokker moved back to the Netherlands and set up the Fokker Aircraft Works in Amsterdam. In 1922, however, he emigrated to the USA and established the Atlantic Aircraft Corporation in New Jersey. His first significant success there came the following year when one of his T-2 monoplanes became the first aircraft to fly non-stop across the USA, from New York to San Diego. He developed a series of civil aircraft using the well-proven method of construction he used for his fighters: fuselages made from steel tubes and thick, robust wooden wings. Of these, probably the most famous was the F VII/3m, a high-wing monoplane with three engines and capable of carrying about ten passengers. From 1925 the F VII/3m airliner was used worldwide and made many record-breaking flights, such as Lieutenant-Commander Richard Byrd's first flight over the North Pole in 1926 and Charles Kingsford-Smith's first transpacific flight in 1928. By this time Fokker had lost interest in military aircraft and had begun to see flight as a means of speeding up global communications and bringing people together. His last years were spent in realizing this dream, and this was reflected in his concentration on the design and production of passenger aircraft.
    [br]
    Principal Honours and Distinctions
    Royal Netherlands Aeronautical Society Gold Medal 1932.
    Bibliography
    1931, The Flying Dutchman: The Life of Anthony Fokker, London: Routledge \& Sons (an interesting, if rather biased, autobiography).
    Further Reading
    A.R.Weyl, 1965, Fokker: The Creative Years, London; reprinted 1988 (a very detailed account of Fokker's early work).
    Thijs Postma, 1979, Fokker: Aircraft Builders to the World, Holland; 1980, English edn, London (a well-illustrated history of Fokker and the company).
    Henri Hegener, 1961, Fokker: The Man and His Aircraft, Letchworth, Herts.
    JDS / CM

    Biographical history of technology > Fokker, Anthony Herman Gerard

  • 75 Gibson, R.O.

    [br]
    fl. 1920s–30s
    [br]
    English chemist who, with E.O.Fawcett, discovered polythene.
    [br]
    Dr Gibson's work towards the discovery of polythene had its origin in a visit in 1925 to Dr A. Michels of Amsterdam University; the latter had made major advances in techniques for studying chemical reactions at very high pressures. After working with Michels for a time, in 1926 Gibson joined Brunner Mond, one of the companies that went on to form the chemical giant Imperial Chemical Industries (ICI). The company supported research into fundamental chemical research that had no immediate commercial application, including the field being cultivated by Michels and Gibson. In 1933 Gibson was joined by another ICI chemist, E.O.Fawcett, who had worked with W.H. Carothers in the USA on polymer chemistry. They were asked to study the effects of high pressure on various reaction systems, including a mixture of benzaldehyde and ethylene. Gibson's notebook for 27 March that year records that after a loss of pressure during which the benzaldehyde was blown out of the reaction tube, a waxy solid was observed in the tube. This is generally recognized as the first recorded observation of polythene. By the following June they had shown that the white, waxy solid was a fairly high molecular weight polymer of ethylene formed at a temperature of 443°K and a pressure of 2,000 bar. However, only small amounts of the material were produced and its significance was not immediately recognized. It was not until two years later that W.P.Perrin and others, also ICI chemists, restarted work on the polymer. They showed that it could be moulded, drawn into threads and cast into tough films. It was a good electrical insulator and almost inert chemically. A British patent for producing polythene was taken out in 1936, and after further development work a production plant began operating in September 1939, just as the Second World War was breaking out. Polythene had arrived in time to make a major contribution to the war effort, for it had the insulating properties required for newly developing work on radar. When peacetime uses became possible, polythene production surged ahead and became the major industry it is today, with a myriad uses in industry and in everyday life.
    [br]
    Bibliography
    1964, The Discovery of Polythene, Royal Institute of Chemistry Lecture Series 1, London.
    LRD

    Biographical history of technology > Gibson, R.O.

  • 76 Hofmann, August Wilhelm von

    SUBJECT AREA: Chemical technology
    [br]
    b. 8 April 1818 Giessen, Germany
    d. 2 May 1892 Berlin, Germany
    [br]
    German organic chemist.
    [br]
    The son of an architect, Hofmann began studying law and languages but was increasingly drawn to chemistry, attracted by Liebig's teaching at Giessen. In 1841 Hofmann took his doctorate with a study of coal tar. He became Privatdozent at Bonn University in 1845, but later that year he was persuaded to take up the post of first Director of the Royal College of Chemistry in London, after tenure was guaranteed as a result of Prince Albert's influence. He remained there for twenty years until he was offered professorships in chemistry at Bonn and Berlin. He accepted the latter. Hofmann continued the method of teaching chemistry, based on laboratory instruction, developed by Liebig at Giessen, and extended it to England and Berlin. A steady stream of well-trained chemists issued forth from Hofmann's tuition, concerning themselves especially with experimental organic chemistry and the industrial applications of chemistry. In 1848 one of his students, C.B. Mansfield, devised the method of fractional distillation of coal tar, to separate pure benzene, xylene and toluene, thus laying the foundations of the coal-tar industry. In 1856 another student, W.H. Perkin, prepared the first synthetic dyestuff, aniline purple, heralding the great dyestuffs industry, in which several other of his students distinguished themselves. Although keenly interested in the chemistry of dyestuffs, Hofmann did not pursue their large-scale preparation, but he stressed the importance of scientific research for success on a commercial scale. Hofmann's stimulus in this direction flagged after his return to Germany, and this was a factor in the failure of British industry to follow up their initial advantage and allow it to pass to Germany. In 1862 Hofmann prepared a dye from a derivative of triphenylmethane, which he called rosaniline. From this he derived a series of beautiful colours, ranging from blue to violet, which he patented as "Hofmann's violets" the following year.
    [br]
    Principal Honours and Distinctions
    Ennobled 1888.
    Further Reading
    J.Volhard and E.Fischer, 1902, August Wilhelm von Hofmann, ein Lebensbild, Berlin (the basic biography).
    K.M.Hammond, 1967, bibliography, unpublished, (Diploma in Librarianship, London University (lists 373 items; deposited in University College, London)).
    LRD

    Biographical history of technology > Hofmann, August Wilhelm von

  • 77 Hooke, Robert

    [br]
    b. 18 July 1635 Freshwater, Isle of Wight, England
    d. 3 March 1703 London, England
    [br]
    English physicist, astronomer and mechanician.
    [br]
    Son of Revd John Hooke, minister of the parish, he was a sickly child who was subject to headaches which prevented protracted study. He devoted his time while alone to making mechanical models including a wooden clock. On the death of his father in October 1648 he was left £100 and went to London, where he became a pupil of Sir Peter Lely and then went to Westminster School under Dr Busby. There he learned the classical languages, some Hebrew and oriental languages while mastering six books of Euclid in one week. In 1653 he entered Christ Church College, Oxford, where he graduated MA in 1663, after studying chemistry and astronomy. In 1662 he was appointed Curator of Experiments to the Royal Society and was elected a Fellow in 1663. In 1665 his appointment was made permanent and he was given apartments in Gresham College, where he lived until his death in 1703. He was an indefatigable experimenter, perhaps best known for the invention of the universal joint named after him. The properties of the atmosphere greatly engaged him and he devised many forms of the barometer. He was the first to apply the spiral spring to the regulation of the balance wheel of the watch in an attempt to measure longitude at sea, but he did not publish his results until after Huygens's reinvention of the device in 1675. Several of his "new watches" were made by Thomas Tompion, one of which was presented to King Charles II. He is said to have invented, among other devices, thirty different ways of flying, the first practical system of telegraphy, an odometer, a hearing aid, an arithmetical machine and a marine barometer. Hooke was a small man, somewhat deformed, with long, lank hair, who went about stooped and moved very quickly. He was of a melancholy and mistrustful disposition, ill-tempered and sharp-tongued. He slept little, often working all night and taking a nap during the day. John Aubrey, his near-contemporary, wrote of Hooke, "He is certainly the greatest Mechanick this day in the World." He is said to have been the first to establish the true principle of the arch. His eyesight failed and he was blind for the last year of his life. He is best known for his Micrographia, or some Physiological Descriptions of Minute Bodies, first published in 1665. After the Great Fire of London, he exhibited a model for the rebuilding of the City. This was not accepted, but it did result in Hooke's appointment as one of two City Surveyors. This proved a lucrative post and through it Hooke amassed a fortune of some thousands of pounds, which was found intact after his death some thirty years later. It had never been opened in the interim period. Among the buildings he designed were the new Bethlehem (Bedlam) Hospital, the College of Physicians and Montague House.
    [br]
    Principal Honours and Distinctions
    FRS 1663; Secretary 1677–82.
    IMcN

    Biographical history of technology > Hooke, Robert

  • 78 Hunter, Matthew Albert

    SUBJECT AREA: Metallurgy
    [br]
    b. 9 November 1878 Auckland Province, New Zealand
    d. 24 March 1961 Troy, New York, USA
    [br]
    New Zealand/American technologist and academic who was a pioneer in the production of metallic titanium.
    [br]
    Hunter arrived in England in 1902, the seventh in the succession of New Zealand students nominated for the 1851 Exhibition science research scholarships (the third, in 1894, having been Ernest Rutherford). He intended to study the metallurgy of tellurides at the Royal School of Mines, but owing to the death of the professor concerned, he went instead to University College London, where his research over two years involved the molecular aggregation of liquified gases. In 1904–5 he spent a third year in Göttingen, Paris and Karlsruhe. Hunter then moved to the USA, beginning work in 1906 with the General Electric Company in Schenectady. His experience with titanium came as part of a programme to try to discover satisfactory lamp-filament materials. He and his colleagues achieved more success in producing moderately pure titanium than previous workers had done, but found the metal's melting temperature inadequate. However, his research formed the basis for the "Hunter sodium process", a modern method for producing commercial quantities of titanium. In 1908 he was appointed Assistant Professor of Electrochemistry and Physics at Rensselaer Polytechnic Institute in Troy, New York, where he was to remain until his retirement in 1949 as Dean Emeritus. In the 1930s he founded and headed the Institute's Department of Metallurgical Engineering. As a consultant, he was associated with the development of Invar, Managanin and Constantan alloys.
    [br]
    Principal Honours and Distinctions
    1851 Great Exhibition science research scholar 1902–5. DSc London University 1904. American Die Casting Institute Doehler Award 1959. American Society for Metals Gold Medal 1959.
    Bibliography
    1910, "Metallic titanium", Journal of the American Chemistry Society 32:330–6 (describes his work relating to titanium production).
    Further Reading
    1961, "Man of metals", Rensselaer Alumni News (December), 5–7:32.
    JKA

    Biographical history of technology > Hunter, Matthew Albert

  • 79 Hurter, Ferdinand

    [br]
    b. 15 March 1844 Schaffhausen, Switzerland
    d. 5 March 1898
    [br]
    Swiss chemist who, with Vero Charles Driffield, established the basis of modern sensitometry in England.
    [br]
    Ferdinand Hurter worked for three years as a dyer's apprentice before entering the Polytechnic in Zurich; he transferred to Heidelberg, where he graduated in 1866. A year later he secured an appointment as a chemist for the British alkali manufacturing company, Gaskell, Deacon \& Co. of Widnes, Cheshire. In 1871 he was joined at the company by the young engineer Vero Charles Driffield, who was to become his co-worker. Driffield had worked for a professional photographer before beginning his engineering apprenticeship and it was in 1876, when Hurter sought to draw on this experience, that the partnership began. At this time the speed of the new gelatine halide dry plates was expressed in terms of the speed of a wet-collodion plate, an almost worthless concept as the speed of a collodion plate was itself variable. Hurter and Driffield sought to place the study of photographic emulsions on a more scientific basis. They constructed an actinometer to measure the intensity of sunlight and in 1890 published the first of a series of papers on the sensitivity of photographic plates. They suggested methods of exposing a plate to lights of known intensities and measuring the densities obtained on development. They were able to plot curves based on density and exposure which became known as the H \& D curve. Hurter and Driffield's work allowed them to express the characteristics of an emulsion with a nomenclature which was soon adopted by British plate manufacturers. From the 1890s onwards most British-made plates were identified with H \& D ratings. Hurter and Driffield's partnership was ended by the former's death in 1898.
    [br]
    Further Reading
    W.B.Ferguson (ed.), 1920, The Photographic Researches of Ferdinand Hurter \& Vero C. Driffield, London: Royal Photographic Society reprinted in facsimile, with a new introd. by W.Clark, 1974, New York (a memorial volume; the most complete account of Hurter and Driffield's work, includes a reprint of all their published papers).
    JW

    Biographical history of technology > Hurter, Ferdinand

  • 80 Jenner, Edward

    SUBJECT AREA: Medical technology
    [br]
    b. 17 May 1749 Berkeley, Gloucestershire, England
    d. 26 January 1823 Berkeley, Gloucestershire, England
    [br]
    English medical practitioner, pioneer of vaccination against smallpox.
    [br]
    In 1770, following a local surgical apprenticeship in Gloucestershire, he became a resident pupil in London under John Hunter. In 1773 he returned to Berkeley to practise, but he continued correspondence with Hunter on a variety of topics of natural history, including the study of earthworms and hibernation.
    From his apprentice days he had known of the country belief that an attack of cowpox would protect against smallpox. Soon after 1775 he had been in touch with Hunter, who gave him the celebrated advice to "trie the experiment". However, it was not until 14 May 1796 that he made the first vaccination from a case of cowpox. The practice of vaccination from mild cases of smallpox was already well established.
    He was unable to undertake further observations until 1798, when he published the results of twenty-two more cases. The procedure gained wide acceptance and in 1802 he received a parliamentary award of £10,000; the Royal Jennerian Society for the promotion of smallpox vaccination was founded in 1803. In 1806 he was awarded a further £20,000. He received his first degree, of MD, from Oxford in 1813.
    [br]
    Bibliography
    Further Reading
    Crookshank, 1889, Pathology and History of Vaccination.
    MG

    Biographical history of technology > Jenner, Edward

См. также в других словарях:

  • Royal Commission on the Electoral System — The Royal Commission on the Electoral System was formed in New Zealand in 1985, and reported in 1986. The decision to form the Royal Commission was taken by the Fourth Labour government, after the Labour party had received more votes, yet won… …   Wikipedia

  • Royal Maundy — A Royal Maundy ceremony in 1867 Royal Maundy ( …   Wikipedia

  • Royal Baths Park — Infobox park park=Łazienki Park image size=250px caption= Fryderyk Chopin statue type=Municipal location=Warsaw coordinates= size=76 ha [pl icon cite news |author = |url = http://www.lazienki krolewskie.pl/ |title = Park work = Muzeum Łazienki… …   Wikipedia

  • Royal Veterinary College — Motto Venienti Occurrite Morbo confront disease at its onset Established 1791 (became a constituent part of University of London in 1949) Type Public vet …   Wikipedia

  • Royal Military College, Duntroon — Motto Doctrina vim promovet (Learning Promotes Strength)[Note 1] Establi …   Wikipedia

  • Royal Borough of Kensington and Chelsea —   London borough, Royal borough   …   Wikipedia

  • Royal College of Art — Established 1967 gained University Status by Royal Charter 1896 Royal College of Art 1837 Government School of Design Type Public Provost Sir …   Wikipedia

  • Royal Geographical Society — Abbreviation RGS IBG Formation 1830 Type learned society …   Wikipedia

  • Royal Guard of Oman Technical College — كلية الحرس السلطاني العماني التقنية Established 1976 as a School 1997 as a College Type Military junior college Admin. staff 45 Students 291 Undergrad …   Wikipedia

  • Royal Alexander Brink — (September 16, 1897 ndash; October 2, 1984), known more commonly as R. A. Brink, was a Canadian born plant geneticist and plant breeder at the University of Wisconsin Madison. Brink was instrumental to the beginning of the Wisconsin maize… …   Wikipedia

  • Royal Observer Corps — Ensign Active 1925–1996 Country …   Wikipedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»