Перевод: со всех языков на английский

с английского на все языки

a+scientific+method

  • 81 McAdam, John Loudon

    [br]
    b. 21 September 1756 Ayr, Ayrshire, Scotland
    d. 26 November 1836 Moffat, Dumfriesshire, Scotland
    [br]
    Scottish road builder, inventor of the macadam road surface.
    [br]
    McAdam was the son of one of the founder of the first bank in Ayr. As an infant, he nearly died in a fire which destroyed the family's house of Laywyne, in Carsphairn parish; the family then moved to Blairquhan, near Straiton. Thence he went to the parish school in Maybole, where he is said to have made a model section of a local road. In 1770, when his father died, he was sent to America where he was brought up by an uncle who was a merchant in New York. He stayed in America until the close of the revolution, becoming an agent for the sale of prizes and managing to amass a considerable fortune. He returned to Scotland where he settled at Sauchrie in Ayrshire. There he was a magistrate, Deputy-Lieutenant of the county and a road trustee, spending thirteen years there. In 1798 he moved to Falmouth in Devon, England, on his appointment as agent for revictualling of the Royal Navy in western ports.
    He continued the series of experiments started in Ayrshire on the construction of roads. From these he concluded that a road should be built on a raised foundation with drains formed on either side, and should be composed of a number of layers of hard stone broken into angular fragments of roughly cubical shape; the bottom layer would be larger rocks, with layers of progressively smaller rocks above, all bound together with fine gravel. This would become compacted and almost impermeable to water by the action of the traffic passing over it. In 1815 he was appointed Surveyor-General of Bristol's roads and put his theories to the test.
    In 1823 a Committee of the House of Commons was appointed to consider the use of "macadamized" roads in larger towns; McAdam gave evidence to this committee, and it voted to give him £10,000 for his past work. In 1827 he was appointed Surveyor-General of Roads and moved to Hoddesdon, Hertfordshire. From there he made yearly visits to Scotland and it was while returning from one of these that he died, at Moffat in the Scottish Borders. He had married twice, both times to American women; his first wife was the mother of all seven of his children.
    McAdam's method of road construction was much cheaper than that of Thomas Telford, and did much to ease travel and communications; it was therefore adopted by the majority of Turnpike Trusts in Britain, and the macadamization process quickly spread to other countries.
    [br]
    Bibliography
    1819. A Practical Essay on the Scientific Repair and Preservation of Roads.
    1820. Present State of Road-Making.
    Further Reading
    R.Devereux, 1936, John Loudon McAdam: A Chapter from the History of Highways, London: Oxford University Press.
    IMcN

    Biographical history of technology > McAdam, John Loudon

  • 82 Mond, Ludwig

    SUBJECT AREA: Chemical technology
    [br]
    b. 7 March 1839 Cassel, Germany
    d. 11 December 1909 London, England
    [br]
    German (naturalized English) industrial chemist.
    [br]
    Born into a prosperous Jewish merchant family, Mond studied at the Polytechnic in Cassel and then under the distinguished chemists Hermann Kolbe at Marburg and Bunsen at Heidelberg from 1856. In 1859 he began work as an industrial chemist in various works in Germany and Holland. At this time, Mond was pursuing his method for recovering sulphur from the alkali wastes in the Leblanc soda-making process. Mond came to England in 1862 and five years later settled permanently, in partnership with John Hutchinson \& Co. at Widnes, to perfect his process, although complete success eluded him. He became a naturalized British subject in 1880.
    In 1872 Mond became acquainted with Ernest Solvay, the Belgian chemist who developed the ammonia-soda process which finally supplanted the Leblanc process. Mond negotiated the English patent rights and set up the first ammoniasoda plant in England at Winnington in Cheshire, in partnership with John Brunner. After overcoming many difficulties by incessant hard work, the process became a financial success and in 1881 Brunner, Mond \& Co. was formed, for a time the largest alkali works in the world. In 1926 the company merged with others to form Imperial Chemical Industries Ltd (ICI). The firm was one of the first to adopt the eight-hour day and to provide model dwellings and playing fields for its employees.
    From 1879 Mond took up the production of ammonia and this led to the Mond producer-gas plant, patented in 1883. The process consisted of passing air and steam over coal and coke at a carefully regulated temperature. Ammonia was generated and, at the same time, so was a cheap and useful producer gas. Mond's major discovery followed the observation in 1889 that carbon monoxide could combine with nickel in its ore at around 60°C to form a gaseous compound, nickel carbonyl. This, on heating to a higher temperature, would then decompose to give pure nickel. Mond followed up this unusual way of producing and purifying a metal and by 1892 had succeeded in setting up a pilot plant to perfect a large-scale process and went on to form the Mond Nickel Company.
    Apart from being a successful industrialist, Mond was prominent in scientific circles and played a leading role in the setting up of the Society of Chemical Industry in 1881. The success of his operations earned him great wealth, much of which he donated for learned and charitable purposes. He formed a notable collection of pictures which he bequeathed to the National Gallery.
    [br]
    Principal Honours and Distinctions
    FRS 1891.
    Bibliography
    1885, "On the origin of the ammonia-soda process", Journal of the Society of Chemical Industry 4:527–9.
    1895. "The history of the process of nickel extraction", Journal of the Society of Chemical Industry 14:945–6.
    Further Reading
    J.M.Cohen, 1956, The Life of Ludwig Mond, London: Methuen. Obituary, 1918, Journal of the Chemical Society 113:318–34.
    F.C.Donnan, 1939, Ludwig Mond 1839–1909, London (a valuable lecture).
    LRD

    Biographical history of technology > Mond, Ludwig

  • 83 Mouriés, Hippolyte Mège

    [br]
    b. 24 October 1817 Draguignan, France
    d. 1880 France
    [br]
    French inventor of margarine.
    [br]
    The son of a schoolmaster. Mouriés became a chemist's assistant in his home town at the age of 16. He then spent a period of training in Aix-enProvence, and in 1838 he moved to Paris, where he became Assistant to the Resident Pharmacist at the Hotel Dieu Hospital. He stayed there until 1846 but never sat his final exams. His main success during this period was with the drug Copahin, which was used against syphilis; he invented an oral formulation of the drug by treating it with nitric acid. In the 1840s he took out various patents relating to tanning and to sugar extraction, and in the 1850s he turned his attention to food research. He developed a health chocolate with his calcium phosphate protein, and also developed a method that made it possible to gain 14 per cent more white bread from a given quantity of wheat. He lectured on this process in Berlin and Brussels and was awarded two gold medals. After 1862 he concentrated his research on fats. His margarine process was based on the cold saponification of milk in fat emulsions and was patented in both France and Britain in 1869. These experiments were carried out at the Ferme Impériale de La Faisanderie in Vincennes, the personal property of the Emperor, and it is therefore likely that they were State-funded. He sold his knowledge to the Dutch firm Jurgens in 1871, and between 1873 and 1874 he also sold his British, American and Prussian rights. His final patent, in 1875, was for canned meat.
    [br]
    Principal Honours and Distinctions
    Napoleon III awarded him the Légion d'honneur for his work on wheat and bread.
    Further Reading
    J.H.van Stuyvenberg (ed.), Margarine: An Economic, Social and Scientific History, 1869–1969 (provides a brief outline of the life of Mouriés in a comprehensive history of his discovery).
    AP

    Biographical history of technology > Mouriés, Hippolyte Mège

  • 84 Sprague, Frank Julian

    [br]
    b. 25 July 1857 Milford, Connecticut, USA
    d. 25 October 1934 New York, USA
    [br]
    American electrical engineer and inventor, a leading innovator in electric propulsion systems for urban transport.
    [br]
    Graduating from the United States Naval Academy, Annapolis, in 1878, Sprague served at sea and with various shore establishments. In 1883 he resigned from the Navy and obtained employment with the Edison Company; but being convinced that the use of electricity for motive power was as important as that for illumination, in 1884 he founded the Sprague Electric Railway and Motor Company. Sprague began to develop reliable and efficient motors in large sizes, marketing 15 hp (11 kW) examples by 1885. He devised the method of collecting current by using a wooden, spring-loaded rod to press a roller against the underside of an overhead wire. The installation by Sprague in 1888 of a street tramway on a large scale in Richmond, Virginia, was to become the prototype of the universally adopted trolley system with overhead conductor and the beginning of commercial electric traction. Following the success of the Richmond tramway the company equipped sixty-seven other railways before its merger with Edison General Electric in 1890. The Sprague traction motor supported on the axle of electric streetcars and flexibly mounted to the bogie set a pattern that was widely adopted for many years.
    Encouraged by successful experiments with multiple-sheave electric elevators, the Sprague Elevator Company was formed and installed the first set of high-speed passenger cars in 1893–4. These effectively displaced hydraulic elevators in larger buildings. From experience with control systems for these, he developed his system of multiple-unit control for electric trains, which other engineers had considered impracticable. In Sprague's system, a master controller situated in the driver's cab operated electrically at a distance the contactors and reversers which controlled the motors distributed down the train. After years of experiment, Sprague's multiple-unit control was put into use for the first time in 1898 by the Chicago South Side Elevated Railway: within fifteen years multiple-unit operation was used worldwide.
    [br]
    Principal Honours and Distinctions
    President, American Institute of Electrical Engineers 1892–3. Franklin Institute Elliot Cresson Medal 1904, Franklin Medal 1921. American Institute of Electrical Engineers Edison Medal 1910.
    Bibliography
    1888, "The solution of municipal rapid transit", Trans. AIEE 5:352–98. See "The multiple unit system for electric railways", Cassiers Magazine, (1899) London, repub. 1960, 439–460.
    1934, "Digging in “The Mines of the Motor”", Electrical Engineering 53, New York: 695–706 (a short autobiography).
    Further Reading
    Lionel Calisch, 1913, Electric Traction, London: The Locomotive Publishing Co., Ch. 6 (for a near-contemporary view of Sprague's multiple-unit control).
    D.C.Jackson, 1934, "Frank Julian Sprague", Scientific Monthly 57:431–41.
    H.C.Passer, 1952, "Frank Julian Sprague: father of electric traction", in Men of Business, ed. W. Miller, Cambridge, Mass., pp. 212–37 (a reliable account).
    ——1953, The Electrical Manufacturers: 1875–1900, Cambridge, Mass. P.Ransome-Wallis (ed.), 1959, The Concise Encyclopaedia of World Railway
    Locomotives, London: Hutchinson, p. 143..
    John Marshall, 1978, A Biographical Dictionary of Railway Engineers, Newton Abbot: David \& Charles.
    GW / PJGR

    Biographical history of technology > Sprague, Frank Julian

  • 85 Talbot, William Henry Fox

    [br]
    b. 11 February 1800 Melbury, England
    d. 17 September 1877 Lacock, Wiltshire, England
    [br]
    English scientist, inventor of negative—positive photography and practicable photo engraving.
    [br]
    Educated at Harrow, where he first showed an interest in science, and at Cambridge, Talbot was an outstanding scholar and a formidable mathematician. He published over fifty scientific papers and took out twelve English patents. His interests outside the field of science were also wide and included Assyriology, etymology and the classics. He was briefly a Member of Parliament, but did not pursue a parliamentary career.
    Talbot's invention of photography arose out of his frustrating attempts to produce acceptable pencil sketches using popular artist's aids, the camera discura and camera lucida. From his experiments with the former he conceived the idea of placing on the screen a paper coated with silver salts so that the image would be captured chemically. During the spring of 1834 he made outline images of subjects such as leaves and flowers by placing them on sheets of sensitized paper and exposing them to sunlight. No camera was involved and the first images produced using an optical system were made with a solar microscope. It was only when he had devised a more sensitive paper that Talbot was able to make camera pictures; the earliest surviving camera negative dates from August 1835. From the beginning, Talbot noticed that the lights and shades of his images were reversed. During 1834 or 1835 he discovered that by placing this reversed image on another sheet of sensitized paper and again exposing it to sunlight, a picture was produced with lights and shades in the correct disposition. Talbot had discovered the basis of modern photography, the photographic negative, from which could be produced an unlimited number of positives. He did little further work until the announcement of Daguerre's process in 1839 prompted him to publish an account of his negative-positive process. Aware that his photogenic drawing process had many imperfections, Talbot plunged into further experiments and in September 1840, using a mixture incorporating a solution of gallic acid, discovered an invisible latent image that could be made visible by development. This improved calotype process dramatically shortened exposure times and allowed Talbot to take portraits. In 1841 he patented the process, an exercise that was later to cause controversy, and between 1844 and 1846 produced The Pencil of Nature, the world's first commercial photographically illustrated book.
    Concerned that some of his photographs were prone to fading, Talbot later began experiments to combine photography with printing and engraving. Using bichromated gelatine, he devised the first practicable method of photo engraving, which was patented as Photoglyphic engraving in October 1852. He later went on to use screens of gauze, muslin and finely powdered gum to break up the image into lines and dots, thus anticipating modern photomechanical processes.
    Talbot was described by contemporaries as the "Father of Photography" primarily in recognition of his discovery of the negative-positive process, but he also produced the first photomicrographs, took the first high-speed photographs with the aid of a spark from a Leyden jar, and is credited with proposing infra-red photography. He was a shy man and his misguided attempts to enforce his calotype patent made him many enemies. It was perhaps for this reason that he never received the formal recognition from the British nation that his family felt he deserved.
    [br]
    Principal Honours and Distinctions
    FRS March 1831. Royal Society Rumford Medal 1842. Grand Médaille d'Honneur, L'Exposition Universelle, Paris, 1855. Honorary Doctorate of Laws, Edinburgh University, 1863.
    Bibliography
    1839, "Some account of the art of photographic drawing", Royal Society Proceedings 4:120–1; Phil. Mag., XIV, 1839, pp. 19–21.
    8 February 1841, British patent no. 8842 (calotype process).
    1844–6, The Pencil of Nature, 6 parts, London (Talbot'a account of his invention can be found in the introduction; there is a facsimile edn, with an intro. by Beamont Newhall, New York, 1968.
    Further Reading
    H.J.P.Arnold, 1977, William Henry Fox Talbot, London.
    D.B.Thomas, 1964, The First Negatives, London (a lucid concise account of Talbot's photograph work).
    J.Ward and S.Stevenson, 1986, Printed Light, Edinburgh (an essay on Talbot's invention and its reception).
    H.Gernsheim and A.Gernsheim, 1977, The History of Photography, London (a wider picture of Talbot, based primarily on secondary sources).
    JW

    Biographical history of technology > Talbot, William Henry Fox

  • 86 Behaviorism

       A person is changed by the contingencies of reinforcement under which he behaves; he does not store the contingencies. In particular, he does not store copies of the stimuli which have played a part in the contingencies. There are no "iconic representations" in his mind; there are no "data structures stored in his memory"; he has no "cognitive map" of the world in which he has lived. He has simply been changed in such a way that stimuli now control particular kinds of perceptual behavior. (Skinner, 1974, p. 84)
       Psychology as the behaviorist views it is a purely objective natural science. Its theoretical goal is the prediction and control of behavior. Introspection forms no essential part of its method nor is the scientific value of its data dependent upon the readiness with which they lend themselves to interpretation in terms of consciousness. The behaviorist, in his efforts to get a unitary scheme of animal response, recognizes no dividing line between man and brute. The behavior of man, with all its refinement and complexity, forms only a part of the behaviorist's total scheme of investigation. (Watson, quoted in Fancher, 1979, p. 319)

    Historical dictionary of quotations in cognitive science > Behaviorism

См. также в других словарях:

  • Scientific method — Scientific Sci en*tif ic, a. [F. scientifique; L. scientia science + facere to make.] 1. Of or pertaining to science; used in science; as, scientific principles; scientific apparatus; scientific observations. [1913 Webster] 2. Agreeing with, or… …   The Collaborative International Dictionary of English

  • scientific method — n. a method of research in which a hypothesis is tested by means of a carefully documented control experiment that can be repeated by any other researcher …   English World dictionary

  • scientific method — n principles and procedures for the systematic pursuit of knowledge involving the recognition and formulation of a problem, the collection of data through observation and experiment, and the formulation and testing of hypotheses …   Medical dictionary

  • Scientific method — …   Wikipedia

  • scientific method — noun a method of investigation involving observation and theory to test scientific hypotheses • Hypernyms: ↑methodology • Hyponyms: ↑experimental method * * * noun the scientific method technical : the process that is used by scientists for… …   Useful english dictionary

  • scientific method — noun A method of discovering knowledge about the natural world based in making falsifiable predictions (hypotheses), testing them empirically, and developing peer reviewed theories that best explain the known data. Mr. Paynes paper aimed at the… …   Wiktionary

  • SCIENTIFIC METHOD —    although there are many different methods used in various academic disciplines, the term scientific method refers to that process of systematic inquiry which proceeds in a logical manner and involves the testing of theories against the… …   Concise dictionary of Religion

  • scientific method — method of performing scientific research …   English contemporary dictionary

  • the scientific method — technical : the process that is used by scientists for testing ideas and theories by using experiments and careful observation • • • Main Entry: ↑scientific method …   Useful english dictionary

  • List of scientific method topics — Scientific method is a body of techniques for investigating phenomena and acquiring new knowledge, as well as for correcting and integrating previous knowledge. It is based on observable, empirical, measurable evidence, and subject to laws of… …   Wikipedia

  • scientific method — a method of research in which a problem is identified, relevant data are gathered, a hypothesis is formulated from these data, and the hypothesis is empirically tested. [1850 55] * * * Mathematical and experimental techniques employed in the… …   Universalium

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»