Перевод: с английского на все языки

со всех языков на английский

Neuchâtel

  • 1 Neuchâtel

    NeuchâtelTowns and cities, Swiss cantons pr n Neuchâtel ; the canton of Neuchâtel le canton de Neuchâtel.

    Big English-French dictionary > Neuchâtel

  • 2 Neuchatel

    Универсальный англо-русский словарь > Neuchatel

  • 3 Neuchâtel

    Англо-русский географический словарь > Neuchâtel

  • 4 Neuchatel

    Невшатель Город в Швейцарии, на Невшательском оз., административный центр кантона Невшатель. 33 тыс. жителей (1990). Часовая, ювелирная, электротехническая, пищевкусовая промышленность. Университет. Музеи: искусства и истории, изящных искусств, этнографический. Замок (12-15 вв.), романско-готическая церковь (12-13 вв.), многочисленные барочные особняки (17-18 вв.), ратуша в стиле классицизма (18 в.).

    Англо-русский словарь географических названий > Neuchatel

  • 5 Neuchâtel, Lac de

    оз. Невшательское (Швейцария)

    Англо-русский географический словарь > Neuchâtel, Lac de

  • 6 Lake of Neuchatel

    География: Невшательское озеро (Швейцария), Невшательское (оз.)

    Универсальный англо-русский словарь > Lake of Neuchatel

  • 7 Lac de Neuchatel

    Невшательское озеро Озеро на западе Швейцарии. 216 кв. км, длина 40 км, глубина. 153 м. Сток через Бильское оз. в р. Ааре. Судоходство.

    Англо-русский словарь географических названий > Lac de Neuchatel

  • 8 Lake of Neuchatel

    Невшательское озеро (Швейцария)

    Англо-русский географический словарь > Lake of Neuchatel

  • 9 Breguet, Abraham-Louis

    SUBJECT AREA: Horology
    [br]
    baptized 10 January 1747 Neuchâtel, Switzerland
    d. 17 September 1823 Paris, France
    [br]
    Swiss clock-and watchmaker who made many important contributions to horology.
    [br]
    When Breguet was 11 years old his father died and his mother married a Swiss watchmaker who had Paris connections. His stepfather introduced him to horology and this led to an apprenticeship in Paris, during which he also attended evening classes in mathematics at the Collège Mazarin. In 1775 he married and set up a workshop in Paris, initially in collaboration with Xavier Gide. There he established a reputation among the aristocracy for elegant and innovative timepieces which included a perpétuelle, or self-winding watch, which he developed from the ideas of Perrelet. He also enjoyed the patronage of Marie Antoinette and Louis XVI. During the French Revolution his life was in danger and in 1793 he fled to Neuchâtel. The two years he spent there comprised what was intellectually one of his most productive periods and provided many of the ideas that he was able to exploit after he had returned to Paris in 1795. By the time of his death he had become the most prestigious watchmaker in Europe: he supplied timepieces to Napoleon and, after the fall of the Empire, to Louis XVIII, as well as to most of the crowned heads of Europe.
    Breguet divided his contributions to horology into three categories: improvements in appearance and functionality; improvements in durability; and improvements in timekeeping. His pendule sympathique was in the first category and consisted of a clock which during the night set a watch to time, regulated it and wound it. His parachute, a spring-loaded bearing, made a significant contribution to the durability of a watch by preventing damage to its movement if it was dropped. Among the many improvements that Breguet made to timekeeping, two important ones were the introduction of the overcoil balance spring and the tourbillon. By bending the outside end of the balance spring over the top of the coils Breguet was able to make the oscillations of the balance isochronous, thus achieving for the flat spring what Arnold had already accomplished for the cylindrical balance spring. The timekeeping of a balance is also dependent on its position, and the tourbillon was an attempt to average-out positional errors by placing the balance wheel and the escapement in a cage that rotated once every minute. This principle was revived in a simplified form in the karussel at the end of the nineteenth century.
    [br]
    Principal Honours and Distinctions
    Horloger de la marine 1815. Chevalier de la Légion d'honneur 1815.
    Bibliography
    Breguet gathered information for a treatise on horology that was never published but which was later plagiarized by Louis Moinet in his Traité d'horlogerie, 1848.
    Further Reading
    G.Daniels, 1974, The An of Breguet, London (an account of his life with a good technical assessment of his work).
    DV

    Biographical history of technology > Breguet, Abraham-Louis

  • 10 Guinand, Pierre Louis

    [br]
    b. 20 April 1748 Brenets, Neuchâtel, Switzerland
    d. 13 February 1824 Brenets, Neuchâtel, Switzerland
    [br]
    Swiss optical glassmaker.
    [br]
    Guinand received little formal education and followed his father's trade of joiner. He specialized in making clock cases, but after learning how to cast metals he took up the more lucrative work of making watch cases. When he was about 20 years old, in a customer's house he caught sight of an English telescope, a rarity in a Swiss mountain village. Intrigued, he obtained permission to examine it. This aroused his interest in optical matters and he began making spectacles and small telescopes.
    Achromatic lenses were becoming known, their use being to remove the defect of chromatic aberration or coloured optical images, but there remained defects due to imperfections in the glass itself. Stimulated by offers of prizes by scientific bodies, including the Royal Society of London, for removing these defects, Guinand set out to remedy them. He embarked in 1784 on a long and arduous series of experiments, varying the materials and techniques for making glass. The even more lucrative trade of making bells for repeaters provided the funds for a furnace capable of holding 2 cwt (102 kg) of molten glass. By 1798 or so he had succeeded in making discs of homogeneous glass. He impressed the famous Parisian astronomer de Lalande with them and his glass became well enough known for scientists to visit him. In 1805 Fraunhofer persuaded Guinand to join his optical-instrument works at Benediktheurn, in Bavaria, to make lenses. After nine years, Guinand returned to Brenets with a pension, on condition he made no more glass and disclosed no details of his methods. After two years these conditions had become irksome and he relinquished the pension. On 19 February 1823 Guinand described his discoveries in his classic "Memoir on the making of optical glass, more particularly of glass of high refractive index for use in the production of achromatic lenses", presented to the Société de Physique et d'Histoire Naturelle de Genève. This gives details of his experiments and investigations and discusses a suitable pot-clay stirrer and stirring mechanism for the molten glass, with temperature control, to overcome optical-glass defects such as bubbles, seeds, cords and colours. Guinand was hailed as the man in Europe who had achieved this and has thus rightly been called the founder of the era of optical glassmaking.
    [br]
    Further Reading
    The fullest account in English of Guinand's life and work is 'Some account of the late M. Guinand and of the discovery made by him in the manufacture of flint glass for large telescopes by F.R., extracted from the Bibliothèque Universelle des Sciences, trans.
    C.F.de B.', Quart.J.Sci.Roy.Instn.Lond. (1825) 19: 244–58.
    M.von Rohr, 1924, "Pierre Louis Guinand", Zeitschrift für Instr., 46:121, 139, with an English summary in J.Glass. Tech., (1926) 10: abs. 150–1.
    LRD

    Biographical history of technology > Guinand, Pierre Louis

  • 11 Hipp, Matthäus

    [br]
    b. 25 October 1813 Blaubeuren, Germany
    d. 3 May 1893 Zurich, Switzerland
    [br]
    German inventor and entrepreneur who produced the first reliable electric clock.
    [br]
    After serving an apprenticeship with a clock-maker in Blaubeuren, Hipp worked for various clockmakers before setting up his own workshop in Reutlingen in 1840. In 1842 he made his first electric clock with an ingenious toggle mechanism for switching the current, although he claimed that the idea had occurred to him eight years earlier. The switching mechanism was the Achilles' heel of early electric clocks. It was usually operated by the pendulum and it presented the designer with a dilemma: if the switch made a firm contact it adversely affected the timekeeping, but if the contact was lightened it sometimes failed to operate due to dirt or corrosion on the contacts. The Hipp toggle switch overcame this problem by operating only when the amplitude of the pendulum dropped below a certain value. As this occurred infrequently, the contact pressure could be increased to provide reliable switching without adversely affecting the timekeeping. It is an indication of the effectiveness of the Hipp toggle that it was used in clocks for over one hundred years and was adopted by many other makers in addition to Hipp and his successor Favag. It was generally preferred for its reliability rather than its precision, although a regulator made in 1881 for the observatory at Neuchâtel performed creditably. This regulator was enclosed in an airtight case at low pressure, eliminating errors due to changes in barometric pressure. This practice later became standard for observatory regulators such as those of Riefler and Shortt. The ability of the Hipp toggle to provide more power when the clock was subjected to an increased load made it particularly suitable for use in turret clocks, whose hands were exposed to the vagaries of the weather. Hipp also improved the operation of slave dials, which were advanced periodically by an electrical impulse from a master clock. If the electrical contacts "chattered" and produced several impulses instead of a single sharp impulse, the slave dials would not indicate the correct time. Hipp solved this problem by producing master clocks which delivered impulses that alternated in polarity, and slave dials which only advanced when the polarity was changed in this way. Polarized impulses delivered every minute became the standard practice for slave dials used on the European continent. Hipp also improved Wheatstone's chronoscope, an instrument that was used for measuring very short intervals of time (such as those involved in ballistics).
    [br]
    Principal Honours and Distinctions
    Honorary doctorate, University of Zurich 1875.
    Further Reading
    Neue deutsche Biographie, 1972, Vol. 9, Berlin, pp. 199–200.
    "Hipp's sich selbst conrolirende Uhr", Dinglers polytechnisches Journal (1843), 88:258– 64 (the first description of the Hipp toggle).
    F.Hope-Jones, 1949, Electrical Timekeeping, 2nd edn, London, pp. 62–6, 97–8 (a modern description in English of the Hipp toggle and the slave dial).
    C.A.Aked, 1983, "Electrical precision", Antiquarian Horology 14:172–81 (describes the observatory clock at Neuchâtel).
    DV

    Biographical history of technology > Hipp, Matthäus

  • 12 IHTTI

    Гостиничное дело: International Hotel and Tourism Training Institute (расположен в Neuchatel, Switzerland)

    Универсальный англо-русский словарь > IHTTI

  • 13 Neufchatel cheese

    s.
    queso Neuchatel.

    Nuevo Diccionario Inglés-Español > Neufchatel cheese

  • 14 Guillaume, Charles-Edouard

    SUBJECT AREA: Horology, Metallurgy
    [br]
    b. 15 February 1861 Fleurier, Switzerland
    d. 13 June 1938 Sèvres, France
    [br]
    Swiss physicist who developed two alloys, "invar" and "elinvar", used for the temperature compensation of clocks and watches.
    [br]
    Guillaume came from a family of clock-and watchmakers. He was educated at the Gymnasium in Neuchâtel and at Zurich Polytechnic, from which he received his doctorate in 1883 for a thesis on electrolytic capacitors. In the same year he joined the International Bureau of Weights and Measures at Sèvres in France, where he was to spend the rest of his working life. He retired as Director in 1936. At the bureau he was involved in distributing the national standards of the metre to countries subscribing to the General Conference on Weights and Measures that had been held in 1889. This made him aware of the crucial effect of thermal expansion on the lengths of the standards and he was prompted to look for alternative materials that would be less costly than the platinum alloys which had been used. While studying nickel steels he made the surprising discovery that the thermal expansion of certain alloy compositions was less than that of the constituent metals. This led to the development of a steel containing about 36 per cent nickel that had a very low thermal coefficient of expansion. This alloy was subsequently named "invar", an abbreviation of invariable. It was well known that changes in temperature affected the timekeeping of clocks by altering the length of the pendulum, and various attempts had been made to overcome this defect, most notably the mercury-compensated pendulum of Graham and the gridiron pendulum of Harrison. However, an invar pendulum offered a simpler and more effective method of temperature compensation and was used almost exclusively for pendulum clocks of the highest precision.
    Changes in temperature can also affect the timekeeping of watches and chronometers, but this is due mainly to changes in the elasticity or stiffness of the balance spring rather than to changes in the size of the balance itself. To compensate for this effect Guillaume developed another more complex nickel alloy, "elinvar" (elasticity invariable), whose elasticity remained almost constant with changes in temperature. This had two practical consequences: the construction of watches could be simplified (by using monometallic balances) and more accurate chronometers could be made.
    [br]
    Principal Honours and Distinctions
    Nobel Prize for Physics 1920. Corresponding member of the Académie des Sciences. Grand Officier de la Légion d'honneur 1937. Physical Society Duddell Medal 1928. British Horological Institute Gold Medal 1930.
    Bibliography
    1897, "Sur la dilation des aciers au nickel", Comptes rendus hebdomadaires des séances de l'Académie des sciences 124:176.
    1903, "Variations du module d"élasticité des aciers au nickel', Comptes rendus
    hebdomadaires des séances de l'Académie des sciences 136:498.
    "Les aciers au nickel et leurs applications à l'horlogerie", in J.Grossmann, Horlogerie théorique, Paris, Vol. II, pp. 361–414 (describes the application of invar and elinvar to horology).
    Sir Richard Glazebrook (ed.), 1923 "Invar and Elinvar", Dictionary of Applied Physics, 5 vols, London, Vol. V, pp. 320–7 (a succinct account in English).
    Further Reading
    R.M.Hawthorne, 1989, Nobel Prize Winners, Physics, 1901–1937, ed. F.N.Magill, Pasadena, Salem Press, pp. 244–51.
    See also: Le Roy, Pierre
    DV

    Biographical history of technology > Guillaume, Charles-Edouard

  • 15 Hetzel, Max

    [br]
    b. 5 March 1921 Basle, Switzerland
    [br]
    Swiss electrical engineer who invented the tuning-fork watch.
    [br]
    Hetzel trained as an electrical engineer at the Federal Polytechnic in Zurich and worked for several years in the field of telecommunications before joining the Bulova Watch Company in 1950. At that time several companies were developing watches with electromagnetically maintained balances, but they represented very little advance on the mechanical watch and the mechanical switching mechanism was unreliable. In 1952 Hetzel started work on a much more radical design which was influenced by a transistorized tuning-fork oscillator that he had developed when he was working on telecommunications. Tuning forks, whose vibrations were maintained electromagnetically, had been used by scientists during the nineteenth century to measure small intervals of time, but Niaudet- Breguet appears to have been the first to use a tuning fork to control a clock. In 1866 he described a mechanically operated tuning-fork clock manufactured by the firm of Breguet, but it was not successful, possibly because the fork did not compensate for changes in temperature. The tuning fork only became a precision instrument during the 1920s, when elinvar forks were maintained in vibration by thermionic valve circuits. Their primary purpose was to act as frequency standards, but they might have been developed into precision clocks had not the quartz clock made its appearance very shortly afterwards. Hetzel's design was effectively a miniaturized version of these precision devices, with a transistor replacing the thermionic valve. The fork vibrated at a frequency of 360 cycles per second, and the hands were driven mechanically from the end of one of the tines. A prototype was working by 1954, and the watch went into production in 1960. It was sold under the tradename Accutron, with a guaranteed accuracy of one minute per month: this was a considerable improvement on the performance of the mechanical watch. However, the events of the 1920s were to repeat themselves, and by the end of the decade the Accutron was eclipsed by the introduction of quartz-crystal watches.
    [br]
    Principal Honours and Distinctions
    Neuchâtel Observatory Centenary Prize 1958. Swiss Society for Chronometry Gold Medal 1988.
    Bibliography
    "The history of the “Accutron” tuning fork watch", 1969, Swiss Watch \& Jewellery Journal 94:413–5.
    Further Reading
    R.Good, 1960, "The Accutron", Horological Journal 103:346–53 (for a detailed technical description).
    J.D.Weaver, 1982, Electrical \& Electronic Clocks \& Watches, London (provides a technical description of the tuning-fork watch in its historical context).
    DV

    Biographical history of technology > Hetzel, Max

  • 16 Renold, Hans

    [br]
    b. 31 July 1852 Aarau, Switzerland
    d. 2 May 1943 Grange-over-Sands, Lancashire, England
    [br]
    Swiss (naturalized British 1881) mechanical engineer, inventor and pioneer of the precision chain industry.
    [br]
    Hans Renold was educated at the cantonal school of his native town and at the Polytechnic in Zurich. He worked in two or three small workshops during the polytechnic vacations and served an apprenticeship of eighteen months in an engineering works at Neuchâtel, Switzerland. After a short period of military service he found employment as a draughtsman in an engineering firm at Saint-Denis, near Paris, from 1871 to 1873. In 1873 Renold moved first to London and then to Manchester as a draughtsman and inspector with a firm of machinery exporters. From 1877 to 1879 he was a partner in his own firm of machine exporters. In 1879 he purchased a small firm in Salford making chain for the textile industry. At about this time J.K.Starley introduced the "safety" bicycle, which, however, lacked a satisfactory drive chain. Renold met this need with the invention of the bush roller chain, which he patented in 1880. The new chain formed the basis of the precision chain industry: the business expanded and new premises were acquired in Brook Street, Manchester, in 1881. In the same year Renold became a naturalized British subject.
    Continued expansion of the business necessitated the opening of a new factory in Brook Street in 1889. The factory was extended in 1895, but by 1906 more accommodation was needed and a site of 11 ½ acres was acquired in the Manchester suburb of Burnage: the move to the new building was finally completed in 1914. Over the years, further developments in the techniques of chain manufacture were made, including the invention in 1895 of the inverted tooth or silent chain. Renold made his first visit to America in 1891 to study machine-tool developments and designed for his own works special machine tools, including centreless grinding machines for dealing with wire rods up to 10 ft (3 m) in length.
    The business was established as a private limited company in 1903 and merged with the Coventry Chain Company Ltd in 1930. Good industrial relations were always of concern to Renold and he established a 48-hour week as early as 1896, in which year a works canteen was opened. Joint consultation with shop stewards date2 from 1917. Renold was elected a Member of the Institution of Mechanical Engineers in 1902 and in 1917 he was made a magistrate of the City of Manchester.
    [br]
    Principal Honours and Distinctions
    Honorary DSc University of Manchester 1940.
    Further Reading
    Basil H.Tripp, 1956, Renold Chains: A History of the Company and the Rise of the Precision Chain Industry 1879–1955, London.
    J.J.Guest, 1915, Grinding Machinery, London, pp. 289, 380 (describes grinding machines developed by Renold).
    RTS

    Biographical history of technology > Renold, Hans

См. также в других словарях:

  • Neuchatel — Neuchâtel steht für: République et Canton de Neuchâtel, schweizer Kanton Neuenburg District de Neuchâtel, Bezirk Neuenburg im schweizer Kanton Neuenburg, siehe Neuenburg (Bezirk) Neuchâtel (Stadt), Hauptstadt des schweizer Kantons Neuenburg… …   Deutsch Wikipedia

  • Neuchâtel — (canton de) canton de Suisse couvrant une partie de la chaîne du Jura et bordant le lac de Neuchâtel; 796 km²; 157 000 hab.; ch. l. Neuchâtel. Au N. O., il s étend sur un plateau du Jura central. La population occupe les bassins (les Vallées)… …   Encyclopédie Universelle

  • Neuchâtel — steht für: Neuchâtel (Stadt), Hauptstadt des Schweizer Kantons Neuenburg République et Canton de Neuchâtel, den französischen Namen des Schweizer Kantons Neuenburg District de Neuchâtel, Bezirk Neuenburg im Schweizer Kanton Neuenburg, siehe… …   Deutsch Wikipedia

  • Neuchatel — Neuchâtel (homonymie) Cette page d’homonymie répertorie les différents sujets et articles partageant un même nom. En Suisse le canton de Neuchâtel, canton suisse ; Neuchâtel, ville suisse ; le district de Neuchâtel, un des six districts …   Wikipédia en Français

  • NEUCHÂTEL — NEUCHÂTEL, canton and its capital city in W. Switzerland. The earliest records of Jews in the canton date from 1288, when they were accused of a blood libel and a number were put to death. During the Black Death excesses in 1348 the Jews of… …   Encyclopedia of Judaism

  • Neuchâtel — [nö shä tel′; ] E [ no͞o΄shə tel′] 1. canton of W Switzerland, on the French border: 310 sq mi (803 sq km); pop. 165,000 2. its capital, on the Lake of Neuchâtel: pop. 32,000 3. Lake of lake in W Switzerland: 84 sq mi (218 sq km) …   English World dictionary

  • Neuchâtel — (spr. Nöhschatell), so v.w. Neuenburg …   Pierer's Universal-Lexikon

  • Neuchâtel [1] — Neuchâtel (spr. nȫschatell, Neuenburg), Hauptstadt des schweizer. Kantons Neuenburg, am Nordwestufer des Neuenburger Sees, Knotenpunkt der Linien Lausanne Biel und N. Pontarlier der Bundesbahnen und der Eisenbahn N. Chaux de Fonds Locle Col des… …   Meyers Großes Konversations-Lexikon

  • Neuchâtel [2] — Neuchâtel (spr. nöschatell), Fürst von, s. Berthier; Herzog von N. ist seit 1710 auch Titel der Herzoge von Luynes …   Meyers Großes Konversations-Lexikon

  • Neuchâtel — (spr. nöschatéll), s. Neuenburg …   Kleines Konversations-Lexikon

  • Neuchâtel [2] — Neuchâtel (spr. nöschatéll), Herzog von, s. Berthier, Alexandre …   Kleines Konversations-Lexikon

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»