Перевод: с английского на все языки

Biographical Memoirs of Elihu Thomson

  • 1 Thomson, Elihu

    SUBJECT AREA: Electricity
    [br]
    b. 29 March 1853 Manchester, England
    d. 13 March 1937 Swampscott, Massachusetts, USA
    [br]
    English (naturalized) American electrical engineer and inventor.
    [br]
    Thomson accompanied his parents to Philadelphia in 1858; he received his education at the Central High School there, and afterwards remained as a teacher of chemistry. At this time he constructed several dynamos after studying their design, and was invited by the Franklin Institute to give lectures on the subject. After observing an arc-lighting system operating commercially in Paris in 1878, he collaborated with Edwin J. Houston, a senior colleague at the Central High School, in working out the details of such a system. An automatic regulating device was designed which, by altering the position of the brushes on the dynamo commutator, maintained a constant current irrespective of the number of lamps in use. To overcome the problem of commutation at the high voltages necessary to operate up to forty arc lamps in a series circuit, Thomson contrived a centrifugal blower which suppressed sparking. The resulting system was efficient and reliable with low operating costs. Thomson's invention of the motor meter in 1882 was the first of many such instruments for the measurement of electrical energy. In 1886 he invented electric resistance welding using low-voltage alternating current derived from a transformer of his own design. Thomson's work is recorded in his technical papers and in the 700plus patents granted for his inventions.
    The American Electric Company, founded to exploit the Thomson patents, later became the Thomson-Houston Company, which was destined to be a leader in the electrical manufacturing industry. They entered the field of electric power in 1887, supplying railway equipment and becoming a major innovator of electric railways. Thomson-Houston and Edison General Electric were consolidated to form General Electric in 1892. Thomson remained associated with this company throughout his career.
    [br]
    Principal Honours and Distinctions
    Chevalier and Officier de la Légion d'honneur 1889. American Academy of Arts and Sciences Rumford Medal 1901. American Institute of Electrical Engineers Edison Medal 1909. Royal Society Hughes Medal 1916. Institution of Electrical Engineers Kelvin Medal 1923, Faraday Medal 1927.
    Bibliography
    1934, "Some highlights of electrical history", Electrical Engineering 53:758–67 (autobiography).
    Further Reading
    D.O.Woodbury, 1944, Beloved Scientist, New York (a full biography). H.C.Passer, 1953, The Electrical Manufacturers: 1875–1900, Cambridge, Mass, (describes Thomson's industrial contribution).
    K.T.Compton, 1940, Biographical Memoirs of Elihu Thomson, Washington, DCovides an abridged list of Thomson's papers and patents).
    GW

    Biographical history of technology > Thomson, Elihu

  • 2 Baekeland, Leo Hendrik

    [br]
    b. 14 November 1863 Saint-Martens-Latern, Belgium
    d. 23 February 1944 Beacon, New York, USA
    [br]
    Belgian/American inventor of the Velox photographic process and the synthetic plastic Bakélite.
    [br]
    The son of an illiterate shoemaker, Baekeland was first apprenticed in that trade, but was encouraged by his mother to study, with spectacular results. He won a scholarship to Gand University and graduated in chemistry. Before he was 21 he had achieved his doctorate, and soon afterwards he obtained professorships at Bruges and then at Gand. Baekeland seemed set for a distinguished academic career, but he turned towards the industrial applications of chemistry, especially in photography.
    Baekeland travelled to New York to further this interest, but his first inventions met with little success so he decided to concentrate on one that seemed to have distinct commercial possibilities. This was a photographic paper that could be developed in artificial light; he called this "gas light" paper Velox, using the less sensitive silver chloride as a light-sensitive agent. It proved to have good properties and was easy to use, at a time of photography's rising popularity. By 1896 the process began to be profitable, and three years later Baekeland disposed of his plant to Eastman Kodak for a handsome sum, said to be $3–4 million. That enabled him to retire from business and set up a laboratory at Yonkers to pursue his own research, including on synthetic resins. Several chemists had earlier obtained resinous products from the reaction between phenol and formaldehyde but had ignored them. By 1907 Baekeland had achieved sufficient control over the reaction to obtain a good thermosetting resin which he called "Bakélite". It showed good electrical insulation and resistance to chemicals, and was unchanged by heat. It could be moulded while plastic and would then set hard on heating, with its only drawback being its brittleness. Bakelite was an immediate success in the electrical industry and Baekeland set up the General Bakelite Company in 1910 to manufacture and market the product. The firm grew steadily, becoming the Bakélite Corporation in 1924, with Baekeland still as active President.
    [br]
    Principal Honours and Distinctions
    President, Electrochemical Society 1909. President, American Chemical Society 1924. Elected to the National Academy of Sciences 1936.
    Further Reading
    J.Gillis, 1965, Leo Baekeland, Brussels.
    A.R.Matthis, 1948, Leo H.Baekeland, Professeur, Docteur ès Sciences, chimiste, inventeur et grand industriel, Brussels.
    J.K.Mumford, 1924, The Story of Bakélite.
    C.F.Kettering, 1947, memoir on Baekeland, Biographical Memoirs of the National Academy of Sciences 24 (includes a list of his honours and publications).
    LRD

    Biographical history of technology > Baekeland, Leo Hendrik

  • 3 Carothers, Wallace Hume

    [br]
    b. 27 April 1896 Burlington, Iowa, USA
    d. 29 April 1937 Philadelphia, Pennsylvania, USA
    [br]
    American chemist, inventor of nylon.
    [br]
    After graduating in chemistry, Carothers embarked on academic research at several universities, finally at Harvard University. His earliest published papers, from 1923, heralded the brilliance and originality of his later work. In 1928, Du Pont de Nemours persuaded him to forsake the academic world to lead their new organic-chemistry group in a programme of fundamental research at their central laboratories at Wilmington, Delaware. The next nine years were extraordinarily productive, yielding important contributions to theoretical organic chemistry and the foundation of two branches of chemical industry, namely the production of synthetic rubber and of wholly synthetic fibres.
    Carothers began work on high molecular weight substances yielding fibres and introduced polymerization by condensation: polymerization by addition was already known. He developed a clear understanding of the relation between the repeating structural units in a large molecule and its physical chemical properties. In 1931, Carothers found that chloroprene could be polymerized much faster than isoprene, the monomer in natural rubber. This process yielded polychloroprene or neoprene, a synthetic rubber with improved properties. Manufacture began the following year, and the material has continued to be used for speciality rubbers.
    There followed many publications announcing new condensations polymers. On 2 January 1935, he obtained a patent for the formation of new polyamides, including one from adipic acid and hexamethylenediamene. After four years of development work, which cost Du Pont some $27 million, this new polyamide, or nylon, reached the stage of commercial production, beginning on 23 October 1938. Nylon stockings appeared the following year and 64 million were sold during the first twelve months. However, Carothers saw none of this spectacular success: he had died by his own hand in 1937, after a long history of gradually intensifying depression.
    [br]
    Principal Honours and Distinctions
    Elected to the National Academy of Science 1936 (he was the first industrial organic chemist to be so honoured).
    Bibliography
    H.M.Whitby and G.S.Whitby, 1940, Collected Papers of Wallace H.Carothers on Polymerisation, New York.
    Further Reading
    R.Adams, 1939, memoir, Biographical Memoirs of the National Academy of Sciences 20:293–309 (includes a complete list of Carothers's sixty-two scientific papers and most of his sixty-nine US patents).
    LRD

    Biographical history of technology > Carothers, Wallace Hume

  • 4 Domagk, Gerhard Johannes Paul

    SUBJECT AREA: Medical technology
    [br]
    b. 30 October 1895 Lagow, Brandenburg, Germany
    d. 24 April 1964 Burgberg, Germany
    [br]
    German physician, biochemist and pharmacologist, pioneer of antibacterial chemotherapy.
    [br]
    Domagk's studies in medicine were interrupted by the outbreak of the First World War and his service in the Army, delaying his qualification at Kiel until 1921. For a short while he worked at the University of Greifswald, but in 1925 he was appointed Reader in Pathology at the University of Munster, where he remained as Extraordinary Professor of General Pathology and Pathological Anatomy (1928) and Professor (1958).
    In 1924 he published a paper on the role of the reticulo-endothelial system against infection. This led to his appointment as Director of Research by IG Farbenindustrie in their laboratory for experimental pathology and bacteriology. The planned programme of research into potential antibacterial chemotherapeutic drugs led, via the discovery of the dye Prontosil rubrum by his colleagues, to his reporting in 1936 the clinical antistreptococcal effects of the sulphonamide drugs. These results were confirmed in other countries, but owing to problems with the Nazi authorities he was unable to receive until 1947 the Nobel Prize that he was awarded in 1939.
    Domagk turned his interest to the chemotherapy of tuberculosis, and in 1946 he was able to report the therapeutic activity of the thiosemicarbazones, which, although too toxic for general use, in their turn led to the discovery of the potent and effective isoniazid. In his later years he moved into the field of cancer chemotherapy, but interestingly he wrote, "One should not have too great expectations of the future of cytostatic agents." His only daughter was one of the first patients to have a severe streptococcal infection successfully treated with Prontosil rubrum.
    [br]
    Principal Honours and Distinctions
    Nobel Prize for Medicine 1939. Foreign Member of the Royal Society. Paul Ehrlich Gold Medal.
    Bibliography
    1935, "Ein Beitrag zur Chemotherapie der bakteriellen Infektionen", Deutsche med. Woch.
    1924, Virchows Archiv für Path. Anat. und Physiol. u.f. klin. Med. 253:294–638.
    Further Reading
    1964, Biographical Memoirs of the Royal Society: Gerhard Domagk, London.
    MG

    Biographical history of technology > Domagk, Gerhard Johannes Paul

  • 5 Eccles, William Henry

    [br]
    b. 23 August 1875 Ulverston, Cumbria, England
    d. 27 April 1966 Oxford, England
    [br]
    English physicist who made important contributions to the development of radio communications.
    [br]
    After early education at home and at private school, Eccles won a scholarship to the Royal College of Science (now Imperial College), London, where he gained a First Class BSc in physics in 1898. He then worked as a demonstrator at the college and studied coherers, for which he obtained a DSc in 1901. Increasingly interested in electrical engineering, he joined the Marconi Company in 1899 to work on oscillators at the Poole experimental radio station, but in 1904 he returned to academic life as Professor of Mathematics and Physics and Department Head at South West Polytechnic, Chelsea. There he discovered ways of using the negative resistance of galena-crystal detectors to generate oscillations and gave a mathematical description of the operation of the triode valve. In 1910 he became Reader in Engineering at University College, London, where he published a paper explaining the reflection of radio waves by the ionosphere and designed a 60 MHz short-wave transmitter. From 1916 to 1926 he was Professor of Applied Physics and Electrical Engineering at the Finsbury City \& Guilds College and a private consulting engineer. During the First World War he was a military scientific adviser and Secretary to the Joint Board of Scientific Societies. After the war he made many contributions to electronic-circuit development, many of them (including the Eccles-Jordan "flip-flop" patented in 1918 and used in binary counters) in conjunction with F.W.Jordan, about whom little seems to be known. Illness forced Eccles's premature academic retirement in 1926, but he remained active as a consultant for many years.
    [br]
    Principal Honours and Distinctions
    FRS 1921. President, Institution of Electrical Engineers, 1926–7. President, Physical Society 1929. President, Radio Society of Great Britain.
    Bibliography
    1912, "On the diurnal variation of the electric waves occurring in nature and on the propagation of electric waves round the bend of the earth", Proceedings of the Royal Society 87:79. 1919, with F.W.Jordan, "Method of using two triode valves in parallel for generating oscillations", Electrician 299:3.
    1915, Handbook of Wireless Telegraphy.
    1921, Continuous Wave Wireless Telegraphy.
    Further Reading
    1971, "William Henry Eccles, 1875–1966", Biographical Memoirs of the Royal Society, London, 17.
    KF

    Biographical history of technology > Eccles, William Henry

  • 6 Electricity

    [br]
    Thomson, Sir William

    Biographical history of technology > Electricity

  • 7 Gabor, Dennis (Dénes)

    [br]
    b. 5 June 1900 Budapest, Hungary
    d. 9 February 1979 London, England
    [br]
    Hungarian (naturalized British) physicist, inventor of holography.
    [br]
    Gabor became interested in physics at an early age. Called up for military service in 1918, he was soon released when the First World War came to an end. He then began a mechanical engineering course at the Budapest Technical University, but a further order to register for military service prompted him to flee in 1920 to Germany, where he completed his studies at Berlin Technical University. He was awarded a Diploma in Engineering in 1924 and a Doctorate in Electrical Engineering in 1927. He then went on to work in the physics laboratory of Siemens \& Halske. He returned to Hungary in 1933 and developed a new kind of fluorescent lamp called the plasma lamp. Failing to find a market for this device, Gabor made the decision to abandon his homeland and emigrate to England. There he joined British Thompson-Houston (BTH) in 1934 and married a colleague from the company in 1936. Gabor was also unsuccessful in his attempts to develop the plasma lamp in England, and by 1937 he had begun to work in the field of electron optics. His work was interrupted by the outbreak of war in 1939, although as he was not yet a British subject he was barred from making any significant contribution to the British war effort. It was only when the war was near its end that he was able to return to electron optics and begin the work that led to the invention of holography. The theory was developed during 1947 and 1948; Gabor went on to demonstrate that the theories worked, although it was not until the invention of the laser in 1960 that the full potential of his invention could be appreciated. He coined the term "hologram" from the Greek holos, meaning complete, and gram, meaning written. The three-dimensional images have since found many applications in various fields, including map making, medical imaging, computing, information technology, art and advertising. Gabor left BTH to become an associate professor at the Imperial College of Science and Technology in 1949, a position he held until his retirement in 1967. In 1971 he was awarded the Nobel Prize for Physics for his work on holography.
    [br]
    Principal Honours and Distinctions
    Royal Society Rumford Medal 1968. Franklin Institute Michelson Medal 1968. CBE 1970. Nobel Prize for Physics 1971.
    Bibliography
    1948. "A new microscopic principle", Nature 161:777 (Gabor's earliest publication on holography).
    1949. "Microscopy by reconstructed wavefronts", Proceedings of the Royal Society A197: 454–87.
    1951, "Microscopy by reconstructed wavefronts II", Proc. Phys. Soc. B, 64:449–69. 1966, "Holography or the “Whole Picture”", New Scientist 29:74–8 (an interesting account written after laser beams were used to produce optical holograms).
    Further Reading
    T.E.Allibone, 1980, contribution to Biographical Memoirs of Fellows of the Royal Society 26: 107–47 (a full account of Gabor's life and work).
    JW

    Biographical history of technology > Gabor, Dennis (Dénes)

  • 8 Merica, Paul Dyer

    SUBJECT AREA: Metallurgy
    [br]
    b. 17 March 1889 Warsaw, Indiana, USA
    d. 20 October 1957 Tarrytown, New York, USA
    [br]
    American physical metallurgist who elucidated the mechanism of the age-hardening of alloys.
    [br]
    Merica graduated from the University of Wisconsin in 1908. Before proceeding to the University of Berlin, he spent some time teaching in Wisconsin and in China. He obtained his doctorate in Berlin in 1914, and in that year he joined the US National Bureau of Standards (NBS) in Washington. During his five years there, he investigated the causes of the phenomenon of age-hardening of the important new alloy of aluminium, Duralumin.
    This phenomenon had been discovered not long before by Dr Alfred Wilm, a German research metallurgist. During the early years of the twentieth century, Wilm had been seeking a suitable light alloy for making cartridge cases for the Prussian government. In the autumn of 1909 he heated and quenched an aluminium alloy containing 3.5 per cent copper and 0.5 per cent magnesium and found its properties unremarkable. He happened to test it again some days later and was impressed to find its hardness and strength were much improved: Wilm had accidentally discovered age-hardening. He patented the alloy, but he made his rights over to Durener Metallwerke, who marketed it as Duralumin. This light and strong alloy was taken up by aircraft makers during the First World War, first for Zeppelins and then for other aircraft.
    Although age-hardened alloys found important uses, the explanation of the phenomenon eluded metallurgists until in 1919 Merica and his colleagues at the NBS gave the first rational explanation of age-hardening in light alloys. When these alloys were heated to temperatures near their melting points, the alloying constituents were taken into solution by the matrix. Quenching retained the alloying metals in supersaturated solid solution. At room temperature very small crystals of various intermetallic compounds were precipitated and, by inserting themselves in the aluminium lattice, had the effect of increasing the hardness and strength of the alloy. Merica's theory stimulated an intensive study of hardening and the mechanism that brought it about, with important consequences for the development of new alloys with special properties.
    In 1919 Merica joined the International Nickel Company as Director of Research, a post he held for thirty years and followed by a three-year period as President. He remained in association with the company until his death.
    [br]
    Bibliography
    1919, "Heat treatment and constitution of Duralumin", Sci. Papers, US Bureau of Standards, no. 37; 1932, "The age-hardening of metals", Transactions of the American Institution of Min. Metal 99:13–54 (his two most important papers).
    Further Reading
    Z.Jeffries, 1959, "Paul Dyer Merica", Biographical Memoirs of the National Academy of Science 33:226–39 (contains a list of Merica's publications and biographical details).
    LRD

    Biographical history of technology > Merica, Paul Dyer

  • 9 Pupin, Michael Idvorsky

    SUBJECT AREA: Medical technology
    [br]
    b. 4 October 1858 Idvor, Banat, Serbia
    d. 12 March 1935 New York, USA
    [br]
    Serbian/American applied physicist involved in the development of fluoroscopy and radiological diagnosis.
    [br]
    Pupin's early education was in Prague and then he emigrated alone to America in 1874. After five years of farm and factory jobs accompanied by night study, he gained admission to Columbia University, New York, in 1879. He graduated in 1883 and after a period at Cambridge University, England, worked under Helmholtz in Berlin. He received his doctorate in 1889.
    He returned to Columbia and, apart from his involvement in X-ray diagnosis in 1896, was engaged in practical work in connection with problems in telegraphy and telephony, radio transmitters and electrical network theory. In 1901 he was appointed Professor of Electromechanics, a post that he held for thirty years. He acted as an adviser on behalf of Yugoslavia at the 1919 Peace Conference.
    [br]
    Principal Honours and Distinctions
    Member of the National Academy of Sciences. Pulitzer Prize.
    Bibliography
    1896, "A few remarks on experiments with roentgen rays", Electricity, New York. 1924, From Immigrant to Inventor (autobiography).
    1938, Biographical Memoirs, National Academy of Sciences, Washington, DC.
    MG

    Biographical history of technology > Pupin, Michael Idvorsky

  • 10 Rawcliffe, Gordon Hindle

    SUBJECT AREA: Electricity
    [br]
    b. 2 June 1910 Sheffield, England
    d. 3 September 1979 Bristol, England
    [br]
    English scientist and inventor of the multi-speed induction motor using the pole amplitude modulation principle.
    [br]
    After graduating from Keble College, Oxford, Rawcliffe joined the Metropolitan Vickers Electrical Company in 1932 as a college apprentice, and later became a design engineer. This was followed by a period as a lecturer at Liverpool University, where he was able to extend his knowledge of the principles underlying the design and operation of electrical machines. In 1941 he became Head of the Electrical Engineering Department at the Robert Gordon Technical College, Aberdeen, and Lecturer in charge of Electrical Engineering at Aberdeen University. In 1944 Rawcliffe was appointed to the Chair of Electrical Engineering at the University of Bristol, where he remained until his retirement in 1975. The reputation of his department was enhanced by the colleagues he recruited.
    After 1954 he began research into polyphase windings, the basis of alternating-current machinery, and published papers concerned with the dual problems of frequency changing and pole changing. The result of this research was the discovery in 1957 of a technique for making squirrel-cage induction motors run at more than one speed. By reversing current in one part of the winding, the pole distribution and number were changed, and with it the speed of rotation.
    Rawcliffe's name became synonymous with pole amplitude modulation, or PAM, the name given to this technique. Described by Rawcliffe as a new philosophy of windings, the technique led to a series of research papers, patents and licensing agreements in addition to consultancies to advise on application problems. Commercial exploitation of the new idea throughout Western Europe, the United Kingdom and the United States followed. In total he contributed twentyfive papers to the Proceedings of the Institution of Electrical Engineers and some sixty British patent applications were filed.
    [br]
    Principal Honours and Distinctions
    FRS 1972. Royal Society S.G.Brown Medal 1978.
    Bibliography
    21 August 1958, British patent no. 900,600 (pole amplitude modulation).
    1958, with R.F.Burbridge and W.Fong, "Induction motor speed changing by pole amplitude modulation", Proceedings of the Institution of Electrical Engineers 105 (Part A): 411–19 (the first description of pole amplitude modulation).
    Further Reading
    Biographical Memoirs of Fellows of the Royal Society, 1981, Vol. XXVII, London, pp. 479–503 (includes lists of Rawcliffe's patents and principal papers published).
    GW

    Biographical history of technology > Rawcliffe, Gordon Hindle

  • 11 Reason, Richard Edmund

    [br]
    b. 21 December 1903 Exeter, Devon, England
    d. 20 March 1987 Great Bowden, Leicestershire, England
    [br]
    English metrologist who developed instruments for measuring machined-surface roughness.
    [br]
    Richard Edmund Reason was educated at Tonbridge School and the Royal College of Science (Imperial College), where he studied under Professor A.F.C.Pollard, Professor of Technical Optics. After graduating in 1925 he joined Taylor, Taylor and Hobson Ltd, Leicester, manufacturers of optical, electrical and scientific instruments, and remained with that firm throughout his career. One of his first contributions was in the development, with E.F.Fincham, of the Fincham Coincidence Optometer. At this time the firm, under William Taylor, was mainly concerned with optical instruments and lens manufacture, but in the 1930s Reason was also engaged in developing means for measuring the roughness of machined surfaces. The need for establishing standards and methods of measurement of surface finish was called for when the subcontracting of aero-engine components became necessary during the Second World War. This led to the development by Reason of an instrument in which a stylus was moved across the surface and the profile recorded electronically. This was called the Talysurf and was first produced in 1941. Further development followed, and from 1947 Reason tackled the problem of measuring roundness, producing the first Talyrond machine in 1949. The technology developed for these instruments was used in the production of others such as the Talymin Comparator and the Talyvel electronic level. Reason was also associated with the development of optical projection systems to measure the profile of parts such as gear teeth, screw threads and turbine blades. He retired in 1968 but continued as a consultant to the company. He served for many years on committees of the British Standards Institution on surface metrology and was a representative of Britain at the International Standards Organization.
    [br]
    Principal Honours and Distinctions
    OBE 1967. FRS 1971. Honorary DSc University of Birmingham 1969. Honorary DSc Leicester University 1971.
    Further Reading
    D.J.Whitehouse, 1990, Biographical Memoirs of Fellows of the Royal Society 36, London, pp. 437–62 (an illustrated obituary notice listing Reason's eighty-nine British patents, published between 1930 and 1972, and his twenty-one publications, dating from 1937 to 1966).
    K.J.Hume, 1980, A History of Engineering Metrology, London, 113–21 (contains a shorter account of Reason's work).
    RTS

    Biographical history of technology > Reason, Richard Edmund

  • 12 Ricardo, Sir Harry Ralph

    [br]
    b. 26 January 1885 London, England
    d. 18 May 1974 Graffham, Sussex, England
    [br]
    English mechanical engineer; researcher, designer and developer of internal combustion engines.
    [br]
    Harry Ricardo was the eldest child and only son of Halsey Ricardo (architect) and Catherine Rendel (daughter of Alexander Rendel, senior partner in the firm of consulting civil engineers that later became Rendel, Palmer and Tritton). He was educated at Rugby School and at Cambridge. While still at school, he designed and made a steam engine to drive his bicycle, and by the time he went up to Cambridge in 1903 he was a skilled craftsman. At Cambridge, he made a motor cycle powered by a petrol engine of his own design, and with this he won a fuel-consumption competition by covering almost 40 miles (64 km) on a quart (1.14 1) of petrol. This brought him to the attention of Professor Bertram Hopkinson, who invited him to help with research on turbulence and pre-ignition in internal combustion engines. After leaving Cambridge in 1907, he joined his grandfather's firm and became head of the design department for mechanical equipment used in civil engineering. In 1916 he was asked to help with the problem of loading tanks on to railway trucks. He was then given the task of designing and organizing the manufacture of engines for tanks, and the success of this enterprise encouraged him to set up his own establishment at Shoreham, devoted to research on, and design and development of, internal combustion engines.
    Leading on from the work with Hopkinson were his discoveries on the suppression of detonation in spark-ignition engines. He noted that the current paraffinic fuels were more prone to detonation than the aromatics, which were being discarded as they did not comply with the existing specifications because of their high specific gravity. He introduced the concepts of "highest useful compression ratio" (HUCR) and "toluene number" for fuel samples burned in a special variable compression-ratio engine. The toluene number was the proportion of toluene in heptane that gave the same HUCR as the fuel sample. Later, toluene was superseded by iso-octane to give the now familiar octane rating. He went on to improve the combustion in side-valve engines by increasing turbulence, shortening the flame path and minimizing the clearance between piston and head by concentrating the combustion space over the valves. By these means, the compression ratio could be increased to that used by overhead-valve engines before detonation intervened. The very hot poppet valve restricted the advancement of all internal combustion engines, so he turned his attention to eliminating it by use of the single sleeve-valve, this being developed with support from the Air Ministry. By the end of the Second World War some 130,000 such aero-engines had been built by Bristol, Napier and Rolls-Royce before the piston aero-engine was superseded by the gas turbine of Whittle. He even contributed to the success of the latter by developing a fuel control system for it.
    Concurrent with this was work on the diesel engine. He designed and developed the engine that halved the fuel consumption of London buses. He invented and perfected the "Comet" series of combustion chambers for diesel engines, and the Company was consulted by the vast majority of international internal combustion engine manufacturers. He published and lectured widely and fully deserved his many honours; he was elected FRS in 1929, was President of the Institution of Mechanical Engineers in 1944–5 and was knighted in 1948. This shy and modest, though very determined man was highly regarded by all who came into contact with him. It was said that research into internal combustion engines, his family and boats constituted all that he would wish from life.
    [br]
    Principal Honours and Distinctions
    Knighted 1948. FRS 1929. President, Institution of Mechanical Engineers 1944–5.
    Bibliography
    1968, Memo \& Machines. The Pattern of My Life, London: Constable.
    Further Reading
    Sir William Hawthorne, 1976, "Harry Ralph Ricardo", Biographical Memoirs of Fellows of the Royal Society 22.
    JB

    Biographical history of technology > Ricardo, Sir Harry Ralph

  • 13 Tizard, Sir Henry Thoms

    SUBJECT AREA: Weapons and armour
    [br]
    b. 23 August 1885 Gillingham, Kent, England
    d. 9 October 1959 Fareham, Hampshire, England
    [br]
    English scientist and administrator who made many contributions to military technology.
    [br]
    Educated at Westminster College, in 1904 Tizard went to Magdalen College, Oxford, gaining Firsts in mathematics and chemistry. After a period of time in Berlin with Nernst, he joined the Royal Institution in 1909 to study the colour changes of indicators. From 1911 until 1914 he was a tutorial Fellow of Oriel College, Oxford, but with the outbreak of the First World War he joined first the Royal Garrison Artillery, then, in 1915, the newly formed Royal Flying Corps, to work on the development of bomb-sights. Successively in charge of testing aircraft, a lieutenant-colonel in the Ministry of Munitions and Assistant Controller of Research and Experiments for the Royal Air Force, he returned to Oxford in 1919 and the following year became Reader in Chemical Thermodynamics; at this stage he developed the use of toluene as an air-craft-fuel additive.
    In 1922 he was appointed an assistant secretary at the government Department of Industrial and Scientific Research, becoming Principal Assistant Secretary in 1922 and its Permanent Director in 1927; during this time he was also a member of the Aeronautical Research Committee, being Chairman of the latter in 1933–43. From 1929 to 1942 he was Rector of Imperial College. In 1932 he was also appointed Chairman of a committee set up to investigate possible national air-defence systems, and it was largely due to his efforts that the radar proposals of Watson-Watt were taken up and an effective system made operational before the outbreak of the Second World War. He was also involved in various other government activities aimed at applying technology to the war effort, including the dam-buster and atomic bombs.
    President of Magdalen College in 1942–7, he then returned again to Whitehall, serving as Chairman of the Advisory Council on Scientific Policy and of the Defence Research Policy Committee. Finally, in 1952, he became Pro-Chan-cellor of Southampton University.
    [br]
    Principal Honours and Distinctions
    Air Force Cross 1918. CB 1927. KCB 1937. GCB 1949. American Medal of Merit 1947. FRS 1926. Ten British and Commonwealth University honorary doctorates. Hon. Fellowship of the Royal Aeronautical Society. Royal Society of Arts Gold Medal. Franklin Institute Gold Medal. President, British Association 1948. Trustee of the British Museum 1937–59.
    Bibliography
    1911, The sensitiveness of indicators', British Association Report (describes Tizard's work on colour changes in indicators).
    Further Reading
    KF

    Biographical history of technology > Tizard, Sir Henry Thoms

  • 14 Thomson, Elihu

    (1853-1937) Томсон, Илайхью
    Изобретатель, инженер-электромеханик. Работал над созданием электроаппаратуры широкого применения. Вместе с коллегой открыл фирму по производству изобретенных и усовершенствованных им изделий "Томсон-Хаустон электрик компани" [Thomson-Houston Electric Co.], которая в 1892 слилась с компанией "Эдисон дженерал электрик" [Edison General Electric Co.], образовав ныне известную фирму "Дженерал электрик" [ General Electric Co.]. Запатентовал более 700 изобретений

    English-Russian dictionary of regional studies > Thomson, Elihu

  • 15 Thomson

    Большой англо-русский и русско-английский словарь > Thomson

  • 16 biographical

    tr[baɪə'græfɪkəl]
    1 biográfico,-a
    biographical [.baɪə'græfɪkəl] adj
    : biográfico
    adj.
    biográfico, -a adj.
    [ˌbaɪǝʊ'ɡræfɪkǝl]
    ADJ biográfico

    English-spanish dictionary > biographical

  • 17 biographical

    bio·graphi·cal
    [ˌbaɪəʊˈgræfɪkəl]
    adj biografisch
    * * *
    ["baIəU'grfIk(əl)]
    adj
    biografisch
    * * *
    biog. abk
    biographic [ˌbaıəʊˈɡræfık; -əˈɡ-] adj, biographical adj (adv biographically) biografisch
    * * *
    adj.
    biografisch adj.
    biographisch adj.

    English-german dictionary > biographical

  • 18 Joule-Thomson effect

    < therm> ■ Joule-Thomson-Effekt m

    English-german technical dictionary > Joule-Thomson effect

  • 19 Joule-Thomson experiment

    < therm> ■ Joule-Thomson'scher Drosselversuch m

    English-german technical dictionary > Joule-Thomson experiment

  • 20 Thomson bridge

    <el> ■ Thomson-Messbrücke f ; Thomson'sche Doppelbrücke f

    English-german technical dictionary > Thomson bridge

См. также в других словарях:

  • Arthur Amos Noyes — Born 13 September 1866(1866 09 13) Newburyport, Massachusetts …   Wikipedia

  • Mihajlo Idvorski Pupin — Born October 4, 1858 …   Wikipedia

  • Council on Foreign Relations — Not to be confused with Committee on Foreign Relations. CFR Headquarters located in the former Harold I. Pratt House in New York City …   Wikipedia