Перевод: с английского на английский

с английского на английский

Backing-Off

  • 1 Backing-Off

    A spinner's term for the process of uncoiling the slack yarn from the spindle on the mule. The operation is done between the spinning and winding-on periods. The yarn extending from the spindle by the reversal of the spindle is unwound and carried by the winding faller into suitable position for winding on to the cop.

    Dictionary of the English textile terms > Backing-Off

  • 2 spin-off

    Gen Mgt
    a company or subsidiary formed by splitting away from a parent company. A spin-off company can, for example, be created when research and development yields a new product that does not fit into the company’s current portfolio, or when a company wants to explore a new venture related to its current activities. It can also be formed from a demerger, in which acquired companies or parts of a business are separated in order to create a more streamlined parent organization. A spin-off is often entrepreneurial in spirit, but the backing of the parent company can provide financial stability.

    The ultimate business dictionary > spin-off

  • 3 Easing Motions

    A mechanical contrivance to counteract the severity of the upward action of the counter-faller wire during the backing-off of the mule.

    Dictionary of the English textile terms > Easing Motions

  • 4 Linoleum

    The name is derived from Linum (flax) and oleum (oil). It is made by mixing ground cork with hardened linseed oil and laying this upon the coarse foundation cloth backing. The better qualities are inlaid in different colours so that the pattern does not wear off. They are made from 72-in. up to 150-in. wide and wound on wood rollers as the cloth leaves the loom. Jute yarns are usual and the fabric is very coarse.

    Dictionary of the English textile terms > Linoleum

  • 5 Cockerell, Christopher Sydney

    [br]
    b. 4 June 1910 Cambridge, England
    [br]
    British designer and engineer who invented the hovercraft.
    [br]
    He was educated at Gresham's School in Holt and at Peterhouse College, Cambridge, where he graduated in engineering in 1931; he was made an Honorary Fellow in 1974. Cockerell entered the engineering firm of W.H.Allen \& Sons of Bedford as a pupil in 1931, and two years later he returned to Cambridge to engage in radio research for a further two years. In 1935 he joined Marconi Wireless Telegraph Company, working on very high frequency (VHF) transmitters and direction finders. During the Second World War he worked on airborne navigation and communication equipment, and later he worked on radar. During this period he filed thirty six patents in the fields of radio and navigational systems.
    In 1950 Cockerell left Marconi to set up his own boat-hire business on the Norfolk Broads. He began to consider how to increase the speed of boats by means of air lubrication. Since the 1870s engineers had at times sought to reduce the drag on a boat by means of a thin layer of air between hull and water. After his first experiments, Cockerell concluded that a significant reduction in drag could only be achieved with a thick cushion of air. After experimenting with several ways of applying the air-cushion principle, the first true hovercraft "took off" in 1955. It was a model in balsa wood, 2 ft 6 in. (762 mm) long and weighing 4½ oz. (27.6 g); it was powered by a model-aircraft petrol engine and could travel over land or water at 13 mph (20.8 km/h). Cockerell filed his first hovercraft patent on 12 December 1955. The following year he founded Hovercraft Ltd and began the search for a manufacturer. The government was impressed with the invention's military possibilities and placed it on the secret list. The secret leaked out, however, and the project was declassified. In 1958 the National Research and Development Corporation decided to give its backing, and the following year Saunders Roe Ltd with experience of making flying boats, produced the epoch-making SR N1, a hovercraft with an air cushion produced by air jets directed downwards and inwards arranged round the periphery of the craft. It made a successful crossing of the English Channel, with the inventor on board.
    Meanwhile Cockerell had modified the hovercraft so that the air cushion was enclosed within flexible skirts. In this form it was taken up by manufacturers throughout the world and found wide application as a passenger-carrying vehicle, for military transport and in scientific exploration and survey work. The hover principle found other uses, such as for air-beds to relieve severely burned patients and for hover mowers.
    The development of the hovercraft has occupied Cockerell since then and he has been actively involved in the several companies set up to exploit the invention, including Hovercraft Development Ltd and British Hovercraft Corporation. In the 1970s and 1980s he took up the idea of the generation of electricity by wavepower; he was Founder of Wavepower Ltd, of which he was Chairman from 1974 to 1982.
    [br]
    Principal Honours find Distinctions
    Knighted 1969. CBE 1955. FRS 1967.
    LRD

    Biographical history of technology > Cockerell, Christopher Sydney

  • 6 Gamond, Aimé Thomé de

    SUBJECT AREA: Civil engineering
    [br]
    b. 1807
    d. 1876
    [br]
    French civil engineer and early advocate of the Channel Tunnel.
    [br]
    He became interested in the possibility of a tunnel or a bridge link between England and France in 1833 when he did his own geological survey of a route between Calais and Dover, and in 1834 he proposed an immersed tube tunnel. However, at the Great Exhibition of 1855 he promoted a scheme incorporating an artificial stone isthmus with movable bridges, which was estimated to cost £33,600,000, but this idea was eventuallv abandoned. He reverted to the idea of a tunnel and did further survey in 1855, with 180 lb (80 kg) of flint for ballast, ten inflated pig bladders to bring him to the surface and pieces of buttered lint plastered over his ears to protect them against the water pressure. He touched bottom between 99 and 108 ft (30 and 33 m). In 1856 Napoleon III granted him an audience and promised a scientific commission to evaluate his scheme, which it eventually approved. In 1858 he went to London and got the backing of Robert Stephenson, Isambard K. Brunel and Joseph Locke. He also obtained an interview with Prince Albert. In 1858, after an assassination attempt on Napoleon III, relations between France and England cooled off and Thomé de Gamond's plans were halted. He revived them in 1867, but others were by now also putting forward schemes. He had worked on the scheme for thirty-five years and expended a small fortune. In 1875 The Times reported that he was "living in humble circumstances, his daughter supporting him by giving lessons on the piano". He died the following year.
    [br]
    Further Reading
    T.Whiteside, 1962, The Tunnel under the Channel.
    IMcN

    Biographical history of technology > Gamond, Aimé Thomé de

  • 7 Kay, Robert

    SUBJECT AREA: Textiles
    [br]
    b. probably before 1747
    d. 1801 Bury, Lancashire, England
    [br]
    English inventor of the drop box, whereby shuttles with different wefts could be stored and selected when needed.
    [br]
    Little is known about the early life of Robert Kay except that he may have moved to France with his father, John Kay of Bury in 1747 but must have returned to England and their home town of Bury soon after. He may have been involved with his father in the production of a machine for making the wire covering for hand cards to prepare cotton for spinning. However, John Aikin, writing in 1795, implies that this was a recent invention. Kay's machine could pierce the holes in the leather backing, cut off a length of wire, bend it and insert it through the holes, row after row, in one operation by a person turning a shaft. The machine preserved in the Science Museum, in London's South Kensington, is more likely to be one of Robert's machine than his father's, for Robert carried on business as a cardmaker in Bury from 1791 until his death in 1801. The flying shuttle, invented by his father, does not seem to have been much used by weavers of cotton until Robert invented the drop box in 1760. Instead of a single box at the end of the sley, Robert usually put two, but sometimes three or four, one above another; the boxes could be raised or lowered. Shuttles with either different colours or different types of weft could be put in the boxes and the weaver could select any one by manipulating levers with the left hand while working the picking stick with the right to drive the appropriate shuttle across the loom. Since the selection could be made without the weaver having to pick up a shuttle and place it in the lath, this invention helped to speed up weaving, especially of multi-coloured checks, which formed a large part of the Lancashire output.
    Between 1760 and 1763 Robert Kay may have written a pamphlet describing the invention of the flying shuttle and the attack on his father, pointing out how much his father had suffered and that there had been no redress. In February 1764 he brought to the notice of the Society of Arts an improvement he had made to the flying shuttle by substituting brass for wood, which enabled a larger spool to be carried.
    [br]
    Further Reading
    A.P.Wadsworth and J. de L.Mann, 1931, The Cotton Trade and Industrial Lancashire, Manchester.
    A.Barlow, 1878, The History and Principles of Weaving by Hand and by Power, London; and R.L.Hills, 1970, Power in the Industrial Revolution, Manchester (for details about the drop box).
    RLH

    Biographical history of technology > Kay, Robert

  • 8 Smith, Sir Francis Pettit

    SUBJECT AREA: Ports and shipping
    [br]
    b. 9 February 1808 Copperhurst Farm, near Hythe, Kent, England
    d. 12 February 1874 South Kensington, London, England
    [br]
    English inventor of the screw propeller.
    [br]
    Smith was the only son of Charles Smith, Postmaster at Hythe, and his wife Sarah (née Pettit). After education at a private school in Ashford, Kent, he took to farming, first on Romney Marsh, then at Hendon, Middlesex. As a boy, he showed much skill in the construction of model boats, especially in devising their means of propulsion. He maintained this interest into adult life and in 1835 he made a model propelled by a screw driven by a spring. This worked so well that he became convinced that the screw propeller offered a better method of propulsion than the paddle wheels that were then in general use. This notion so fired his enthusiasm that he virtually gave up farming to devote himself to perfecting his invention. The following year he produced a better model, which he successfully demonstrated to friends on his farm at Hendon and afterwards to the public at the Adelaide Gallery in London. On 31 May 1836 Smith was granted a patent for the propulsion of vessels by means of a screw.
    The idea of screw propulsion was not new, however, for it had been mooted as early as the seventeenth century and since then several proposals had been advanced, but without successful practical application. Indeed, simultaneously but quite independently of Smith, the Swedish engineer John Ericsson had invented the ship's propeller and obtained a patent on 13 July 1836, just weeks after Smith. But Smith was completely unaware of this and pursued his own device in the belief that he was the sole inventor.
    With some financial and technical backing, Smith was able to construct a 10 ton boat driven by a screw and powered by a steam engine of about 6 hp (4.5 kW). After showing it off to the public, Smith tried it out at sea, from Ramsgate round to Dover and Hythe, returning in stormy weather. The screw performed well in both calm and rough water. The engineering world seemed opposed to the new method of propulsion, but the Admiralty gave cautious encouragement in 1839 by ordering that the 237 ton Archimedes be equipped with a screw. It showed itself superior to the Vulcan, one of the fastest paddle-driven ships in the Navy. The ship was put through its paces in several ports, including Bristol, where Isambard Kingdom Brunel was constructing his Great Britain, the first large iron ocean-going vessel. Brunel was so impressed that he adapted his ship for screw propulsion.
    Meanwhile, in spite of favourable reports, the Admiralty were dragging their feet and ordered further trials, fitting Smith's four-bladed propeller to the Rattler, then under construction and completed in 1844. The trials were a complete success and propelled their lordships of the Admiralty to a decision to equip twenty ships with screw propulsion, under Smith's supervision.
    At last the superiority of screw propulsion was generally accepted and virtually universally adopted. Yet Smith gained little financial reward for his invention and in 1850 he retired to Guernsey to resume his farming life. In 1860 financial pressures compelled him to accept the position of Curator of Patent Models at the Patent Museum in South Kensington, London, a post he held until his death. Belated recognition by the Government, then headed by Lord Palmerston, came in 1855 with the grant of an annual pension of £200. Two years later Smith received unofficial recognition when he was presented with a national testimonial, consisting of a service of plate and nearly £3,000 in cash subscribed largely by the shipbuilding and engineering community. Finally, in 1871 Smith was honoured with a knighthood.
    [br]
    Principal Honours and Distinctions
    Knighted 1871.
    Further Reading
    Obituary, 1874, Illustrated London News (7 February).
    1856, On the Invention and Progress of the Screw Propeller, London (provides biographical details).
    Smith and his invention are referred to in papers in Transactions of the Newcomen Society, 14 (1934): 9; 19 (1939): 145–8, 155–7, 161–4, 237–9.
    LRD

    Biographical history of technology > Smith, Sir Francis Pettit

См. также в других словарях:

  • backing — Synonyms and related words: Brownian movement, Smyth sewing, abetment, about face, about turn, advance, advocacy, advocate, advocating, aegis, affirmation, aid, alpenstock, angular motion, approval, approving, arm, ascending, ascent, assistance,… …   Moby Thesaurus

  • Off Broadway (band) — Off Broadway Origin Oak Park, Illinois, United States Genres Rock, Power pop Years active 1979–1983, 1997–present Labels Atlanti …   Wikipedia

  • Backing Australia's Ability — was a five year innovation plan launched in January 2001 by Prime Minister John Howard.cite book | title = Backing Australia s Ability: An Innovation Action Plan for the Future | author = Commonwealth of Australia | month = January | year = 2001… …   Wikipedia

  • Off Key Melodies — Studio album by Rehasher Released July 27, 2004 Recorded 2004 Genre Punk Rock …   Wikipedia

  • Off the Wall (album) — Off the Wall Studio album by Michael Jackson Released August 10, 1979 …   Wikipedia

  • Off the Record (Sweet album) — Off the Record Studio album by Sweet Released April 1977 …   Wikipedia

  • Off the Record (Neil Innes album) — Off the Record Studio album by Neil Innes Released 1982 (UK) …   Wikipedia

  • Off with Their Heads (album) — For punk rock band, see Off With Their Heads (band). Off With Their Heads Regular edition cover (CD and LP) Studio album by …   Wikipedia

  • Off with Their Heads — Infobox Album Name = Off with Their Heads Type = Studio Artist = Kaiser Chiefs Caption = Regular edition cover (CD and LP) Released = 20 October 2008 Recorded = RAK Eastcote Studios, London Genre = Indie rock, New wave Length = 42:43 Label =… …   Wikipedia

  • Off-roading — A Land Rover Defender 90 off roading Off roading is a term for driving a vehicle on unsurfaced roads or tracks, made of materials such as sand, gravel, riverbeds, mud, snow, rocks, and other natural terrain. Contents 1 …   Wikipedia

  • backing — 1) line added to the back of the main line so that the spool of an angling reel is filled up and the main line runs off freely when cast. Also provides extra line should a fish make a strong run but could lose the …   Dictionary of ichthyology

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»