Перевод: со всех языков на английский

с английского на все языки

электронный+блок+управления

  • 41 видеомонтажный блок

    Русско-английский словарь по информационным технологиям > видеомонтажный блок

  • 42 узел (агрегат, блок)


    assembly, unit
    ряд деталей или подузлов, соединенных вместе для выполнения определенной функции. — а number of parts or subassemblies or any combination thereof joined together to perform a specific function.
    - (единица скорости) морская миля (1852 м в час) — knot (к, kt) а nautical mile per hour.
    - (изделие) количество деталей на изделие (графа таблицы). — assembly (assy) units per assy.
    - (составная часть агрегата, блока, установки) — sub-assembly, subassembly
    две или более деталей, о6разующих часть агрегата (сборки) или блока и заменяемых как одно целое, но включающее деталь (детали), подлежащие индивидуальной замене. — two оr more parts which form а portion of an assembly or а unit replaceable as а whole, but having а part or parts which are individually replaceable.
    - а (обозначение на чертеже)detail а
    - (часть) агрегата — sub-assembly, assembly

    the distinction between an assembly and sub-assembly is not always exact.
    - баков (масляных) (блок)oil tank assembly
    два отдельных бака установлены в одном узле. — two separate tanks are housed within the tank assembly.
    -, гиростабилизированный, на карданном подвесе — gyro stabilized gimbal assembly
    - гироскопаgyro assembly
    - дозирующей иглы (топлива)throttle valve assembly
    -, законченный (конструктивно) — definite-purpose assembly
    -, качающий — pumping unit
    насос имеет два отдельных качающих узла, состоящих из блока плунжеров, вращающихся no скошенной пяте. — the pump has two independent pumping units consisting of pfunger rotating assembly working against a variable angle swash plate.
    - клапана (поддержания) постоянного (пропорционального) перепада давлений (насоса-регулятора) — proportioning valve unit
    - компрессора (двиг.) — compressor section
    - компрессора (подраздел 72-30)compressor section
    - контроля (блока питания)monitoring device
    работа основана на сравнении контролируемых напряжений с эталонными.
    - крепленияattach(ment) fitting
    - крепления груза (на борту ла)cargo tie-down fitting
    - крепления двигателяengine mounting attachment
    узлы крепления двигателя и конструкция, несущая эти узлы, должны выдерживать указанные нагрузки без разрушения, поломки или остаточной деформации. — the engine mounting attachments and related structure must be able to withstand the specified loads without failure, malfunction, or permanent deformation.
    - крепления закрылкаflap attach(ment) fitting
    - крепления крылаwing attachment fitting
    узлы служат для крепления крыла к фюзеляжу. — the fittings on the wing used to attach the wing to the fuselage.
    - крепления оси колес (к стойке шасси)wheel axle attachment fitting
    - крепления руля высоты (или направления) — elevator (or rudder) hinge /attach/ fitting
    - крепления опоры шасси, (передний, задний) — (forward, aft) landing gear strut attachment fitting
    - крепления страховочных строп (или троса) — safety harness (or line) attach(ment) point /receptacle/
    - крепления, шарнирный — hinge fitting
    - крепления элерона — aileron hinge /attach/ fitting
    -, магнито-индукционный (тахометра) — magnetic-drag assembly
    -, манометрический — pressure capsule assembly
    -, манометрический (трубка бурдона) — bourdon tube assembly
    -, мембранный — (pressure) capsule assembly
    - мембранный (указателя скорости)airspeed capsule
    - навески (общий термин)attach(ment) fitting
    узлы, служащие для крепления стабилизатора, руля высоты, триммеров, обтекателей. — the fittings on the stabilizers used for attachment of stabilizers, elevators, rudder tabs, fillets/fairings.
    - навески (шарнирный) (рис. 10) — hinge fitting
    - навески закрылкаflap attach(ment) fitting
    - навески руля высоты (направления или элерона)elevator (rudder or aileron) hinge fitting
    - навески руля направления, верхний (нижний) — rudder top (bottom) hinge fitting
    - навески руля высоты (или элерона), внешний — elevator (or aileron) outboard hinge fitting
    - навески руля высоты (или элерона), внутренний (корневой) — elevator (or aileron) inboard hinge fitting
    - навески руля (или элерона), средний — elevator (оr aileron) center hinge fitting
    - навески триммераtrim tab hinge fitting
    - навески шассиlanding gear (shock strut) attachment fitting
    - насоса, управляющий — pump controlling section
    - ограничения (раскрутки) оборотов (насоса-регулятора)overspeed limiting control
    - основной дозирующей иглы (командно-топливного агрегата или насоса-регулятора) — throttle valve (sub-) assembly (of fuel flow control unit)
    - плунжерный качающий (наcoca)plunger rotating assembly
    - поворота крыла (в горизонтальной плоскости)wing pivot (assembly)
    - подвески вооружения на пилонеweapon-pylon base
    - подвески двигателяengine mount
    каркас, поддерживающий двигатель и крепящий его к мотогондоле или пилону. — the framework which supports an engine and attach it to the nacelle or pylon.
    -, поршневой (узел цилиндров тормоза колеса) — cylinder assembly
    - приемника-процессора, электронный — receiver-processor electronic assembly
    - прямой (завязки шнуров, тросов) — square knot
    - разъема коммуникаций, унифицированный (уурк) — combined services connector
    - растормаживания (тормоза колеса)(brake) retraction mechanism
    для возвращения (после снятия давления в тормозе) нажимного диска в исходное положение, т.е. для растормаживания колеса. — the brake has automatic adjustment, integral with the retraction mechanism built into each piston, movement of the piston compresses the retraction springs.
    -, регулируемой подпитки (топливом гтд) — variable enrichment unit
    -, рифовый (завязки строп) — reef knot
    -, рычажно-кулачковый (дозир. иглы) — throttle valve cam and lever assembly
    -, силовой (блок цилиндров тормоза колеса) — cylinder assembly
    -, скоростной (указателя скорости) — airspeed capsule
    -, страховочный (для крепления страховочного троса или ремня) — safety rоре (or belt) attach fitting /point/
    -, стыковой (стыковочный) (рис. 16) — attachment fitting
    -, такелажный (точка подъема) (рис. 10) — hoist point
    - такелажный (деталь)hoist fitting
    - турбиныturbine section
    состоит из ступеней высок. и низк. давлений, приводящих во вращение соответствующие компрессоры. — consists of hp and lp stages, each driving their own compressors through concentric shafts.
    - турбины (подраздел 72 - 50)turbine section
    - турбины и реактивного сопла — turbine and exhaust section /unit/
    - (-) удавка (завязки шнуров, тросов) — running knot, slip knot
    - управления и блокировки реверса тяги (насоса-регулятора)thrust reverser control and interlocking unit
    - управления приемистостью (топливного насоса-регулятора)acceleration control (unit)
    -, функционально законченный — definite-purpose assembly
    - цилиндров (блок тормоза колеса)cylinder assembly
    -, швартовочный (груза на борту ла) — tie-down fitting
    -, швартовочный (швартовый, ла) (рис. 150) — mooring fitting
    - штока амортизатора (шасси), нижний — shock strut piston lower fitting
    - электро-гидравлический /электро-гидромеханический / (гидроусилителя) — electro-hydraulic unit
    командные эл. сигналы подаются в электрогидравлический узел гидроусилителя (бустера), в котором они преобразуются в механическое перемещение соответствующих золотников. — autocontrol demands are signalled electrically to the electrohydraulic unit on each surface drive (hydraulic booster) which converts them to mechanical movements (of corresponding slide valves)
    завязывать у. — tie a knot
    развязывать у. — loose a knot
    определять дефект в у. (точнo устанавливать отказавший узел) — isolate the trouble into sub-assembly

    Русско-английский сборник авиационно-технических терминов > узел (агрегат, блок)

  • 43 despin control electronics

    Англо-русский словарь промышленной и научной лексики > despin control electronics

  • 44 motor-drive electronics

    электронный блок управления электроприводом (напр., додачи) рабочего органа станка с ЧПУ

    Англо-русский словарь промышленной и научной лексики > motor-drive electronics

  • 45 вид блока

    Авиация и космонавтика. Русско-английский словарь > вид блока

  • 46 ЭБУ

    1) Automobile industry: ECM

    Универсальный русско-английский словарь > ЭБУ

  • 47 черный ящик

    (1. защищенный бортовой накопитель самолета 2. электронный блок управления ракеты 3. объект исследования с неизвестными свойствами) blackbox

    Русско-английский политехнический словарь > черный ящик

  • 48 electronic gyrocompass

    «электронный» гирокомпас (такое название получил, в частности, внедрённый в серию в 1977 г. гирокомпас SKR-80 фирмы Robertson (Норвегия), изготовленный на базе гироскопа с внутренним упругим подвесом ротора, разработанного фирмой Kearfott (США); отличительная особенность данного прибора заключается в том, что информацию о курсе судна можно считывать не только с компасной картушки, но и со встроенного в блок управления репитера,.индикаторная панель которого выполнена на светодиодах)

    Англо-русский словарь промышленной и научной лексики > electronic gyrocompass

  • 49 двигатель

    двигатель сущ
    1. engine
    2. motor авиационное топливо для турбореактивных двигателей
    aviation turbine fuel
    авиационный двигатель воздушного охлаждения
    air-cooled engine
    агрегат с приводом от двигателя
    engine-driven unit
    акустическая характеристика двигателя
    engine acoustic performance
    асимметричная тяга двигателей
    asymmetric engines power
    балка крепления двигателя
    1. engine mount beam
    2. engine lifting beam бесшумный двигатель
    quiet engine
    блок входного направляющего аппарата двигателя
    guide vane assembly
    блок управления створками капота двигателя
    cowl flap actuation assembly
    боковой двигатель
    side engine
    вентилятор двигателя
    engine fan
    взлет на режимах работы двигателей, составляющих наименьший шум
    noise abatement takeoff
    взлет при всех работающих двигателях
    all-engine takeoff
    внутренний контур двигателя
    engine core
    воздушная система запуска двигателей
    air starting system
    воздушное судно с газотурбинными двигателями
    turbine-engined aircraft
    воздушное судно с двумя двигателями
    twin-engined aircraft
    воздушное судно с двумя и более двигателями
    multiengined aircraft
    воздушное судно с одним двигателем
    1. one-engined aircraft
    2. single-engined aircraft воздушное судно с поршневым двигателем
    piston-engined aircraft
    воздушное судно с турбовинтовыми двигателями
    turboprop aircraft
    воздушное судно с турбореактивными двигателями
    turbojet aircraft
    время обкатки двигателя
    engine runin time
    время опробования двигателя на земле
    engine ground test time
    встречный запуск двигателя
    engine relight
    выбег двигателя
    1. run-down engine operation
    2. engine rundown выбор режима работы двигателя
    selection of engine mode
    выводить двигатель из режима реверса
    unreverse an engine
    выключенный двигатель
    engine off
    выполнять холодный запуск двигателя
    blow down an engine
    высота повторного двигателя
    restarting altitude
    высотность двигателя
    engine critical altitude
    высотные характеристики двигателя
    engine altitude performances
    высотный двигатель
    altitude engine
    высотный корректор двигателя
    mixture control assembly
    газотурбинный двигатель
    1. gas turbine
    2. turbine engine 3. gas turbine engine газотурбинный двигатель с осевым компрессором
    axial-flow итьбю.gas turbine engine
    генератор с приводом от двигателя
    engine-driven generator
    главный вал двигателя
    engine drive shaft
    глушитель двигателя
    engine detuner
    гондола двигателя
    engine nacelle
    гондола двигателя на пилоне
    side engine nacelle
    гонка двигателя на земле
    ground runup
    давать двигателю полный газ
    open up an engine
    двигатель азимутальной коррекции
    azimuth torque motor
    двигатель без наддува
    self-aspirating engine
    двигатель внутреннего сгорания
    1. internal combustion
    2. combustion engine двигатель водяного охлаждения
    water-cooled engine
    двигатель горизонтальной коррекции
    leveling torque motor
    двигатель магнитной коррекции
    slaving torque motor
    двигатель на режиме малого газа
    idling engine
    двигатель поперечной коррекции
    roll erection torque motor
    двигатель продольной коррекции
    pitch erection torque motor
    двигатель, расположенный в крыле
    in-wing mounted
    двигатель с большим ресурсом
    longer-lived engine
    двигатель с высокой степенью двухконтурности
    high bypass ratio engine
    двигатель с высокой степенью сжатия
    high compression ratio engine
    двигатель с левым вращением ротора
    left-hand engine
    двигатель с низкой степенью двухконтурности
    low bypass ratio engine
    двигатель со свободной турбиной
    free-turbine engine
    двигатель с пониженной тягой
    derated engine
    двигатель с правым вращением ротора
    right-hand engine
    двигатель типа двухрядная звезда
    double-row radial engine
    двигатель, установленный в мотогондоле
    naccele-mounted engine
    двигатель, установленный вне фюзеляжа
    outboard engine
    двигатель, установленный в отдельной гондоле
    podded engine
    двигатель, установленный в фюзеляже
    in-board engine
    двигатель, установленный на крыле
    on-wing mounted engine
    двигатель, установленный на пилоне
    pylon-mounted engine
    двухвальный газотурбинный двигатель
    two-shaft turbine engine
    двухкаскадный двигатель
    two-spool engine
    двухконтурный двигатель
    bypass engine
    двухконтурный турбовентиляторный двигатель
    ducted-fan engine
    двухконтурный турбореактивный двигатель
    1. bypass turbojet
    2. double-flow engine 3. dual-flow turbojet engine двухконтурный турбореактивный двигатель с дожиганием топлива во втором контуре
    duct burning bypass engine
    двухроторный двигатель
    two-rotor engine
    дефлектор двигателя
    engine baffle
    доводка двигателя
    engine development
    дожигать топливо, форсировать двигатель
    reheat
    дозвуковой двигатель
    subsonic engine
    дренажная система двигателей
    engine vent system
    заброс оборотов двигателя
    1. engine overspeed
    2. overspeed зависание оборотов двигателя
    engine speed holdup
    заклинивание двигателя
    engine seizure
    замок пазового типа лопатки двигателя
    groove-type blade attachment
    замок штифтового типа лопатки двигателя
    pig-type blade attachment
    запускать двигатель
    1. start an engine
    2. light an engine 3. fire an engine запускать двигатель в полете
    restart the engine in flight
    запуск двигателя
    1. engine starting
    2. starting engine operation запуск двигателя с забросом температуры
    engine hot starting
    (выше допустимой) звездообразный двигатель
    radial engine
    избыток тяги двигателя
    engine thrust margin
    имитированный отказ двигателя
    simulated engine failure
    испытание двигателя в полете
    inflight engine test
    капот двигателя
    engine cowl
    клапан запуска двигателя
    engine start valve
    кнопка запуска двигателя
    engine starter button
    кнопка запуска двигателя в воздухе
    flight restart button
    кожух двигателя
    engine jacket
    контроль состояния двигателей
    engines trend monitoring
    критический двигатель
    critical powerplant
    крыльевой двигатель
    wing engine
    левый внешний двигатель
    port-side engine
    левый крайний двигатель
    port-outer engine
    ложный запуск двигателя
    1. engine false starting
    2. engine wet starting максимально допустимый заброс оборотов двигателя
    maximum engine overspeed
    максимальный потолок при всех работающих двигателях
    all-power-units ceiling
    метод прогнозирования шума реактивных двигателей
    jet noise prediction technique
    механизм измерителя крутящего момента на валу двигателя
    engine torquemeter mechanism
    модуль двигателя
    engine module
    модульная конструкция двигателя
    modular engine design
    модульный двигатель
    modular engine
    муфта сцепления двигателя с несущим винтом вертолета
    rotor clutch assembly
    набор высоты при всех работающих двигателях
    all-engine-operating climb
    наработка двигателя
    engine operating time
    несущий винт с приводом от двигателя
    power-driven rotor
    обдув генератора двигателя
    engine generator cooling
    обкатка двигателя
    run-in test
    обкатывать двигатель
    run in an engine
    облицовка каналов двигателя
    engine duct treatment
    одновальный газотурбинный двигатель
    single-shaft turbine engine
    одновременный запуск всех двигателей
    all-engines starting
    однокаскадный двигатель
    single-rotor engine
    окончательный вариант двигателя
    definitive engine
    опорное кольцо вала двигателя
    engine backup ring
    опробование двигателя
    engine run-up operation
    опробовать двигатель
    run up an engine
    останавливать двигатель
    1. close down an engine
    2. shut down an engine отбойный щит для опробования двигателей
    engine check pad
    отказавший двигатель
    1. dead engine
    2. engine out отказ двигателя
    engine failure
    отладка двигателя
    engine setting-up
    отрыв двигателя
    engine tearway
    отсек двигателя
    engine compartment
    охлаждение двигателя
    engine cooling
    падение оборотов двигателя
    engine speed loss
    перебои в работе двигателя
    1. rough engine operations
    2. engine trouble перегородка двигателя
    engine bulkhead
    пилон двигателя
    engine pylon
    подкрыльевой двигатель
    underwing engine
    подъемный реактивный двигатель
    lift jet engine
    пожар внутри двигателя
    engine internal fine
    полет на одном двигателе
    single-engined flight
    полет с выключенным двигателем
    engine-off flight
    полет с выключенными двигателями
    power-off flight
    полет с несимметричной тягой двигателей
    asymmetric flight
    полет с работающим двигателем
    engine-on flight
    полет с работающими двигателями
    1. powered flight
    2. power-on flight положение при запуске двигателей
    starting-up position
    поршневой двигатель
    1. piston engine
    2. reciprocating engine порядок выключения двигателя
    cut-off engine operation
    порядок запуска двигателя
    1. starting procedure
    2. engine starting procedure посадка в режиме авторотации в выключенным двигателем
    power-off autorotative landing
    посадка с отказавшим двигателем
    1. engine-out landing
    2. dead-engine landing посадка с работающим двигателем
    power-on landing
    правый внешний двигатель
    starboard engine
    предварительная гонка двигателя
    preliminary runup
    предполетное опробование двигателя
    preflight engine run
    при внезапном отказе двигателя
    with an engine suddenly failed
    при выключенных двигателях
    power-off
    при любом отказе двигателя
    under any kind of engine failure
    приспособление для подъема двигателя
    engine lifting device
    приставка двигателя
    engine adapter
    прогревать двигатель
    warm up an engine
    прогретый двигатель
    warmed-up engine
    продолжительность работы двигателя на взлетном режиме
    full-thrust duration
    прокладка в системе двигателя
    engine gasket
    проставка двигателя
    engine retainer
    противообледенительная система двигателей
    1. engine deicing system
    (переменного действия) 2. engine anti-icing system (постоянного действия) противопожарный экран двигателя
    engine fire shield
    прямоточный воздушно-реактивный двигатель
    1. ramjet engine
    2. ramjet 3. athodyd прямоточный двигатель
    1. self-propelling duct
    2. aeroduct пусковой двигатель
    starting engine
    работа в режиме запуска двигателя
    engine start mode
    работа двигателя
    engine running
    работа двигателя на режиме малого газа
    idling engine operation
    работающий двигатель
    engine on
    рабочее колесо двигателя
    engine impeller
    разрегулированный двигатель
    rough engine
    рама крепления двигателя
    engine mount
    раскрутка двигателя
    engine cranking
    расход воздуха через двигатель
    engine airflow
    реактивный двигатель
    jet engine
    регулирование зажигания двигателя
    engine timing
    регулировать двигатель до заданных параметров
    adjust the engine
    регулировка двигателя
    engine adjustment
    регулятор предельных оборотов двигателя
    engine limit governor
    рельсы закатки двигателя
    engine mounting rails
    рычаг раздельного управления газом двигателя
    engine throttle control lever
    сектор газа двигателя
    engine throttle
    система блокировки управления двигателем
    engine throttle interlock system
    система запуска двигателей
    1. engine starting system
    2. engine start system система индикации виброперегрузок двигателя
    engine vibration indicating system
    система суфлирования двигателя
    engine breather system
    система управления двигателем
    engine control system
    скорость при всех работающих двигателях
    all engines speed
    скорость при отказе критического двигателя
    critical engine failure speed
    снижать режим работы двигателя
    slow down an engine
    снижение с работающим двигателем
    power-on descent
    снижение с работающими двигателями
    power-on descend operation
    снижение шума при опробовании двигателей на земле
    ground run-up noise abatement
    с приводом от двигателя
    power-operated
    средний двигатель
    center engine
    стартер двигателя
    engine starter
    створка капота двигателя
    engine cowl flap
    стенд для испытания двигателей
    engine test bench
    струя двигателя
    engine blast
    тележка для транспортировки двигателей
    engine dolly
    топливная система двигателя
    engine fuel system
    топливо для реактивных двигателей
    jet fuel
    трехвальный турбовентиляторный двигатель
    three-rotor turbofan engine
    трехконтурный турбореактивный двигатель
    three-flow turbojet engine
    трехстрелочный указатель двигателя
    three-pointer engine gage
    тряска двигателя
    engine vibration
    турбовальный двигатель
    1. turboshaft
    2. turboshaft engine турбовентиляторный двигатель
    1. turbofan
    2. fanjet 3. turbofan engine 4. fan-type engine турбовентиляторный двигатель с высокой степенью двухконтурности
    high-bypass fanjet
    турбовентиляторный двигатель с низким расходом
    low-consumption fanjet
    турбовинтовой двигатель
    turboprop engine
    турбореактивный двигатель
    1. turbojet
    2. turboprop 3. turbojet engine тяга двигателя
    engine thrust
    убирать обороты двигателя
    decelerate an engine
    узел закатки двигателя
    engine roll-in fitting
    узел крепления двигателя
    engine mounting attachment
    узел подвески двигателя
    engine attach fitting
    указатель вибрации двигателя
    engine vibration indicator
    указатель оборотов двигателя
    engine tachometer indicator
    уменьшение мощности двигателей воздушного судна
    aircraft power reduction
    устанавливать двигатель
    install an engine
    установка двигателя
    engine installation
    установка режима работы двигателя
    throttle setting
    установленный на двигателе
    engine-mounted
    фильтр двигателя
    engine screen
    фланец отбора воздуха от двигателя
    engine air bleed flange
    форсажный двигатель
    boost engine
    форсированный двигатель
    uprated engine
    характеристики двигателя
    engine performances
    хвостовая часть гондолы двигателя
    aft power nacelle
    холодная прокрутка двигателя
    engine dry starting
    цапфа подвески двигателя
    engine mounting trunnion
    цикл двигателя
    engine cycle
    цилиндр двигателя
    engine cylinder
    цифровой электронный регулятор режимов работы двигателя
    digital engine control
    число оборотов двигателя на взлетном режиме
    engine takeoff speed
    шкворень крепления двигателя
    engine attachment pilot
    штопор при неработающих двигателях
    powerless spin
    штопор при работающих двигателях
    1. powered spin
    2. power spin электронная система управления двигателем
    electronic engine control system
    эмиссия от двигателей
    engine emission

    Русско-английский авиационный словарь > двигатель

  • 50 процессор с электронным сенсорным управлением

    Русско-английский словарь по информационным технологиям > процессор с электронным сенсорным управлением

  • 51 программируемый логический контроллер

    1. storage-programmable logic controller
    2. Programmable Logic Controller
    3. programmable controller
    4. PLC

     

    программируемый логический контроллер
    ПЛК
    -
    [Интент]

    контроллер
    Управляющее устройство, осуществляющее автоматическое управление посредством программной реализации алгоритмов управления.
    [Сборник рекомендуемых терминов. Выпуск 107. Теория управления.
     Академия наук СССР. Комитет научно-технической терминологии. 1984 г.]

    EN

    storage-programmable logic controller
    computer-aided control equipment or system whose logic sequence can be varied via a directly or remote-control connected programming device, for example a control panel, a host computer or a portable terminal
    [IEV ref 351-32-34]

    FR

    automate programmable à mémoire
    équipement ou système de commande assisté par ordinateur dont la séquence logique peut être modifiée directement ou par l'intermédiaire d'un dispositif de programmation relié à une télécommande, par exemple un panneau de commande, un ordinateur hôte ou un terminal de données portatif
    [IEV ref 351-32-34]

      См. также:
    - архитектура контроллера;
    - производительность контроллера;
    - время реакции контроллера;
    КЛАССИФИКАЦИЯ

      Основным показателем ПЛК является количество каналов ввода-вывода. По этому признаку ПЛК делятся на следующие группы: По расположению модулей ввода-вывода ПЛК бывают:
    • моноблочными - в которых устройство ввода-вывода не может быть удалено из контроллера или заменено на другое. Конструктивно контроллер представляет собой единое целое с устройствами ввода-вывода (например, одноплатный контроллер). Моноблочный контроллер может иметь, например, 16 каналов дискретного ввода и 8 каналов релейного вывода;
    • модульные - состоящие из общей корзины (шасси), в которой располагаются модуль центрального процессора и сменные модули ввода-вывода. Состав модулей выбирается пользователем в зависимости от решаемой задачи. Типовое количество слотов для сменных модулей - от 8 до 32;
    • распределенные (с удаленными модулями ввода-вывода) - в которых модули ввода-вывода выполнены в отдельных корпусах, соединяются с модулем контроллера по сети (обычно на основе интерфейса RS-485) и могут быть расположены на расстоянии до 1,2 км от процессорного модуля.
    Часто перечисленные конструктивные типы контроллеров комбинируются, например, моноблочный контроллер может иметь несколько съемных плат; моноблочный и модульный контроллеры могут быть дополнены удаленными модулями ввода-вывода, чтобы увеличить общее количество каналов.

    Многие контроллеры имеют набор сменных процессорных плат разной производительности. Это позволяет расширить круг потенциальных пользователей системы без изменения ее конструктива.

    По конструктивному исполнению и способу крепления контроллеры делятся на:
    По области применения контроллеры делятся на следующие типы:
    • универсальные общепромышленные;
    • для управления роботами;
    • для управления позиционированием и перемещением;
    • коммуникационные;
    • ПИД-контроллеры;
    • специализированные.

    По способу программирования контроллеры бывают:
    • программируемые с лицевой панели контроллера;
    • программируемые переносным программатором;
    • программируемые с помощью дисплея, мыши и клавиатуры;
    • программируемые с помощью персонального компьютера.

    Контроллеры могут программироваться на следующих языках:
    • на классических алгоритмических языках (C, С#, Visual Basic);
    • на языках МЭК 61131-3.

    Контроллеры могут содержать в своем составе модули ввода-вывода или не содержать их. Примерами контроллеров без модулей ввода-вывода являются коммуникационные контроллеры, которые выполняют функцию межсетевого шлюза, или контроллеры, получающие данные от контроллеров нижнего уровня иерархии АСУ ТП.   Контроллеры для систем автоматизации

    Слово "контроллер" произошло от английского "control" (управление), а не от русского "контроль" (учет, проверка). Контроллером в системах автоматизации называют устройство, выполняющее управление физическими процессами по записанному в него алгоритму, с использованием информации, получаемой от датчиков и выводимой в исполнительные устройства.

    Первые контроллеры появились на рубеже 60-х и 70-х годов в автомобильной промышленности, где использовались для автоматизации сборочных линий. В то время компьютеры стоили чрезвычайно дорого, поэтому контроллеры строились на жесткой логике (программировались аппаратно), что было гораздо дешевле. Однако перенастройка с одной технологической линии на другую требовала фактически изготовления нового контроллера. Поэтому появились контроллеры, алгоритм работы которых мог быть изменен несколько проще - с помощью схемы соединений реле. Такие контроллеры получили название программируемых логических контроллеров (ПЛК), и этот термин сохранился до настоящего времени. Везде ниже термины "контроллер" и "ПЛК" мы будем употреблять как синонимы.

    Немного позже появились ПЛК, которые можно было программировать на машинно-ориентированном языке, что было проще конструктивно, но требовало участия специально обученного программиста для внесения даже незначительных изменений в алгоритм управления. С этого момента началась борьба за упрощение процесса программирования ПЛК, которая привела сначала к созданию языков высокого уровня, затем - специализированных языков визуального программирования, похожих на язык релейной логики. В настоящее время этот процесс завершился созданием международного стандарта IEC (МЭК) 1131-3, который позже был переименован в МЭК 61131-3. Стандарт МЭК 61131-3 поддерживает пять языков технологического программирования, что исключает необходимость привлечения профессиональных программистов при построении систем с контроллерами, оставляя для них решение нестандартных задач.

    В связи с тем, что способ программирования является наиболее существенным классифицирующим признаком контроллера, понятие "ПЛК" все реже используется для обозначения управляющих контроллеров, которые не поддерживают технологические языки программирования.   Жесткие ограничения на стоимость и огромное разнообразие целей автоматизации привели к невозможности создания универсального ПЛК, как это случилось с офисными компьютерами. Область автоматизации выдвигает множество задач, в соответствии с которыми развивается и рынок, содержащий сотни непохожих друг на друга контроллеров, различающихся десятками параметров.

    Выбор оптимального для конкретной задачи контроллера основывается обычно на соответствии функциональных характеристик контроллера решаемой задаче при условии минимальной его стоимости. Учитываются также другие важные характеристики (температурный диапазон, надежность, бренд изготовителя, наличие разрешений Ростехнадзора, сертификатов и т. п.).

    Несмотря на огромное разнообразие контроллеров, в их развитии заметны следующие общие тенденции:
    • уменьшение габаритов;
    • расширение функциональных возможностей;
    • увеличение количества поддерживаемых интерфейсов и сетей;
    • использование идеологии "открытых систем";
    • использование языков программирования стандарта МЭК 61131-3;
    • снижение цены.
    Еще одной тенденцией является появление в контроллерах признаков компьютера (наличие мыши, клавиатуры, монитора, ОС Windows, возможности подключения жесткого диска), а в компьютерах - признаков контроллера (расширенный температурный диапазон, электронный диск, защита от пыли и влаги, крепление на DIN-рейку, наличие сторожевого таймера, увеличенное количество коммуникационных портов, использование ОС жесткого реального времени, функции самотестирования и диагностики, контроль целостности прикладной программы). Появились компьютеры в конструктивах для жестких условий эксплуатации. Аппаратные различия между компьютером и контроллером постепенно исчезают. Основными отличительными признаками контроллера остаются его назначение и наличие технологического языка программирования.

    [ http://bookasutp.ru/Chapter6_1.aspx]  
    Программируемый логический контроллер (ПЛК, PLC) – микропроцессорное устройство, предназначенное для управления технологическим процессом и другими сложными технологическими объектами.
    Принцип работы контроллера состоит в выполнение следующего цикла операций:

    1.    Сбор сигналов с датчиков;
    2.    Обработка сигналов согласно прикладному алгоритму управления;
    3.    Выдача управляющих воздействий на исполнительные устройства.

    В нормальном режиме работы контроллер непрерывно выполняет этот цикл с частотой от 50 раз в секунду. Время, затрачиваемое контроллером на выполнение полного цикла, часто называют временем (или периодом) сканирования; в большинстве современных ПЛК сканирование может настраиваться пользователем в диапазоне от 20 до 30000 миллисекунд. Для быстрых технологических процессов, где критична скорость реакции системы и требуется оперативное регулирование, время сканирования может составлять 20 мс, однако для большинства непрерывных процессов период 100 мс считается вполне приемлемым.

    Аппаратно контроллеры имеют модульную архитектуру и могут состоять из следующих компонентов:

    1.    Базовая панель ( Baseplate). Она служит для размещения на ней других модулей системы, устанавливаемых в специально отведенные позиции (слоты). Внутри базовой панели проходят две шины: одна - для подачи питания на электронные модули, другая – для пересылки данных и информационного обмена между модулями.

    2.    Модуль центрального вычислительного устройства ( СPU). Это мозг системы. Собственно в нем и происходит математическая обработка данных. Для связи с другими устройствами CPU часто оснащается сетевым интерфейсом, поддерживающим тот или иной коммуникационный стандарт.

    3.    Дополнительные коммуникационные модули. Необходимы для добавления сетевых интерфейсов, неподдерживаемых напрямую самим CPU. Коммуникационные модули существенно расширяют возможности ПЛК по сетевому взаимодействию. C их помощью к контроллеру подключают узлы распределенного ввода/вывода, интеллектуальные полевые приборы и станции операторского уровня.

    4.    Блок питания. Нужен для запитки системы от 220 V. Однако многие ПЛК не имеют стандартного блока питания и запитываются от внешнего.  
    4906
    Рис.1. Контроллер РСУ с коммуникациями Profibus и Ethernet.
     
    Иногда на базовую панель, помимо указанных выше, допускается устанавливать модули ввода/вывода полевых сигналов, которые образуют так называемый локальный ввод/вывод. Однако для большинства РСУ (DCS) характерно использование именно распределенного (удаленного) ввода/вывода.

    Отличительной особенностью контроллеров, применяемых в DCS, является возможность их резервирования. Резервирование нужно для повышения отказоустойчивости системы и заключается, как правило, в дублировании аппаратных модулей системы.
     
    4907
    Рис. 2. Резервированный контроллер с коммуникациями Profibus и Ethernet.
     
    Резервируемые модули работают параллельно и выполняют одни и те же функции. При этом один модуль находится в активном состоянии, а другой, являясь резервом, – в режиме “standby”. В случае отказа активного модуля, система автоматически переключается на резерв (это называется “горячий резерв”).

    Обратите внимание, контроллеры связаны шиной синхронизации, по которой они мониторят состояние друг друга. Это решение позволяет разнести резервированные модули на значительное расстояние друг от друга (например, расположить их в разных шкафах или даже аппаратных).

    Допустим, в данный момент активен левый контроллер, правый – находится в резерве. При этом, даже находясь в резерве, правый контроллер располагает всеми процессными данными и выполняет те же самые математические операции, что и левый. Контроллеры синхронизированы. Предположим, случается отказ левого контроллера, а именно модуля CPU. Управление автоматически передается резервному контроллеру, и теперь он становится главным. Здесь очень большое значение имеют время, которое система тратит на переключение на резерв (обычно меньше 0.5 с) и отсутствие возмущений (удара). Теперь система работает на резерве. Как только инженер заменит отказавший модуль CPU на исправный, система автоматически передаст ему управление и возвратится в исходное состояние.

    На рис. 3 изображен резервированный контроллер S7-400H производства Siemens. Данный контроллер входит в состав РСУ Simatic PCS7.
     
     
    4908
    Рис. 3. Резервированный контроллер S7-400H. Несколько другое техническое решение показано на примере резервированного контроллера FCP270 производства Foxboro (рис. 4). Данный контроллер входит в состав системы управления Foxboro IA Series.  
    4909
    Рис. 4. Резервированный контроллер FCP270.
    На базовой панели инсталлировано два процессорных модуля, работающих как резервированная пара, и коммуникационный модуль для сопряжения с оптическими сетями стандарта Ethernet. Взаимодействие между модулями происходит по внутренней шине (тоже резервированной), спрятанной непосредственно в базовую панель (ее не видно на рисунке).

    На рисунке ниже показан контроллер AC800M производства ABB (часть РСУ Extended Automation System 800xA).  
    4910
    Рис. 5. Контроллер AC800M.
     
    Это не резервированный вариант. Контроллер состоит из двух коммуникационных модулей, одного СPU и одного локального модуля ввода/вывода. Кроме этого, к контроллеру можно подключить до 64 внешних модулей ввода/вывода.

    При построении РСУ важно выбрать контроллер, удовлетворяющий всем техническим условиям и требованиям конкретного производства. Подбирая оптимальную конфигурацию, инженеры оперируют определенными техническими характеристиками промышленных контроллеров. Наиболее значимые перечислены ниже:

    1.    Возможность полного резервирования. Для задач, где отказоустойчивость критична (химия, нефтехимия, металлургия и т.д.), применение резервированных конфигураций вполне оправдано, тогда как для других менее ответственных производств резервирование зачастую оказывается избыточным решением.

    2.    Количество и тип поддерживаемых коммуникационных интерфейсов. Это определяет гибкость и масштабируемость системы управления в целом. Современные контроллеры способны поддерживать до 10 стандартов передачи данных одновременно, что во многом определяет их универсальность.

    3.    Быстродействие. Измеряется, как правило, в количестве выполняемых в секунду элементарных операций (до 200 млн.). Иногда быстродействие измеряется количеством обрабатываемых за секунду функциональных блоков (что такое функциональный блок – будет рассказано в следующей статье). Быстродействие зависит от типа центрального процессора (популярные производители - Intel, AMD, Motorola, Texas Instruments и т.д.)

    4.    Объем оперативной памяти. Во время работы контроллера в его оперативную память загружены запрограммированные пользователем алгоритмы автоматизированного управления, операционная система, библиотечные модули и т.д. Очевидно, чем больше оперативной памяти, тем сложнее и объемнее алгоритмы контроллер может выполнять, тем больше простора для творчества у программиста. Варьируется от 256 килобайт до 32 мегабайт.

    5.    Надежность. Наработка на отказ до 10-12 лет.

    6. Наличие специализированных средств разработки и поддержка различных языков программирования. Очевидно, что существование специализированный среды разработки прикладных программ – это стандарт для современного контроллера АСУ ТП. Для удобства программиста реализуется поддержка сразу нескольких языков как визуального, так и текстового (процедурного) программирования (FBD, SFC, IL, LAD, ST; об этом в следующей статье).

    7.    Возможность изменения алгоритмов управления на “лету” (online changes), т.е. без остановки работы контроллера. Для большинства контроллеров, применяемых в РСУ, поддержка online changes жизненно необходима, так как позволяет тонко настраивать систему или расширять ее функционал прямо на работающем производстве.

    8.    Возможность локального ввода/вывода. Как видно из рис. 4 контроллер Foxboro FCP270 рассчитан на работу только с удаленной подсистемой ввода/вывода, подключаемой к нему по оптическим каналам. Simatic S7-400 может спокойно работать как с локальными модулями ввода/вывода (свободные слоты на базовой панели есть), так и удаленными узлами.

    9.    Вес, габаритные размеры, вид монтажа (на DIN-рейку, на монтажную панель или в стойку 19”). Важно учитывать при проектировании и сборке системных шкафов.

    10.  Условия эксплуатации (температура, влажность, механические нагрузки). Большинство промышленных контроллеров могут работать в нечеловеческих условиях от 0 до 65 °С и при влажности до 95-98%.

    [ http://kazanets.narod.ru/PLC_PART1.htm]

    Тематики

    Синонимы

    EN

    DE

    • speicherprogrammierbare Steuerung, f

    FR

    Русско-английский словарь нормативно-технической терминологии > программируемый логический контроллер

  • 52 управление электропитанием

    1. power management

     

    управление электропитанием
    -
    [Интент]


    Управление электропитанием ЦОД

    Автор: Жилкина Наталья
    Опубликовано 23 апреля 2009 года


    Источники бесперебойного питания, функционирующие в ЦОД, составляют важный элемент общей системы его энергообеспечения. Вписываясь в контур управления ЦОД, система мониторинга и управления ИБП становится ядром для реализации эксплуатационных функций.

    Три задачи

    Системы мониторинга, диагностики и управления питанием нагрузки решают три основные задачи: позволяют ИБП выполнять свои функции, оповещать персонал о происходящих с ними событиях и посылать команды для автоматического завершения работы защищаемого устройства.

    Мониторинг параметров ИБП предполагает отображение и протоколирование состояния устройства и всех событий, связанных с его изменением. Диагностика реализуется функциями самотестирования системы. Управляющие же функции предполагают активное вмешательство в логику работы устройства.

    Многие специалисты этого рынка, отмечая важность процедуры мониторинга, считают, что управление должно быть сведено к минимуму. «Функция управления ИБП тоже нужна, но скорее факультативно, — говорит Сергей Ермаков, технический директор компании Inelt и эксперт в области систем Chloride. — Я глубоко убежден, что решения об активном управляющем вмешательстве в работу систем защиты электропитания ответственной нагрузки должен принимать человек, а не автоматизированная система. Завершение работы современных мощных серверов, на которых функционируют ответственные приложения, — это, как правило, весьма длительный процесс. ИБП зачастую не способны обеспечивать необходимое для него время, не говоря уж о времени запуска какого-то сервиса». Функция же мониторинга позволяет предотвратить наступление нежелательного события — либо, если таковое произошло, проанализировать его причины, опираясь не на слова, а на запротоколированные данные, хранящиеся в памяти адаптера или файлах на рабочей станции мониторинга.

    Эту точку зрения поддерживает и Алексей Сарыгин, технический директор компании Radius Group: «Дистанционное управление мощных ИБП — это вопрос, к которому надо подходить чрезвычайно аккуратно. Если функции дистанционного мониторинга и диспетчеризации необходимы, то практика предоставления доступа персоналу к функциям дистанционного управления представляется радикально неверной. Доступность модулей управления извне потенциально несет в себе риск нарушения безопасности и категорически снижает надежность системы. Если существует физическая возможность дистанционно воздействовать на ИБП, на его параметры, отключение, снятие нагрузки, закрытие выходных тиристорных ключей или блокирование цепи байпаса, то это чревато потерей питания всего ЦОД».

    Практически на всех трехфазных ИБП предусмотрена кнопка E.P.O. (Emergency Power Off), дублер которой может быть выведен на пульт управления диспетчерской. Она обеспечивает аварийное дистанционное отключение блоков ИБП при наступлении аварийных событий. Это, пожалуй, единственная возможность обесточить нагрузку, питаемую от трехфазного аппарата, но реализуется она в исключительных случаях.

    Что же касается диагностики электропитания, то, как отмечает Юрий Копылов, технический директор московского офиса корпорации Eaton, в последнее время характерной тенденцией в управляющем программном обеспечении стал отказ от предоставления функций удаленного тестирования батарей даже системному администратору.

    — Адекватно сравнивать состояние батарей необходимо под нагрузкой, — говорит он, — сам тест запускать не чаще чем раз в два дня, а разряжать батареи надо при одном и том же токе и уровне нагрузки. К тому же процесс заряда — довольно долгий. Все это не идет батареям на пользу.

    Средства мониторинга

    Производители ИБП предоставляют, как правило, сразу несколько средств мониторинга и в некоторых случаях даже управления ИБП — все они основаны на трех основных методах.

    В первом случае устройство подключается напрямую через интерфейс RS-232 (Com-порт) к консоли администратора. Дальность такого подключения не превышает 15 метров, но может быть увеличена с помощью конверторов RS-232/485 и RS-485/232 на концах провода, связывающего ИБП с консолью администратора. Такой способ обеспечивает низкую скорость обмена информацией и пригоден лишь для топологии «точка — точка».

    Второй способ предполагает использование SNMP-адаптера — встроенной или внешней интерфейсной карты, позволяющей из любой точки локальной сети получить информацию об основных параметрах ИБП. В принципе, для доступа к ИБП через SNMP достаточно веб-браузера. Однако для большего комфорта производители оснащают свои системы более развитым графическим интерфейсом, обеспечивающим функции мониторинга и корректного завершения работы. На базе SNMP-протокола функционируют все основные системы мониторинга и управления ИБП, поставляемые штатно или опционально вместе с ИБП.

    Стандартные SNMP-адаптеры поддерживают подключение нескольких аналоговых или пороговых устройств — датчик температуры, движения, открытия двери и проч. Интеграция таких устройств в общую систему мониторинга крупного объекта (например, дата-центра) позволяет охватить огромное количество точек наблюдения и отразить эту информацию на экране диспетчера.

    Большое удобство предоставляет метод эксплуатационного удаленного контроля T.SERVICE, позволяющий отследить работу оборудования посредством телефонной линии (через модем GSM) или через Интернет (с помощью интерфейса Net Vision путем рассылки e-mail на электронный адрес потребителя). T.SERVICE обеспечивает диагностирование оборудования в режиме реального времени в течение 24 часов в сутки 365 дней в году. ИБП автоматически отправляет в центр технического обслуживания регулярные отчеты или отчеты при обнаружении неисправности. В зависимости от контролируемых параметров могут отправляться уведомления о неправильной эксплуатации (с пользователем связывается опытный специалист и рекомендует выполнить простые операции для предотвращения ухудшения рабочих характеристик оборудования) или о наличии отказа (пользователь информируется о состоянии устройства, а на место установки немедленно отправляется технический специалист).

    Профессиональное мнение

    Наталья Маркина, коммерческий директор представительства компании SOCOMEC

    Управляющее ПО фирмы SOCOMEC легко интегрируется в общий контур управления инженерной инфраструктурой ЦОД посредством разнообразных интерфейсов передачи данных ИБП. Установленное в аппаратной или ЦОД оборудование SOCOMEC может дистанционно обмениваться информацией о своих рабочих параметрах с системами централизованного управления и компьютерными сетями посредством сухих контактов, последовательных портов RS232, RS422, RS485, а также через интерфейс MODBUS TCP и GSS.

    Интерфейс GSS предназначен для коммуникации с генераторными установками и включает в себя 4 входа (внешние контакты) и 1 выход (60 В). Это позволяет программировать особые процедуры управления, Global Supply System, которые обеспечивают полную совместимость ИБП с генераторными установками.

    У компании Socomec имеется широкий выбор интерфейсов и коммуникационного программного обеспечения для установки диалога между ИБП и удаленными системами мониторинга промышленного и компьютерного оборудования. Такие опции связи, как панель дистанционного управления, интерфейс ADC (реконфигурируемые сухие контакты), обеспечивающий ввод и вывод данных при помощи сигналов сухих контактов, интерфейсы последовательной передачи данных RS232, RS422, RS485 по протоколам JBUS/MODBUS, PROFIBUS или DEVICENET, MODBUS TCP (JBUS/MODBUS-туннелирование), интерфейс NET VISION для локальной сети Ethernet, программное обеспечение TOP VISION для выполнения мониторинга с помощью рабочей станции Windows XP PRO — все это позволяет контролировать работу ИБП удобным для пользователя способом.

    Весь контроль управления ИБП, ДГУ, контроль окружающей среды сводится в единый диспетчерский пункт посредством протоколов JBUS/MODBUS.
     

    Индустриальный подход

    Третий метод основан на использовании высокоскоростной индустриальной интерфейсной шины: CANBus, JBus, MODBus, PROFIBus и проч. Некоторые модели ИБП поддерживают разновидность универсального smart-слота для установки как карточек SNMP, так и интерфейсной шины. Система мониторинга на базе индустриальной шины может быть интегрирована в уже существующую промышленную SCADA-систему контроля и получения данных либо создана как заказное решение на базе многофункциональных стандартных контроллеров с выходом на шину. Промышленная шина через шлюзы передает информацию на удаленный диспетчерский пункт или в систему управления зданием (Building Management System, BMS). В эту систему могут быть интегрированы и контроллеры, управляющие ИБП.

    Универсальные SCADA-системы поддерживают датчики и контроллеры широкого перечня производителей, но они недешевы и к тому же неудобны для внесения изменений. Но если подобная система уже функционирует на объекте, то интеграция в нее дополнительных ИБП не представляет труда.

    Сергей Ермаков, технический директор компании Inelt, считает, что применение универсальных систем управления на базе промышленных контроллеров нецелесообразно, если используется для мониторинга только ИБП и ДГУ. Один из практичных подходов — создание заказной системы, с удобной для заказчика графической оболочкой и необходимым уровнем детализации — от карты местности до поэтажного плана и погружения в мнемосхему компонентов ИБП.

    — ИБП может передавать одинаковое количество информации о своем состоянии и по прямому соединению, и по SNMP, и по Bus-шине, — говорит Сергей Ермаков. — Применение того или иного метода зависит от конкретной задачи и бюджета. Создав первоначально систему UPS Look для мониторинга ИБП, мы интегрировали в нее систему мониторинга ДГУ на основе SNMP-протокола, после чего по желанию одного из заказчиков конвертировали эту систему на промышленную шину Jbus. Новое ПО JSLook для мониторинга неограниченного количества ИБП и ДГУ по протоколу JBus является полнофункциональным средством мониторинга всей системы электроснабжения объекта.

    Профессиональное мение

    Денис Андреев, руководитель департамента ИБП компании Landata

    Практически все ИБП Eaton позволяют использовать коммуникационную Web-SNMP плату Connect UPS и датчик EMP (Environmental Monitoring Probe). Такой комплект позволяет в числе прочего осуществлять мониторинг температуры, влажности и состояния пары «сухих» контактов, к которым можно подключить внешние датчики.

    Решение Eaton Environmental Rack Monitor представляет собой аналог такой связки, но с существенно более широким функционалом. Внешне эта система мониторинга температуры, влажности и состояния «сухих» контактов выполнена в виде компактного устройства, которое занимает минимум места в шкафу или в помещении.

    Благодаря наличию у Eaton Environmental Rack Monitor (ERM) двух выходов датчики температуры или влажности можно разместить в разных точках стойки или помещения. Поскольку каждый из двух датчиков имеет еще по два сухих контакта, с них дополнительно можно принимать сигналы от датчиков задымления, утечки и проч. В центре обработки данных такая недорогая система ERM, состоящая из неограниченного количества датчиков, может транслировать информацию по протоколу SNMP в HTML-страницу и позволяет, не приобретая специального ПО, получить сводную таблицу измеряемых величин через веб-браузер.

    Проблему дефицита пространства и высокой плотности размещения оборудования в серверных и ЦОД решают системы распределения питания линейки Eaton eDPU, которые можно установить как внутри стойки, так и на группу стоек.

    Все модели этой линейки представляют четыре семейства: системы базового исполнения, системы с индикацией потребляемого тока, с мониторингом (локальным и удаленным, по сети) и управляемые, с возможностью мониторинга и управления электропитанием вплоть до каждой розетки. С помощью этих устройств можно компактным способом увеличить количество розеток в одной стойке, обеспечить контроль уровня тока и напряжения критичной нагрузки.

    Контроль уровня потребляемой мощности может осуществляться с высокой степенью детализации, вплоть до сервера, подключенного к конкретной розетке. Это позволяет выяснить, какой сервер перегревается, где вышел из строя вентилятор, блок питания и т. д. Программным образом можно запустить сервер, подключенный к розетке ePDU. Интеграция системы контроля ePDU в платформу управления Eaton находится в процессе реализации.

    Требование объекта

    Как поясняет Олег Письменский, в критичных объектах, таких как ЦОД, можно условно выделить две области контроля и управления. Первая, Grey Space, — это собственно здание и соответствующая система его энергообеспечения и энергораспределения. Вторая, White Space, — непосредственно машинный зал с его системами.

    Выбор системы управления энергообеспечением ЦОД определяется типом объекта, требуемым функционалом системы управления и отведенным на эти цели бюджетом. В большинстве случаев кратковременная задержка между наступлением события и получением информации о нем системой мониторинга по SNMP-протоколу допустима. Тем не менее в целом ряде случаев, если характеристики объекта подразумевают непрерывность его функционирования, объект является комплексным и содержит большое количество элементов, требующих контроля и управления в реальном времени, ни одна стандартная система SNMP-мониторинга не обеспечит требуемого функционала. Для таких объектов применяют системы управления real-time, построенные на базе программно-аппаратных комплексов сбора данных, в том числе c функциями Softlogic.

    Системы диспетчеризации и управления крупными объектами реализуются SCADA-системами, широкий перечень которых сегодня присутствует на рынке; представлены они и в портфеле решений Schneider Electric. Тип SCADA-системы зависит от класса и размера объекта, от количества его элементов, требующих контроля и управления, от уровня надежности. Частный вид реализации SCADA — это BMS-система(Building Management System).

    «Дата-центры с объемом потребляемой мощности до 1,5 МВт и уровнем надежности Tier I, II и, с оговорками, даже Tier III, могут обслуживаться без дополнительной SCADA-системы, — говорит Олег Письменский. — На таких объектах целесообразно применять ISX Central — программно-аппаратный комплекс, использующий SNMP. Если же категория и мощность однозначно предполагают непрерывность управления, в таких случаях оправданна комбинация SNMP- и SCADA-системы. Например, для машинного зала (White Space) применяется ISX Central с возможными расширениями как Change & Capacity Manager, в комбинации со SCADA-системой, управляющей непосредственно объектом (Grey Space)».

    Профессиональное мнение

    Олег Письменский, директор департамента консалтинга APC by Schneider Electric в России и СНГ

    Подход APC by Schneider Electric к реализации полномасштабного полноуправляемого и надежного ЦОД изначально был основан на базисных принципах управления ИТ-инфраструктурой в рамках концепции ITIL/ITSM. И история развития системы управления инфраструктурой ЦОД ISX Manager, которая затем интегрировалась с программно-аппаратным комплексом NetBotz и трансформировалась в портал диспетчеризации ISX Central, — лучшее тому доказательство.

    Первым итогом поэтапного приближения к намеченной цели стало наращивание функций контроля параметров энергообеспечения. Затем в этот контур подключилась система управления кондиционированием, система контроля параметров окружающей среды. Очередным шагом стало измерение скорости воздуха, влажности, пыли, радиации, интеграция сигналов от камер аудио- и видеонаблюдения, системы управления блоками розеток, завершения работы сервера и т. д.

    Эта система не может и не должна отвечать абсолютно всем принципам ITSM, потому что не все они касаются существа поставленной задачи. Но как только в отношении политик и некоторых тактик управления емкостью и изменениями в ЦОД потребовался соответствующий инструментарий — это нашло отражение в расширении функционала ISX Central, который в настоящее время реализуют ПО APC by Schneider Electric Capacity Manager и APC by Schneider Electric Change Manager. С появлением этих двух решений, интегрированных в систему управления реальным объектом, АРС предоставляет возможность службе эксплуатации оптимально планировать изменения количественного и качественного состава оборудования машинного зала — как на ежедневном оперативном уровне, так и на уровне стратегических задач массовых будущих изменений.

    Решение APC by Schneider Electric Capacity обеспечивает автоматизированную обработку информации о свободных ресурсах инженерной инфраструктуры, реальном потреблении мощности и пространстве в стойках. Обращаясь к серверу ISX Central, системы APC by Schneider Electric Capacity Manager и APC by Schneider Electric Change Manager оценивают степень загрузки ИБП и систем охлаждения InRow, прогнозируют воздействие предполагаемых изменений и предлагают оптимальное место для установки нового или перестановки имеющегося оборудования. Новые решения позволяют, выявив последствия от предполагаемых изменений, правильно спланировать замену оборудования в ЦОД.

    Переход от частного к общему может потребовать интеграции ISX Central в такие, например, порталы управления, как Tivoli или Open View. Возможны и другие сценарии, когда ISX Central вписывается и в SCADA–систему. В этом случае ISX Central выполняет роль диспетчерской настройки, функционал которой распространяется на серверную комнату, но не охватывает целиком периметр объекта.

    Случай из практики

    Решение задачи управления энергообеспечением ЦОД иногда вступает в противоречие с правилами устройств электроустановок (ПУЭ). Может оказаться, что в соответствии с ПУЭ в ряде случаев (например, при компоновке щитов ВРУ) необходимо обеспечить механические блокировки. Однако далеко не всегда это удается сделать. Поэтому такая задача часто требует нетривиального решения.

    — В одном из проектов, — вспоминает Алексей Сарыгин, — где система управления включала большое количество точек со взаимными пересечениями блокировок, требовалось не допустить снижения общей надежности системы. В этом случае мы пришли к осознанному компромиссу, сделали систему полуавтоматической. Там, где это было возможно, присутствовали механические блокировки, за пультом дежурной смены были оставлены функции мониторинга и анализа, куда сводились все данные о положении всех автоматов. Но исполнительную часть вывели на отдельную панель управления уже внутри ВРУ, где были расположены подробные пользовательские инструкции по оперативному переключению. Таким образом мы избавились от излишней автоматизации, но постарались минимизировать потери в надежности и защититься от ошибок персонала.

    [ http://www.computerra.ru/cio/old/products/infrastructure/421312/]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > управление электропитанием

  • 53 алгоритм

    1. algorithm
    2. ALG
    3. -

     

    алгоритм
    Конечный набор предписаний для получения решения задачи посредством конечного количества операций.
    [ ГОСТ 34.003-90]

    алгоритм
    Конечное упорядоченное множество точно определенных правил для решения конкретной задачи.
    [ИСО/МЭК 2382-1]
    [ ГОСТ Р 52292-2004]

    алгоритм
    Последовательность действий для определенного вычисления
    [ ГОСТ 30721-2000]
    [ ГОСТ Р 51294.3-99]

    алгоритм
    Набор упорядоченных шагов для решения задачи, такой как математическая формула или инструкция в программе. В контексте кодирования речи алгоритмами называют математические методы, используемые для компрессии речи. Уникальные алгоритмы кодирования речи патентуются. Конкретные реализации алгоритмов в компьютерных программах также являются субъектом авторского права.
    Совокупность четко определенных правил, процедур или команд, обеспечивающих решение поставленной задачи за конечное число шагов.
    [ http://www.morepc.ru/dict/]

    алгоритм
    алгорифм
    Точное предписание относительно последовательности действий (шагов), преобразующих исходные данные в искомый результат. Это понятие появилось за много веков до появления компьютеров, с которыми его обычно связывают. Термин же происходит от слова Algorithmi, так на латинском языке звучало имя хорезмского математика IX столетия аль-Хорезми, трактат которого в средние века был распространен в Европе. Тогда алгоритмом называлось десятичное счисление и искусство счета в этой системе. А. — основа решения любой экономико-математической задачи, задачи управления, а также построения многих экономико-математических моделей — особенно прикладных, предназначенных для практических расчетов на компьютерах. Оценка качества А. обычно определяется его сходимостью (если А. не сходится, он не годится), скоростью сходимости (чем она выше, т.е. чем меньше шагов требуется для решения, тем А. лучше); кроме того, важную роль играют время счета на компьютере (оно зависит не только от числа шагов, но и других обстоятельств), удобство обращения к А., возможность работы в режиме диалога человека и ЭВМ. Для наглядности алгоритм, если он относительно прост, можно отобразить в виде блок-схемы (см. рис. А.2). А., записанный таким образом, чтобы его могла выполнять вычислительная машина, называется программой. Рис.А.2 Блок-схема алгоритма вычисления среднего арифметического Среди важнейших (для экономико-математических приложений) видов алгоритмов назовем следующие: Алгоритмитеративный [iterative routine] - см. Итеративные методы. Алгоритм моделирующий. [simulator] - алгоритм (компьютерная программа), имитирующий при исследовании сложных систем взаимодействие элементов процесса и позволяющий при заданной совокупности экзогенных величин (параметров, управляющих переменных) получить эндогенные величины (выходы) или их искомые характеристики. Алгоритм циклический [cyclical algorithm] - алгоритм, при котором через какое-то (обычно большое) число шагов результаты начинают повторяться. Таков, например, А. вычисления на компьютере псевдослучайных чисел. Алгоритм управления [control procedure] - точно определенный порядок выработки управленческих решений, формирования планов, обмена информацией в процессе управления. Тщательная отработка А. у. — необходимый этап проектирования любой АСУ. Для проверки А.у. эффективно применение методов машинной имитации.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    Синонимы

    EN

    DE

    FR

    1 Алгоритм - однозначное описание последовательности операций над исходными данными (из некоторой совокупности возможных исходных данных), направленной на получение результата, полностью определяемого этими исходными данными.

    Источник: МИ 2174-91: Рекомендация. Государственная система обеспечения единства измерений. Аттестация алгоритмов и программ обработки данных при измерениях. Основные положения

    Русско-английский словарь нормативно-технической терминологии > алгоритм

См. также в других словарях:

  • электронный блок управления — [IEV number 442 04 22] EN electronic control unit unit adjustable by other than mechanical means (e.g. sensing unit), containing electronic components and controlling the output via electronic components [IEV number 442 04 22] FR… …   Справочник технического переводчика

  • электронный блок дистанционного управления — [IEV number 442 04 23] EN electronic extension unit a unit permitting the control of an electronic switch from a remote position [IEV number 442 04 23] FR élément électronique périphérique dispositif permettant… …   Справочник технического переводчика

  • Электронный блок — 7. Электронный блок группа узлов, по крайней мере, один из которых электронный. Источник: НПБ 247 97: Электронные изделия. Требования пожарной безопасности. Методы испытаний Электронный блок (в т.ч. управления) конструктивно обособленная и… …   Словарь-справочник терминов нормативно-технической документации

  • ЭЛЕКТРОННЫЙ МИКРОСКОП — прибор для наблюдения и фотографирования многократно (до 106 раз) увеличенного изображения объекта, в к ром вместо световых лучей используются пучки электронов, ускоренных до больших энергий (30 1000 кэВ и более) в условиях глубокого вакуума. Физ …   Физическая энциклопедия

  • ЭЛЕКТРОННЫЙ МИКРОСКОП — прибор для наблюдения и фотографирования многократно (до 106 раз) увеличенного изображения объектов, в к ром вместо световых лучей используются пучки эл нов, ускоренных до больших энергий (30 100 кэВ и более) в условиях глубокого вакуума. Физ.… …   Физическая энциклопедия

  • Электронный генератор — Электронные генераторы большое множество устройств в радиотехнике и электронике (радиоэлектронике). Генератор представляет собой электронный усилитель охваченный цепью положительной обратной связи с фильтром. Содержание 1 Виды электронных… …   Википедия

  • Электронный микроскоп —         прибор для наблюдения и фотографирования многократно (до 106 раз) увеличенного изображения объектов, в котором вместо световых лучей используются пучки электронов, ускоренных до больших энергий (30 100 кэв и более) в условиях глубокого… …   Большая советская энциклопедия

  • Контакторно-транзисторная система управления — Пускотормозные сопротивления КТСУ на трамвайном вагоне 71 619КТ. Контактор …   Википедия

  • АВТОМОБИЛЬ ЛЕГКОВОЙ — самодвижущееся четырехколесное транспортное средство с двигателем, предназначенное для перевозок небольших групп людей по автодорогам. Легковой автомобиль, обычно вмещающий от одного до шести пассажиров, именно этим, в первую очередь, отличается… …   Энциклопедия Кольера

  • Система зажигания — Система зажигания  это совокупность всех приборов и устройств, обеспечивающих появление электрической искры, воспламеняющей топливовоздушную смесь в цилиндрах двигателя внутреннего сгорания в нужный момент. Эта система является частью общей… …   Википедия

  • Подводный аппарат —         (a. submarine unit; н. Unterwassergerat; ф. appareil sous marin; и. equipo submarino) судно или техн. устройство, перемещающееся в толще воды и (или) по дну и используемое для науч. исследований, поисковых и аварийно спасательных операций …   Геологическая энциклопедия

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»