Перевод: со всех языков на все языки

со всех языков на все языки

эдс+вызывает+ток

  • 1 эдс вызывает ток

    Русско-английский технический словарь > эдс вызывает ток

  • 2 эдс вызывает ток

    Универсальный русско-английский словарь > эдс вызывает ток

  • 3 эдс

    Русско-английский технический словарь > эдс

  • 4 emf

    English-Russian scientific dictionary > emf

  • 5 emf

    Англо-русский технический словарь > emf

  • 6 current

    1) поток

    2) водоток
    3) текущий
    4) токовой
    5) токовый
    6) значение тока
    7) имеющийся
    8) <electr.> сила тока
    9) сложившийся
    10) течение
    11) общеупотребительный
    absorption current
    alternating current
    antenna current
    ascending current
    avalanche current
    back current
    beam current
    bias current
    biasing current
    black current
    bunched current
    capacitive current
    Caribbean Current
    carry current
    carrying current
    charging current
    conduction current
    constant current
    consumption current
    control current
    convection current
    current algebra
    current amplification
    current balance
    current build-up
    current check
    current circuit
    current collector
    current consumption
    current crowding
    current density
    current distribution
    current divider
    current divides
    current drain
    current efficiency
    current events
    current feedback
    current gain
    current inrush
    current installing
    current instruction
    current intensity
    current limiter
    current limiting
    current margin
    current meter
    current noise
    current overload
    current path
    current production
    current protection
    current receiver
    current regulation
    current relay
    current rise
    current saturation
    current sensitivity
    current sheet
    current stabilization
    current stabilizer
    current standards
    current supply
    current task
    current transformer
    current triangle
    current vector
    current velocity
    current wave
    dark current
    decaying current
    descending current
    direct current
    discharge current
    displacement current
    double current
    drift current
    drop-out current
    dynode current
    eddy current
    emission current
    erasing current
    exchange current
    exciting current
    external current
    extraneous current
    fault current
    fault-to-earth current
    feed current
    feedback current
    field current
    filament current
    forward current
    full-select current
    fusing current
    gas current
    grid current
    half-select current
    holding current
    hole current
    in-phase current
    in-rush current
    induce current
    inhibit current
    input current
    instantaneous current
    ion current
    Kuroshio current
    large-scale air current
    large-scale current
    latching current
    leakage current
    let-go current
    line current
    load current
    loop current
    loss current
    magnetizing current
    marking current
    no-load current
    noise current
    non-sinusoidal current
    operate current
    operating current
    oscillating current
    Oudin current
    output current
    overload current
    partial-select current
    peak current
    penetration of current
    photocathode current
    plasma current
    plate current
    polarization current
    polyphase current
    preionization current
    primary current
    pulsating current
    pyroelectric current
    quiescent current
    r f current
    random current
    rated current
    read current
    recombination current
    rectified current
    rectify current
    residual current
    ringing current
    roaming current
    root-mean-square current
    saturation current
    saw-tooth current
    sea current
    sea current meter
    secondary current
    selection current
    self-inductance current
    set of current
    short-circuit current
    space-charge current
    speaking current
    spurious current
    standing current
    starting current
    stray current
    stream current
    strong current
    sweep current
    synchronizing current
    telluric current
    test current
    thermionic current
    three-phase current
    to be current
    transient current
    tunnel current
    wandering current
    welding current
    white current
    word current
    write current

    alternating current generatorгенератор переменного тока


    alternating current motorэлектродвигатель переменнего тока


    amplitude of tidal current<geogr.> амплитуда приливного течения


    cause current to flowвызывать ток


    convection current modesволны конвекционного тока


    current enters nodeток направлен к узлу


    current leaves nodeток направлен от узла


    current mode gateвентиль на токовых переключателях


    current regulator tube<tech.> барретер, барретор, барреттер, токостабилизатор


    direct current injectionинжекция прямого тока


    emf causes current to flowэдс вызывает ток


    equation for alternating currentуравнение переменного тока


    flux current characteristicвеберамперная характеристика


    gate trigger currentотпирающий ток управления


    heating effect of currentтепловое дейстиве тока


    interrupt fault currentразмыкать ток повреждения


    klystron catcher currentток улавливателя


    resistive current componentактивная составляющая тока


    short circuit current<electr.> ток короткого замыкания


    South Equatorial Current<geogr.> течение Южное Пассатное


    space-charge limited current<electr.> ток ограниченный пространственным зарядом


    steady volume currentобъемный ток


    surge current generatorгенератор импульсного тока


    thermal agitation currentток теплового возбуждения


    variable current transformerтрансформатор переменного тока


    welding current interrupterсварочный прерыватель тока


    zero signal current<electr.> ток покоя

    Англо-русский технический словарь > current

  • 7 flow

    1) поток

    2) движение жидкости
    3) дотекать
    4) дотечь
    5) затек
    6) затекать
    7) обтекание
    8) обтекать
    9) перетекание
    10) перетекать
    11) режим течения
    12) реологический
    13) течение
    14) струя
    15) ход
    16) расход
    17) течь
    18) струиться
    19) истекать
    20) изменяться
    21) прилив
    22) текущий
    23) технологический
    24) водяной
    25) гидравлический
    26) протекать
    27) истечение
    air flow classifier
    annular flow
    annular-mist flow
    axial-symmetric flow
    capillary flow
    cavity flow
    circulating flow
    constrict flow
    continuous flow
    core of flow
    counter flow
    creep flow
    dam flow
    diabatic flow
    discontinous flow
    dissipative flow
    disturb flow
    double-circuit flow
    downstream flow
    dust-laden flow
    eddy flow
    energy flow
    enforced flow
    flood flow
    flow about
    flow along
    flow around
    flow bifurcates
    flow calorimeter
    flow capacity
    flow chart
    flow choking
    flow condition
    flow core
    flow counter
    flow diagram
    flow disturbance
    flow equation
    flow filament
    flow fluctuation
    flow function
    flow governor
    flow in shear
    flow in tension
    flow index
    flow line
    flow mass
    flow meter
    flow nozzle
    flow of metal
    flow of parameters
    flow parameter
    flow pressure
    flow rate
    flow relay
    flow sensor
    flow soldering
    flow stability
    flow stratifies
    flow temperature
    flow test
    flow traffic
    flow transducer
    flow tube
    flow visualizer
    forced flow
    free flow
    freight flow
    frictional flow
    frozen flow
    grain flow
    gravity flow
    heat flow
    heavy flow
    hypersonic flow
    incompressible flow
    initiation of flow
    irrotational flow
    isothermal flow
    jet flow
    laminar flow
    longitudinal flow
    main flow
    mass flow
    mist flow
    modulus of flow
    natural flow
    non-circulatory flow
    non-steady-state flow
    nonedding flow
    one-dimensional flow
    Oseen flow
    plug flow
    potential flow
    rate of flow
    regeneration flow
    restricted flow
    retard flow
    reveser flow
    shock-free flow
    slip flow
    slug flow
    smoothen the flow
    sonic flow
    spoil the flow
    stagnated flow
    stall flow
    state flow
    stre of flow
    stream-line flow
    subsidiary flow
    subsonic flow
    supercritical flow
    supersonic flow
    swirling flow
    three-dimensional flow
    throat flow
    total flow
    traffic flow
    transient flow
    transonic flow
    uniform flow
    upstream flow
    viscous flow
    voluntary flow
    vortex flow
    vortex-free flow
    vortex-type flow
    water flow

    cause current to flowвызывать ток


    chip flow angleугол схода стружки


    continuous flow testиспытание проточное


    data flow controlуправление потоком данных


    emf causes current to flowэдс вызывает ток


    flow about the airfoilобтекание профиля крыла


    flow along the plateобтекание пластины


    flow dividing valveделитель потока


    flow summarizing valveсумматор потоков


    fuel flow meterизмеритель расхода топлива


    mass flow rateмассовый расход


    minute flow rateминутный расход


    streamline flow pattern<engin.> спектр аэродинамический


    torque flow pumpсвободновихревой насос

    Англо-русский технический словарь > flow

  • 8 emf causes a current to flow

    Универсальный англо-русский словарь > emf causes a current to flow

  • 9 the emf causes a current to flow

    Универсальный англо-русский словарь > the emf causes a current to flow

  • 10 направленная токовая защита нулевой последовательности

    1. directional neutral current relay

     

    направленная токовая защита нулевой последовательности

    [В.А.Семенов. Англо-русский словарь по релейной защите]

    Нулевая последовательность фаз.
    Согласно теории симметричных составляющих любую несимметричную систему трех токов или напряжений - обозначим их А, В, С - можно представить в виде трех систем прямой, обратной и нулевой последовательностей фаз (рис. 7.9, а-в). Первые две системы симметричны и уравновешены, последняя симметрична, но не уравновешена.
    Система прямой последовательности (рис. 7.9, а) состоит из трех вращающихся векторов A 1, B 1, C 1, равных по значению и повернутых на 120° относительно друг друга, причем вектор B1 следует за вектором А 1.
    5300
    Рис. 7.8. Принципиальная схема максимальной токовой защиты с пуском от реле минимального напряжения:
    КА - реле тока (токовый пусковой орган); КV - реле минимального напряжения (пусковой орган по напряжению); КТ - реле времени
    Система обратной последовательности (рис. 7.9, б) состоит также из трех векторов A 2, B 2, C 2, равных по значению и повернутых на 120° относительно друг друга, но при вращении в ту же сторону, что и векторы прямой последовательности, вектор B 2 опережает вектор A 2 на 120°.
    Система нулевой последовательности (рис. 7.9, в) состоит из трех векторов A 0, B 0, C 0, совпадающих по фазе.
    Очевидно, что сложение одноименных векторов этих трех систем дает ту несимметричную систему, которая была разложена на, ее составляющие:

    В качестве примера сложение векторов фазы С выполнено на рис. 7.9, г.
    Существует и метод расчета симметричных составляющих, согласно которому составляющая нулевой последовательности

    5301
    Рис. 7.9. Симметричные составляющие:
    а, б, в - прямой, обратной и нулевой последовательности соответственно; г - сложение векторов трех последовательностей фазы С
    5302
    Рис. 7.10. Однофазное КЗ на землю на ненагруженной линии с односторонним питанием:
    а - схема линии; б - векторная диаграмма напряжения и тока для точки К ; в, г - векторные диаграммы напряжения и токов, построенные с помощью симметричных составляющих

    Таким образом, для нахождения A 0 надо геометрически сложить три составляющие вектора и взять одну треть от суммы.
    Целесообразность представления несимметричных систем тремя симметричными составляющими состоит в том, что анализ и расчеты напряжений и токов для системы нулевой последовательности могут выполняться независимо от систем прямой и обратной последовательностей, что во многих случаях упрощает расчеты.
    Включение же защит на составляющие нулевой последовательности дает ряд преимуществ по сравнению с включением их на полные токи и напряжения фаз для действия при КЗ на землю.
    Практическое использование составляющих нулевой последовательности. Рассмотрим металлическое замыкание фазы А на землю в сети с эффективно заземленной нейтралью (рис. 7.10, а). Этот вид повреждения относится к несимметричным КЗ и характеризуется тем, что в замкнутом контуре действует ЭДС E A, под действием которой в поврежденной фазе А проходит ток IA=Ik отстающий от E A на 90°; напряжение фазы А относительно земли в месте повреждения (точка К) UAк =0, так как эта точка непосредственно соединена с землей; токи в неповрежденных фазах IB и IC отсутствуют. С учетом сказанного на рис. 7.10, б построена векторная диаграмма для точки К.
    На рис. 7.10, в и г приведены векторные диаграммы напряжений и токов, построенные с помощью симметричных составляющих для того же случая однофазного КЗ.
    Сравнение диаграммы, представленной на рис. 7.10, б, с диаграммами рис. 7.10, в и г показывает, что вектор I к равен вектору 3I0, а ЕА =U B к + U C к = 3U0к. Значит, полный ток фазы в месте повреждения может быть представлен утроенным значением тока нулевой последовательности, а ЭДС - ЕА - утроенным значением напряжения нулевой последовательности.
    Практически ток нулевой последовательности получают соединением вторичных обмоток трансформаторов тока в фильтр токов нулевой последовательности (рис. 7.11). Из схемы видно, что ток в реле КА равен геометрической сумме токов трех фаз:

    Ток в реле появляется только при однофазном или двухфазном КЗ на землю. Короткие замыкания между фазами являются симметричными системами, и соответственно этому ток в реле Iр=0.
    Для получения напряжения нулевой последовательности вторичные обмотки трансформатора напряжения соединяют в разомкнутый треугольник (рис. 7.12) и обязательно заземляют нейтраль его первичной обмотки. В этом случае

    5303
    Рис. 7.11. Соединение трансформаторов тока в фильтр токов нулевой последовательности
    В нормальном режиме работы и КЗ между фазами (без земли) геометрическая сумма напряжений вторичных обмоток, соединенных в разомкнутый треугольник, равна нулю, и поэтому Up также равно нулю (рис. 7.12, б). И только при однофазных (или двухфазных) КЗ на землю на зажимах разомкнутого треугольника появляется напряжение Up=3U0 (рис. 7.12, в).
    Фазные напряжения систем прямой и обратной последовательностей образуют симметричные звезды, и поэтому суммы их векторов в схеме разомкнутого треугольника всегда равны нулю.

    5304
    Рис. 7.12. Соединение однофазных трансформаторов напряжении в фильтр напряжения нулевой последовательности:
    а - общая схема трансформатора напряжения; б - векторные диаграммы в нормальном режиме работы; с - то же при замыкании фазы А на землю в сети с заземленной нейтралью; PV - вольтметр контроля исправности цепей вторичной обмотки

    В сетях с эффективным заземлением нейтрали около 80% повреждений связано с замыканиями на землю. Для защиты оборудования применяют устройства, реагирующие на составляющие нулевой последовательности.
    Схема и некоторые вопросы эксплуатации токовой направленной защиты нулевой последовательности. Принципиальная схема защиты показана на рис. 7.13. Пусковое токовое реле КА, включенное на фильтр токов нулевой последовательности, реагирует на появление КЗ на землю, когда в нулевом проводе проходит ток 3I0.
    Реле мощности KW фиксирует направление мощности КЗ, обеспечивая селективность действия: защита работает при направлении мощности КЗ от шин подстанции в защищаемую линию. Напряжение 3U0 подводится к реле мощности от обмотки разомкнутого треугольника трансформатора напряжения (шинки EV, H, KV, K).
    Реле времени КТ создает выдержку времени, необходимую по условию селективности.
    На рис. 7.14 показано размещение токовых направленных защит нулевой последовательности в сети, работающей с заземленными нейтралями с обеих сторон рассматриваемого участка. График характеристик выдержек времени построен по встречно-ступенчатому принципу. Из графика видно, что каждая защита отстраивается от защиты смежного участка ступенью времени Δt =t1-t3.
    Значение тока срабатывания пускового токового реле выбирается по условию надежного действия реле при КЗ в конце следующего (второго) участка сети, а также по условию отстройки от тока небаланса.
    Появление тока небаланса в реле связано с погрешностью трансформаторов тока, неидентичностью трансформаторов тока, неидентичностью их характеристик намагничивания и имеет решающее значение. Чтобы не допустить действия пускового токового реле от тока небаланса, ток срабатывания реле принимают больше тока небаланса. Ток небаланса определяется для нормального рабочего режима или для режима трехфазного КЗ в зависимости от выдержки времени защиты.
    При наличии в защищаемой сети автотрансформаторов, электрически связывающих сети двух напряжений, однофазное или двухфазное замыкание на землю к сети среднего напряжения приводит к появлению тока I0 в линиях высшего напряжения. Чтобы избежать ложных срабатываний защит линий высшего напряжения, уставки их защит по току срабатывания и выдержкам времени согласуют с уставками защит в сети среднего напряжения. По указанной причине избегают, как правило, заземления нейтралей обмоток звезд высшего и среднего напряжений у одного трансформатора. Заметим также, что у трансформатора со схемой соединения звезда-треугольник замыкание на землю на стороне треугольника не вызывает появления тока I0 на стороне звезды.
    Ток I0 появляется в линиях при неполнофазных режимах работы участков сетей. Такие режимы могут быть кратковременными и длительными. От кратковременных неполнофазных режимов, возникающих, например, в цикле ОАПВ линии, а также АПВ при неодновременном включении трех фаз выключателя защиты отстраиваются по току срабатывания или выдержки времени защит принимаются больше, чем время t ОАПВ. При возможных неполнофазных режимах работы линий (например, при пофазном ремонте под напряжением) токовые направленные защиты нулевой последовательности ремонтируемой линии и смежных участков должны проверяться и отстраиваться от несимметрии или выводиться из работы, так как они мало приспособлены для работы в таких условиях.
    В процессе эксплуатации токовых защит нулевой последовательности должны строго учитываться все заземленные нейтрали автотрансформаторов и трансформаторов, являющиеся как бы источниками токов нулевой последовательности. Распределение тока I0 в сети определяется исключительно расположением заземленных нейтралей, а не генераторов электростанций.
    Контроль исправности цепей напряжения разомкнутого треугольника осуществляется с помощью вольтметра, периодически подключаемого с помощью кнопки SB (см. рис. 7.12). Вольтметр измеряет напряжение небаланса, имеющего значение 1-3 В. При нарушении цепей показание вольтметра пропадает.
    Наряду с рассмотренной токовой направленной защитой нулевой последовательности широкое распространение в сетях 110 кВ и выше получили направленные отсечки и ступенчатые защиты пулевой последовательности. Наиболее совершенными являются четырехступенчатые защиты, первая ступень которых обычно выполняется без выдержки времени. Первая и вторая ступени защиты предназначены для действий при замыканиях на землю в пределах защищаемой линии и на шинах противоположной подстанции. Последние ступени выполняют в основном роль резервирования.
    5305
    Рис. 7.13. Схема токовой направленной защиты нулевой последовательности
    [ http://leg.co.ua/knigi/raznoe/obsluzhivanie-ustroystv-releynoy-zaschity-i-avtomatiki-3.html]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > направленная токовая защита нулевой последовательности

  • 11 directional neutral current relay

    1. направленная токовая защита нулевой последовательности

     

    направленная токовая защита нулевой последовательности

    [В.А.Семенов. Англо-русский словарь по релейной защите]

    Нулевая последовательность фаз.
    Согласно теории симметричных составляющих любую несимметричную систему трех токов или напряжений - обозначим их А, В, С - можно представить в виде трех систем прямой, обратной и нулевой последовательностей фаз (рис. 7.9, а-в). Первые две системы симметричны и уравновешены, последняя симметрична, но не уравновешена.
    Система прямой последовательности (рис. 7.9, а) состоит из трех вращающихся векторов A 1, B 1, C 1, равных по значению и повернутых на 120° относительно друг друга, причем вектор B1 следует за вектором А 1.
    5300
    Рис. 7.8. Принципиальная схема максимальной токовой защиты с пуском от реле минимального напряжения:
    КА - реле тока (токовый пусковой орган); КV - реле минимального напряжения (пусковой орган по напряжению); КТ - реле времени
    Система обратной последовательности (рис. 7.9, б) состоит также из трех векторов A 2, B 2, C 2, равных по значению и повернутых на 120° относительно друг друга, но при вращении в ту же сторону, что и векторы прямой последовательности, вектор B 2 опережает вектор A 2 на 120°.
    Система нулевой последовательности (рис. 7.9, в) состоит из трех векторов A 0, B 0, C 0, совпадающих по фазе.
    Очевидно, что сложение одноименных векторов этих трех систем дает ту несимметричную систему, которая была разложена на, ее составляющие:

    В качестве примера сложение векторов фазы С выполнено на рис. 7.9, г.
    Существует и метод расчета симметричных составляющих, согласно которому составляющая нулевой последовательности

    5301
    Рис. 7.9. Симметричные составляющие:
    а, б, в - прямой, обратной и нулевой последовательности соответственно; г - сложение векторов трех последовательностей фазы С
    5302
    Рис. 7.10. Однофазное КЗ на землю на ненагруженной линии с односторонним питанием:
    а - схема линии; б - векторная диаграмма напряжения и тока для точки К ; в, г - векторные диаграммы напряжения и токов, построенные с помощью симметричных составляющих

    Таким образом, для нахождения A 0 надо геометрически сложить три составляющие вектора и взять одну треть от суммы.
    Целесообразность представления несимметричных систем тремя симметричными составляющими состоит в том, что анализ и расчеты напряжений и токов для системы нулевой последовательности могут выполняться независимо от систем прямой и обратной последовательностей, что во многих случаях упрощает расчеты.
    Включение же защит на составляющие нулевой последовательности дает ряд преимуществ по сравнению с включением их на полные токи и напряжения фаз для действия при КЗ на землю.
    Практическое использование составляющих нулевой последовательности. Рассмотрим металлическое замыкание фазы А на землю в сети с эффективно заземленной нейтралью (рис. 7.10, а). Этот вид повреждения относится к несимметричным КЗ и характеризуется тем, что в замкнутом контуре действует ЭДС E A, под действием которой в поврежденной фазе А проходит ток IA=Ik отстающий от E A на 90°; напряжение фазы А относительно земли в месте повреждения (точка К) UAк =0, так как эта точка непосредственно соединена с землей; токи в неповрежденных фазах IB и IC отсутствуют. С учетом сказанного на рис. 7.10, б построена векторная диаграмма для точки К.
    На рис. 7.10, в и г приведены векторные диаграммы напряжений и токов, построенные с помощью симметричных составляющих для того же случая однофазного КЗ.
    Сравнение диаграммы, представленной на рис. 7.10, б, с диаграммами рис. 7.10, в и г показывает, что вектор I к равен вектору 3I0, а ЕА =U B к + U C к = 3U0к. Значит, полный ток фазы в месте повреждения может быть представлен утроенным значением тока нулевой последовательности, а ЭДС - ЕА - утроенным значением напряжения нулевой последовательности.
    Практически ток нулевой последовательности получают соединением вторичных обмоток трансформаторов тока в фильтр токов нулевой последовательности (рис. 7.11). Из схемы видно, что ток в реле КА равен геометрической сумме токов трех фаз:

    Ток в реле появляется только при однофазном или двухфазном КЗ на землю. Короткие замыкания между фазами являются симметричными системами, и соответственно этому ток в реле Iр=0.
    Для получения напряжения нулевой последовательности вторичные обмотки трансформатора напряжения соединяют в разомкнутый треугольник (рис. 7.12) и обязательно заземляют нейтраль его первичной обмотки. В этом случае

    5303
    Рис. 7.11. Соединение трансформаторов тока в фильтр токов нулевой последовательности
    В нормальном режиме работы и КЗ между фазами (без земли) геометрическая сумма напряжений вторичных обмоток, соединенных в разомкнутый треугольник, равна нулю, и поэтому Up также равно нулю (рис. 7.12, б). И только при однофазных (или двухфазных) КЗ на землю на зажимах разомкнутого треугольника появляется напряжение Up=3U0 (рис. 7.12, в).
    Фазные напряжения систем прямой и обратной последовательностей образуют симметричные звезды, и поэтому суммы их векторов в схеме разомкнутого треугольника всегда равны нулю.

    5304
    Рис. 7.12. Соединение однофазных трансформаторов напряжении в фильтр напряжения нулевой последовательности:
    а - общая схема трансформатора напряжения; б - векторные диаграммы в нормальном режиме работы; с - то же при замыкании фазы А на землю в сети с заземленной нейтралью; PV - вольтметр контроля исправности цепей вторичной обмотки

    В сетях с эффективным заземлением нейтрали около 80% повреждений связано с замыканиями на землю. Для защиты оборудования применяют устройства, реагирующие на составляющие нулевой последовательности.
    Схема и некоторые вопросы эксплуатации токовой направленной защиты нулевой последовательности. Принципиальная схема защиты показана на рис. 7.13. Пусковое токовое реле КА, включенное на фильтр токов нулевой последовательности, реагирует на появление КЗ на землю, когда в нулевом проводе проходит ток 3I0.
    Реле мощности KW фиксирует направление мощности КЗ, обеспечивая селективность действия: защита работает при направлении мощности КЗ от шин подстанции в защищаемую линию. Напряжение 3U0 подводится к реле мощности от обмотки разомкнутого треугольника трансформатора напряжения (шинки EV, H, KV, K).
    Реле времени КТ создает выдержку времени, необходимую по условию селективности.
    На рис. 7.14 показано размещение токовых направленных защит нулевой последовательности в сети, работающей с заземленными нейтралями с обеих сторон рассматриваемого участка. График характеристик выдержек времени построен по встречно-ступенчатому принципу. Из графика видно, что каждая защита отстраивается от защиты смежного участка ступенью времени Δt =t1-t3.
    Значение тока срабатывания пускового токового реле выбирается по условию надежного действия реле при КЗ в конце следующего (второго) участка сети, а также по условию отстройки от тока небаланса.
    Появление тока небаланса в реле связано с погрешностью трансформаторов тока, неидентичностью трансформаторов тока, неидентичностью их характеристик намагничивания и имеет решающее значение. Чтобы не допустить действия пускового токового реле от тока небаланса, ток срабатывания реле принимают больше тока небаланса. Ток небаланса определяется для нормального рабочего режима или для режима трехфазного КЗ в зависимости от выдержки времени защиты.
    При наличии в защищаемой сети автотрансформаторов, электрически связывающих сети двух напряжений, однофазное или двухфазное замыкание на землю к сети среднего напряжения приводит к появлению тока I0 в линиях высшего напряжения. Чтобы избежать ложных срабатываний защит линий высшего напряжения, уставки их защит по току срабатывания и выдержкам времени согласуют с уставками защит в сети среднего напряжения. По указанной причине избегают, как правило, заземления нейтралей обмоток звезд высшего и среднего напряжений у одного трансформатора. Заметим также, что у трансформатора со схемой соединения звезда-треугольник замыкание на землю на стороне треугольника не вызывает появления тока I0 на стороне звезды.
    Ток I0 появляется в линиях при неполнофазных режимах работы участков сетей. Такие режимы могут быть кратковременными и длительными. От кратковременных неполнофазных режимов, возникающих, например, в цикле ОАПВ линии, а также АПВ при неодновременном включении трех фаз выключателя защиты отстраиваются по току срабатывания или выдержки времени защит принимаются больше, чем время t ОАПВ. При возможных неполнофазных режимах работы линий (например, при пофазном ремонте под напряжением) токовые направленные защиты нулевой последовательности ремонтируемой линии и смежных участков должны проверяться и отстраиваться от несимметрии или выводиться из работы, так как они мало приспособлены для работы в таких условиях.
    В процессе эксплуатации токовых защит нулевой последовательности должны строго учитываться все заземленные нейтрали автотрансформаторов и трансформаторов, являющиеся как бы источниками токов нулевой последовательности. Распределение тока I0 в сети определяется исключительно расположением заземленных нейтралей, а не генераторов электростанций.
    Контроль исправности цепей напряжения разомкнутого треугольника осуществляется с помощью вольтметра, периодически подключаемого с помощью кнопки SB (см. рис. 7.12). Вольтметр измеряет напряжение небаланса, имеющего значение 1-3 В. При нарушении цепей показание вольтметра пропадает.
    Наряду с рассмотренной токовой направленной защитой нулевой последовательности широкое распространение в сетях 110 кВ и выше получили направленные отсечки и ступенчатые защиты пулевой последовательности. Наиболее совершенными являются четырехступенчатые защиты, первая ступень которых обычно выполняется без выдержки времени. Первая и вторая ступени защиты предназначены для действий при замыканиях на землю в пределах защищаемой линии и на шинах противоположной подстанции. Последние ступени выполняют в основном роль резервирования.
    5305
    Рис. 7.13. Схема токовой направленной защиты нулевой последовательности
    [ http://leg.co.ua/knigi/raznoe/obsluzhivanie-ustroystv-releynoy-zaschity-i-avtomatiki-3.html]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > directional neutral current relay

  • 12 взаимная индукция

    1. gegenseitige Induktion

     

    взаимная индукция
    Электромагнитная индукция, вызванная изменением сцепляющегося с контуром магнитного потока, обусловленного электрическими токами в других контурах.
    [ ГОСТ Р 52002-2003]

    EN

    mutual induction
    electromagnetic induction in a tube of current due to variations of the electric current in another tube of current
    [IEV number 121-11-32]

    FR

    induction mutuelle, f
    induction électromagnétique dans un tube de courant due aux variations du courant électrique dans un autre tube de courant
    [IEV number 121-11-32]

    Взаимная индукция — возникновение электродвижущей силы (ЭДС индукции) в одном проводнике вследствие изменения силы тока в другом проводнике или вследствие изменения взаимного расположения проводников. Взаимоиндукция — частный случай более общего явления — электромагнитной индукции. При изменении тока в одном из проводников или при изменении взаимного расположения проводников происходит изменение магнитного потока через (воображаемую) поверхность, "натянутую" на контур второго, созданного магнитным полем, порожденным током в первом проводнике, что по закону электромагнитной индукции вызывает возникновение ЭДС во втором проводнике. Если второй проводник замкнут, то под действием ЭДС взаимоиндукции в нём образуется индуцированный ток. И наоборот, изменение тока во второй цепи вызовет появление ЭДС в первой. Направление тока, возникшего при взаимоиндукции, определяется по правилу Ленца. Правило указывает на то, что изменение тока в одной цепи (катушке) встречает противодействие со стороны другой цепи (катушки).

    Чем большая часть магнитного поля первой цепи пронизывает вторую цепь, тем сильнее взаимоиндукция между цепями. С количественной стороны явление взаимоиндукции характеризуется взаимной индуктивностью (коэффициентом взаимоиндукции, коэффициентом связи). Для изменения величины индуктивной связи между цепями, катушки делают подвижными. Приборы, служащие для изменения взаимоиндукции между цепями, называются вариометрами связи.

    Явление взаимоиндукции широко используется для передачи энергии из одной электрической цепи в другую, для преобразования напряжения с помощью трансформатора.

    [ http://ru.wikipedia.org/wiki/%C2%E7%E0%E8%EC%EE%E8%ED%E4%F3%EA%F6%E8%FF]

    Тематики

    • электротехника, основные понятия

    EN

    DE

    FR

    Русско-немецкий словарь нормативно-технической терминологии > взаимная индукция

  • 13 induction mutuelle

    1. взаимная индукция

     

    взаимная индукция
    Электромагнитная индукция, вызванная изменением сцепляющегося с контуром магнитного потока, обусловленного электрическими токами в других контурах.
    [ ГОСТ Р 52002-2003]

    EN

    mutual induction
    electromagnetic induction in a tube of current due to variations of the electric current in another tube of current
    [IEV number 121-11-32]

    FR

    induction mutuelle, f
    induction électromagnétique dans un tube de courant due aux variations du courant électrique dans un autre tube de courant
    [IEV number 121-11-32]

    Взаимная индукция — возникновение электродвижущей силы (ЭДС индукции) в одном проводнике вследствие изменения силы тока в другом проводнике или вследствие изменения взаимного расположения проводников. Взаимоиндукция — частный случай более общего явления — электромагнитной индукции. При изменении тока в одном из проводников или при изменении взаимного расположения проводников происходит изменение магнитного потока через (воображаемую) поверхность, "натянутую" на контур второго, созданного магнитным полем, порожденным током в первом проводнике, что по закону электромагнитной индукции вызывает возникновение ЭДС во втором проводнике. Если второй проводник замкнут, то под действием ЭДС взаимоиндукции в нём образуется индуцированный ток. И наоборот, изменение тока во второй цепи вызовет появление ЭДС в первой. Направление тока, возникшего при взаимоиндукции, определяется по правилу Ленца. Правило указывает на то, что изменение тока в одной цепи (катушке) встречает противодействие со стороны другой цепи (катушки).

    Чем большая часть магнитного поля первой цепи пронизывает вторую цепь, тем сильнее взаимоиндукция между цепями. С количественной стороны явление взаимоиндукции характеризуется взаимной индуктивностью (коэффициентом взаимоиндукции, коэффициентом связи). Для изменения величины индуктивной связи между цепями, катушки делают подвижными. Приборы, служащие для изменения взаимоиндукции между цепями, называются вариометрами связи.

    Явление взаимоиндукции широко используется для передачи энергии из одной электрической цепи в другую, для преобразования напряжения с помощью трансформатора.

    [ http://ru.wikipedia.org/wiki/%C2%E7%E0%E8%EC%EE%E8%ED%E4%F3%EA%F6%E8%FF]

    Тематики

    • электротехника, основные понятия

    EN

    DE

    FR

    Франко-русский словарь нормативно-технической терминологии > induction mutuelle

  • 14 gegenseitige Induktion

    1. взаимная индукция

     

    взаимная индукция
    Электромагнитная индукция, вызванная изменением сцепляющегося с контуром магнитного потока, обусловленного электрическими токами в других контурах.
    [ ГОСТ Р 52002-2003]

    EN

    mutual induction
    electromagnetic induction in a tube of current due to variations of the electric current in another tube of current
    [IEV number 121-11-32]

    FR

    induction mutuelle, f
    induction électromagnétique dans un tube de courant due aux variations du courant électrique dans un autre tube de courant
    [IEV number 121-11-32]

    Взаимная индукция — возникновение электродвижущей силы (ЭДС индукции) в одном проводнике вследствие изменения силы тока в другом проводнике или вследствие изменения взаимного расположения проводников. Взаимоиндукция — частный случай более общего явления — электромагнитной индукции. При изменении тока в одном из проводников или при изменении взаимного расположения проводников происходит изменение магнитного потока через (воображаемую) поверхность, "натянутую" на контур второго, созданного магнитным полем, порожденным током в первом проводнике, что по закону электромагнитной индукции вызывает возникновение ЭДС во втором проводнике. Если второй проводник замкнут, то под действием ЭДС взаимоиндукции в нём образуется индуцированный ток. И наоборот, изменение тока во второй цепи вызовет появление ЭДС в первой. Направление тока, возникшего при взаимоиндукции, определяется по правилу Ленца. Правило указывает на то, что изменение тока в одной цепи (катушке) встречает противодействие со стороны другой цепи (катушки).

    Чем большая часть магнитного поля первой цепи пронизывает вторую цепь, тем сильнее взаимоиндукция между цепями. С количественной стороны явление взаимоиндукции характеризуется взаимной индуктивностью (коэффициентом взаимоиндукции, коэффициентом связи). Для изменения величины индуктивной связи между цепями, катушки делают подвижными. Приборы, служащие для изменения взаимоиндукции между цепями, называются вариометрами связи.

    Явление взаимоиндукции широко используется для передачи энергии из одной электрической цепи в другую, для преобразования напряжения с помощью трансформатора.

    [ http://ru.wikipedia.org/wiki/%C2%E7%E0%E8%EC%EE%E8%ED%E4%F3%EA%F6%E8%FF]

    Тематики

    • электротехника, основные понятия

    EN

    DE

    FR

    Немецко-русский словарь нормативно-технической терминологии > gegenseitige Induktion

  • 15 взаимная индукция

    1. mutual induction

     

    взаимная индукция
    Электромагнитная индукция, вызванная изменением сцепляющегося с контуром магнитного потока, обусловленного электрическими токами в других контурах.
    [ ГОСТ Р 52002-2003]

    EN

    mutual induction
    electromagnetic induction in a tube of current due to variations of the electric current in another tube of current
    [IEV number 121-11-32]

    FR

    induction mutuelle, f
    induction électromagnétique dans un tube de courant due aux variations du courant électrique dans un autre tube de courant
    [IEV number 121-11-32]

    Взаимная индукция — возникновение электродвижущей силы (ЭДС индукции) в одном проводнике вследствие изменения силы тока в другом проводнике или вследствие изменения взаимного расположения проводников. Взаимоиндукция — частный случай более общего явления — электромагнитной индукции. При изменении тока в одном из проводников или при изменении взаимного расположения проводников происходит изменение магнитного потока через (воображаемую) поверхность, "натянутую" на контур второго, созданного магнитным полем, порожденным током в первом проводнике, что по закону электромагнитной индукции вызывает возникновение ЭДС во втором проводнике. Если второй проводник замкнут, то под действием ЭДС взаимоиндукции в нём образуется индуцированный ток. И наоборот, изменение тока во второй цепи вызовет появление ЭДС в первой. Направление тока, возникшего при взаимоиндукции, определяется по правилу Ленца. Правило указывает на то, что изменение тока в одной цепи (катушке) встречает противодействие со стороны другой цепи (катушки).

    Чем большая часть магнитного поля первой цепи пронизывает вторую цепь, тем сильнее взаимоиндукция между цепями. С количественной стороны явление взаимоиндукции характеризуется взаимной индуктивностью (коэффициентом взаимоиндукции, коэффициентом связи). Для изменения величины индуктивной связи между цепями, катушки делают подвижными. Приборы, служащие для изменения взаимоиндукции между цепями, называются вариометрами связи.

    Явление взаимоиндукции широко используется для передачи энергии из одной электрической цепи в другую, для преобразования напряжения с помощью трансформатора.

    [ http://ru.wikipedia.org/wiki/%C2%E7%E0%E8%EC%EE%E8%ED%E4%F3%EA%F6%E8%FF]

    Тематики

    • электротехника, основные понятия

    EN

    DE

    FR

    Русско-английский словарь нормативно-технической терминологии > взаимная индукция

  • 16 взаимная индукция

    1. induction mutuelle

     

    взаимная индукция
    Электромагнитная индукция, вызванная изменением сцепляющегося с контуром магнитного потока, обусловленного электрическими токами в других контурах.
    [ ГОСТ Р 52002-2003]

    EN

    mutual induction
    electromagnetic induction in a tube of current due to variations of the electric current in another tube of current
    [IEV number 121-11-32]

    FR

    induction mutuelle, f
    induction électromagnétique dans un tube de courant due aux variations du courant électrique dans un autre tube de courant
    [IEV number 121-11-32]

    Взаимная индукция — возникновение электродвижущей силы (ЭДС индукции) в одном проводнике вследствие изменения силы тока в другом проводнике или вследствие изменения взаимного расположения проводников. Взаимоиндукция — частный случай более общего явления — электромагнитной индукции. При изменении тока в одном из проводников или при изменении взаимного расположения проводников происходит изменение магнитного потока через (воображаемую) поверхность, "натянутую" на контур второго, созданного магнитным полем, порожденным током в первом проводнике, что по закону электромагнитной индукции вызывает возникновение ЭДС во втором проводнике. Если второй проводник замкнут, то под действием ЭДС взаимоиндукции в нём образуется индуцированный ток. И наоборот, изменение тока во второй цепи вызовет появление ЭДС в первой. Направление тока, возникшего при взаимоиндукции, определяется по правилу Ленца. Правило указывает на то, что изменение тока в одной цепи (катушке) встречает противодействие со стороны другой цепи (катушки).

    Чем большая часть магнитного поля первой цепи пронизывает вторую цепь, тем сильнее взаимоиндукция между цепями. С количественной стороны явление взаимоиндукции характеризуется взаимной индуктивностью (коэффициентом взаимоиндукции, коэффициентом связи). Для изменения величины индуктивной связи между цепями, катушки делают подвижными. Приборы, служащие для изменения взаимоиндукции между цепями, называются вариометрами связи.

    Явление взаимоиндукции широко используется для передачи энергии из одной электрической цепи в другую, для преобразования напряжения с помощью трансформатора.

    [ http://ru.wikipedia.org/wiki/%C2%E7%E0%E8%EC%EE%E8%ED%E4%F3%EA%F6%E8%FF]

    Тематики

    • электротехника, основные понятия

    EN

    DE

    FR

    Русско-французский словарь нормативно-технической терминологии > взаимная индукция

  • 17 mutual induction

    1. коэффициент взаимоиндукции
    2. взаимоиндукция
    3. взаимная индукция

     

    взаимная индукция
    Электромагнитная индукция, вызванная изменением сцепляющегося с контуром магнитного потока, обусловленного электрическими токами в других контурах.
    [ ГОСТ Р 52002-2003]

    EN

    mutual induction
    electromagnetic induction in a tube of current due to variations of the electric current in another tube of current
    [IEV number 121-11-32]

    FR

    induction mutuelle, f
    induction électromagnétique dans un tube de courant due aux variations du courant électrique dans un autre tube de courant
    [IEV number 121-11-32]

    Взаимная индукция — возникновение электродвижущей силы (ЭДС индукции) в одном проводнике вследствие изменения силы тока в другом проводнике или вследствие изменения взаимного расположения проводников. Взаимоиндукция — частный случай более общего явления — электромагнитной индукции. При изменении тока в одном из проводников или при изменении взаимного расположения проводников происходит изменение магнитного потока через (воображаемую) поверхность, "натянутую" на контур второго, созданного магнитным полем, порожденным током в первом проводнике, что по закону электромагнитной индукции вызывает возникновение ЭДС во втором проводнике. Если второй проводник замкнут, то под действием ЭДС взаимоиндукции в нём образуется индуцированный ток. И наоборот, изменение тока во второй цепи вызовет появление ЭДС в первой. Направление тока, возникшего при взаимоиндукции, определяется по правилу Ленца. Правило указывает на то, что изменение тока в одной цепи (катушке) встречает противодействие со стороны другой цепи (катушки).

    Чем большая часть магнитного поля первой цепи пронизывает вторую цепь, тем сильнее взаимоиндукция между цепями. С количественной стороны явление взаимоиндукции характеризуется взаимной индуктивностью (коэффициентом взаимоиндукции, коэффициентом связи). Для изменения величины индуктивной связи между цепями, катушки делают подвижными. Приборы, служащие для изменения взаимоиндукции между цепями, называются вариометрами связи.

    Явление взаимоиндукции широко используется для передачи энергии из одной электрической цепи в другую, для преобразования напряжения с помощью трансформатора.

    [ http://ru.wikipedia.org/wiki/%C2%E7%E0%E8%EC%EE%E8%ED%E4%F3%EA%F6%E8%FF]

    Тематики

    • электротехника, основные понятия

    EN

    DE

    FR

     

    взаимоиндукция
    взаимная индукция


    [Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.]

    Тематики

    • электротехника, основные понятия

    Синонимы

    EN

     

    коэффициент взаимоиндукции

    [Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.]

    Тематики

    • электротехника, основные понятия

    EN

    Англо-русский словарь нормативно-технической терминологии > mutual induction

См. также в других словарях:

  • Переменный ток —         в широком смысле Электрический ток, изменяющийся во времени. Обычно в технике под П. т. понимают периодический ток, в котором среднее значение за период силы тока и напряжения равно нулю. Периодом Т П. т. называют наименьший промежуток… …   Большая советская энциклопедия

  • Закон электромагнитной индукции Фарадея —     Классическая электродинамика …   Википедия

  • Электрическое поле Земли —         естественное электрическое поле Земли как планеты, которое наблюдается в твёрдом теле Земли, в морях, в атмосфере и магнитосфере. Э. п. 3. обусловлено сложным комплексом геофизических явлений. Распределение потенциала поля несёт в себе… …   Большая советская энциклопедия

  • МАГНИТОГИДРОДИНАМИЧЕСКИЙ ГЕНЕРАТОР — (МГД генератор) устройство, в к ром за счёт явления электромагнитной индукции в канале с наложенным магн. полем внутр., тепловая или (и) кинетич. и потенциальная энергии потока электропроводящей среды преобразуются в электрич. энергию. Рабочим… …   Физическая энциклопедия

  • ТЕРМОЭЛЕКТРИЧЕСТВО — явление прямого преобразования теплоты в электричество в твердых или жидких проводниках, а также обратное явление прямого нагревания и охлаждения спаев двух проводников проходящим током. Термин термоэлектричество охватывает три взаимосвязанных… …   Энциклопедия Кольера

  • ЭЛЕКТРИЧЕСТВО И МАГНЕТИЗМ — раздел физики, охватывающий знания о статическом электричестве, электрических токах и магнитных явлениях. ЭЛЕКТРОСТАТИКА В электростатике рассматриваются явления, связанные с покоящимися электрическими зарядами. Наличие сил, действующих между… …   Энциклопедия Кольера

  • электромагнитная индукция — возникновение электродвижущей силы (эдс индукции) в замкнутом проводящем контуре при изменении потока магнитной индукции через площадь, ограниченную этим контуром; электрический ток, вызванный этой эдс, называется индукционным током. * * *… …   Энциклопедический словарь

  • ПРИЁМНИКИ ОПТИЧЕСКОГО ИЗЛУЧЕНИЯ — устройства, изменение состояния к рых под действием потока оптического излучения служит для обнаружения этого излучения. П. о. и. преобразуют энергию оптич. излучения в другие виды энергии (тепловую, электрич., механич. и т. д.), более удобные… …   Физическая энциклопедия

  • Стеклянный электрод — Эту статью следует викифицировать. Пожалуйста, оформите её согласно правилам оформления статей. У этого термина есть и другие значения, см. Электрод (значения) Стеклянные электроды …   Википедия

  • Электромагнитная индукция — Не следует путать с вектором электрической индукции. Не следует путать с вектором магнитной индукции.     …   Википедия

  • МАГНИТНАЯ ГИДРОДИНАМИКА — наука о движении электропроводящих газов и жидкостей во взаимодействии с магн. полем. При движении электропроводящей среды (газа, жидкости), находящейся в магн. поле, в ней индуцируются электрич. поля и токи, на к рые действует магн. поле и к рые …   Физическая энциклопедия

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»