Перевод: со всех языков на все языки

со всех языков на все языки

установить+сигнал

  • 41 локальная вычислительная сеть

    1. local area network
    2. LAN

     

    локальная вычислительная сеть
    ЛВС

    Вычислительная сеть, охватывающая небольшую территорию и использующая ориентированные на эту территорию средства и методы передачи данных.
    Примечание
    Под небольшой территорией понимают здание, предприятие, учреждение
    [ ГОСТ 24402-88]
    [ ГОСТ 29099-91]

    сеть локальная вычислительная
    Вычислительная сеть, объединяющая компьютеры или другие вычислительные средства, расположенные в одном или нескольких близстоящих зданиях (сооружениях).
    [РД 01.120.00-КТН-228-06]

    локальная вычислительная сеть
    Вычислительная сеть, которая обычно охватывает территорию в пределах одного здания или небольшого промышленного комплекса.
    [ ГОСТ Р 54325-2011 (IEC/TS 61850-2:2003)]

    локальная сеть
    Локальная сеть образуется соединением нескольких электронных устройств при помощи кабелей или технологий беспроводной связи, подключенных при помощи маршрутизаторов публичного доступа к глобальной (WAN) или городской сети (MAN). Локальной называют сеть малого или среднего масштаба (от 100 метров до 5 километров). Такие сети создаются в жилых домах, небольших офисах или в пределах территории, занимаемой компанией. Локальные сети считают частными сетями, поскольку для подключения к такой сети Ваш компьютер должен иметь к ней права доступа. Персональная вычислительная сеть (PAN) это особый случай локальной сети.
    [ http://www.sotovik.ru/lib/news_article/news_26322.html]

    FR


    Локальная вычислительная сеть (ЛВС, LAN – Local Area Network) – это совокупность аппаратного и программного обеспечения, позволяющего объединить компьютеры в единую распределенную систему обработки и хранения информации. К аппаратному обеспечению относятся компьютеры, с установленными в них сетевыми адаптерами, повторители, концентраторы, коммутаторы, мосты, маршрутизаторы и др., соединенные между собой при помощи кабельной системы или по беспроводному каналу. К программному обеспечению можно отнести сетевые операционные системы, системные и прикладные программы, использующие для сетевого взаимодействия соответствующие протоколы передачи информации. Расстояние между компьютерами объединяемыми в ЛВС обычно не превышает нескольких километров (термин "локальные сети"), что связано с затуханием электрического сигнала в кабелях. Технология виртуальных частных сетей (VPN – Virtual Private Network) позволяет через Internet и линии телекоммуникаций объединять в единую ЛВС несколько ЛВС, разнесенных на тысячи километров, однако это скорее именно объединение сетей, а сами ЛВС ограничены небольшим диаметром.

    Задачи, решаемые ЛВС:

    Передача файлов. Во-первых, экономится бумага и чернила принтера. Во-вторых, электрический сигнал по кабелю из отдела в отдел движется гораздо быстрее, чем любой сотрудник с документом. Он не болтает о футболе и не забывает в курилке важные документы. Кроме того, за электричество Вы платите гораздо меньше, чем зарплата курьера.
    Разделение (совместное использование) файлов данных и программ. Отпадает необходимость дублировать данные на каждом компьютере. В случае если данные бухгалтерии одновременно нужны дирекции, планово экономическому отделу и отделу маркетинга, то нет необходимости отнимать время и нервы у бухгалтера, отвлекая его от калькуляции себестоимости каждые три секунды. Кроме того, если бухгалтерию ведут несколько человек, то 20 независимых копий бухгалтерской программы и соответственно 20 копий главной книги (1 человек занимается зарплатой, 2-ой материалами и т.д.) создали бы большие трудности для совместной работы и невероятные трудности при попытке объединить все копии в одну. Сеть позволяет бухгалтерам работать с программой одновременно и видеть данные, вносимые друг другом.
    Разделение (совместное использование) принтеров и другого оборудования.
    Значительно экономятся средства на приобретение и ремонт техники, т.к. нет никакой необходимости устанавливать принтер у каждого компьютера, достаточно установить сетевой принтер.
    Электронная почта. Помимо экономии бумаги и оперативности доставки, исключается проблема "Был, но только что вышел. Зайдите (подождите) через полчаса", а также проблема "Мне не передали" и "А вы точно оставляли документы?". Когда бы занятый товарищ ни вернулся, письмо будет ждать его.
    Координация совместной работы. При совместном решении задач, каждый может оставаться на рабочем месте, но работать "в команде". Для менеджера проекта значительно упрощается задача контроля и координирования действий, т.к. сеть создает единое, легко наблюдаемое виртуальное пространство с большой скоростью взаимодействия территориально разнесенных участников.
    Упорядочивание делопроизводства, контроль доступа к информации, защита информации. Чем меньше потенциальных возможностей потерять (забыть, положить не в ту папку) документ, тем меньше таких случаев будет. В любом случае, гораздо легче найти документ на сервере (автоматический поиск, всегда известно авторство документа), чем в груде бумаг на столе. Сеть также позволяет проводить единую политику безопасности на предприятии, меньше полагаясь на сознательность сотрудников:
    всегда можно четко определить права доступа к документам и протоколировать все действия сотрудников.
    Стиль и престиж. Играют не последнюю роль, особенно в высокотехнологичных областях.

    [Ляхевич А.Г. Сетевые технологии и базы данных. Учебное пособие. Белорусский национальный технический университет.]

    Тематики

    Синонимы

    EN

    93. Локальная вычислительная сеть

    ЛВС

    Local area network

    LAN

    Вычислительная сеть, охватывающая небольшую территорию и использующая ориентированные на эту территорию средства и методы передачи данных.

    Примечание. Под небольшой территорией понимают здание, предприятие, учреждение

    Источник: ГОСТ 24402-88: Телеобработка данных и вычислительные сети. Термины и определения оригинал документа

    Русско-английский словарь нормативно-технической терминологии > локальная вычислительная сеть

  • 42 трехфазный источник бесперебойного питания (ИБП)

    1. three-phase UPS

     

    трехфазный ИБП
    -
    [Интент]


    Глава 7. Трехфазные ИБП

    ... ИБП большой мощности (начиная примерно с 10 кВА) как правило предназначены для подключения к трехфазной электрической сети. Диапазон мощностей 8-25 кВА – переходный. Для такой мощности делают чисто однофазные ИБП, чисто трехфазные ИБП и ИБП с трехфазным входом и однофазным выходом. Все ИБП, начиная примерно с 30 кВА имеют трехфазный вход и трехфазный выход. Трехфазные ИБП имеют и другое преимущество перед однофазными ИБП. Они эффективно разгружают нейтральный провод от гармоник тока и способствуют более безопасной и надежной работе больших компьютерных систем. Эти вопросы рассмотрены в разделе "Особенности трехфазных источников бесперебойного питания" главы 8. Трехфазные ИБП строятся обычно по схеме с двойным преобразованием энергии. Поэтому в этой главе мы будем рассматривать только эту схему, несмотря на то, что имеются трехфазные ИБП, построенные по схеме, похожей на ИБП, взаимодействующий с сетью.

    Схема трехфазного ИБП с двойным преобразованием энергии приведена на рисунке 18.

    4929
    Рис.18. Трехфазный ИБП с двойным преобразованием энергии

    Как видно, этот ИБП не имеет почти никаких отличий на уровне блок-схемы, за исключением наличия трех фаз. Для того, чтобы увидеть отличия от однофазного ИБП с двойным преобразованием, нам придется (почти впервые в этой книге) несколько подробнее рассмотреть элементы ИБП. Мы будем проводить это рассмотрение, ориентируясь на традиционную технологию. В некоторых случаях будут отмечаться схемные особенности, позволяющие улучшить характеристики.

    Выпрямитель

    Слева на рис 18. – входная электрическая сеть. Она включает пять проводов: три фазных, нейтраль и землю. Между сетью и ИБП – предохранители (плавкие или автоматические). Они позволяют защитить сеть от аварии ИБП. Выпрямитель в этой схеме – регулируемый тиристорный. Управляющая им схема изменяет время (долю периода синусоиды), в течение которого тиристоры открыты, т.е. выпрямляют сетевое напряжение. Чем большая мощность нужна для работы ИБП, тем дольше открыты тиристоры. Если батарея ИБП заряжена, на выходе выпрямителя поддерживается стабилизированное напряжение постоянного тока, независимо от нвеличины напряжения в сети и мощности нагрузки. Если батарея требует зарядки, то выпрямитель регулирует напряжение так, чтобы в батарею тек ток заданной величины.

    Такой выпрямитель называется шести-импульсным, потому, что за полный цикл трехфазной электрической сети он выпрямляет 6 полупериодов сингусоиды (по два в каждой из фаз). Поэтому в цепи постоянного тока возникает 6 импульсов тока (и напряжения) за каждый цикл трехфазной сети. Кроме того, во входной электрической сети также возникают 6 импульсов тока, которые могут вызвать гармонические искажения сетевого напряжения. Конденсатор в цепи постоянного тока служит для уменьшения пульсаций напряжения на аккумуляторах. Это нужно для полной зарядки батареи без протекания через аккумуляторы вредных импульсных токов. Иногда к конденсатору добавляется еще и дроссель, образующий совместно с конденсатором L-C фильтр.

    Коммутационный дроссель ДР уменьшает импульсные токи, возникающие при открытии тиристоров и служит для уменьшения искажений, вносимых выпрямителем в электрическую сеть. Для еще большего снижения искажений, вносимых в сеть, особенно для ИБП большой мощности (более 80-150 кВА) часто применяют 12-импульсные выпрямители. Т.е. за каждый цикл трехфазной сети на входе и выходе выпрямителя возникают 12 импульсов тока. За счет удвоения числа импульсов тока, удается примерно вдвое уменьшить их амплитуду. Это полезно и для аккумуляторов и для электрической сети.

    Двенадцати-импульсный выпрямитель фактически состоит из двух 6-импульсных выпрямителей. На вход второго выпрямителя (он изображен ниже на рис. 18) подается трехфазное напряжение, прошедшее через трансформатор, сдвигающий фазу на 30 градусов.

    В настоящее время применяются также и другие схемы выпрямителей трехфазных ИБП. Например схема с пассивным (диодным) выпрямителем и преобразователем напряжения постоянного тока, применение которого позволяет приблизить потребляемый ток к синусоидальному.

    Наиболее современным считается транзисторный выпрямитель, регулируемый высокочастотной схемой широтно-импульсной модуляции (ШИМ). Применение такого выпрямителя позволяет сделать ток потребления ИБП синусоидальным и совершенно отказаться от 12-импульсных выпрямителей с трансформатором.

    Батарея

    Для формирования батареи трехфазных ИБП (как и в однофазных ИБП) применяются герметичные свинцовые аккумуляторы. Обычно это самые распространенные модели аккумуляторов с расчетным сроком службы 5 лет. Иногда используются и более дорогие аккумуляторы с большими сроками службы. В некоторых трехфазных ИБП пользователю предлагается фиксированный набор батарей или батарейных шкафов, рассчитанных на различное время работы на автономном режиме. Покупая ИБП других фирм, пользователь может более или менее свободно выбирать батарею своего ИБП (включая ее емкость, тип и количество элементов). В некоторых случаях батарея устанавливается в корпус ИБП, но в большинстве случаев, особенно при большой мощности ИБП, она устанавливается в отдельном корпусе, а иногда и в отдельном помещении.

    Инвертор

    Как и в ИБП малой мощности, в трехфазных ИБП применяются транзисторные инверторы, управляемые схемой широтно-импульсной модуляции (ШИМ). Некоторые ИБП с трехфазным выходом имеют два инвертора. Их выходы подключены к трансформаторам, сдвигающим фазу выходных напряжений. Даже в случае применения относительно низкочастоной ШИМ, такая схема совместно с применением фильтра переменного тока, построенного на трансформаторе и конденсаторах, позволяет обеспечить очень малый коэффициент гармонических искажений на выходе ИБП (до 3% на линейной нагрузке). Применение двух инверторов увеличивает надежность ИБП, поскольку даже при выходе из строя силовых транзисторов одного из инверторов, другой инвертор обеспечит работу нагрузки, пусть даже при большем коэффициенте гармонических искажений.

    В последнее время, по мере развития технологии силовых полупроводников, начали применяться более высокочастотные транзисторы. Частота ШИМ может составлять 4 и более кГц. Это позволяет уменьшить гармонические искажения выходного напряжения и отказаться от применения второго инвертора. В хороших ИБП существуют несколько уровней защиты инвертора от перегрузки. При небольших перегрузках инвертор может уменьшать выходное напряжение (пытаясь снизить ток, проходящий через силовые полупроводники). Если перегрузка очень велика (например нагрузка составляет более 125% номинальной), ИБП начинает отсчет времени работы в условиях перегрузки и через некоторое время (зависящее от степени перегрузки – от долей секунды до минут) переключается на работу через статический байпас. В случае большой перегрузки или короткого замыкания, переключение на статический байпас происходит сразу.

    Некоторые современные высококлассные ИБП (с высокочакстотной ШИМ) имеют две цепи регулирования выходного напряжения. Первая из них осуществляет регулирование среднеквадратичного (действующего) значения напряжения, независимо для каждой из фаз. Вторая цепь измеряет мгновенные значения выходного напряжения и сравнивает их с хранящейся в памяти блока управления ИБП идеальной синусоидой. Если мгновенное значение напряжения отклонилось от соотвествующего "идеального" значения, то вырабатывается корректирующий импульс и форма синусоиды выходного напряжения исправляется. Наличие второй цепи обратной связи позволяет обеспечить малые искажения формы выходного напряжения даже при нелинейных нагрузках.

    Статический байпас

    Блок статического байпаса состоит из двух трехфазных (при трехфазном выходе) тиристорных переключателей: статического выключателя инвертора (на схеме – СВИ) и статического выключателя байпаса (СВБ). При нормальной работе ИБП (от сети или от батареи) статический выключатель инвертора замкнут, а статический выключатель байпаса разомкнут. Во время значительных перегрузок или выхода из строя инвертора замкнут статический переключатель байпаса, переключатель инвертора разомкнут. В момент переключения оба статических переключателя на очень короткое время замкнуты. Это позволяет обеспечить безразрывное питание нагрузки.

    Каждая модель ИБП имеет свою логику управления и, соответственно, свой набор условий срабатывания статических переключателей. При покупке ИБП бывает полезно узнать эту логику и понять, насколько она соответствует вашей технологии работы. В частности хорошие ИБП сконструированы так, чтобы даже если байпас недоступен (т.е. отсутствует синхронизация инвертора и байпаса – см. главу 6) в любом случае постараться обеспечить электроснабжение нагрузки, пусть даже за счет уменьшения напряжения на выходе инвертора.

    Статический байпас ИБП с трехфазным входом и однофазным выходом имеет особенность. Нагрузка, распределенная на входе ИБП по трем фазным проводам, на выходе имеет только два провода: один фазный и нейтральный. Статический байпас тоже конечно однофазный, и синхронизация напряжения инвертора производится относительно одной из фаз трехфазной сети (любой, по выбору пользователя). Вся цепь, подводящая напряжение к входу статического байпаса должна выдерживать втрое больший ток, чем входной кабель выпрямителя ИБП. В ряде случаев это может вызвать трудности с проводкой.

    Сервисный байпас

    Трехфазные ИБП имеют большую мощность и обычно устанавливаются в местах действительно критичных к электропитанию. Поэтому в случае выхода из строя какого-либо элемента ИБП или необходимости проведения регламентных работ (например замены батареи), в большинстве случае нельзя просто выключить ИБП или поставить на его место другой. Нужно в любой ситуации обеспечить электропитание нагрузки. Для этих ситуаций у всех трехфазных ИБП имеется сервисный байпас. Он представляет собой ручной переключатель (иногда как-то заблокированный, чтобы его нельзя было включить по ошибке), позволяющий переключить нагрузку на питание непосредственно от сети. У большинства ИБП для переключения на сервисный байпас существует специальная процедура (определенная последовательность действий), которая позволяет обеспечит непрерывность питания при переключениях.

    Режимы работы трехфазного ИБП с двойным преобразованием

    Трехфазный ИБП может работать на четырех режимах работы.

    • При нормальной работе нагрузка питается по цепи выпрямитель-инвертор стабилизированным напряжением, отфильтрованным от импульсов и шумов за счет двойного преобразования энергии.
    • Работа от батареи. На это режим ИБП переходит в случае, если напряжение на выходе ИБП становится таким маленьким, что выпрямитель оказывается не в состоянии питать инвертор требуемым током, или выпрямитель не может питать инвертор по другой причине, например из-за поломки. Продолжительность работы ИБП от батареи зависит от емкости и заряда батареи, а также от нагрузки ИБП.
    • Когда какой-нибудь инвертор выходит из строя или испытывает перегрузку, ИБП безразрывно переходит на режим работы через статический байпас. Нагрузка питается просто от сети через вход статического байпаса, который может совпадать или не совпадать со входом выпрямителя ИБП.
    • Если требуется обслуживание ИБП, например для замены батареи, то ИБП переключают на сервисный байпас. Нагрузка питается от сети, а все цепи ИБП, кроме входного выключателя сервисного байпаса и выходных выключателей отделены от сети и от нагрузки. Режим работы на сервисном байпасе не является обязательным для небольших однофазных ИБП с двойным преобразованием. Трехфазный ИБП без сервисного байпаса немыслим.

    Надежность

    Трехфазные ИБП обычно предназначаются для непрерывной круглосуточной работы. Работа нагрузки должна обеспечиваться практически при любых сбоях питания. Поэтому к надежности трехфазных ИБП предъявляются очень высокие требования. Вот некоторые приемы, с помощью которых производители трехфазных ИБП могут увеличивать надежность своей продукции. Применение разделительных трансформаторов на входе и/или выходе ИБП увеличивает устойчивость ИБП к скачкам напряжения и нагрузки. Входной дроссель не только обеспечивает "мягкий запуск", но и защищает ИБП (и, в конечном счете, нагрузку) от очень быстрых изменений (скачков) напряжения.

    Обычно фирма выпускает целый ряд ИБП разной мощности. В двух или трех "соседних по мощности" ИБП этого ряда часто используются одни и те же полупроводники. Если это так, то менее мощный из этих двух или трех ИБП имеет запас по предельному току, и поэтому несколько более надежен. Некоторые трехфазные ИБП имеют повышенную надежность за счет резервирования каких-либо своих цепей. Так, например, могут резервироваться: схема управления (микропроцессор + платы "жесткой логики"), цепи управления силовыми полупроводниками и сами силовые полупроводники. Батарея, как часть ИБП тоже вносит свой вклад в надежность прибора. Если у ИБП имеется возможность гибкого выбора батареи, то можно выбрать более надежный вариант (батарея более известного производителя, с меньшим числом соединений).

    Преобразователи частоты

    Частота напряжения переменного тока в электрических сетях разных стран не обязательно одинакова. В большинстве стран (в том числе и в России) распространена частота 50 Гц. В некоторых странах (например в США) частота переменного напряжения равна 60 Гц. Если вы купили оборудование, рассчитанное на работу в американской электрической сети (110 В, 60 Гц), то вы должны каким-то образом приспособить к нему нашу электрическую сеть. Преобразование напряжения не является проблемой, для этого есть трансформаторы. Если оборудование оснащено импульсным блоком питания, то оно не чувствительно к частоте и его можно использовать в сети с частотой 50 Гц. Если же в состав оборудования входят синхронные электродвигатели или иное чувствительное к частоте оборудование, вам нужен преобразователь частоты. ИБП с двойным преобразованием энергии представляет собой почти готовый преобразователь частоты.

    В самом деле, ведь выпрямитель этого ИБП может в принципе работать на одной частоте, а инвертор выдавать на своем выходе другую. Есть только одно принципиальное ограничение: невозможность синхронизации инвертора с линией статического байпаса из-за разных частот на входе и выходе. Это делает преобразователь частоты несколько менее надежным, чем сам по себе ИБП с двойным преобразованием. Другая особенность: преобразователь частоты должен иметь мощность, соответствующую максимальному возможному току нагрузки, включая все стартовые и аварийные забросы, ведь у преобразователя частоты нет статического байпаса, на который система могла бы переключиться при перегрузке.

    Для изготовления преобразователя частоты из трехфазного ИБП нужно разорвать цепь синхронизации, убрать статический байпас (или, вернее, не заказывать его при поставке) и настроить инвертор ИБП на работу на частоте 60 Гц. Для большинства трехфазных ИБП это не представляет проблемы, и преобразователь частоты может быть заказан просто при поставке.

    ИБП с горячим резервированием

    В некоторых случаях надежности даже самых лучших ИБП недостаточно. Так бывает, когда сбои питания просто недопустимы из-за необратимых последствий или очень больших потерь. Обычно в таких случаях в технике применяют дублирование или многократное резервирование блоков, от которых зависит надежность системы. Есть такая возможность и для трехфазных источников бесперебойного питания. Даже если в конструкцию ИБП стандартно не заложено резервирование узлов, большинство трехфазных ИБП допускают резервирование на более высоком уровне. Резервируется целиком ИБП. Простейшим случаем резервирования ИБП является использование двух обычных серийных ИБП в схеме, в которой один ИБП подключен к входу байпаса другого ИБП.

    4930

    Рис. 19а. Последовательное соединение двух трехфазных ИБП

    На рисунке 19а приведена схема двух последовательно соединенным трехфазных ИБП. Для упрощения на рисунке приведена, так называемая, однолинейная схема, на которой трем проводам трехфазной системы переменного тока соответствует одна линия. Однолинейные схемы часто применяются в случаях, когда особенности трехфазной сети не накладывают отпечаток на свойства рассматриваемого прибора. Оба ИБП постоянно работают. Основной ИБП питает нагрузку, а вспомогательный ИБП работает на холостом ходу. В случае выхода из строя основного ИБП, нагрузка питается не от статического байпаса, как в обычном ИБП, а от вспомогательного ИБП. Только при выходе из строя второго ИБП, нагрузка переключается на работу от статического байпаса.

    Система из двух последовательно соединенных ИБП может работать на шести основных режимах.

    А. Нормальная работа. Выпрямители 1 и 2 питают инверторы 1 и 2 и, при необходимости заряжают батареи 1 и 2. Инвертор 1 подключен к нагрузке (статический выключатель инвертора 1 замкнут) и питает ее стабилизированным и защищенным от сбоев напряжением. Инвертор 2 работает на холостом ходу и готов "подхватить" нагрузку, если инвертор 1 выйдет из строя. Оба статических выключателя байпаса разомкнуты.

    Для обычного ИБП с двойным преобразованием на режиме работы от сети допустим (при сохранении гарантированного питания) только один сбой в системе. Этим сбоем может быть либо выход из строя элемента ИБП (например инвертора) или сбой электрической сети.

    Для двух последовательно соединенных ИБП с на этом режиме работы допустимы два сбоя в системе: выход из строя какого-либо элемента основного ИБП и сбой электрической сети. Даже при последовательном или одновременном возникновении двух сбоев питание нагрузки будет продолжаться от источника гарантированного питания.

    Б. Работа от батареи 1. Выпрямитель 1 не может питать инвертор и батарею. Чаще всего это происходит из-за отключения напряжения в электрической сети, но причиной может быть и выход из строя выпрямителя. Состояние инвертора 2 в этом случае зависит от работы выпрямителя 2. Если выпрямитель 2 работает (например он подключен к другой электрической сети или он исправен, в отличие от выпрямителя 1), то инвертор 2 также может работать, но работать на холостом ходу, т.к. он "не знает", что с первым ИБП системы что-то случилось. После исчерпания заряда батареи 1, инвертор 1 отключится и система постарается найти другой источник электроснабжения нагрузки. Им, вероятно, окажется инвертор2. Тогда система перейдет к другому режиму работы.

    Если в основном ИБП возникает еще одна неисправность, или батарея 1 полностью разряжается, то система переключается на работу от вспомогательного ИБП.

    Таким образом даже при двух сбоях: неисправности основного ИБП и сбое сети нагрузка продолжает питаться от источника гарантированного питания.

    В. Работа от инвертора 2. В этом случае инвертор 1 не работает (из-за выхода из строя или полного разряда батареи1). СВИ1 разомкнут, СВБ1 замкнут, СВИ2 замкнут и инвертор 2 питает нагрузку. Выпрямитель 2, если в сети есть напряжение, а сам выпрямитель исправен, питает инвертор и батарею.

    На этом режиме работы допустим один сбой в системе: сбой электрической сети. При возникновении второго сбоя в системе (выходе из строя какого-либо элемента вспомогательного ИБП) электропитание нагрузки не прерывается, но нагрузка питается уже не от источника гарантированного питания, а через статический байпас, т.е. попросту от сети.

    Г. Работа от батареи 2. Наиболее часто такая ситуация может возникнуть после отключения напряжения в сети и полного разряда батареи 1. Можно придумать и более экзотическую последовательность событий. Но в любом случае, инвертор 2 питает нагругку, питаясь, в свою очередь, от батареи. Инвертор 1 в этом случае отключен. Выпрямитель 1, скорее всего, тоже не работает (хотя он может работать, если он исправен и в сети есть напряжение).

    После разряда батареи 2 система переключится на работу от статического байпаса (если в сети есть нормальное напряжение) или обесточит нагрузку.

    Д. Работа через статический байпас. В случае выхода из строя обоих инверторов, статические переключатели СВИ1 и СВИ2 размыкаются, а статические переключатели СВБ1 и СВБ2 замыкаются. Нагрузка начинает питаться от электрической сети.

    Переход системы к работе через статический байпас происходит при перегрузке системы, полном разряде всех батарей или в случае выхода из строя двух инверторов.

    На этом режиме работы выпрямители, если они исправны, подзаряжают батареи. Инверторы не работают. Нагрузка питается через статический байпас.

    Переключение системы на работу через статический байпас происходит без прерывания питания нагрузки: при необходимости переключения сначала замыкается тиристорный переключатель статического байпаса, и только затем размыкается тиристорный переключатель на выходе того инвертора, от которого нагрузка питалась перед переключением.

    Е. Ручной (сервисный) байпас. Если ИБП вышел из строя, а ответственную нагрузку нельзя обесточить, то оба ИБП системы с соблюдением специальной процедуры (которая обеспечивает безразрыное переключение) переключают на ручной байпас. после этого можно производить ремонт ИБП.

    Преимуществом рассмотренной системы с последовательным соединением двух ИБП является простота. Не нужны никакие дополнительные элементы, каждый из ИБП работает в своем штатном режиме. С точки зрения надежности, эта схема совсем не плоха:- в ней нет никакой лишней, (связанной с резервированием) электроники, соответственно и меньше узлов, которые могут выйти из строя.

    Однако у такого соединения ИБП есть и недостатки. Вот некоторые из них.
     

    1. Покупая такую систему, вы покупаете второй байпас (на нашей схеме – он первый – СВБ1), который, вообще говоря, не нужен – ведь все необходимые переключения могут быть произведены и без него.
    2. Весь второй ИБП выполняет только одну функцию – резервирование. Он потребляет электроэнергию, работая на холостом ходу и вообще не делает ничего полезного (разумеется за исключением того времени, когда первый ИБП отказывается питать нагрузку). Некоторые производители предлагают "готовые" системы ИБП с горячим резервированием. Это значит, что вы покупаете систему, специально (еще на заводе) испытанную в режиме с горячим резервированием. Схема такой системы приведена на рис. 19б.

    4931

    Рис.19б. Трехфазный ИБП с горячим резервированием

    Принципиальных отличий от схемы с последовательным соединением ИБП немного.

    1. У второго ИБП отсутствует байпас.
    2. Для синхронизации между инвертором 2 и байпасом появляется специальный информационный кабель между ИБП (на рисунке не показан). Поэтому такой ИБП с горячим резервированием может работать на тех же шести режимах работы, что и система с последовательным подключением двух ИБП. Преимущество "готового" ИБП с резервированием, пожалуй только одно – он испытан на заводе-производителе в той же комплектации, в которой будет эксплуатироваться.

    Для расмотренных схем с резервированием иногда применяют одно важное упрощение системы. Ведь можно отказаться от резервирования аккумуляторной батареи, сохранив резервирование всей силовой электроники. В этом случае оба ИБП будут работать от одной батареи (оба выпрямителя будут ее заряжать, а оба инвертора питаться от нее в случае сбоя электрической сети). Применение схемы с общей бетареей позволяет сэкономить значительную сумму – стоимость батареи.

    Недостатков у схемы с общей батареей много:

    1. Не все ИБП могут работать с общей батареей.
    2. Батарея, как и другие элементы ИБП обладает конечной надежностью. Выход из строя одного аккумулятора или потеря контакта в одном соединении могут сделать всю системы ИБП с горячим резервирование бесполезной.
    3. В случае выхода из строя одного выпрямителя, общая батарея может быть выведена из строя. Этот последний недостаток, на мой взгляд, является решающим для общей рекомендации – не применять схемы с общей батареей.


    Параллельная работа нескольких ИБП

    Как вы могли заметить, в случае горячего резервирования, ИБП резервируется не целиком. Байпас остается общим для обоих ИБП. Существует другая возможность резервирования на уровне ИБП – параллельная работа нескольких ИБП. Входы и выходы нескольких ИБП подключаются к общим входным и выходным шинам. Каждый ИБП сохраняет все свои элементы (иногда кроме сервисного байпаса). Поэтому выход из строя статического байпаса для такой системы просто мелкая неприятность.

    На рисунке 20 приведена схема параллельной работы нескольких ИБП.

    4932

    Рис.20. Параллельная работа ИБП

    На рисунке приведена схема параллельной системы с раздельными сервисными байпасами. Схема система с общим байпасом вполне ясна и без чертежа. Ее особенностью является то, что для переключения системы в целом на сервисный байпас нужно управлять одним переключателем вместо нескольких. На рисунке предполагается, что между ИБП 1 и ИБП N Могут располагаться другие ИБП. Разные производителю (и для разных моделей) устанавливают свои максимальные количества параллеьно работающих ИБП. Насколько мне известно, эта величина изменяется от 2 до 8. Все ИБП параллельной системы работают на общую нагрузку. Суммарная мощность параллельной системы равна произведению мощности одного ИБП на количество ИБП в системе. Таким образом параллельная работа нескольких ИБП может применяться (и в основном применяется) не столько для увеличения надежности системы бесперебойного питания, но для увеличения ее мощности.

    Рассмотрим режимы работы параллельной системы

    Нормальная работа (работа от сети). Надежность

    Когда в сети есть напряжение, достаточное для нормальной работы, выпрямители всех ИБП преобразуют переменное напряжение сети в постоянное, заряжая батареи и питая инверторы.

    Инверторы, в свою очередь, преобразуют постоянное напряжение в переменное и питают нагрузку. Специальная управляющая электроника параллельной системы следит за равномерным распределением нагрузки между ИБП. В некоторых ИБП распределение нагрузки между ИБП производится без использования специальной параллельной электроники. Такие приборы выпускаются "готовыми к параллельной работе", и для использования их в параллельной системе достаточно установить плату синхронизации. Есть и ИБП, работающие параллельго без специальной электроники. В таком случае количество параллельно работающих ИБП – не более двух. В рассматриваемом режиме работы в системе допустимо несколько сбоев. Их количество зависит от числа ИБП в системе и действующей нагрузки.

    Пусть в системе 3 ИБП мощностью по 100 кВА, а нагрузка равна 90 кВА. При таком соотношении числа ИБП и их мощностей в системе допустимы следующие сбои.

    Сбой питания (исчезновение напряжения в сети)

    Выход из строя любого из инверторов, скажем для определенности, инвертора 1. Нагрузка распределяется между двумя другими ИБП. Если в сети есть напряжение, все выпрямители системы работают.

    Выход из строя инвертора 2. Нагрузка питается от инвертора 3, поскольку мощность, потребляемая нагрузкой меньше мощности одного ИБП. Если в сети есть напряжение, все выпрямители системы продолжают работать.

    Выход из строя инвертора 3. Система переключается на работу через статический байпас. Нагрузка питается напрямую от сети. При наличии в сети нормального напряжения, все выпрямители работают и продолжают заряжать батареи. При любом последующем сбое (поломке статического байпаса или сбое сети) питание нагрузки прекращается. Для того, чтобы параллельная система допускала большое число сбоев, система должна быть сильно недогружена и должна включать большое число ИБП. Например, если нагрузка в приведенном выше примере будет составлять 250 кВА, то система допускает только один сбой: сбой сети или поломку инвертора. В отношении количества допустимых сбоев такая система эквивалентна одиночному ИБП. Это, кстати, не значит, что надежность такой параллельной системы будет такая же, как у одиночного ИБП. Она будет ниже, поскольку параллельная система намного сложнее одиночного ИБП и (при почти предельной нагрузке) не имеет дополнительного резервирования, компенсирующего эту сложность.

    Вопрос надежности параллельной системы ИБП не может быть решен однозначно. Надежность зависит от большого числа параметров: количества ИБП в системе (причем увеличение количества ИБП до бесконечности снижает надежность – система становится слишком сложной и сложно управляемой – впрочем максимальное количество параллельно работающих модулей для известных мне ИБП не превышает 8), нагрузки системы (т.е. соотношения номинальной суммарной мощности системы и действующей нагрузки), примененной схемы параллельной работы (т.е. есть ли в системе специальная электроника для обеспечения распределения нагрузки по ИБП), технологии работы предприятия. Таким образом, если единственной целью является увеличение надежности системы, то следует серьезно рассмотреть возможность использование ИБП с горячим резервированием – его надежность не зависит от обстоятельств и в силу относительной простоты схемы практически всегда выше надежности параллельной системы.

    Недогруженная система из нескольких параллельно работающих ИБП, которая способна реализвать описанную выше логику управления, часто также называется параллельной системой с резервированием.

    Работа с частичной нагрузкой

    Если нагрузка параллельной системы такова, что с ней может справиться меньшее, чем есть в системе количество ИБП, то инверторы "лишних" ИБП могут быть отключены. В некоторых ИБП такая логика управления подразумевается по умолчанию, а другие модели вообще лишены возможности работы в таком режиме. Инверторы, оставшиеся включенными, питают нагрузку. Коэффициент полезного действия системы при этом несколько возрастает. Обычно в этом режиме работы предусматривается некоторая избыточность, т.е. количестов работающих инверторов больше, чем необходимо для питания нагрузки. Тем самым обеспечивается резервирование. Все выпрямители системы продолжают работать, включая выпрямители тех ИБП, инверторы которых отключены.

    Работа от батареи

    В случае исчезновения напряжения в электрической сети, параллельная система переходит на работу от батареи. Все выпрямители системы не работают, инверторы питают нагрузку, получая энергию от батареи. В этом режиме работы (естественно) отсутствует напряжение в электрической сети, которое при нормальной работе было для ИБП не только источником энергии, но и источником сигнала синхронизации выходного напряжения. Поэтому функцию синхронизации берет на себя специальная параллельная электроника или выходная цепь ИБП, специально ориентированная на поддержание выходной частоты и фазы в соответствии с частотой и фазой выходного напряжения параллельно работающего ИБП.

    Выход из строя выпрямителя

    Это режим, при котором вышли из строя один или несколько выпрямителей. ИБП, выпрямители которых вышли из строя, продолжают питать нагрузку, расходуя заряд своей батареи. Они выдает сигнал "неисправность выпрямителя". Остальные ИБП продолжают работать нормально. После того, как заряд разряжающихся батарей будет полностью исчерпан, все зависит от соотношения мощности нагрузки и суммарной мощности ИБП с исправными выпрямителями. Если нагрузка не превышает перегрузочной способности этих ИБП, то питание нагрузки продолжится (если у системы остался значительный запас мощности, то в этом режиме работы допустимо еще несколько сбоев системы). В случае, если нагрузка ИБП превышает перегрузочную способность оставшихся ИБП, то система переходит к режиму работы через статический байпас.

    Выход из строя инвертора

    Если оставшиеся в работоспособном состоянии инверторы могут питать нагрузку, то нагрузка продолжает работать, питаясь от них. Если мощности работоспособных инверторов недостаточно, система переходит в режим работы от статического байпаса. Выпрямители всех ИБП могут заряжать батареи, или ИБП с неисправными инверторами могут быть полностью отключены для выполнения ремонта.

    Работа от статического байпаса

    Если суммарной мощности всех исправных инверторов параллельной системы не достаточно для поддержания работы нагрузки, система переходит к работе через статический байпас. Статические переключатели всех инверторов разомкнуты (исправные инверторы могут продолжать работать). Если нагрузка уменьшается, например в результате отключения части оборудования, параллельная система автоматически переключается на нормальный режим работы.

    В случае одиночного ИБП с двойным преобразованием работа через статический байпас является практически последней возможностью поддержания работы нагрузки. В самом деле, ведь достаточно выхода из строя статического переключателя, и нагрузка будет обесточена. При работе параллельной системы через статический байпас допустимо некоторое количество сбоев системы. Статический байпас способен выдерживать намного больший ток, чем инвертор. Поэтому даже в случае выхода из строя одного или нескольких статических переключателей, нагрузка возможно не будет обесточена, если суммарный допустимый ток оставшихся работоспособными статических переключателей окажется достаточен для работы. Конкретное количество допустимых сбоев системы в этом режиме работы зависит от числа ИБП в системе, допустимого тока статического переключателя и величины нагрузки.

    Сервисный байпас

    Если нужно провести с параллельной системой ремонтные или регламентные работы, то система может быть отключена от нагрузки с помощью ручного переключателя сервисного байпаса. Нагрузка питается от сети, все элементы параллельной системы ИБП, кроме батарей, обесточены. Как и в случае системы с горячим резервированием, возможен вариант одного общего внешнего сервисного байпаса или нескольких сервисных байпасов, встроенных в отдельные ИБП. В последнем случае при использовании сервисного байпаса нужно иметь в виду соотношение номинального тока сервисного байпаса и действующей мощности нагрузки. Другими словами, нужно включить столько сервисных байпасов, чтобы нагрузка не превышала их суммарный номинальных ток.
    [ http://www.ask-r.ru/info/library/ups_without_secret_7.htm]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > трехфазный источник бесперебойного питания (ИБП)

  • 43 SF

    1. функция коммутации
    2. функция безопасности ядерного реактора
    3. с автоматической подачей
    4. растворимая фракция
    5. пропадание (потеря) сигнала
    6. показатель серьёзности (отказа, события)
    7. показатель источника
    8. площадь оребрённой поверхности
    9. плавкий предохранитель
    10. относительное число неудачных сканирований
    11. одноволоконный
    12. коэффициент расширения спектра
    13. конкретные результаты
    14. безопасный сбой

     

    безопасный сбой

    [Е.С.Алексеев, А.А.Мячев. Англо-русский толковый словарь по системотехнике ЭВМ. Москва 1993]

    Тематики

    EN

     

    конкретные результаты

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    коэффициент расширения спектра
    Показатель, характеризующий степень избыточности расширенной полосы частот относительно спектра информационного сигнала. Численно определяется как отношение ширины полосы частот в радиоканале к скорости передачи информации.
    [Л.М. Невдяев. Телекоммуникационные технологии. Англо-русский толковый словарь-справочник. Под редакцией Ю.М. Горностаева. Москва, 2002]

    Тематики

    • электросвязь, основные понятия

    EN

     

    одноволоконный
    (МСЭ-Т L.13).
    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    Тематики

    • электросвязь, основные понятия

    EN

     

    относительное число неудачных сканирований
    Показывает вероятность того, что в зоне обслуживания сети WiMAX нет ни одной доступной абонентской станции.
    [ http://www.morepc.ru/dict/]

    Тематики

    EN

     

    плавкий предохранитель
    Коммутационный аппарат, который посредством плавления одного или нескольких своих специально спроектированных и калиброванных элементов размыкает цепь, в которую он включен, и отключает ток, когда он превышает заданную величину в течение достаточного времени. Плавкий предохранитель содержит все части, образующие укомплектованный аппарат.
    МЭК 60050(441-18-01).
    [ ГОСТ Р 50030. 1-2000 ( МЭК 60947-1-99)]

    плавкий предохранитель
    Аппарат, который вследствие расплавления одного или нескольких специально спроектированных и рассчитанных элементов размыкает цепь, в которую он включен, отключая ток, превышающий заданное значение в течение достаточно продолжительного времени. В состав плавкого предохранителя входят все части, образующие аппарат в комплекте
    [ ГОСТ Р 50339. 0-2003 ( МЭК 60269-1-98)]

    предохранитель
    Коммутационный электрический аппарат, предназначенный для отключения защищаемой цепи посредством разрушения специально предусмотренных для этого токоведущих частей под действием тока, превышающего определенную величину.
    [ ГОСТ 17703-72]

    предохранитель
    Устройство для разрыва электрических цепей при силе тока, превышающей допустимое значение
    [Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)]

    EN

    fuse
    a device that by the fusing of one or more of its specially designed and proportioned components, opens the circuit in which it is inserted by breaking the current when this exceeds a given value for a sufficient time. The fuse comprises all the parts that form the complete device
    [IEV number 441-18-01 ]

    FR

    fusible
    coupe-circuit à fusibles

    appareil dont la fonction est d'ouvrir par la fusion d'un ou de plusieurs de ses éléments conçus et calibrés à cet effet le circuit dans lequel il est inséré en coupant le courant lorsque celui-ci dépasse pendant un temps suffisant une valeur donnée. Le fusible comprend toutes les parties qui constituent l'appareil complet
    [IEV number 441-18-01 ]

    Настоящий стандарт распространяется на плавкие предохранители на номинальный ток от 2 до 2500 А, номинальное напряжение переменного тока до 1000 В и постоянного тока до 1200 В, устанавливаемые в комплектные устройства и предназначенные для защиты при перегрузках и коротких замыканиях силовых и вспомогательных цепей электроустановок промышленных предприятий, общественных и жилых зданий, изготовляемые для нужд народного хозяйства и экспорта и номинальное напряжение до 3000 В для защиты полупроводниковых устройств.

    3.2.14. Предохранители должны быть сконструированы таким образом, чтобы отключать электрическую цепь при токах отключения в пределах: от условного тока плавления — для предохранителей с плавкими вставками типов g и gR или от наименьшего тока отключения, установленного в стандартах или технических условиях на предохранители конкретных серий и типов, для предохранителей с плавкими вставками типов а и aR — до наибольшего тока отключения
    [ ГОСТ 17242-86]

    ... токи, при которых проводят испытания, предназначенные для проверки способности данного плавкого предохранителя срабатывать удовлетворительно в диапазоне малых сверхтоков.
    [ ГОСТ Р 50339.0-2003]

    ... Если неисправность заканчивается срабатыванием плавкого предохранителя или если плавкий предохранитель не срабатывает примерно в течение 1 с, то...
    [ ГОСТ Р 52319-2005]

    ЭЛЕКТРИЧЕСКИЕ ПАРАМЕТРЫ И ХАРАКТЕНИСТИКИ ПРЕДОХРАНИТЕЛЕЙ
    (взято из ГОСТ 17242-86)

    • Для держателя (или основания) предохранителя:
      • номинальное напряжение;
      • номинальный ток;
      • род тока и номинальная частота для переменного тока;
      • допустимые потери мощности;
      • число полюсов, если их более одного.
    • Для плавкой вставки:
      • номинальное напряжение;
      • номинальный ток;
      • род тока и номинальная частота для переменного тока;
      • потери мощности;
      • время-токовые характеристики с указанием коэффициентов K1 и K2 для плавких вставок типа а;
      • перегрузочная способность;
      • диапазон токов отключения;
      • наибольшая отключающая способность;
      • наименьший ток отключения для плавких вставок типа а;
      • характеристика пропускаемого тока;
      • характеристики интегралов Джоуля;
      • перенапряжение и характеристика перенапряжения для плавких вставок типов aR и gR;
      • условия селективности (при необходимости);
      • электрическое сопротивление плавкой вставки в холодном состоянии (допускается указать в рабочих чертежах, утвержденных в установленном порядке).
    • Для предохранителя:
      • степень защиты по ГОСТ 14255—69;
      • номинальное напряжение, номинальный ток и коммутационная способность свободных контактов (при их наличии).

    Параллельные тексты EN-RU

    Check to make sure that fuse F1 on power supply module V is not fused.

    If the fuse is defective, it should not be replaced without determining the cause of failure.

    If a fuse is replaced without eliminating the problem, there is the danger that the damage will spread.

    [Schneider Electric]

    Убедитесь в исправности предохранителя F1 в модуле питания V.

    Если предохранитель оказался неисправным, то прежде чем заменить его необходимо установить причину возникновения неисправности.

    Замена предохранителя без выяснения причины его срабатывания может привести к повторению срабатывания.


    [Перевод Интент]

    High voltage system may embrace a fuse.
    Note that a fuse may not be manually adjusted as the circuit breaker relay does so the fuse choice for the appropriate purpose/circuit adaptation is deemed most important.

    [LS Industrial Systems]

    Высоковольтная система < электропитания> может содержать предохранители.
    Обратите внимание! Предохранитель нельзя настроить, как это можно сделать с расцепителем автоматического выключателя. Поэтому предохранитель необходимо выбрать так, чтобы он как можно точнее соотвествовал конкретным условиям защиты аппарата или участка цепи.

    [Перевод Интент]


     

    Тематики

    Классификация

    >>>

    Обобщающие термины

    Действия

    Синонимы

    EN

    DE

    FR

     

    площадь оребрённой поверхности

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    показатель источника
    (напр. излучения)
    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    показатель серьёзности (отказа, события)

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    пропадание (потеря) сигнала
    Сигнал, указывающий, что соответствующие данные пропали в том смысле, что стало активным состояние дефекта перекрестной наводки (не являющееся дефектом ухудшения). (МСЭ-T G.806).
    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    Тематики

    • электросвязь, основные понятия

    EN

     

    растворимая фракция

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    с автоматической подачей

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    функция безопасности ядерного реактора

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    функция коммутации
    (МСЭ-Т Х.145).
    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    Тематики

    • электросвязь, основные понятия

    EN

    Англо-русский словарь нормативно-технической терминологии > SF

  • 44 DRM

    1. управление цифровыми правами
    2. режим цифрового обновления
    3. всемирное цифровое радио

     

    всемирное цифровое радио
    Стандарт системы цифрового коротковолнового радио, принятый мировыми вещательными корпорациями.
    Стандарт DRM находит сильную поддержку в тех странах, где FM-эфир уже заполнен. Так, Китай разрабатывает программу по внедрению DRM для обеспечения устойчивого вещания на всей территории страны.
    Дополнительное преимущество DRM-сигнала состоит в том, что, обладая большей помехозащищенностью, чем АМ, и обеспечивая при этом в коротковолновом эфире качество аналогичное MP3-плеерам или FM вещанию, он занимает полосу частот точно такую же, как и АМ сигнал. Таким образом, при переходе на DRM вещание в КВ диапазоне, не потребуется менять международный план распределения радиочастот.
    На сегодняшний день стандарт DRM, благодаря усилиям международного DRM консорциума, в который входят 77 стран, доведен до уровня всемирного стандарта цифрового вещания на коротких волнах, признанного в ITU (Международный союз электросвязи), и рекомендованного к внедрению по всему миру во всех КВ диапазонах.
    Введение стандарта DRM в УКВ диапазонах (66 - 74 МГц и 87,5 - 108 МГц) позволит размещать в них радиостанции через 100 КГц (против нынешних 400 - 500, то есть, в среднем, впятеро увеличить число радиостанций) при более высоком качестве звучания и отсутствии "нулей" (провалов) радиоприема за счет многолучевого распространения радиоволн и интерференции в городской застройке.
    С коммерческой точки зрения, внедрение DRM вещательного сигнала в УКВ диапазонах гораздо более выгодно, чем внедрение DAB. DAB - в силу своих технических особенностей (и вызванных этим организационно-юридических последствий), - это принципиально убыточный стандарт, приемлемый исключительно для бюджетных, финансируемых извне, радиокомпаний (о нем даже говорят, что "DAB - это мертворожденное дитя"). К тому же, в силу своего назначения, как альтернатива FM вещанию, и, соответствующих, технических параметров (полоса занимаемых частот в эфире), стандарт DAB неприменим на коротких волнах и принципиально не способен быть альтернативой DRM вещанию. Однако, для организации государственного бюджетного вещания в полосах телевизионных каналов с 21 по 60, стандарт DAB очень хорош, поскольку может сосуществовать с телевизионным цифровым стандартом DVB-T.
    Однако, существуют мнения, что радиовещание построенное на стандарте DAB (под "крышей" DVB-T) станет "падчерицей" у телевидения и сведет отрасль радио к упадку.
    16 июня 2003 в Женеве председатель консорциума DRM и директор по маркетингу и технике "Немецкой волны" Петер Зенгер в рамках торжественной церемонии в Chateau de Penthes простым нажатием кнопки в буквальном смысле открыл новую эру радиовещания. С этого момента началось цифровое вещание на коротких волнах в стандарте DRM. 12 часов в сутки радиостанция "Немецкая волна" вещает на английском, немецком и арабском языках на Европу и Ближний Восток. Кроме того, официально вещание в стандарте DRM начали BBC, РАИ, радио Канады, радио Нидерландов, радио Ватикана, международная служба шведского радио, Голос Америки и радио Уэлса. Система DRM рекомендована к использованию Международным телекоммуникационным союзом (ITU) на коротких, средних и длинных волнах наравне с другими цифровыми стандартами, принятыми в мире.
    Одновременно с радиостанцией "Немецкая волна", с 16 июня 2003 года и по сей день РГРК "Голос России" ведет свои регулярные передачи в стандарте DRM на Европу. DRM радиопередатчик мощностью 35 КВт (соответствует мощности в режиме АМ - 200 КВт) расположен на радиоцентре г.Талдома и прекрасно принимается по всей территории Западной Европы. (Источник - www.broadcasting.ru)
    [ http://www.morepc.ru/dict/]

    Тематики

    EN

     

    режим цифрового обновления
    При просмотре на дисплее плазменного телевизора неподвижных объектов более 10 минут (напр. стоп-кадров) может возникнуть так называемый «прожог» пикселов монитора. Система DRM существенно уменьшает либо даже устраняет влияние данного эффекта.
    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    Тематики

    • электросвязь, основные понятия

    EN

     

    управление цифровыми правами
    Средства DRM используются различными онлайновыми сервисами для предотвращения незаконного копирования распространяемых материалов. Так, например, многие сайты предлагают пользователям оформить месячную подписку, позволяющую загружать и прослушивать неограниченное количество музыкальных файлов. Если подписчик перестает вносить плату, защищенные композиции перестают воспроизводиться.
    Система защиты от копирования, которая позволяет установить количество устройств, на которых вы можете прослушивать музыку, а также запретить/разрешить копирование музыкальной композиции [www.computerbild.ru].
    [ http://www.morepc.ru/dict/]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > DRM

  • 45 gage

    1. поверять
    2. периферийный ряд зубьев шарошки
    3. номер сита
    4. манометр
    5. контрольно-измерительный инструмент
    6. калибр (металлургия)
    7. измеритель
    8. диаметр (бурового долота)
    9. датчик (металлургия)
    10. датчик

     

    датчик
    Средство измерений, предназначенное для выработки сигнала измерительной информации в форме, удобной для передачи, дальнейшего преобразования, обработки и (или) хранения, но не поддающейся непосредственному восприятию наблюдателем (по РМГ 29).
    [ ГОСТ Р 51086-97]

    датчик

    Конструктивно обособленный первичный преобразователь, от которого поступают измерительные сигналы (он «дает» информацию).
    Примечания
    1. Датчик может быть вынесен на значительное расстояние от средства измерений, принимающего его сигналы.
    2. В области измерений ионизирующих излучений применяют термин детектор.
    Пример. Датчики запущенного метеорологического радиозонда передают измерительную информацию о температуре, давлении, влажности и других параметрах атмосферы.
    [РМГ 29-99]

    датчик
    Конструктивно обособленный первичный преобразователь, от которого поступают измерительные сигналы.
    [РД 01.120.00-КТН-228-06]

    датчик
    Первичный преобразователь, в котором изменения значений выходного воздействия или сигнала с заданной точностью соответствуют изменениям значений входного воздействия или сигнала.
    [Сборник рекомендуемых терминов. Выпуск 107. Теория управления.
     Академия наук СССР. Комитет научно-технической терминологии. 1984 г.]


    КЛАССИФИКАЦИЯ

    Классификация по виду выходных величин

    Классификация по измеряемому параметру

    Классификация по принципу действия

    Классификация по характеру выходного сигнала

    Классификация по среде передачи сигналов

    Классификация по количеству входных величин

    Классификация по технологии изготовления

    [ http://omop.su/article/49/74929.html]

    Тематики

    Обобщающие термины

    EN

     

    датчик
    Элемент (первичный преобразователь) измерит., сигнального регулир. или управл. устрва системы, преобраз. контролир. величину (давление, темп-ру, частоту, скорость, перемещение, напряжение, электрич. ток и т.п.) в сигнал, удобный для измерения, передачи, преобразования, хранения и регистрации, а также для воздействия им на управляемые процессы. В состав д. входит воспринимающий (чувствит.) орган и один или неск. промежут. преобразователей. Часто д. состоит только из одного воспринимающего органа (напр., термопара, тензодатчик и др.).
    В металлургии наиболее распространены д., действие к-рых основано на изменении электрич. сопротивления, емкости и индуктивности электрич. цепи (реостатный, емкостной, индуктивный датчик и др.), а также на возникновении ЭДС при воздействии контролир. механич., тепловых, электрических, магнитных и оптич. величин (тензодатчик, датчик перемещения, пьезоэлектрический датчик, датчик давления, фотоэлемент).
    [ http://metaltrade.ru/abc/a.htm]

    Тематики

    EN

     

    измеритель
    измерительный прибор
    контрольно-измерительный прибор


    [Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.]

    Тематики

    • электротехника, основные понятия

    Синонимы

    EN

     

    калибр
    1. Толщина листа или диаметр провода. Различные стандарты произвольны и отличаются для железных и цветных сплавов.
    2. Инструмент для визуального контроля, который позволяет инспектору определить, соответствуют ли размер или контур сформированной детали размерным требованиям.
    3. Прибор, используемый для измерения толщины или длины.

    калибр
    1. Профиль отверстия, образованного смежными ручьями прокатных валков в рабочем положении и зазорами между ними, служит для придания заданных формы и размеров сечению раската. Обычно калибр образуется двумя, реже — тремя и четырьмя валками. По форме калибры могут быть простые — прямоугольные, круглые, квадратные, ромбические, овальные, полосовые, шестиугольные, стрельчатые и фасонные — уголковые, двутавровые, швеллерные и др. По конструкции, т.е. положению линии разъема, калибры подразделяют на открытые и закрытые, по расположению на валках — открытые, закрытые, полузакрытые и диагональные. По назначению — обжимные, вытяжные, черновые, предчистовые и чистовые калибры. Основные элементы калибров — зазор между валками, выпуск калибра, разъем, бурты, закруглеиия, нейтральная линия.
    2. Сменный технологический инструмент, закрепленный на рабочем валке.
    3. Бесшкальный измерительный инструмент для контроля размеров, формы и взаимного расположения частей изделия сравнением размера изделия с калибром по вхождению или степени прилегания их поверхностей.
    [ http://www.manual-steel.ru/eng-a.html]

    Тематики

    EN

     

    контрольно-измерительный инструмент
    измерительное устройство


    [ http://slovarionline.ru/anglo_russkiy_slovar_neftegazovoy_promyishlennosti/]

    Тематики

    Синонимы

    EN

     

    манометр
    Измерительный прибор или измерительная установка для измерения давления или разности давлений.
    [ГОСТ 8.271-77]

    Все манометрические приборы условно делят:

    - на манометры давления
    - вакуумметры, измеряющие разрежение в рабочей среде.

    К их «производным» относят:

    - напоромеры (манометр низкого давления)
    - и измеряющие небольшие разрежения тягомеры, устанавливаемые в цепочке печей и дымовых труб
    - мановакуумметры, контролирующие небольшие избыточные давления (от 0,5 до 50 кгс/см2) и разрежения ниже 760 мм рт. ст..

    По назначению различают:

    - манометры технические (традиционный манометр показывающий или манометр МП),
    - измерительно-регулирующие приборы – электроконтактный манометр (или сигнализирующий манометр),
    - контрольно-калибрующие приборы – манометр образцовый (или манометр давления эталонный).

    По устройству уравновешивающих измеряемое давление схем бывают:

    - манометры гидравлические (жидкостные),
    - поршневые,
    - пружинные.

    Жидкостные манометры чрезвычайно требовательны к внешним условиям эксплуатации, ограничены по измеряемым пределам давления и используются чаще всего для исследовательских работ или в качестве контрольных приборов. Поршневые манометры технические сложны в конструкции, громоздки и используются для систем с экстремальными давлениями и температурами. Пружинные манометры МП (или наиболее востребованный сегодня манометр 100) применяются практически во всех теплотехнических системах и могут изготавливаться в различном исполнении (манометры взрывозащищенные, виброустойчивые, коррозионностойкие) и для работы с разными рабочими средами (манометр газовый, аммиачный, фреоновый и т.д.).

    Поскольку любой электроконтактный манометр (или манометр ЭКМ), технический манометр 100 или с другим диаметром корпуса, контрольные манометрические приборы пружинного типа ограничены по температуре рабочей среды, то они интегрируются в трубопроводы или оборудование при помощи специальной вспомогательной арматуры (сифонные петлевые трубки, охладители и т.д.) и трехходовых кранов или игольчатых клапанов, позволяющих перекрыть доступ горячей жидкости или пара к прибору до их охлаждения, продуть соединительную арматуру для обеспечения чистоты измерений и установить контролирующий манометрический прибор. В системах с импульсным давлением экстремальных значений для защиты манометров дополнительно используют демпферные устройства различных типов.
    [ http://jumas.ru/prommanometry.htm]

    Тематики

    Синонимы

    EN

    DE

    FR

     

    номер сита

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    поверять

    [Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.]

    Тематики

    • электротехника, основные понятия

    EN

    Англо-русский словарь нормативно-технической терминологии > gage

  • 46 camp-on with-recall

    1. задержка вызова с автоматическим его повторением

     

    задержка вызова с автоматическим его повторением
    Процедура установления соединения, при которой вызывающий абонент имеет возможность в процессе ожидания освобождения линии вызываемого корреспондента установить связь с другими абонентами. Вызывающий абонент может оставаться на линии до тех пор, пока не получит сигнал о том, что линия первоначально вызываемого абонента свободна.
    [Л.М. Невдяев. Телекоммуникационные технологии. Англо-русский толковый словарь-справочник. Под редакцией Ю.М. Горностаева. Москва, 2002]

    Тематики

    • электросвязь, основные понятия

    EN

    Англо-русский словарь нормативно-технической терминологии > camp-on with-recall

  • 47 LAN

    1. шлюз ЛВС-Х.25
    2. модель расширенного канала
    3. многопортовый мост LAN-X.25
    4. локальная сеть (в электросвязи)
    5. локальная сеть
    6. локальная вычислительная сеть

     

    локальная вычислительная сеть
    ЛВС

    Вычислительная сеть, охватывающая небольшую территорию и использующая ориентированные на эту территорию средства и методы передачи данных.
    Примечание
    Под небольшой территорией понимают здание, предприятие, учреждение
    [ ГОСТ 24402-88]
    [ ГОСТ 29099-91]

    сеть локальная вычислительная
    Вычислительная сеть, объединяющая компьютеры или другие вычислительные средства, расположенные в одном или нескольких близстоящих зданиях (сооружениях).
    [РД 01.120.00-КТН-228-06]

    локальная вычислительная сеть
    Вычислительная сеть, которая обычно охватывает территорию в пределах одного здания или небольшого промышленного комплекса.
    [ ГОСТ Р 54325-2011 (IEC/TS 61850-2:2003)]

    локальная сеть
    Локальная сеть образуется соединением нескольких электронных устройств при помощи кабелей или технологий беспроводной связи, подключенных при помощи маршрутизаторов публичного доступа к глобальной (WAN) или городской сети (MAN). Локальной называют сеть малого или среднего масштаба (от 100 метров до 5 километров). Такие сети создаются в жилых домах, небольших офисах или в пределах территории, занимаемой компанией. Локальные сети считают частными сетями, поскольку для подключения к такой сети Ваш компьютер должен иметь к ней права доступа. Персональная вычислительная сеть (PAN) это особый случай локальной сети.
    [ http://www.sotovik.ru/lib/news_article/news_26322.html]

    FR


    Локальная вычислительная сеть (ЛВС, LAN – Local Area Network) – это совокупность аппаратного и программного обеспечения, позволяющего объединить компьютеры в единую распределенную систему обработки и хранения информации. К аппаратному обеспечению относятся компьютеры, с установленными в них сетевыми адаптерами, повторители, концентраторы, коммутаторы, мосты, маршрутизаторы и др., соединенные между собой при помощи кабельной системы или по беспроводному каналу. К программному обеспечению можно отнести сетевые операционные системы, системные и прикладные программы, использующие для сетевого взаимодействия соответствующие протоколы передачи информации. Расстояние между компьютерами объединяемыми в ЛВС обычно не превышает нескольких километров (термин "локальные сети"), что связано с затуханием электрического сигнала в кабелях. Технология виртуальных частных сетей (VPN – Virtual Private Network) позволяет через Internet и линии телекоммуникаций объединять в единую ЛВС несколько ЛВС, разнесенных на тысячи километров, однако это скорее именно объединение сетей, а сами ЛВС ограничены небольшим диаметром.

    Задачи, решаемые ЛВС:

    Передача файлов. Во-первых, экономится бумага и чернила принтера. Во-вторых, электрический сигнал по кабелю из отдела в отдел движется гораздо быстрее, чем любой сотрудник с документом. Он не болтает о футболе и не забывает в курилке важные документы. Кроме того, за электричество Вы платите гораздо меньше, чем зарплата курьера.
    Разделение (совместное использование) файлов данных и программ. Отпадает необходимость дублировать данные на каждом компьютере. В случае если данные бухгалтерии одновременно нужны дирекции, планово экономическому отделу и отделу маркетинга, то нет необходимости отнимать время и нервы у бухгалтера, отвлекая его от калькуляции себестоимости каждые три секунды. Кроме того, если бухгалтерию ведут несколько человек, то 20 независимых копий бухгалтерской программы и соответственно 20 копий главной книги (1 человек занимается зарплатой, 2-ой материалами и т.д.) создали бы большие трудности для совместной работы и невероятные трудности при попытке объединить все копии в одну. Сеть позволяет бухгалтерам работать с программой одновременно и видеть данные, вносимые друг другом.
    Разделение (совместное использование) принтеров и другого оборудования.
    Значительно экономятся средства на приобретение и ремонт техники, т.к. нет никакой необходимости устанавливать принтер у каждого компьютера, достаточно установить сетевой принтер.
    Электронная почта. Помимо экономии бумаги и оперативности доставки, исключается проблема "Был, но только что вышел. Зайдите (подождите) через полчаса", а также проблема "Мне не передали" и "А вы точно оставляли документы?". Когда бы занятый товарищ ни вернулся, письмо будет ждать его.
    Координация совместной работы. При совместном решении задач, каждый может оставаться на рабочем месте, но работать "в команде". Для менеджера проекта значительно упрощается задача контроля и координирования действий, т.к. сеть создает единое, легко наблюдаемое виртуальное пространство с большой скоростью взаимодействия территориально разнесенных участников.
    Упорядочивание делопроизводства, контроль доступа к информации, защита информации. Чем меньше потенциальных возможностей потерять (забыть, положить не в ту папку) документ, тем меньше таких случаев будет. В любом случае, гораздо легче найти документ на сервере (автоматический поиск, всегда известно авторство документа), чем в груде бумаг на столе. Сеть также позволяет проводить единую политику безопасности на предприятии, меньше полагаясь на сознательность сотрудников:
    всегда можно четко определить права доступа к документам и протоколировать все действия сотрудников.
    Стиль и престиж. Играют не последнюю роль, особенно в высокотехнологичных областях.

    [Ляхевич А.Г. Сетевые технологии и базы данных. Учебное пособие. Белорусский национальный технический университет.]

    Тематики

    Синонимы

    EN

     

    локальная сеть
    ЛВС

    Соединенные вместе скоростным каналом компьютеры и другие устройства, расположенные на незначительном удалении один от другого (комната, здание, предприятие) и управляемые специальной операционной системой. К локальным сетям подключаются различные устройства, включая серверы, рабочие станции, принтеры и др. Несколько ЛВС можно связать между собой в распределенную сеть. См. также Ethernet, FDDI, Token Ring, WAN. 
    [ http://www.lexikon.ru/dict/net/index.html]

    Тематики

    Синонимы

    EN

     

    локальная сеть
    Сеть передачи данных, охватывающая небольшую территорию (здание, предприятие) и использующая относительно короткие (не более 500 м) линии связи между объектами. Локальная сеть позволяет объединить между собой рабочие места пользователей и периферийные устройства в единую среду, работающую под управлением единой сетевой ОС. Короткие расстояния позволяют достичь высокоскоростной передачи данных (до 100 Мбит/с) и обеспечить предоставление широкого набора услуг в режиме реального времени. См. 100VG-AnyLAN, CLAN, HIPERLAN, ISLAN, MAN, peer-topeer-, switched-, VLAN, WAN, WLAN.
    [Л.М. Невдяев. Телекоммуникационные технологии. Англо-русский толковый словарь-справочник. Под редакцией Ю.М. Горностаева. Москва, 2002]

    Тематики

    • электросвязь, основные понятия

    EN

     

    многопортовый мост LAN-X.25
    Позволяет объединить через сети коммуникации пакетов Х.25 и Х.75 удаленные ЛВС в интерсеть. Один канал подключения к узлу коммутации пакетов позволяет пользователям ЛВС осуществлять доступ к любой удаленной ЛВС. Основные характеристики многоканальных мостов: подсоединение ЛВС к удаленным ЛВС, установление соединения между мостами с помощью простых команд, работа в выделенном или совмещенном режиме с рабочей станцией ЛВС, подключение к узлу коммутации пакетов по Х.32, работа в большинстве известных сетей.
    [Е.С.Алексеев, А.А.Мячев. Англо-русский толковый словарь по системотехнике ЭВМ. Москва 1993]

    Тематики

    EN

    • X.25 Multiport bridge
    • LAN

     

    шлюз ЛВС-Х.25
    Со стороны подключения к ЛВС шлюз является одной из ее рабочих станций и для каждого пользователя ЛВС, получающего доступ к информационной сети, создается соответствующий управляющий блок. Со стороны информационной сети шлюз представляет собой ООД и каждому сетевому соединению ЛВС-Х.25 соответствует виртуальное соединение на стыке «шлюз – сеть Х.25». Основные функции шлюза ЛВС-Х.25: преобразование адресов, согласование размеров протокольных блоков данных, скоростей передачи данных, механизмов управления потоком данных, поддержка функций маршрутизации и ряд других процедур.
    [Е.С.Алексеев, А.А.Мячев. Англо-русский толковый словарь по системотехнике ЭВМ. Москва 1993]

    Тематики

    EN

    • X.25 gateway
    • LAN

    93. Локальная вычислительная сеть

    ЛВС

    Local area network

    LAN

    Вычислительная сеть, охватывающая небольшую территорию и использующая ориентированные на эту территорию средства и методы передачи данных.

    Примечание. Под небольшой территорией понимают здание, предприятие, учреждение

    Источник: ГОСТ 24402-88: Телеобработка данных и вычислительные сети. Термины и определения оригинал документа

    01.05.24 модель расширенного канала [ extended channel model]: Система кодирования и передачи как байтов с данными сообщения, так и управляющей информации о сообщении, в пределах которой декодер работает в режиме расширенного канала.

    Примечание - Управляющая информация передается с использованием управляющих последовательностей интерпретации в расширенном канале (ECI).

    <2>4 Сокращения1)

    1)Следует учитывать, что в соответствии с оригиналом ИСО/МЭК 19762-1 в данном разделе присутствует сокращение CSMA/CD, которое в тексте стандарта не используется.

    Кроме того, сокращения отсортированы в алфавитном порядке.

    Al

    Идентификатор применения [application identifier]

    ANS

    Американский национальный стандарт [American National Standard]

    ANSI

    Американский национальный институт стандартов [American National Standards Institute]

    ASC

    Аккредитованный комитет по стандартам [Accredited Standards Committee]

    вес

    Контрольный знак блока [block check character]

    BCD

    Двоично-десятичный код (ДДК) [binary coded decimal]

    BER

    Коэффициент ошибок по битам [bit error rate]

    CRC

    Контроль циклическим избыточным кодом [cyclic redundancy check]

    CSMA/CD

    Коллективный доступ с контролем несущей и обнаружением конфликтов [carrier sense multiple access with collision detection network]

    CSUM

    Контрольная сумма [check sum]

    Dl

    Идентификатор данных [data identifier]

    ECI

    Интерпретация в расширенном канале [extended channel interpretation]

    EDI

    Электронный обмен данными (ЭОД) [electronic data interchange]

    EEPROM

    Электрически стираемое программируемое постоянное запоминающее устройство [electrically erasable programmable read only memory]

    HEX

    Шестнадцатеричная система счисления [hexadecimal]

    INCITS

    Международный комитет по стандартам информационных технологий [International Committee for Information Technology Standards]

    LAN

    Локальная вычислительная сеть [local area network]

    Laser

    Усиление света с помощью вынужденного излучения [light amplification by the stimulated emission of radiation]

    LED

    Светоизлучающий диод [light emitting diode]

    LLC

    Управление логической связью [logical link control]

    LSB

    Младший значащий бит [least significant bit]

    МНЮ

    Аккредитованный комитет по отраслевым стандартам в сфере обработки грузов [Accredited Standards Committee for the Material Handling Industry]

    MSB

    Старший значащий бит [most significant bit]

    MTBF

    Средняя наработка на отказ [mean time between failures]

    MTTR

    Среднее время ремонта [mean time to repair]

    NRZ

    Без возвращения к нулю [non-return to zero code]

    NRZ Space

    Кодирование без возвращения к нулю с перепадом на нулях [non-return to zero-space]

    NRZ-1

    Кодирование без возвращения к нулю с перепадом на единицах [non-return to zero invert on ones]

    NRZ-M

    Запись без возвращения к нулю (метка) [non-return to zero (mark) recording]

    RTI

    Возвратное транспортное упаковочное средство [returnable transport item]

    RZ

    Кодирование с возвратом к нулю [return to zero]

    VLD

    Светоизлучающий лазерный диод [visible laser diode]

    <2>Библиография

    [1]

    ИСО/МЭК Руководство 2

    Стандартизация и связанная с ней деятельность. Общий словарь

    (ISO/IECGuide2)

    (Standardization and related activities - General vocabulary)

    [2]

    ИСО/МЭК 2382-1

    Информационные технологии. Словарь - Часть 1. Основные термины

    (ISO/IEC 2382-1)

    (Information technology - Vocabulary - Part 1: Fundamental terms)

    [3]

    ИСО/МЭК 2382-4

    Информационные технологии. Словарь - Часть 4. Организация данных

    (ISO/IEC 2382-4)

    (Information technology - Vocabulary - Part 4: Organization of data)

    [4]

    ИСО/МЭК 2382-9

    Информационные технологии. Словарь. Часть 9. Передача данных

    (ISO/IEC 2382-9)

    (Information technology - Vocabulary - Part 9: Data communication)

    [5]

    ИСО/МЭК 2382-16

    Информационные технологии. Словарь. Часть 16. Теория информации

    (ISO/IEC 2382-16)

    (Information technology - Vocabulary - Part 16: Information theory)

    [6]

    ИСО/МЭК 19762-2

    Информационные технологии. Технологии автоматической идентификации и сбора данных (АИСД). Гармонизированный словарь. Часть 2. Оптические носители данных (ОНД)

    (ISO/IEC 19762-2)

    (Information technology - Automatic identification and data capture (AIDC) techniques - Harmonized vocabulary - Part 2: Optically readable media (ORM))

    [7]

    ИСО/МЭК 19762-3

    Информационные технологии. Технологии автоматической идентификации и сбора данных (АИСД). Гармонизированный словарь. Часть 3. Радиочастотная идентификация (РЧИ)

    (ISO/IEC 19762-3)

    (Information technology - Automatic identification and data capture (AIDC) techniques - Harmonized vocabulary - Part 3: Radio frequency identification (RFID)

    [8]

    ИСО/МЭК 19762-4

    Информационные технологии. Технологии автоматической идентификации и сбора данных (АИСД). Гармонизированный словарь. Часть 4. Основные термины в области радиосвязи

    (ISO/IEC 19762-4)

     (Information technology-Automatic identification and data capture (AIDC) techniques - Harmonized vocabulary - Part 4: General terms relating to radio communications)

    [9]

    ИСО/МЭК 19762-5

    Информационные технологии. Технологии автоматической идентификации и сбора данных (АИСД). Гармонизированный словарь. Часть 5. Системы определения места нахождения

    (ISO/IEC 19762-5)

    (Information technology - Automatic identification and data capture (AIDC) techniques - Harmonized vocabulary - Part 5: Locating systems)

    [10]

    МЭК 60050-191

    Международный Электротехнический Словарь. Глава 191. Надежность и качество услуг

    (IEC 60050-191)

    (International Electrotechnical Vocabulary - Chapter 191: Dependability and quality of Service)

    [11]

    МЭК 60050-702

    Международный Электротехнический Словарь. Глава 702. Колебания, сигналы и соответствующие устройства

    (IEC 60050-702)

    (International Electrotechnical Vocabulary - Chapter 702: Oscillations, signals and related devices)

    [12]

    МЭК 60050-704

    Международный Электротехнический словарь. Глава 704. Техника передачи

    (IEC 60050-704)

    (International Electrotechnical Vocabulary. Chapter 704: Transmission)

    [13]

    МЭК 60050-845

    Международный электротехнический словарь. Глава 845. Освещение

    (IEC 60050-845)

    (International Electrotechnical Vocabulary - Chapter 845: Lighting)

    <2>

    Источник: ГОСТ Р ИСО/МЭК 19762-1-2011: Информационные технологии. Технологии автоматической идентификации и сбора данных (АИСД). Гармонизированный словарь. Часть 1. Общие термины в области АИСД оригинал документа

    Англо-русский словарь нормативно-технической терминологии > LAN

  • 48 local area network

    1. местная сеть
    2. локальная сеть (в электросвязи)
    3. локальная сеть
    4. локальная вычислительная сеть

     

    локальная вычислительная сеть
    ЛВС

    Вычислительная сеть, охватывающая небольшую территорию и использующая ориентированные на эту территорию средства и методы передачи данных.
    Примечание
    Под небольшой территорией понимают здание, предприятие, учреждение
    [ ГОСТ 24402-88]
    [ ГОСТ 29099-91]

    сеть локальная вычислительная
    Вычислительная сеть, объединяющая компьютеры или другие вычислительные средства, расположенные в одном или нескольких близстоящих зданиях (сооружениях).
    [РД 01.120.00-КТН-228-06]

    локальная вычислительная сеть
    Вычислительная сеть, которая обычно охватывает территорию в пределах одного здания или небольшого промышленного комплекса.
    [ ГОСТ Р 54325-2011 (IEC/TS 61850-2:2003)]

    локальная сеть
    Локальная сеть образуется соединением нескольких электронных устройств при помощи кабелей или технологий беспроводной связи, подключенных при помощи маршрутизаторов публичного доступа к глобальной (WAN) или городской сети (MAN). Локальной называют сеть малого или среднего масштаба (от 100 метров до 5 километров). Такие сети создаются в жилых домах, небольших офисах или в пределах территории, занимаемой компанией. Локальные сети считают частными сетями, поскольку для подключения к такой сети Ваш компьютер должен иметь к ней права доступа. Персональная вычислительная сеть (PAN) это особый случай локальной сети.
    [ http://www.sotovik.ru/lib/news_article/news_26322.html]

    FR


    Локальная вычислительная сеть (ЛВС, LAN – Local Area Network) – это совокупность аппаратного и программного обеспечения, позволяющего объединить компьютеры в единую распределенную систему обработки и хранения информации. К аппаратному обеспечению относятся компьютеры, с установленными в них сетевыми адаптерами, повторители, концентраторы, коммутаторы, мосты, маршрутизаторы и др., соединенные между собой при помощи кабельной системы или по беспроводному каналу. К программному обеспечению можно отнести сетевые операционные системы, системные и прикладные программы, использующие для сетевого взаимодействия соответствующие протоколы передачи информации. Расстояние между компьютерами объединяемыми в ЛВС обычно не превышает нескольких километров (термин "локальные сети"), что связано с затуханием электрического сигнала в кабелях. Технология виртуальных частных сетей (VPN – Virtual Private Network) позволяет через Internet и линии телекоммуникаций объединять в единую ЛВС несколько ЛВС, разнесенных на тысячи километров, однако это скорее именно объединение сетей, а сами ЛВС ограничены небольшим диаметром.

    Задачи, решаемые ЛВС:

    Передача файлов. Во-первых, экономится бумага и чернила принтера. Во-вторых, электрический сигнал по кабелю из отдела в отдел движется гораздо быстрее, чем любой сотрудник с документом. Он не болтает о футболе и не забывает в курилке важные документы. Кроме того, за электричество Вы платите гораздо меньше, чем зарплата курьера.
    Разделение (совместное использование) файлов данных и программ. Отпадает необходимость дублировать данные на каждом компьютере. В случае если данные бухгалтерии одновременно нужны дирекции, планово экономическому отделу и отделу маркетинга, то нет необходимости отнимать время и нервы у бухгалтера, отвлекая его от калькуляции себестоимости каждые три секунды. Кроме того, если бухгалтерию ведут несколько человек, то 20 независимых копий бухгалтерской программы и соответственно 20 копий главной книги (1 человек занимается зарплатой, 2-ой материалами и т.д.) создали бы большие трудности для совместной работы и невероятные трудности при попытке объединить все копии в одну. Сеть позволяет бухгалтерам работать с программой одновременно и видеть данные, вносимые друг другом.
    Разделение (совместное использование) принтеров и другого оборудования.
    Значительно экономятся средства на приобретение и ремонт техники, т.к. нет никакой необходимости устанавливать принтер у каждого компьютера, достаточно установить сетевой принтер.
    Электронная почта. Помимо экономии бумаги и оперативности доставки, исключается проблема "Был, но только что вышел. Зайдите (подождите) через полчаса", а также проблема "Мне не передали" и "А вы точно оставляли документы?". Когда бы занятый товарищ ни вернулся, письмо будет ждать его.
    Координация совместной работы. При совместном решении задач, каждый может оставаться на рабочем месте, но работать "в команде". Для менеджера проекта значительно упрощается задача контроля и координирования действий, т.к. сеть создает единое, легко наблюдаемое виртуальное пространство с большой скоростью взаимодействия территориально разнесенных участников.
    Упорядочивание делопроизводства, контроль доступа к информации, защита информации. Чем меньше потенциальных возможностей потерять (забыть, положить не в ту папку) документ, тем меньше таких случаев будет. В любом случае, гораздо легче найти документ на сервере (автоматический поиск, всегда известно авторство документа), чем в груде бумаг на столе. Сеть также позволяет проводить единую политику безопасности на предприятии, меньше полагаясь на сознательность сотрудников:
    всегда можно четко определить права доступа к документам и протоколировать все действия сотрудников.
    Стиль и престиж. Играют не последнюю роль, особенно в высокотехнологичных областях.

    [Ляхевич А.Г. Сетевые технологии и базы данных. Учебное пособие. Белорусский национальный технический университет.]

    Тематики

    Синонимы

    EN

     

    локальная сеть
    ЛВС

    Соединенные вместе скоростным каналом компьютеры и другие устройства, расположенные на незначительном удалении один от другого (комната, здание, предприятие) и управляемые специальной операционной системой. К локальным сетям подключаются различные устройства, включая серверы, рабочие станции, принтеры и др. Несколько ЛВС можно связать между собой в распределенную сеть. См. также Ethernet, FDDI, Token Ring, WAN. 
    [ http://www.lexikon.ru/dict/net/index.html]

    Тематики

    Синонимы

    EN

     

    локальная сеть
    Сеть передачи данных, охватывающая небольшую территорию (здание, предприятие) и использующая относительно короткие (не более 500 м) линии связи между объектами. Локальная сеть позволяет объединить между собой рабочие места пользователей и периферийные устройства в единую среду, работающую под управлением единой сетевой ОС. Короткие расстояния позволяют достичь высокоскоростной передачи данных (до 100 Мбит/с) и обеспечить предоставление широкого набора услуг в режиме реального времени. См. 100VG-AnyLAN, CLAN, HIPERLAN, ISLAN, MAN, peer-topeer-, switched-, VLAN, WAN, WLAN.
    [Л.М. Невдяев. Телекоммуникационные технологии. Англо-русский толковый словарь-справочник. Под редакцией Ю.М. Горностаева. Москва, 2002]

    Тематики

    • электросвязь, основные понятия

    EN

     

    местная сеть

    [Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва]

    Тематики

    • электротехника, основные понятия

    EN

    93. Локальная вычислительная сеть

    ЛВС

    Local area network

    LAN

    Вычислительная сеть, охватывающая небольшую территорию и использующая ориентированные на эту территорию средства и методы передачи данных.

    Примечание. Под небольшой территорией понимают здание, предприятие, учреждение

    Источник: ГОСТ 24402-88: Телеобработка данных и вычислительные сети. Термины и определения оригинал документа

    Англо-русский словарь нормативно-технической терминологии > local area network

  • 49 toroid

    1. трансформатор тока
    2. тороидальный трансформатор
    3. тороидальная ускорительная камера

     

    тороидальная ускорительная камера
    (напр. термоядерного реактора)
    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    тороидальный трансформатор
    -

    Параллельные тексты EN-RU

    Emax and Tmax T7 circuit-breakers can be equipped with a toroid mounted on the back of the circuit-breaker so that protection against earth faults with detection of the residual current is ensured.
    [ABB]

    В автоматические выключатели Emax и Tmax T7 можно установить (на заднюю панель) тороидальный трансформатор, что дает возможность обнаруживать дифференциальный ток и реализовать защиту от замыкания на землю.
    [Перевод Интент]

    Тематики

    EN

     

    трансформатор тока
    Трансформатор, в котором при нормальных условиях применения вторичный ток практически пропорционален первичному току и при правильном включении сдвинут относительно него по фазе на угол, близкий к нулю.
    [ ГОСТ 18685-73]

    трансформатор тока
    Трансформатор, сигнал на выходе которого пропорционален входному току. [МЭС 321-02-01, измененный ]
    Примечание
    Катушка Роговского с интегрирующей цепью представляет собой широкополосный трансформатор тока.
    [МЭК 60-2]

    EN

    current transformer
    an instrument transformer in which the secondary current, in normal conditions of use, is substantially proportional to the primary current and differs in phase from it by an angle which is approximately zero for an appropriate direction of the connections
    [IEV number 321-02-01]

    FR

    transformateur de courant
    transformateur de mesure dans lequel le courant secondaire est, dans les conditions normales d'emploi, pratiquement proportionnel au courant primaire et déphasé par rapport à celui-ci d'un angle approximativement nul pour un sens approprié des connexions
    [IEV number 321-02-01]

    ... электромагнитные трансформаторы тока (далее — трансформаторы) на номинальное напряжение от 0,66 до 750 кВ включительно, предназначенные для передачи сигнала измерительной информации приборам измерения, защиты, автоматики, сигнализации и управления в электрических цепях переменного тока частотой 50 или 60 Гц.
    [ ГОСТ 7746-2001]

    Параллельные тексты EN-RU

    Inductive current transformers (CT) step the operating currents and short-circuit currents down to values which are suitable for measuring instruments and protective devices connected.
    [Siemens]

    Электромагнитные трансформаторы тока понижают значение рабочих токов и токов короткого замыкания до значений, приемлемых для измерительных приборов и устройств защиты.
    [Перевод Интент]

    Тематики

    Классификация

    >>>

    Обобщающие термины

    Синонимы

    • ТТ

    EN

    DE

    FR

    Англо-русский словарь нормативно-технической терминологии > toroid

  • 50 three-phase UPS

    1. трехфазный источник бесперебойного питания (ИБП)

     

    трехфазный ИБП
    -
    [Интент]


    Глава 7. Трехфазные ИБП

    ... ИБП большой мощности (начиная примерно с 10 кВА) как правило предназначены для подключения к трехфазной электрической сети. Диапазон мощностей 8-25 кВА – переходный. Для такой мощности делают чисто однофазные ИБП, чисто трехфазные ИБП и ИБП с трехфазным входом и однофазным выходом. Все ИБП, начиная примерно с 30 кВА имеют трехфазный вход и трехфазный выход. Трехфазные ИБП имеют и другое преимущество перед однофазными ИБП. Они эффективно разгружают нейтральный провод от гармоник тока и способствуют более безопасной и надежной работе больших компьютерных систем. Эти вопросы рассмотрены в разделе "Особенности трехфазных источников бесперебойного питания" главы 8. Трехфазные ИБП строятся обычно по схеме с двойным преобразованием энергии. Поэтому в этой главе мы будем рассматривать только эту схему, несмотря на то, что имеются трехфазные ИБП, построенные по схеме, похожей на ИБП, взаимодействующий с сетью.

    Схема трехфазного ИБП с двойным преобразованием энергии приведена на рисунке 18.

    4929
    Рис.18. Трехфазный ИБП с двойным преобразованием энергии

    Как видно, этот ИБП не имеет почти никаких отличий на уровне блок-схемы, за исключением наличия трех фаз. Для того, чтобы увидеть отличия от однофазного ИБП с двойным преобразованием, нам придется (почти впервые в этой книге) несколько подробнее рассмотреть элементы ИБП. Мы будем проводить это рассмотрение, ориентируясь на традиционную технологию. В некоторых случаях будут отмечаться схемные особенности, позволяющие улучшить характеристики.

    Выпрямитель

    Слева на рис 18. – входная электрическая сеть. Она включает пять проводов: три фазных, нейтраль и землю. Между сетью и ИБП – предохранители (плавкие или автоматические). Они позволяют защитить сеть от аварии ИБП. Выпрямитель в этой схеме – регулируемый тиристорный. Управляющая им схема изменяет время (долю периода синусоиды), в течение которого тиристоры открыты, т.е. выпрямляют сетевое напряжение. Чем большая мощность нужна для работы ИБП, тем дольше открыты тиристоры. Если батарея ИБП заряжена, на выходе выпрямителя поддерживается стабилизированное напряжение постоянного тока, независимо от нвеличины напряжения в сети и мощности нагрузки. Если батарея требует зарядки, то выпрямитель регулирует напряжение так, чтобы в батарею тек ток заданной величины.

    Такой выпрямитель называется шести-импульсным, потому, что за полный цикл трехфазной электрической сети он выпрямляет 6 полупериодов сингусоиды (по два в каждой из фаз). Поэтому в цепи постоянного тока возникает 6 импульсов тока (и напряжения) за каждый цикл трехфазной сети. Кроме того, во входной электрической сети также возникают 6 импульсов тока, которые могут вызвать гармонические искажения сетевого напряжения. Конденсатор в цепи постоянного тока служит для уменьшения пульсаций напряжения на аккумуляторах. Это нужно для полной зарядки батареи без протекания через аккумуляторы вредных импульсных токов. Иногда к конденсатору добавляется еще и дроссель, образующий совместно с конденсатором L-C фильтр.

    Коммутационный дроссель ДР уменьшает импульсные токи, возникающие при открытии тиристоров и служит для уменьшения искажений, вносимых выпрямителем в электрическую сеть. Для еще большего снижения искажений, вносимых в сеть, особенно для ИБП большой мощности (более 80-150 кВА) часто применяют 12-импульсные выпрямители. Т.е. за каждый цикл трехфазной сети на входе и выходе выпрямителя возникают 12 импульсов тока. За счет удвоения числа импульсов тока, удается примерно вдвое уменьшить их амплитуду. Это полезно и для аккумуляторов и для электрической сети.

    Двенадцати-импульсный выпрямитель фактически состоит из двух 6-импульсных выпрямителей. На вход второго выпрямителя (он изображен ниже на рис. 18) подается трехфазное напряжение, прошедшее через трансформатор, сдвигающий фазу на 30 градусов.

    В настоящее время применяются также и другие схемы выпрямителей трехфазных ИБП. Например схема с пассивным (диодным) выпрямителем и преобразователем напряжения постоянного тока, применение которого позволяет приблизить потребляемый ток к синусоидальному.

    Наиболее современным считается транзисторный выпрямитель, регулируемый высокочастотной схемой широтно-импульсной модуляции (ШИМ). Применение такого выпрямителя позволяет сделать ток потребления ИБП синусоидальным и совершенно отказаться от 12-импульсных выпрямителей с трансформатором.

    Батарея

    Для формирования батареи трехфазных ИБП (как и в однофазных ИБП) применяются герметичные свинцовые аккумуляторы. Обычно это самые распространенные модели аккумуляторов с расчетным сроком службы 5 лет. Иногда используются и более дорогие аккумуляторы с большими сроками службы. В некоторых трехфазных ИБП пользователю предлагается фиксированный набор батарей или батарейных шкафов, рассчитанных на различное время работы на автономном режиме. Покупая ИБП других фирм, пользователь может более или менее свободно выбирать батарею своего ИБП (включая ее емкость, тип и количество элементов). В некоторых случаях батарея устанавливается в корпус ИБП, но в большинстве случаев, особенно при большой мощности ИБП, она устанавливается в отдельном корпусе, а иногда и в отдельном помещении.

    Инвертор

    Как и в ИБП малой мощности, в трехфазных ИБП применяются транзисторные инверторы, управляемые схемой широтно-импульсной модуляции (ШИМ). Некоторые ИБП с трехфазным выходом имеют два инвертора. Их выходы подключены к трансформаторам, сдвигающим фазу выходных напряжений. Даже в случае применения относительно низкочастоной ШИМ, такая схема совместно с применением фильтра переменного тока, построенного на трансформаторе и конденсаторах, позволяет обеспечить очень малый коэффициент гармонических искажений на выходе ИБП (до 3% на линейной нагрузке). Применение двух инверторов увеличивает надежность ИБП, поскольку даже при выходе из строя силовых транзисторов одного из инверторов, другой инвертор обеспечит работу нагрузки, пусть даже при большем коэффициенте гармонических искажений.

    В последнее время, по мере развития технологии силовых полупроводников, начали применяться более высокочастотные транзисторы. Частота ШИМ может составлять 4 и более кГц. Это позволяет уменьшить гармонические искажения выходного напряжения и отказаться от применения второго инвертора. В хороших ИБП существуют несколько уровней защиты инвертора от перегрузки. При небольших перегрузках инвертор может уменьшать выходное напряжение (пытаясь снизить ток, проходящий через силовые полупроводники). Если перегрузка очень велика (например нагрузка составляет более 125% номинальной), ИБП начинает отсчет времени работы в условиях перегрузки и через некоторое время (зависящее от степени перегрузки – от долей секунды до минут) переключается на работу через статический байпас. В случае большой перегрузки или короткого замыкания, переключение на статический байпас происходит сразу.

    Некоторые современные высококлассные ИБП (с высокочакстотной ШИМ) имеют две цепи регулирования выходного напряжения. Первая из них осуществляет регулирование среднеквадратичного (действующего) значения напряжения, независимо для каждой из фаз. Вторая цепь измеряет мгновенные значения выходного напряжения и сравнивает их с хранящейся в памяти блока управления ИБП идеальной синусоидой. Если мгновенное значение напряжения отклонилось от соотвествующего "идеального" значения, то вырабатывается корректирующий импульс и форма синусоиды выходного напряжения исправляется. Наличие второй цепи обратной связи позволяет обеспечить малые искажения формы выходного напряжения даже при нелинейных нагрузках.

    Статический байпас

    Блок статического байпаса состоит из двух трехфазных (при трехфазном выходе) тиристорных переключателей: статического выключателя инвертора (на схеме – СВИ) и статического выключателя байпаса (СВБ). При нормальной работе ИБП (от сети или от батареи) статический выключатель инвертора замкнут, а статический выключатель байпаса разомкнут. Во время значительных перегрузок или выхода из строя инвертора замкнут статический переключатель байпаса, переключатель инвертора разомкнут. В момент переключения оба статических переключателя на очень короткое время замкнуты. Это позволяет обеспечить безразрывное питание нагрузки.

    Каждая модель ИБП имеет свою логику управления и, соответственно, свой набор условий срабатывания статических переключателей. При покупке ИБП бывает полезно узнать эту логику и понять, насколько она соответствует вашей технологии работы. В частности хорошие ИБП сконструированы так, чтобы даже если байпас недоступен (т.е. отсутствует синхронизация инвертора и байпаса – см. главу 6) в любом случае постараться обеспечить электроснабжение нагрузки, пусть даже за счет уменьшения напряжения на выходе инвертора.

    Статический байпас ИБП с трехфазным входом и однофазным выходом имеет особенность. Нагрузка, распределенная на входе ИБП по трем фазным проводам, на выходе имеет только два провода: один фазный и нейтральный. Статический байпас тоже конечно однофазный, и синхронизация напряжения инвертора производится относительно одной из фаз трехфазной сети (любой, по выбору пользователя). Вся цепь, подводящая напряжение к входу статического байпаса должна выдерживать втрое больший ток, чем входной кабель выпрямителя ИБП. В ряде случаев это может вызвать трудности с проводкой.

    Сервисный байпас

    Трехфазные ИБП имеют большую мощность и обычно устанавливаются в местах действительно критичных к электропитанию. Поэтому в случае выхода из строя какого-либо элемента ИБП или необходимости проведения регламентных работ (например замены батареи), в большинстве случае нельзя просто выключить ИБП или поставить на его место другой. Нужно в любой ситуации обеспечить электропитание нагрузки. Для этих ситуаций у всех трехфазных ИБП имеется сервисный байпас. Он представляет собой ручной переключатель (иногда как-то заблокированный, чтобы его нельзя было включить по ошибке), позволяющий переключить нагрузку на питание непосредственно от сети. У большинства ИБП для переключения на сервисный байпас существует специальная процедура (определенная последовательность действий), которая позволяет обеспечит непрерывность питания при переключениях.

    Режимы работы трехфазного ИБП с двойным преобразованием

    Трехфазный ИБП может работать на четырех режимах работы.

    • При нормальной работе нагрузка питается по цепи выпрямитель-инвертор стабилизированным напряжением, отфильтрованным от импульсов и шумов за счет двойного преобразования энергии.
    • Работа от батареи. На это режим ИБП переходит в случае, если напряжение на выходе ИБП становится таким маленьким, что выпрямитель оказывается не в состоянии питать инвертор требуемым током, или выпрямитель не может питать инвертор по другой причине, например из-за поломки. Продолжительность работы ИБП от батареи зависит от емкости и заряда батареи, а также от нагрузки ИБП.
    • Когда какой-нибудь инвертор выходит из строя или испытывает перегрузку, ИБП безразрывно переходит на режим работы через статический байпас. Нагрузка питается просто от сети через вход статического байпаса, который может совпадать или не совпадать со входом выпрямителя ИБП.
    • Если требуется обслуживание ИБП, например для замены батареи, то ИБП переключают на сервисный байпас. Нагрузка питается от сети, а все цепи ИБП, кроме входного выключателя сервисного байпаса и выходных выключателей отделены от сети и от нагрузки. Режим работы на сервисном байпасе не является обязательным для небольших однофазных ИБП с двойным преобразованием. Трехфазный ИБП без сервисного байпаса немыслим.

    Надежность

    Трехфазные ИБП обычно предназначаются для непрерывной круглосуточной работы. Работа нагрузки должна обеспечиваться практически при любых сбоях питания. Поэтому к надежности трехфазных ИБП предъявляются очень высокие требования. Вот некоторые приемы, с помощью которых производители трехфазных ИБП могут увеличивать надежность своей продукции. Применение разделительных трансформаторов на входе и/или выходе ИБП увеличивает устойчивость ИБП к скачкам напряжения и нагрузки. Входной дроссель не только обеспечивает "мягкий запуск", но и защищает ИБП (и, в конечном счете, нагрузку) от очень быстрых изменений (скачков) напряжения.

    Обычно фирма выпускает целый ряд ИБП разной мощности. В двух или трех "соседних по мощности" ИБП этого ряда часто используются одни и те же полупроводники. Если это так, то менее мощный из этих двух или трех ИБП имеет запас по предельному току, и поэтому несколько более надежен. Некоторые трехфазные ИБП имеют повышенную надежность за счет резервирования каких-либо своих цепей. Так, например, могут резервироваться: схема управления (микропроцессор + платы "жесткой логики"), цепи управления силовыми полупроводниками и сами силовые полупроводники. Батарея, как часть ИБП тоже вносит свой вклад в надежность прибора. Если у ИБП имеется возможность гибкого выбора батареи, то можно выбрать более надежный вариант (батарея более известного производителя, с меньшим числом соединений).

    Преобразователи частоты

    Частота напряжения переменного тока в электрических сетях разных стран не обязательно одинакова. В большинстве стран (в том числе и в России) распространена частота 50 Гц. В некоторых странах (например в США) частота переменного напряжения равна 60 Гц. Если вы купили оборудование, рассчитанное на работу в американской электрической сети (110 В, 60 Гц), то вы должны каким-то образом приспособить к нему нашу электрическую сеть. Преобразование напряжения не является проблемой, для этого есть трансформаторы. Если оборудование оснащено импульсным блоком питания, то оно не чувствительно к частоте и его можно использовать в сети с частотой 50 Гц. Если же в состав оборудования входят синхронные электродвигатели или иное чувствительное к частоте оборудование, вам нужен преобразователь частоты. ИБП с двойным преобразованием энергии представляет собой почти готовый преобразователь частоты.

    В самом деле, ведь выпрямитель этого ИБП может в принципе работать на одной частоте, а инвертор выдавать на своем выходе другую. Есть только одно принципиальное ограничение: невозможность синхронизации инвертора с линией статического байпаса из-за разных частот на входе и выходе. Это делает преобразователь частоты несколько менее надежным, чем сам по себе ИБП с двойным преобразованием. Другая особенность: преобразователь частоты должен иметь мощность, соответствующую максимальному возможному току нагрузки, включая все стартовые и аварийные забросы, ведь у преобразователя частоты нет статического байпаса, на который система могла бы переключиться при перегрузке.

    Для изготовления преобразователя частоты из трехфазного ИБП нужно разорвать цепь синхронизации, убрать статический байпас (или, вернее, не заказывать его при поставке) и настроить инвертор ИБП на работу на частоте 60 Гц. Для большинства трехфазных ИБП это не представляет проблемы, и преобразователь частоты может быть заказан просто при поставке.

    ИБП с горячим резервированием

    В некоторых случаях надежности даже самых лучших ИБП недостаточно. Так бывает, когда сбои питания просто недопустимы из-за необратимых последствий или очень больших потерь. Обычно в таких случаях в технике применяют дублирование или многократное резервирование блоков, от которых зависит надежность системы. Есть такая возможность и для трехфазных источников бесперебойного питания. Даже если в конструкцию ИБП стандартно не заложено резервирование узлов, большинство трехфазных ИБП допускают резервирование на более высоком уровне. Резервируется целиком ИБП. Простейшим случаем резервирования ИБП является использование двух обычных серийных ИБП в схеме, в которой один ИБП подключен к входу байпаса другого ИБП.

    4930

    Рис. 19а. Последовательное соединение двух трехфазных ИБП

    На рисунке 19а приведена схема двух последовательно соединенным трехфазных ИБП. Для упрощения на рисунке приведена, так называемая, однолинейная схема, на которой трем проводам трехфазной системы переменного тока соответствует одна линия. Однолинейные схемы часто применяются в случаях, когда особенности трехфазной сети не накладывают отпечаток на свойства рассматриваемого прибора. Оба ИБП постоянно работают. Основной ИБП питает нагрузку, а вспомогательный ИБП работает на холостом ходу. В случае выхода из строя основного ИБП, нагрузка питается не от статического байпаса, как в обычном ИБП, а от вспомогательного ИБП. Только при выходе из строя второго ИБП, нагрузка переключается на работу от статического байпаса.

    Система из двух последовательно соединенных ИБП может работать на шести основных режимах.

    А. Нормальная работа. Выпрямители 1 и 2 питают инверторы 1 и 2 и, при необходимости заряжают батареи 1 и 2. Инвертор 1 подключен к нагрузке (статический выключатель инвертора 1 замкнут) и питает ее стабилизированным и защищенным от сбоев напряжением. Инвертор 2 работает на холостом ходу и готов "подхватить" нагрузку, если инвертор 1 выйдет из строя. Оба статических выключателя байпаса разомкнуты.

    Для обычного ИБП с двойным преобразованием на режиме работы от сети допустим (при сохранении гарантированного питания) только один сбой в системе. Этим сбоем может быть либо выход из строя элемента ИБП (например инвертора) или сбой электрической сети.

    Для двух последовательно соединенных ИБП с на этом режиме работы допустимы два сбоя в системе: выход из строя какого-либо элемента основного ИБП и сбой электрической сети. Даже при последовательном или одновременном возникновении двух сбоев питание нагрузки будет продолжаться от источника гарантированного питания.

    Б. Работа от батареи 1. Выпрямитель 1 не может питать инвертор и батарею. Чаще всего это происходит из-за отключения напряжения в электрической сети, но причиной может быть и выход из строя выпрямителя. Состояние инвертора 2 в этом случае зависит от работы выпрямителя 2. Если выпрямитель 2 работает (например он подключен к другой электрической сети или он исправен, в отличие от выпрямителя 1), то инвертор 2 также может работать, но работать на холостом ходу, т.к. он "не знает", что с первым ИБП системы что-то случилось. После исчерпания заряда батареи 1, инвертор 1 отключится и система постарается найти другой источник электроснабжения нагрузки. Им, вероятно, окажется инвертор2. Тогда система перейдет к другому режиму работы.

    Если в основном ИБП возникает еще одна неисправность, или батарея 1 полностью разряжается, то система переключается на работу от вспомогательного ИБП.

    Таким образом даже при двух сбоях: неисправности основного ИБП и сбое сети нагрузка продолжает питаться от источника гарантированного питания.

    В. Работа от инвертора 2. В этом случае инвертор 1 не работает (из-за выхода из строя или полного разряда батареи1). СВИ1 разомкнут, СВБ1 замкнут, СВИ2 замкнут и инвертор 2 питает нагрузку. Выпрямитель 2, если в сети есть напряжение, а сам выпрямитель исправен, питает инвертор и батарею.

    На этом режиме работы допустим один сбой в системе: сбой электрической сети. При возникновении второго сбоя в системе (выходе из строя какого-либо элемента вспомогательного ИБП) электропитание нагрузки не прерывается, но нагрузка питается уже не от источника гарантированного питания, а через статический байпас, т.е. попросту от сети.

    Г. Работа от батареи 2. Наиболее часто такая ситуация может возникнуть после отключения напряжения в сети и полного разряда батареи 1. Можно придумать и более экзотическую последовательность событий. Но в любом случае, инвертор 2 питает нагругку, питаясь, в свою очередь, от батареи. Инвертор 1 в этом случае отключен. Выпрямитель 1, скорее всего, тоже не работает (хотя он может работать, если он исправен и в сети есть напряжение).

    После разряда батареи 2 система переключится на работу от статического байпаса (если в сети есть нормальное напряжение) или обесточит нагрузку.

    Д. Работа через статический байпас. В случае выхода из строя обоих инверторов, статические переключатели СВИ1 и СВИ2 размыкаются, а статические переключатели СВБ1 и СВБ2 замыкаются. Нагрузка начинает питаться от электрической сети.

    Переход системы к работе через статический байпас происходит при перегрузке системы, полном разряде всех батарей или в случае выхода из строя двух инверторов.

    На этом режиме работы выпрямители, если они исправны, подзаряжают батареи. Инверторы не работают. Нагрузка питается через статический байпас.

    Переключение системы на работу через статический байпас происходит без прерывания питания нагрузки: при необходимости переключения сначала замыкается тиристорный переключатель статического байпаса, и только затем размыкается тиристорный переключатель на выходе того инвертора, от которого нагрузка питалась перед переключением.

    Е. Ручной (сервисный) байпас. Если ИБП вышел из строя, а ответственную нагрузку нельзя обесточить, то оба ИБП системы с соблюдением специальной процедуры (которая обеспечивает безразрыное переключение) переключают на ручной байпас. после этого можно производить ремонт ИБП.

    Преимуществом рассмотренной системы с последовательным соединением двух ИБП является простота. Не нужны никакие дополнительные элементы, каждый из ИБП работает в своем штатном режиме. С точки зрения надежности, эта схема совсем не плоха:- в ней нет никакой лишней, (связанной с резервированием) электроники, соответственно и меньше узлов, которые могут выйти из строя.

    Однако у такого соединения ИБП есть и недостатки. Вот некоторые из них.
     

    1. Покупая такую систему, вы покупаете второй байпас (на нашей схеме – он первый – СВБ1), который, вообще говоря, не нужен – ведь все необходимые переключения могут быть произведены и без него.
    2. Весь второй ИБП выполняет только одну функцию – резервирование. Он потребляет электроэнергию, работая на холостом ходу и вообще не делает ничего полезного (разумеется за исключением того времени, когда первый ИБП отказывается питать нагрузку). Некоторые производители предлагают "готовые" системы ИБП с горячим резервированием. Это значит, что вы покупаете систему, специально (еще на заводе) испытанную в режиме с горячим резервированием. Схема такой системы приведена на рис. 19б.

    4931

    Рис.19б. Трехфазный ИБП с горячим резервированием

    Принципиальных отличий от схемы с последовательным соединением ИБП немного.

    1. У второго ИБП отсутствует байпас.
    2. Для синхронизации между инвертором 2 и байпасом появляется специальный информационный кабель между ИБП (на рисунке не показан). Поэтому такой ИБП с горячим резервированием может работать на тех же шести режимах работы, что и система с последовательным подключением двух ИБП. Преимущество "готового" ИБП с резервированием, пожалуй только одно – он испытан на заводе-производителе в той же комплектации, в которой будет эксплуатироваться.

    Для расмотренных схем с резервированием иногда применяют одно важное упрощение системы. Ведь можно отказаться от резервирования аккумуляторной батареи, сохранив резервирование всей силовой электроники. В этом случае оба ИБП будут работать от одной батареи (оба выпрямителя будут ее заряжать, а оба инвертора питаться от нее в случае сбоя электрической сети). Применение схемы с общей бетареей позволяет сэкономить значительную сумму – стоимость батареи.

    Недостатков у схемы с общей батареей много:

    1. Не все ИБП могут работать с общей батареей.
    2. Батарея, как и другие элементы ИБП обладает конечной надежностью. Выход из строя одного аккумулятора или потеря контакта в одном соединении могут сделать всю системы ИБП с горячим резервирование бесполезной.
    3. В случае выхода из строя одного выпрямителя, общая батарея может быть выведена из строя. Этот последний недостаток, на мой взгляд, является решающим для общей рекомендации – не применять схемы с общей батареей.


    Параллельная работа нескольких ИБП

    Как вы могли заметить, в случае горячего резервирования, ИБП резервируется не целиком. Байпас остается общим для обоих ИБП. Существует другая возможность резервирования на уровне ИБП – параллельная работа нескольких ИБП. Входы и выходы нескольких ИБП подключаются к общим входным и выходным шинам. Каждый ИБП сохраняет все свои элементы (иногда кроме сервисного байпаса). Поэтому выход из строя статического байпаса для такой системы просто мелкая неприятность.

    На рисунке 20 приведена схема параллельной работы нескольких ИБП.

    4932

    Рис.20. Параллельная работа ИБП

    На рисунке приведена схема параллельной системы с раздельными сервисными байпасами. Схема система с общим байпасом вполне ясна и без чертежа. Ее особенностью является то, что для переключения системы в целом на сервисный байпас нужно управлять одним переключателем вместо нескольких. На рисунке предполагается, что между ИБП 1 и ИБП N Могут располагаться другие ИБП. Разные производителю (и для разных моделей) устанавливают свои максимальные количества параллеьно работающих ИБП. Насколько мне известно, эта величина изменяется от 2 до 8. Все ИБП параллельной системы работают на общую нагрузку. Суммарная мощность параллельной системы равна произведению мощности одного ИБП на количество ИБП в системе. Таким образом параллельная работа нескольких ИБП может применяться (и в основном применяется) не столько для увеличения надежности системы бесперебойного питания, но для увеличения ее мощности.

    Рассмотрим режимы работы параллельной системы

    Нормальная работа (работа от сети). Надежность

    Когда в сети есть напряжение, достаточное для нормальной работы, выпрямители всех ИБП преобразуют переменное напряжение сети в постоянное, заряжая батареи и питая инверторы.

    Инверторы, в свою очередь, преобразуют постоянное напряжение в переменное и питают нагрузку. Специальная управляющая электроника параллельной системы следит за равномерным распределением нагрузки между ИБП. В некоторых ИБП распределение нагрузки между ИБП производится без использования специальной параллельной электроники. Такие приборы выпускаются "готовыми к параллельной работе", и для использования их в параллельной системе достаточно установить плату синхронизации. Есть и ИБП, работающие параллельго без специальной электроники. В таком случае количество параллельно работающих ИБП – не более двух. В рассматриваемом режиме работы в системе допустимо несколько сбоев. Их количество зависит от числа ИБП в системе и действующей нагрузки.

    Пусть в системе 3 ИБП мощностью по 100 кВА, а нагрузка равна 90 кВА. При таком соотношении числа ИБП и их мощностей в системе допустимы следующие сбои.

    Сбой питания (исчезновение напряжения в сети)

    Выход из строя любого из инверторов, скажем для определенности, инвертора 1. Нагрузка распределяется между двумя другими ИБП. Если в сети есть напряжение, все выпрямители системы работают.

    Выход из строя инвертора 2. Нагрузка питается от инвертора 3, поскольку мощность, потребляемая нагрузкой меньше мощности одного ИБП. Если в сети есть напряжение, все выпрямители системы продолжают работать.

    Выход из строя инвертора 3. Система переключается на работу через статический байпас. Нагрузка питается напрямую от сети. При наличии в сети нормального напряжения, все выпрямители работают и продолжают заряжать батареи. При любом последующем сбое (поломке статического байпаса или сбое сети) питание нагрузки прекращается. Для того, чтобы параллельная система допускала большое число сбоев, система должна быть сильно недогружена и должна включать большое число ИБП. Например, если нагрузка в приведенном выше примере будет составлять 250 кВА, то система допускает только один сбой: сбой сети или поломку инвертора. В отношении количества допустимых сбоев такая система эквивалентна одиночному ИБП. Это, кстати, не значит, что надежность такой параллельной системы будет такая же, как у одиночного ИБП. Она будет ниже, поскольку параллельная система намного сложнее одиночного ИБП и (при почти предельной нагрузке) не имеет дополнительного резервирования, компенсирующего эту сложность.

    Вопрос надежности параллельной системы ИБП не может быть решен однозначно. Надежность зависит от большого числа параметров: количества ИБП в системе (причем увеличение количества ИБП до бесконечности снижает надежность – система становится слишком сложной и сложно управляемой – впрочем максимальное количество параллельно работающих модулей для известных мне ИБП не превышает 8), нагрузки системы (т.е. соотношения номинальной суммарной мощности системы и действующей нагрузки), примененной схемы параллельной работы (т.е. есть ли в системе специальная электроника для обеспечения распределения нагрузки по ИБП), технологии работы предприятия. Таким образом, если единственной целью является увеличение надежности системы, то следует серьезно рассмотреть возможность использование ИБП с горячим резервированием – его надежность не зависит от обстоятельств и в силу относительной простоты схемы практически всегда выше надежности параллельной системы.

    Недогруженная система из нескольких параллельно работающих ИБП, которая способна реализвать описанную выше логику управления, часто также называется параллельной системой с резервированием.

    Работа с частичной нагрузкой

    Если нагрузка параллельной системы такова, что с ней может справиться меньшее, чем есть в системе количество ИБП, то инверторы "лишних" ИБП могут быть отключены. В некоторых ИБП такая логика управления подразумевается по умолчанию, а другие модели вообще лишены возможности работы в таком режиме. Инверторы, оставшиеся включенными, питают нагрузку. Коэффициент полезного действия системы при этом несколько возрастает. Обычно в этом режиме работы предусматривается некоторая избыточность, т.е. количестов работающих инверторов больше, чем необходимо для питания нагрузки. Тем самым обеспечивается резервирование. Все выпрямители системы продолжают работать, включая выпрямители тех ИБП, инверторы которых отключены.

    Работа от батареи

    В случае исчезновения напряжения в электрической сети, параллельная система переходит на работу от батареи. Все выпрямители системы не работают, инверторы питают нагрузку, получая энергию от батареи. В этом режиме работы (естественно) отсутствует напряжение в электрической сети, которое при нормальной работе было для ИБП не только источником энергии, но и источником сигнала синхронизации выходного напряжения. Поэтому функцию синхронизации берет на себя специальная параллельная электроника или выходная цепь ИБП, специально ориентированная на поддержание выходной частоты и фазы в соответствии с частотой и фазой выходного напряжения параллельно работающего ИБП.

    Выход из строя выпрямителя

    Это режим, при котором вышли из строя один или несколько выпрямителей. ИБП, выпрямители которых вышли из строя, продолжают питать нагрузку, расходуя заряд своей батареи. Они выдает сигнал "неисправность выпрямителя". Остальные ИБП продолжают работать нормально. После того, как заряд разряжающихся батарей будет полностью исчерпан, все зависит от соотношения мощности нагрузки и суммарной мощности ИБП с исправными выпрямителями. Если нагрузка не превышает перегрузочной способности этих ИБП, то питание нагрузки продолжится (если у системы остался значительный запас мощности, то в этом режиме работы допустимо еще несколько сбоев системы). В случае, если нагрузка ИБП превышает перегрузочную способность оставшихся ИБП, то система переходит к режиму работы через статический байпас.

    Выход из строя инвертора

    Если оставшиеся в работоспособном состоянии инверторы могут питать нагрузку, то нагрузка продолжает работать, питаясь от них. Если мощности работоспособных инверторов недостаточно, система переходит в режим работы от статического байпаса. Выпрямители всех ИБП могут заряжать батареи, или ИБП с неисправными инверторами могут быть полностью отключены для выполнения ремонта.

    Работа от статического байпаса

    Если суммарной мощности всех исправных инверторов параллельной системы не достаточно для поддержания работы нагрузки, система переходит к работе через статический байпас. Статические переключатели всех инверторов разомкнуты (исправные инверторы могут продолжать работать). Если нагрузка уменьшается, например в результате отключения части оборудования, параллельная система автоматически переключается на нормальный режим работы.

    В случае одиночного ИБП с двойным преобразованием работа через статический байпас является практически последней возможностью поддержания работы нагрузки. В самом деле, ведь достаточно выхода из строя статического переключателя, и нагрузка будет обесточена. При работе параллельной системы через статический байпас допустимо некоторое количество сбоев системы. Статический байпас способен выдерживать намного больший ток, чем инвертор. Поэтому даже в случае выхода из строя одного или нескольких статических переключателей, нагрузка возможно не будет обесточена, если суммарный допустимый ток оставшихся работоспособными статических переключателей окажется достаточен для работы. Конкретное количество допустимых сбоев системы в этом режиме работы зависит от числа ИБП в системе, допустимого тока статического переключателя и величины нагрузки.

    Сервисный байпас

    Если нужно провести с параллельной системой ремонтные или регламентные работы, то система может быть отключена от нагрузки с помощью ручного переключателя сервисного байпаса. Нагрузка питается от сети, все элементы параллельной системы ИБП, кроме батарей, обесточены. Как и в случае системы с горячим резервированием, возможен вариант одного общего внешнего сервисного байпаса или нескольких сервисных байпасов, встроенных в отдельные ИБП. В последнем случае при использовании сервисного байпаса нужно иметь в виду соотношение номинального тока сервисного байпаса и действующей мощности нагрузки. Другими словами, нужно включить столько сервисных байпасов, чтобы нагрузка не превышала их суммарный номинальных ток.
    [ http://www.ask-r.ru/info/library/ups_without_secret_7.htm]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > three-phase UPS

См. также в других словарях:

  • сигнал вхождения в связь — Служебный сигнал, передаваемый радиостанцией, которая предпринимает попытку установить контакт с другой станцией. [Л.М. Невдяев. Телекоммуникационные технологии. Англо русский толковый словарь справочник. Под редакцией Ю.М. Горностаева. Москва,… …   Справочник технического переводчика

  • КОНСОЛЬ — КОНСОЛЬ …   Технический железнодорожный словарь

  • поставить — 1. ПОСТАВИТЬ, влю, вишь; поставленный; лен, а, о; св. (нсв. ставить). 1. кого что. Придать кому , чему л. стоячее вертикальное или какое л. определённое положение; расположить, укрепить в таком положении. П. полено стоймя. П. бревно на попа. П.… …   Энциклопедический словарь

  • поставить — I влю, вишь; поста/вленный; лен, а, о; св. (нсв. ста/вить) см. тж. постановка 1) а) кого что Придать кому , чему л. стоячее вертикальное или какое л. определённое положение; расположить, укрепить в таком положении. Поста/вить полено стоймя.… …   Словарь многих выражений

  • Индикатор — (Indicator) Индикатор это информационная система, вещество, прибор, устройство, отображающий изменения какого либо параметра Индикаторы графиков валютного рынка форекс, какие они бывают и где их можно скачать? Описание индикаторов MACD,… …   Энциклопедия инвестора

  • Технические — 19. Технические указания по технологии производства строительных и монтажных работ при электрификации железных дорог (устройства электроснабжения). М.: Оргтрансстрой, 1966. Источник: ВСН 13 77: Инструкция по монтажу контактных сетей промышленного …   Словарь-справочник терминов нормативно-технической документации

  • Коэффициент корреляции — (Correlation coefficient) Коэффициент корреляции это статистический показатель зависимости двух случайных величин Определение коэффициента корреляции, виды коэффициентов корреляции, свойства коэффициента корреляции, вычисление и применение… …   Энциклопедия инвестора

  • Сигнализация железнодорожная* — При эксплуатации жел. д. выяснилась скоро необходимость передавать машинисту движущегося поезда посредством условных знаков сообщения и указания, регулирующие ход поезда между двумя определенными пунктами. Указания эти сводятся к тому, может ли… …   Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

  • Сигнализация железнодорожная — При эксплуатации жел. д. выяснилась скоро необходимость передавать машинисту движущегося поезда посредством условных знаков сообщения и указания, регулирующие ход поезда между двумя определенными пунктами. Указания эти сводятся к тому, может ли… …   Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

  • устройство — 2.5 устройство: Элемент или блок элементов, который выполняет одну или более функцию. Источник: ГОСТ Р 52388 2005: Мототранспортны …   Словарь-справочник терминов нормативно-технической документации

  • Ютландское сражение — Первая мировая война …   Википедия

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»