Перевод: с русского на английский

с английского на русский

ток+отключения

  • 61 электрическая нагрузка

    1. load
    2. electrical load
    3. electrical demand
    4. electric load
    5. electric energy demand
    6. electric demand

    1. Любой потребитель электроэнергии

     

    электрическая нагрузка
    Любой приемник (потребитель) электрической энергии в электрической цепи 1)
    [БЭС]

    нагрузка
    Устройство, потребляющее мощность
    [СТ МЭК 50(151)-78]

    EN

    load (1), noun
    device intended to absorb power supplied by another device or an electric power system
    [IEV number 151-15-15]

    FR

    charge (1), f
    dispositif destiné à absorber de la puissance fournie par un autre dispositif ou un réseau d'énergie électrique
    [IEV number 151-15-15]

    1)   Иными словами (электрическая)  нагрузка, это любое устройство или группа устройств, потребляющих электрическую энергию (электродвигатель, электролампа, электронагреватель и т. д.)
    [Интент]

    Термимн нагрузка удобно использовать как обощающее слово.
    В приведенном ниже примере термин нагрузка удачно используется для перевода выражения any other appliance:

    Make sure that the power supply and its frequency are adapted to the required electric current of operation, taking into account specific conditions of the location and the current required for any other appliance connected with the same circuit.

    Ток, напряжение и частота источника питания должны соответствовать параметрам агрегата с учетом длины и способа прокладки питающей линии, а также с учетом другой нагрузки, подключенной к этой же питающей линии.
    [Перевод Интент]


    ... подключенная к трансформатору нагрузка
    [ ГОСТ 12.2.007.4-75*]

    Поскольку приемник электрической энергии это любой аппарат, агрегат, механизм, предназначенный для преобразования электрической энергии в другой вид энергии [ПУЭ], то термин нагрузка может характеризовать электроприемник с точки зрения тока, сопротивления или мощности.
    2. Потребитель энергоэнергии, с точки зрения потребляемой мощности

     

    нагрузка
    Мощность, потребляемая устройством
    [СТ МЭК 50(151)-78]

    EN

    load (2), noun
    power absorbed by a load
    [IEV number 151-15-16]

    FR

    charge (2), f
    puissance absorbée par une charge
    Source: 151-15-15
    [IEV number 151-15-16]


    При
    проектировании электроснабжения энергоемких предприятий следует предусматривать по согласованию с заказчиком и с энергоснабжающей организацией регулирование электрической нагрузки путем отключения или частичной разгрузки крупных электроприемников, допускающих без значительного экономического ущерба для технологического режима перерывы или ограничения в подаче электроэнергии.
    [СН 174-75 Инструкция по проектированию электроснабжения промышленных предприятий]

    В настоящее время характер коммунально-бытовой нагрузки кардинально изменился в результате широкого распространения новых типов электроприемников (микроволновых печей, кондиционеров, морозильников, люминесцентных светильников, стиральных и посудомоечных машин, персональных компьютеров и др.), потребляющих из питающей сети наряду с активной мощностью (АМ) также и значительную реактивную мощность (РМ).

    Недопустимые, нерекомендуемые

      Тематики

      Классификация

      >>>

      Близкие понятия

      Действия

      Синонимы

      Сопутствующие термины

      EN

      DE

      FR

      Русско-английский словарь нормативно-технической терминологии > электрическая нагрузка

    • 62 дистанционная защита

      1. impedance protection
      2. DP
      3. distance relay (US)
      4. distance protection

       

      дистанционная защита
      -

      [В.А.Семенов Англо-русский словарь по релейной защите]

      дистанционная защита
      Защита с относительной селективностью, срабатывание и селективность которой зависят от измерения в месте ее установки электрических величин, по которым путем сравнения с уставками зон оценивается эквивалентная удаленность повреждения
      [Разработка типовых структурных схем микропроцессорных устройств РЗА на объектах ОАО "ФКС ЕЭС". Пояснительная записка. Новосибирск 2006 г.]

      дистанционная защита
      Защита, чье действие и селективность основаны на локальном измерении электрических величин, по которым рассчитываются эквивалентные расстояния до места повреждения в пределах установленных зон.
      [ http://docs.cntd.ru/document/1200069370]

      дистанционная защита
      Защита, принцип действия и селективность которой основаны на измерении в месте установки защиты электрических величин, характеризующих повреждение, и сравнении их с уставками зон.
      [Циглер Г. Цифровая дистанционная защита: принципы и применение. М.: Энергоиздат. 2005]

      EN

      distance protection
      distance relay (US)

      a non-unit protection whose operation and selectivity depend on local measurement of electrical quantities from which the equivalent distance to the fault is evaluated by comparing with zone settings
      [IEV ref 448-14-01]

      FR

      protection de distance
      protection à sélectivité relative de section dont le fonctionnement et la sélectivité dépendent de la mesure locale de grandeurs électriques à partir desquelles la distance équivalente du défaut est évaluée par comparaison avec des réglages de zones
      [IEV ref 448-14-01]

      Дистанционные защиты применяются в сетях сложной конфигурации, где по соображениям быстродействия и чувствительности не могут использоваться более простые максимальные токовые и токовые направленные защиты.
      Дистанционной защитой определяется сопротивление (или расстояние - дистанция) до места КЗ, и в зависимости от этого защита срабатывает с меньшей или большей выдержкой времени. Следует уточнить, что современные дистанционные защиты, обладающие ступенчатыми характеристиками времени, не измеряют каждый раз при КЗ значение указанного выше сопротивления на зажимах измерительного органа и не устанавливают в зависимости от этого большую или меньшую выдержку времени, а всего лишь контролируют зону, в которой произошло повреждение. Время срабатывания защиты при КЗ в любой точке рассматриваемой зоны остается неизменным. Каждая защита выполняется многоступенчатой, причем при КЗ в первой зоне, охватывающей 80-85% длины защищаемой линии, время срабатывания защиты не более 0,15 с. Для второй зоны, выходящей за пределы защищаемой линии, выдержка времени на ступень выше и колеблется в пределах 0,4-0,6 с. При КЗ в третьей зоне выдержка времени еще более увеличивается и выбирается так же, как и для направленных токовых защит.
      На рис. 7.15 показан участок сети с двухсторонним питанием и приведены согласованные характеристики выдержек времени дистанционных защит (ДЗ). При КЗ, например, в точке К1 - первой зоне действия защит ДЗ3 и ДЗ4 - они сработают с минимальным временем соответственно t I3 и t I4. Защиты ДЗ1 и ДЗ6 также придут в действие, но для них повреждение будет находиться в III зоне, и они могут сработать как резервные с временем t III1 и t III6 только в случае отказа в отключении линии БВ собственными защитами.


      4610
      Рис. 7.14. Размещение токовых направленных защит нулевой последовательности на участке сетей и характеристики выдержек времени защит:
      Р31-Р36 - комплекты токовых направленных защит нулевой последовательности


      4611
      Рис. 7.15. Защита участка сети дистанционными защитами и характеристики выдержек времени этих защит:
      ДЗ1-ДЗ6 - комплекты дистанционных защит; l3 и l4 - расстояния от мест установки защит до места повреждения


      При КЗ в точке К2 (шины Б) оно устраняется действием защит ДЗ1 и ДЗ4 с временем t II1 и t II4.
      Дистанционная защита - сложная защита, состоящая из ряда элементов (органов), каждый из которых выполняет определенную функцию. На рис. 7.16 представлена упрощенная схема дистанционной защиты со ступенчатой характеристикой выдержки времени. Схема имеет пусковой и дистанционный органы, а также органы направления и выдержки времени.
      Пусковой орган ПО выполняет функцию отстройки защиты от нормального режима работы и пускает ее в момент возникновения КЗ. В качестве такого органа в рассматриваемой схеме применено реле сопротивления, реагирующее на ток I р и напряжение U p на зажимах реле.
      Дистанционные (или измерительные) органы ДО1 и ДО2 устанавливают меру удаленности места КЗ.
      Каждый из них выполнен при помощи реле сопротивления, которое срабатывает при КЗ, если
      4612
      где Z p - сопротивление на зажимах реле; Z - сопротивление защищаемой линии длиной 1 км; l - длина участка линии до места КЗ, км; Z cp - сопротивление срабатывания реле.
      Из приведенного соотношения видно, что сопротивление на зажимах реле Z p пропорционально расстоянию l до места КЗ.
      Органы выдержки времени ОВ2 и ОВ3 создают выдержку времени, с которой защита действует на отключение линии при КЗ во второй и третьей зонах. Орган направления OHM разрешает работу защиты при направлении мощности КЗ от шин в линию.
      В схеме предусмотрена блокировка БН, выводящая защиту из действия при повреждениях цепей напряжения, питающих защиту. Дело в том, что если при повреждении цепей напряжение на зажимах защиты Uр=0, то Zp=0. Это означает, что и пусковой, и дистанционный органы могут сработать неправильно. Для предотвращения отключения линии при появлении неисправности в цепях напряжения блокировка снимает с защиты постоянный ток и подает сигнал о неисправности цепей напряжения. Оперативный персонал в этом случае обязан быстро восстановить нормальное напряжение на защите. Если по какой-либо причине это не удается выполнить, защиту следует вывести из действия переводом накладки в положение "Отключено".

      4613
      Рис. 7.16. Принципиальная схема дистанционной защиты со ступенчатой характеристикой выдержки времени

      Работа защиты.

      При КЗ на линии срабатывают реле пускового органа ПО и реле органа направления OHM. Через контакты этих реле плюс постоянного тока поступит на контакты дистанционных органов и на обмотку реле времени третьей зоны ОВ3 и приведет его в действие. Если КЗ находится в первой зоне, дистанционный орган ДО1 замкнет свои контакты и пошлет импульс на отключение выключателя без выдержки времени. При КЗ во второй зоне ДО1 работать не будет, так как значение сопротивления на зажимах его реле будет больше значения сопротивления срабатывания. В этом случае сработает дистанционный орган второй зоны ДО2, который запустит реле времени ОВ2. По истечении выдержки времени второй зоны от реле ОВ2 поступит импульс на отключение линии. Если КЗ произойдет в третьей зоне, дистанционные органы ДО1 и ДО2 работать не будут, так как значения сопротивления на их зажимах больше значений сопротивлений срабатывания. Реле времени ОВ3, запущенное в момент возникновения КЗ контактами реле OHM, доработает и по истечении выдержки времени третьей зоны пошлет импульс на отключение выключателя линии. Дистанционный орган для третьей зоны защиты, как правило, не устанавливается.
      В комплекты дистанционных защит входят также устройства, предотвращающие срабатывание защит при качаниях в системе.

      [ http://leg.co.ua/knigi/raznoe/obsluzhivanie-ustroystv-releynoy-zaschity-i-avtomatiki-4.html]

       

      Тематики

      Синонимы

      EN

      DE

      • Distanzschutz, m

      FR

      Русско-английский словарь нормативно-технической терминологии > дистанционная защита

    • 63 инжектор PoE

      1. PoE injector

       

      инжектор PoE
      Устройство подачи питания в кабель по технологии PoE
      [Интент]

      Технология PoE не оказывает влияния на качество передачи данных. Для ее реализации используются свойства физического уровня Ethernet:

      C использованием высокочастотных трансформаторов на обоих концах линии с центральным отводом от обмоток постоянное напряжение питания подается на центральные отводы вторичных обмоток этих трансформаторов, и так же с центральных отводов снимается на приемной стороне. Использование центральных отводов сигнальных трансформаторов позволяет без взаимного влияния передавать питание по сигнальным парам, то есть передавать по одним и тем же проводникам и высокочастотные данные, и постоянное напряжение питания.
      Использование свободных пар для подачи питания. Современные кабельные сети Ethernet, соответствующие стандарту 100BASE-TX, состоят из четырех пар, две из которых не задействованы.

      Питающие устройства ( инжекторы; англ. power sourcing equipment, сокр. PSE) отличаются по способу подключения питания, при этом питаемые устройства (сплиттеры; англ. powered device, сокр. PD) являются универсальными. Питаемые устройства должны проектироваться с возможностью приема питания в любом варианте, в том числе и при изменении полярности (например, когда используется перекрестный кабель).

      Важным является то обстоятельство, что питающее устройство подает питание в кабель только в том случае, если подключаемое устройство является устройством питаемого типа. Таким образом, оборудование, не поддерживающее технологию PoE и случайно подключенное к питающему устройству, не будет выведено из строя[5]. Процедура подачи и отключения питания на кабель состоит из нескольких этапов.
      Определение подключения

      Этап определения подключения служит для определения, является ли подключенное на противоположном конце кабеля устройство питаемым (PD). На этом этапе питающее устройство (PSE) подает на кабель напряжение от 2,8 до 10 B и определяет параметры входного сопротивления подключаемого устройства. Для питаемого устройства это сопротивление составляет от 19 до 26,5 кОм с параллельно подключенным конденсатором ёмкостью от 0 до 150 нФ[6]. Только после проверки соответствия параметров входного сопротивления для питаемого устройства, питающее устройство переходит к следующему этапу, в противном случае питающее устройство повторно, через промежуток времени не менее 2 мс, пытается определить подключение.
      Классификация

      После этапа определения подключения, питающее устройство может дополнительно выполнять этап классификации, определяя диапазон мощностей, потребляемых питаемым устройством, чтобы затем контролировать эту мощность. Каждому питаемому устройству в зависимости от заявленной потребляемой мощности будет присвоен класс от 0 до 4. Минимальный диапазон мощностей имеет класс 0. Класс 4 зарезервирован стандартом для дальнейшего развития. Питающее устройство может снять напряжение с кабеля, если питаемое устройство стало потреблять мощность больше объявленной во время классификации. Классификация выполняется путём введения в кабель питающим устройством напряжения от 14,5 до 20,5 В и измерения тока в линии.
      Подача полного напряжения

      После прохождения этапов определения и классификации питающее устройство подает в кабель напряжение 48 В с фронтом нарастания не быстрее 400 мс. После подачи полного напряжения на питаемое устройство, питающее устройство осуществляет контроль его работы двумя способами:

      если питаемое устройство в течение 400 мс будет потреблять ток меньше 5 мА, то питающее устройство снимает питание с кабеля;
      питающее устройство подает в кабель напряжение 1,9—5,0 В с частотой 500 Гц и вычисляет входное сопротивление; если это сопротивление будет больше 1980 кОм в течение 400 мс, питающее устройство снимает питание с кабеля.

      Кроме того, питающее устройство непрерывно следит за током перегрузки. Если питаемое устройство будет потреблять ток более 400 мА в течение 75 мс, питающее устройство снимет питание с кабеля.
      Отключение

      Когда питающее устройство определяет, что питаемое устройство отключено от кабеля или произошла перегрузка потребляемого тока питаемым устройством, происходит снятие напряжение с кабеля за время не менее 500 мс.

      [ http://ru.wikipedia.org/wiki/Power_over_Ethernet]

      Тематики

      EN

      Русско-английский словарь нормативно-технической терминологии > инжектор PoE

    • 64 ожидаемое восстанавливающееся напряжение (цепи)

      1. prospective transient recovery voltage (of a circuit)

       

      ожидаемое восстанавливающееся напряжение (цепи)
      Напряжение после отключения ожидаемого симметричного тока идеальным коммутационным аппаратом.
      Примечание. Определение подразумевает, что коммутационный аппарат или плавкий предохранитель, для которого оценивается ожидаемое восстанавливающее напряжение, заменен идеальным коммутационным аппаратом, т. е. с мгновенным переходом от нулевого к бесконечному полному сопротивлению в самый момент уменьшения тока до нуля, т. е. при «естественном» нуле. Для цепей, в которых ток может проходить по нескольким различным путям, например для многофазной цепи, это определение подразумевает также, что ток отключается идеальным коммутационным аппаратом только в рассматриваемом полюсе.
      МЭК 60050(441-17-29)
      [ ГОСТ Р 50030. 1-2000 ( МЭК 60947-1-99)]

      EN

      prospective transient recovery voltage (of a circuit)
      the transient recovery voltage following the breaking of the prospective symmetrical current by an ideal switching device
      NOTE – The definition assumes that the switching device or the fuse, for which the prospective transient recovery voltage is sought, is replaced by an ideal switching device, i.e. having instantaneous transition from zero to infinite impedance at the very instant of zero current, i.e. at the "natural" zero. For circuits where the current can follow several different paths, e.g. a polyphase circuit, the definition further assumes that the breaking of the current by the ideal switching device takes place only in the pole considered.
      [IEV number 441-17-29]

      FR

      tension transitoire de rétablissement présumée (d'un circuit)
      tension transitoire de rétablissement qui suit la coupure du courant présumé symétrique par un appareil de connexion idéal
      NOTE – La définition implique que l'appareil de connexion ou le fusible, pour lequel la tension transitoire de rétablissement est recherchée, est remplacé par un appareil de connexion idéal, c'est-à-dire dont l'impédance passe instantanément de la valeur zéro à la valeur infinie à l'instant du zéro de courant, c'est-à-dire au zéro "naturel". Pour des circuits ayant plusieurs voies, par exemple un circuit polyphasé, on suppose en outre que la coupure du courant par l'appareil de connexion idéal n'a lieu que sur le pôle considéré.
      [IEV number 441-17-29]

       

      EN

      DE

      FR

      Русско-английский словарь нормативно-технической терминологии > ожидаемое восстанавливающееся напряжение (цепи)

    • 65 тип сети постоянного тока

      1. typology of d.c. network

       

      тип сети постоянного тока
      -
      [Интент]

      Параллельные тексты EN-RU

      Typologies of d.c. networks

      As previously explained, in order to break a short-circuit current in a d.c. system, it is necessary to connect the CB poles in a suitable way.

      To carry out this operation, it is necessary to know the earthing typology of the plant.

      Such information allow any possible fault condition to be evaluated and consequently the most suitable connection type to be selected according to the other characteristics of the plant (short-circuit current, supply voltage, rated current of the loads, etc.).

      [ABB]

      Типы сетей постоянного тока
      Как указывалось выше, для отключения тока короткого замыкания в сети постоянного тока необходимо соответствующим образом соединить полюсы автоматического выключателя.

      Для этого нужно знать тип системы заземления электроустановки.

      Данная информация позволяет оценить любые возможные неисправности и с учетом других параметров электроустановки (ток короткого замыкания, напряжение питания, номинальный ток нагрузки и т. д.) выбрать наиболее подходящий тип соединения полюсов выключателя.

      [Перевод Интент]


      Тематики

      EN

      • typology of d.c. network

      Русско-английский словарь нормативно-технической терминологии > тип сети постоянного тока

    • 66 время-токовая характеристика

      1. tripping curve
      2. tripping characteristic
      3. trip curve characteristic
      4. trip curve
      5. trip characteristic
      6. time-current characteristic
      7. T-C curve
      8. characteristic curve

       

      время-токовая характеристика
      Кривая, отражающая взаимосвязь времени, например преддугового или рабочего, и ожидаемого тока в указанных условиях эксплуатации.
      МЭК 60050 (441-17-13).
      [ ГОСТ Р 50030. 1-2000 ( МЭК 60947-1-99)]

      EN

      time-current characteristic
      a curve giving the time, e.g. pre-arcing time or operating time, as a function of the prospective current under stated conditions of operation
      [IEV number 441-17-13]

      FR

      caractéristique temps-courant
      courbe donnant la durée, par exemple durée de préarc ou durée de fonctionnement, en fonction du courant présumé dans des conditions déterminées de fonctionnement
      [IEV number 441-17-13]

      0225 Время-токовая характеристика представляет собой зависимость времения срабатывания автоматического выключателя от тока, протекающего в его главной цепи.
      На рисунке представлена типичная время-токовая характеристика автоматического выключателя.
      По оси ординат отложено время срабатывания автоматического выключателя в секундах.
      По оси абсцисс — отношение тока, протекающего в главной цепи автоматического выключателя к номинальному току.
      Из графика видно, что при значении I/Iн≤1 время отключения автоматического выключателя стремится к бесконечности.
      Иными словами, до тех пор, пока ток, протекающий в главной цепи автоматического выключателя, меньше или равен номинальному току, автоматический выключатель не отключится.
      Из графика также видно, что чем больше значение I/Iн, тем быстрее автоматический выключатель отключится. Так, например, (для левой кривой) при значении I/Iн=7 автоматический выключатель отключится через 0,1 секунды, а при I/Iн=3 - через 20 секунд.

      [Интент]

      0226
      Рис. Legrand   В автоматических выключателях с микропроцессорным расцепителем время-токовая характеристика имеет вид, представленный на рисунке и ее можно настраивать.
      В такой время-токовой характеристике различают три зоны срабатывания:
      - « Большая задержка». Эта зона соответствует тепловому расцепителю и защищает цепь от перегрузки;
      - « Малая задержка». Это защита от «слабых» коротких замыканий (обычно в конце защищаемой линий). Порог срабатывания, как правило, можно настроить. За счет изменения порога срабатывания можно увеличить время задержки до 1 секунды, что используется для обеспечения надежной селективности срабатывания относительно расположенных ниже аппаратов защиты;
      - « Мгновенно». Это защита от «мощных» коротких замыканий. Порог срабатывания устанавливается при изготовлении и зависит от модели автоматического выключателя.

      Примечание
      . Представленная на рисунке характеристика называется также
      трехступенчатой защитной характеристикой. См. " защитная характеристика автоматического выключателя"

      [Интент]

      Тематики

      Синонимы

      EN

      DE

      • Zeit/Strom-Kennlinie

      FR

      Русско-английский словарь нормативно-технической терминологии > время-токовая характеристика

    • 67 устройство защиты от короткого замыкания

      1. short-circuit protective device
      2. short circuit protection device
      3. SCPD

       

      устройство защиты от короткого замыкания
      УЗКЗ
      Устройство, предназначенное для защиты цепи или частей цепи от токов короткого замыкания путем ее отключения.
      [ ГОСТ Р МЭК 61439.1-2013]

      432.3 Устройства, обеспечивающие защиту только от тока короткого замыкания

      Устройства защиты от тока короткого замыкания могут быть установлены в таких местах, где защита от перегрузки достигается другими средствами или не требуется.

      [ ГОСТ Р 50571. 5-94 ( МЭК 364-4-43-77)]

      7.5.2.1.1 Для НКУ с устройством защиты от короткого замыкания, включенным в
      блок ввода, должен указываться ожидаемый ток короткого замыкания на зажимах
      блока ввода.

      [ ГОСТ 22789-94( МЭК 439-1-85)]

      Тематики

      Синонимы

      EN

      Русско-английский словарь нормативно-технической терминологии > устройство защиты от короткого замыкания

    См. также в других словарях:

    • ток отключения — Принятое значение ожидаемого тока в цепи, отключенной аппаратом, в заданный момент времени. [ГОСТ 17703 72] ток отключения Ток в полюсе выключателя в момент возникновения дуги при отключении [ГОСТ Р 50345 99 (МЭК 60898 95)] ток отключения Iоткл,… …   Справочник технического переводчика

    • ток отключения — 3.5.6 ток отключения: Ток в полюсе выключателя в момент возникновения дуги при отключении. Источник …   Словарь-справочник терминов нормативно-технической документации

    • ток отключения — atjungimo srovė statusas T sritis automatika atitikmenys: angl. breaking current; interrupted current; release current vok. Abfallstrom, m; Abschaltstrom, m; Ausschaltstrom, m rus. ток отключения, m; ток отпускания, m pranc. courant à couper, m;… …   Automatikos terminų žodynas

    • ток отключения — išjungimo srovė statusas T sritis automatika atitikmenys: angl. breaking current; interrupting current vok. Abschaltstrom, m rus. ток отключения, m pranc. courant de déclenchement, m …   Automatikos terminų žodynas

    • ток отключения (коммутационного аппарата или плавкого предохранителя) — 2.5.11 ток отключения (коммутационного аппарата или плавкого предохранителя) : Ток в одном полюсе коммутационного аппарата или в плавком предохранителе в момент возникновения дуги в процессе отключения. МЭК 60050(441 17 07). Примечание Для… …   Словарь-справочник терминов нормативно-технической документации

    • ток отключения (коммутационного устройства или плавкого предохранителя) — 3.5.8 ток отключения (коммутационного устройства или плавкого предохранителя): Ток в одном полюсе коммутационного устройства или в плавком предохранителе в момент образования дуги в процессе отключения (МЭК 60050(441 17 07). Примечание Для… …   Словарь-справочник терминов нормативно-технической документации

    • ток отключения Iоткл, А — 3.77 ток отключения Iоткл, А: Номинальный ток, отключаемый разъединителем (заземлителем). Источник: ГОСТ Р 52726 2007: Разъединители и заземлители переменного тока на напряже …   Словарь-справочник терминов нормативно-технической документации

    • Ток отключения ожидаемый (Ток отключения) — English: Prospective breaking current Ожидаемым ток, определенный в момент времени, соответствующий началу процесса отключения коммутационного аппарата (по СТ СЭВ 1936 79) Источник: Термины и определения в электроэнергетике. Справочник …   Строительный словарь

    • ожидаемый ток отключения (для полюса коммутационного аппарата или плавкого предохранителя) — Ожидаемый ток, оцениваемый в момент, соответствующий началу процесса отключения. МЭК 60050(441 17 06). Примечание. Данные, касающиеся начального момента процесса размыкания, приводятся в стандарте на соответствующий аппарат. Для контактных… …   Справочник технического переводчика

    • ожидаемый ток отключения (для одного полюса коммутационного аппарата или плавкого предохранителя) — 2.5.10 ожидаемый ток отключения (для одного полюса коммутационного аппарата или плавкого предохранителя): Ожидаемый ток, оцениваемый в момент, соответствующий моменту начала процесса отключения. [МЭС 441 17 06] Примечание Данные, касающиеся… …   Словарь-справочник терминов нормативно-технической документации

    • ожидаемый ток отключения (для полюса коммутационного аппарата или плавкого предохранителя) — 2.5.10 ожидаемый ток отключения (для полюса коммутационного аппарата или плавкого предохранителя) : Ожидаемый ток, оцениваемый в момент, соответствующий началу процесса отключения. МЭК 60050(441 17 06). Примечание Данные, касающиеся начального… …   Словарь-справочник терминов нормативно-технической документации

    Поделиться ссылкой на выделенное

    Прямая ссылка:
    Нажмите правой клавишей мыши и выберите «Копировать ссылку»