Перевод: с русского на французский

с французского на русский

тогда+как

  • 1 тогда как

    adv
    gener. alors que, en revanche, là ou, si, tandis que (выражает одновременность или противопоставление), cependant que (Les verbes présentant une voyelle caractéristique seront appelés verbes thématiques, cependant que les autres seront les athématiques.), or (Un inconvénient consiste en ce que l'orientation des fibres ne peut pas être contrôlée puisque celles-ci sont enroulées autour du mandrin. Or, de nombreuses propriétés des composites dépendent de cette orien), lorsqu', lorsque, quand

    Dictionnaire russe-français universel > тогда как

  • 2 тогда

    тогда́ она́ была́ молода́ — elle était jeune alors

    когда́ узна́ю, тогда́ позвоню́ — quand j'aurai des nouvelles, alors je téléphonnerai

    тогда́-то и на́до бы́ло э́то сде́лать — c'est alors qu'il fallait le faire

    да́же и тогда́, когда́... — alors même que...

    тогда́ же — à l'instant même

    ••

    тогда́ как — tandis que

    * * *
    adv
    1) gener. en ce cas, pour lors, à l'époque, alors
    2) obs. lors
    3) canad. d'abord

    Dictionnaire russe-français universel > тогда

  • 3 как

    1) вопр. и косвенно-вопр. comment

    а что́ как... — et si (+ imparf)

    а что́ как спро́сят! — et si l'on demandait!

    как пройти́, прое́хать куда́-либо — quel chemin faut-il prendre pour aller..., par où faut-il passer pour aller...

    2) относ. comme (в смысле "так, как"); или перев. оборотом с infin ("что")

    я поступи́л, как вы мне сказа́ли — j'ai agi comme vous me l'avez dit

    я ви́дел, как он бежа́л к реке́ — je l'ai vu courir vers la rivière

    3) воскл. comment; que, comme

    как краси́во! — que c'est beau!, quelle beauté!

    как! он уе́хал? — comment! il est parti?

    как я его́ жале́ю! — que je le plains!, comme je le plains!

    4) сравн. comme; en ("в качестве", тк. при подлеж.)

    бе́лый как снег — blanc comme neige

    как..., так и... — comme

    как у нас, так и у вас — chez vous comme chez nous

    как и... — ainsi que...; aussi bien que...

    5) ( когда) quand

    приве́т твое́й сестре́, как уви́дишь её — mes amitiés à ta sœur quand tu la verras

    как он уе́хал, так все его́ и забы́ли — à peine parti il fut complètement oublié

    как то́лько — dès que, aussitôt que

    вся́кий раз как — toutes les fois que

    ме́жду тем как — alors que; tandis que

    в то вре́мя как — tandis que

    тогда́ как — tandis que, alors que

    прошло́ два го́да, как мы с ним познако́мились — il y a deux ans que nous avons fait sa connaissance

    как, как вдруг (+ буд. вр.)voilà que

    как (вдруг) он вско́чит! — et de bondir!

    она́ как закричи́т! — et de crier

    8) (в начале вводн. сл.) comme

    как наприме́р — comme par exemple

    как говоря́т — dit-on

    как изве́стно — comme on le sait

    ••

    как таково́й — comme tel

    как бу́дто (бы) — comme si (+ imparf)

    де́йствуйте, как бу́дто (бы) ничего́ не́ было — faites comme si de rien n'était

    зада́ча э́та как бу́дто проста́я — c'est un problème simple en apparence

    как ка́жется — semble-t-il; paraît-il

    как попа́ло — à la va-vite

    не что ино́е, как — n'est autre chose que

    как оди́н челове́к — comme un seul homme

    как мо́жно бо́льше — le plus possible

    как нельзя́ лу́чше — au mieux

    как бы то ни́ было — quoi qu'il en soit

    как (бы)... ни... — avoir beau (+ infin)

    как бы он ни рабо́тал — il a beau travailler, il aurait beau travailler

    как не (+ неопр.)peut-on ne pas (+ infin)

    как не ра́доваться э́тому! — peut-on ne pas en être heureux!; comment ne pas en être heureux!

    вот как! разг. — tiens, tiens!

    как же! разг. — sans doute!, certainement!

    как бы не так! разг. — ah, mais non, par exemple!; plus souvent!, ouiche! (fam)

    как когда́! разг.ça dépend!

    смотря́ как — c'est selon

    я ви́дел, как его́... разг. — j'ai vu... machin (fam)

    * * *
    1. conj.
    gener. autant que(...), combien, si, comme, comment
    2. part.
    gener. en manière de (...), en tant que(...), sur le pied de(...), sur un pied de(...), tel que (Noircirez le cercle sur votre feuille de réponses, tel qu'illustré ci-dessous.), à la façon de(...), à titre de(...), (например, о чем-л. отвергнутом как...) parce que (Ces études de diagrammes n'autorisent pas à rejeter parce qu'utopiques les recherches faites dans ces techniques.), en (Clinton accueilli en rock star (âàèîôîâîû)), un, tel

    Dictionnaire russe-français universel > как

  • 4 программируемый логический контроллер

    1. automate programmable à mémoire

     

    программируемый логический контроллер
    ПЛК
    -
    [Интент]

    контроллер
    Управляющее устройство, осуществляющее автоматическое управление посредством программной реализации алгоритмов управления.
    [Сборник рекомендуемых терминов. Выпуск 107. Теория управления.
     Академия наук СССР. Комитет научно-технической терминологии. 1984 г.]

    EN

    storage-programmable logic controller
    computer-aided control equipment or system whose logic sequence can be varied via a directly or remote-control connected programming device, for example a control panel, a host computer or a portable terminal
    [IEV ref 351-32-34]

    FR

    automate programmable à mémoire
    équipement ou système de commande assisté par ordinateur dont la séquence logique peut être modifiée directement ou par l'intermédiaire d'un dispositif de programmation relié à une télécommande, par exemple un panneau de commande, un ordinateur hôte ou un terminal de données portatif
    [IEV ref 351-32-34]

      См. также:
    - архитектура контроллера;
    - производительность контроллера;
    - время реакции контроллера;
    КЛАССИФИКАЦИЯ

      Основным показателем ПЛК является количество каналов ввода-вывода. По этому признаку ПЛК делятся на следующие группы: По расположению модулей ввода-вывода ПЛК бывают:
    • моноблочными - в которых устройство ввода-вывода не может быть удалено из контроллера или заменено на другое. Конструктивно контроллер представляет собой единое целое с устройствами ввода-вывода (например, одноплатный контроллер). Моноблочный контроллер может иметь, например, 16 каналов дискретного ввода и 8 каналов релейного вывода;
    • модульные - состоящие из общей корзины (шасси), в которой располагаются модуль центрального процессора и сменные модули ввода-вывода. Состав модулей выбирается пользователем в зависимости от решаемой задачи. Типовое количество слотов для сменных модулей - от 8 до 32;
    • распределенные (с удаленными модулями ввода-вывода) - в которых модули ввода-вывода выполнены в отдельных корпусах, соединяются с модулем контроллера по сети (обычно на основе интерфейса RS-485) и могут быть расположены на расстоянии до 1,2 км от процессорного модуля.
    Часто перечисленные конструктивные типы контроллеров комбинируются, например, моноблочный контроллер может иметь несколько съемных плат; моноблочный и модульный контроллеры могут быть дополнены удаленными модулями ввода-вывода, чтобы увеличить общее количество каналов.

    Многие контроллеры имеют набор сменных процессорных плат разной производительности. Это позволяет расширить круг потенциальных пользователей системы без изменения ее конструктива.

    По конструктивному исполнению и способу крепления контроллеры делятся на:
    По области применения контроллеры делятся на следующие типы:
    • универсальные общепромышленные;
    • для управления роботами;
    • для управления позиционированием и перемещением;
    • коммуникационные;
    • ПИД-контроллеры;
    • специализированные.

    По способу программирования контроллеры бывают:
    • программируемые с лицевой панели контроллера;
    • программируемые переносным программатором;
    • программируемые с помощью дисплея, мыши и клавиатуры;
    • программируемые с помощью персонального компьютера.

    Контроллеры могут программироваться на следующих языках:
    • на классических алгоритмических языках (C, С#, Visual Basic);
    • на языках МЭК 61131-3.

    Контроллеры могут содержать в своем составе модули ввода-вывода или не содержать их. Примерами контроллеров без модулей ввода-вывода являются коммуникационные контроллеры, которые выполняют функцию межсетевого шлюза, или контроллеры, получающие данные от контроллеров нижнего уровня иерархии АСУ ТП.   Контроллеры для систем автоматизации

    Слово "контроллер" произошло от английского "control" (управление), а не от русского "контроль" (учет, проверка). Контроллером в системах автоматизации называют устройство, выполняющее управление физическими процессами по записанному в него алгоритму, с использованием информации, получаемой от датчиков и выводимой в исполнительные устройства.

    Первые контроллеры появились на рубеже 60-х и 70-х годов в автомобильной промышленности, где использовались для автоматизации сборочных линий. В то время компьютеры стоили чрезвычайно дорого, поэтому контроллеры строились на жесткой логике (программировались аппаратно), что было гораздо дешевле. Однако перенастройка с одной технологической линии на другую требовала фактически изготовления нового контроллера. Поэтому появились контроллеры, алгоритм работы которых мог быть изменен несколько проще - с помощью схемы соединений реле. Такие контроллеры получили название программируемых логических контроллеров (ПЛК), и этот термин сохранился до настоящего времени. Везде ниже термины "контроллер" и "ПЛК" мы будем употреблять как синонимы.

    Немного позже появились ПЛК, которые можно было программировать на машинно-ориентированном языке, что было проще конструктивно, но требовало участия специально обученного программиста для внесения даже незначительных изменений в алгоритм управления. С этого момента началась борьба за упрощение процесса программирования ПЛК, которая привела сначала к созданию языков высокого уровня, затем - специализированных языков визуального программирования, похожих на язык релейной логики. В настоящее время этот процесс завершился созданием международного стандарта IEC (МЭК) 1131-3, который позже был переименован в МЭК 61131-3. Стандарт МЭК 61131-3 поддерживает пять языков технологического программирования, что исключает необходимость привлечения профессиональных программистов при построении систем с контроллерами, оставляя для них решение нестандартных задач.

    В связи с тем, что способ программирования является наиболее существенным классифицирующим признаком контроллера, понятие "ПЛК" все реже используется для обозначения управляющих контроллеров, которые не поддерживают технологические языки программирования.   Жесткие ограничения на стоимость и огромное разнообразие целей автоматизации привели к невозможности создания универсального ПЛК, как это случилось с офисными компьютерами. Область автоматизации выдвигает множество задач, в соответствии с которыми развивается и рынок, содержащий сотни непохожих друг на друга контроллеров, различающихся десятками параметров.

    Выбор оптимального для конкретной задачи контроллера основывается обычно на соответствии функциональных характеристик контроллера решаемой задаче при условии минимальной его стоимости. Учитываются также другие важные характеристики (температурный диапазон, надежность, бренд изготовителя, наличие разрешений Ростехнадзора, сертификатов и т. п.).

    Несмотря на огромное разнообразие контроллеров, в их развитии заметны следующие общие тенденции:
    • уменьшение габаритов;
    • расширение функциональных возможностей;
    • увеличение количества поддерживаемых интерфейсов и сетей;
    • использование идеологии "открытых систем";
    • использование языков программирования стандарта МЭК 61131-3;
    • снижение цены.
    Еще одной тенденцией является появление в контроллерах признаков компьютера (наличие мыши, клавиатуры, монитора, ОС Windows, возможности подключения жесткого диска), а в компьютерах - признаков контроллера (расширенный температурный диапазон, электронный диск, защита от пыли и влаги, крепление на DIN-рейку, наличие сторожевого таймера, увеличенное количество коммуникационных портов, использование ОС жесткого реального времени, функции самотестирования и диагностики, контроль целостности прикладной программы). Появились компьютеры в конструктивах для жестких условий эксплуатации. Аппаратные различия между компьютером и контроллером постепенно исчезают. Основными отличительными признаками контроллера остаются его назначение и наличие технологического языка программирования.

    [ http://bookasutp.ru/Chapter6_1.aspx]  
    Программируемый логический контроллер (ПЛК, PLC) – микропроцессорное устройство, предназначенное для управления технологическим процессом и другими сложными технологическими объектами.
    Принцип работы контроллера состоит в выполнение следующего цикла операций:

    1.    Сбор сигналов с датчиков;
    2.    Обработка сигналов согласно прикладному алгоритму управления;
    3.    Выдача управляющих воздействий на исполнительные устройства.

    В нормальном режиме работы контроллер непрерывно выполняет этот цикл с частотой от 50 раз в секунду. Время, затрачиваемое контроллером на выполнение полного цикла, часто называют временем (или периодом) сканирования; в большинстве современных ПЛК сканирование может настраиваться пользователем в диапазоне от 20 до 30000 миллисекунд. Для быстрых технологических процессов, где критична скорость реакции системы и требуется оперативное регулирование, время сканирования может составлять 20 мс, однако для большинства непрерывных процессов период 100 мс считается вполне приемлемым.

    Аппаратно контроллеры имеют модульную архитектуру и могут состоять из следующих компонентов:

    1.    Базовая панель ( Baseplate). Она служит для размещения на ней других модулей системы, устанавливаемых в специально отведенные позиции (слоты). Внутри базовой панели проходят две шины: одна - для подачи питания на электронные модули, другая – для пересылки данных и информационного обмена между модулями.

    2.    Модуль центрального вычислительного устройства ( СPU). Это мозг системы. Собственно в нем и происходит математическая обработка данных. Для связи с другими устройствами CPU часто оснащается сетевым интерфейсом, поддерживающим тот или иной коммуникационный стандарт.

    3.    Дополнительные коммуникационные модули. Необходимы для добавления сетевых интерфейсов, неподдерживаемых напрямую самим CPU. Коммуникационные модули существенно расширяют возможности ПЛК по сетевому взаимодействию. C их помощью к контроллеру подключают узлы распределенного ввода/вывода, интеллектуальные полевые приборы и станции операторского уровня.

    4.    Блок питания. Нужен для запитки системы от 220 V. Однако многие ПЛК не имеют стандартного блока питания и запитываются от внешнего.  
    4906
    Рис.1. Контроллер РСУ с коммуникациями Profibus и Ethernet.
     
    Иногда на базовую панель, помимо указанных выше, допускается устанавливать модули ввода/вывода полевых сигналов, которые образуют так называемый локальный ввод/вывод. Однако для большинства РСУ (DCS) характерно использование именно распределенного (удаленного) ввода/вывода.

    Отличительной особенностью контроллеров, применяемых в DCS, является возможность их резервирования. Резервирование нужно для повышения отказоустойчивости системы и заключается, как правило, в дублировании аппаратных модулей системы.
     
    4907
    Рис. 2. Резервированный контроллер с коммуникациями Profibus и Ethernet.
     
    Резервируемые модули работают параллельно и выполняют одни и те же функции. При этом один модуль находится в активном состоянии, а другой, являясь резервом, – в режиме “standby”. В случае отказа активного модуля, система автоматически переключается на резерв (это называется “горячий резерв”).

    Обратите внимание, контроллеры связаны шиной синхронизации, по которой они мониторят состояние друг друга. Это решение позволяет разнести резервированные модули на значительное расстояние друг от друга (например, расположить их в разных шкафах или даже аппаратных).

    Допустим, в данный момент активен левый контроллер, правый – находится в резерве. При этом, даже находясь в резерве, правый контроллер располагает всеми процессными данными и выполняет те же самые математические операции, что и левый. Контроллеры синхронизированы. Предположим, случается отказ левого контроллера, а именно модуля CPU. Управление автоматически передается резервному контроллеру, и теперь он становится главным. Здесь очень большое значение имеют время, которое система тратит на переключение на резерв (обычно меньше 0.5 с) и отсутствие возмущений (удара). Теперь система работает на резерве. Как только инженер заменит отказавший модуль CPU на исправный, система автоматически передаст ему управление и возвратится в исходное состояние.

    На рис. 3 изображен резервированный контроллер S7-400H производства Siemens. Данный контроллер входит в состав РСУ Simatic PCS7.
     
     
    4908
    Рис. 3. Резервированный контроллер S7-400H. Несколько другое техническое решение показано на примере резервированного контроллера FCP270 производства Foxboro (рис. 4). Данный контроллер входит в состав системы управления Foxboro IA Series.  
    4909
    Рис. 4. Резервированный контроллер FCP270.
    На базовой панели инсталлировано два процессорных модуля, работающих как резервированная пара, и коммуникационный модуль для сопряжения с оптическими сетями стандарта Ethernet. Взаимодействие между модулями происходит по внутренней шине (тоже резервированной), спрятанной непосредственно в базовую панель (ее не видно на рисунке).

    На рисунке ниже показан контроллер AC800M производства ABB (часть РСУ Extended Automation System 800xA).  
    4910
    Рис. 5. Контроллер AC800M.
     
    Это не резервированный вариант. Контроллер состоит из двух коммуникационных модулей, одного СPU и одного локального модуля ввода/вывода. Кроме этого, к контроллеру можно подключить до 64 внешних модулей ввода/вывода.

    При построении РСУ важно выбрать контроллер, удовлетворяющий всем техническим условиям и требованиям конкретного производства. Подбирая оптимальную конфигурацию, инженеры оперируют определенными техническими характеристиками промышленных контроллеров. Наиболее значимые перечислены ниже:

    1.    Возможность полного резервирования. Для задач, где отказоустойчивость критична (химия, нефтехимия, металлургия и т.д.), применение резервированных конфигураций вполне оправдано, тогда как для других менее ответственных производств резервирование зачастую оказывается избыточным решением.

    2.    Количество и тип поддерживаемых коммуникационных интерфейсов. Это определяет гибкость и масштабируемость системы управления в целом. Современные контроллеры способны поддерживать до 10 стандартов передачи данных одновременно, что во многом определяет их универсальность.

    3.    Быстродействие. Измеряется, как правило, в количестве выполняемых в секунду элементарных операций (до 200 млн.). Иногда быстродействие измеряется количеством обрабатываемых за секунду функциональных блоков (что такое функциональный блок – будет рассказано в следующей статье). Быстродействие зависит от типа центрального процессора (популярные производители - Intel, AMD, Motorola, Texas Instruments и т.д.)

    4.    Объем оперативной памяти. Во время работы контроллера в его оперативную память загружены запрограммированные пользователем алгоритмы автоматизированного управления, операционная система, библиотечные модули и т.д. Очевидно, чем больше оперативной памяти, тем сложнее и объемнее алгоритмы контроллер может выполнять, тем больше простора для творчества у программиста. Варьируется от 256 килобайт до 32 мегабайт.

    5.    Надежность. Наработка на отказ до 10-12 лет.

    6. Наличие специализированных средств разработки и поддержка различных языков программирования. Очевидно, что существование специализированный среды разработки прикладных программ – это стандарт для современного контроллера АСУ ТП. Для удобства программиста реализуется поддержка сразу нескольких языков как визуального, так и текстового (процедурного) программирования (FBD, SFC, IL, LAD, ST; об этом в следующей статье).

    7.    Возможность изменения алгоритмов управления на “лету” (online changes), т.е. без остановки работы контроллера. Для большинства контроллеров, применяемых в РСУ, поддержка online changes жизненно необходима, так как позволяет тонко настраивать систему или расширять ее функционал прямо на работающем производстве.

    8.    Возможность локального ввода/вывода. Как видно из рис. 4 контроллер Foxboro FCP270 рассчитан на работу только с удаленной подсистемой ввода/вывода, подключаемой к нему по оптическим каналам. Simatic S7-400 может спокойно работать как с локальными модулями ввода/вывода (свободные слоты на базовой панели есть), так и удаленными узлами.

    9.    Вес, габаритные размеры, вид монтажа (на DIN-рейку, на монтажную панель или в стойку 19”). Важно учитывать при проектировании и сборке системных шкафов.

    10.  Условия эксплуатации (температура, влажность, механические нагрузки). Большинство промышленных контроллеров могут работать в нечеловеческих условиях от 0 до 65 °С и при влажности до 95-98%.

    [ http://kazanets.narod.ru/PLC_PART1.htm]

    Тематики

    Синонимы

    EN

    DE

    • speicherprogrammierbare Steuerung, f

    FR

    Русско-французский словарь нормативно-технической терминологии > программируемый логический контроллер

  • 5 селективность по сверхтокам

    1. sélectivité lors d'une surintensité

     

    селективность по сверхтокам
    Координация рабочих характеристик двух или нескольких устройств для защиты от сверхтоков с таким расчетом, чтобы в случае возникновения сверхтоков в пределах указанного диапазона срабатывало только устройство, предназначенное для оперирования в данном диапазоне, а прочие не срабатывали.
    Примечание. Различаются последовательная селективность, когда через различные устройства для защиты от сверхтоков проходит практически одинаковый сверхток, и параллельная селективность, когда через тождественные защитные устройства проходят различные доли сверхтока.
    МЭК 60050(441-17-15).
    [ ГОСТ Р 50030. 1-2000 ( МЭК 60947-1-99)]

    селективность при сверхтоке
    Координация соответствующих характеристик двух или более устройств для защиты от сверхтоков с таким расчетом, чтобы при появлении сверхтоков в установленных пределах срабатывало устройство, рассчитанное на эти пределы, в то время как другое (ие) устройство (а) не срабатывало (и).
    [ ГОСТ Р 50339. 0-2003 ( МЭК 60269-1-98)]

    селективность при сверхтоке предохранителей

    Координация соответствующих характеристик двух или нескольких предохранителей, или предохранителей и других защитных устройств, обеспечивающая при появлении сверхтоков, находящихся в данных пределах, состояние срабатывания предохранителя, предусмотренного для срабатывания в этих пределах, тогда как другие предохранители не срабатывают.
    [ ГОСТ 17242-86]

    EN

    over-current discrimination
    co-ordination of the operating characteristics of two or more over-current protective devices such that, on the incidence of over-currents within stated limits, the device intended to operate within these limits does so, while the other(s) does (do) not
    NOTE Distinction is made between series discrimination involving different over-current protective devices passing substantially the same over-current and network discrimination involving identical protective devices passing different proportions of the over-current.
    [IEV 441-17-15]

    FR

    sélectivité lors d'une surintensité
    coordination entre les caractéristiques de fonctionnement de plusieurs dispositifs de protection à maximum de courant de telle façon qu'à l'apparition de surintensités comprises dans des limites données, le dispositif prévu pour fonctionner entre ces limites fonctionne, tandis que le ou les autres ne fonctionnent pas
    NOTE On distingue la sélectivité série réalisée par différents dispositifs de protection à maximum de courant soumis pratiquement à la même surintensité et la sélectivité de réseau réalisée par des dispositifs de protection à maximum de courant identiques soumis à des fractions différentes de la surintensité
    [IEV 441-17-15]

    Параллельные тексты EN-RU

    Discrimination Method

    Appropriate when downstream CB is capable of 100% fault current break within the entire range of protection.


    [LS Industrial Systems]

    Селективность по сверхтокам

    Данный метод применяется в том случае, когда автоматический выключатель, расположенный со стороны нагрузки, может
    в течение времени срабатывания выдержать 100 % тока короткого замыкания.

    [Перевод Интент]

    Тематики

    EN

    DE

    FR

    Русско-французский словарь нормативно-технической терминологии > селективность по сверхтокам

  • 6 слиток

    lingot m Для некоторых цветных металлов различают "плоский слиток" (plaque), "круглый слиток" (billette), тогда как " lingot" означает "чушка".

    Русско-французский словарь бизнесмена > слиток

  • 7 нахлебник

    м. уст.
    2) ( приживальщик) écornifleur m, pique-assiette m (pl invar), parasite m
    * * *
    n
    1) gener. croquant (Например, в лозунге восстаний т. н. "кроканов": "Aux croquants!" В результате, кроканами стали называть крестьян-участников этих восстаний, тогда как первоначально эта характеристика относилась к представителям "непродуктивных" кл)
    2) colloq. pique-assiette
    3) obs. passe-volant (незаконно явившийся куда-л.)
    4) argo. nourrisson

    Dictionnaire russe-français universel > нахлебник

  • 8 действительное значение меры

    1. valeur convenrionnellement vraie d'une mesure matérialisée

     

    действительное значение меры
    Значение величины, приписанное мере на основании ее калибровки или поверки.
    Пример. В состав государственного эталона единицы массы входит платиноиридиевая гиря с номинальным значением массы 1 кг, тогда как действительное значение ее массы составляет 1,000000087 кг, полученное в результате международных сличений с международным эталоном килограмма, хранящимся в Международном Бюро Мер и Весов (МБМВ) (в данном случае это калибровка).
    [РМГ 29-99]

    Тематики

    • метрология, основные понятия

    EN

    DE

    FR

    Русско-французский словарь нормативно-технической терминологии > действительное значение меры

  • 9 ресурсы

    1. ressources

     

    ресурсы
    Совокупность трудовых, материальных, технических и финансовых средств, необходимых для выполнения работы в строительном производстве
    [Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)]

    ресурсы
    Используемые и потенциальные источники удовлетворения потребностей общества.
    Примечания
    1 Укрупненно можно подразделить все ресурсы на материальные и энергетические (первичные и вторичные), интеллектуальные, трудовые, информационные, финансовые, временные, традиционные и нетрадиционные.
    2 К ресурсам относят работников, инфраструктуру, производственную среду, информацию, поставщиков и партнеров, природные и финансовые ресурсы; материальные ресурсы, такие как усовершенствованные производственные и вспомогательные средства; нематериальные ресурсы, такие как интеллектуальная собственность; ресурсы и механизмы, содействующие инновационным постоянным улучшениям.
    [ ГОСТ Р 52104-2003]

    ресурсы
    Общеe свойство Р. — потенциальная возможность их участия в производстве (производственные Р.) и в потреблении (потребительские Р.). В каждый данный момент Р. ограничены и потому главной задачей экономического управления является их наилучшее (оптимальное) распределение. (См. Дефицитность ресурсов, Распределение ресурсов). В экономико-математических работах этим термином обозначают не только сырье, землю, труд, но и продукцию, поскольку продукция одной отрасли или производства — Р. для другой. Это удобно для формирования моделей и алгоритмов, где анализируются затраты (тогда показатель Р. отрицателен) и результаты (тогда он положителен). Различают Р. воспроизводимые (renewable resources) (например, продукция, кадры определенной квалификации, которые воспроизводятся, т.е. обучаются в течение анализируемого периода и т.д.) и невоспроизводимые (depletable resourses), например, разрабатываемые запасы полезных ископаемых. Впрочем, это разделение в разных моделях в зависимости от их условий проводится по-разному: те же квалифицированные кадры могут рассматриваться в краткосрочной модели как невоспроизводимый Р. Общепринятой классификации Р. не существует. Можно указать лишь на то, что в экономико-математических моделях рассматриваются следующие виды Р.: природные (включают Р. земли, вод, атмосферы, а также космоса): сырьевые и энергетические; средств производства (включая производственные мощности, предметы труда); трудовые (делятся, например, по группам населения, квалификационно-профессиональным группам); конечных «потребительских» благ (непроизводственные «мощности» и продукты для личного и общественного непроизводственного потребления); информационные (охватывают весь потенциал науки, «мощности» культуры и просвещения — кино, театра, школы) — как возможности идеологической работы, просвещения, образования и т.д.; финансовые (Р. капитальных вложений, кредитные и др.); внешние — валютные резервы, сеть внешнеторговых связей и т.п. Они выделены в отдельный класс, поскольку обладают очень широкими возможностями замещения внутренних ресурсов. См. также: Взаимозаменяемость ресурсов, Дефицитность ресурсов, Затраты, Первичные ресурсы, Свободный ресурс.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    • ресурсосбережение, обращение с отходами
    • экономика

    EN

    DE

    FR

    Русско-французский словарь нормативно-технической терминологии > ресурсы

  • 10 система

    1. système



     

    система
    Группа взаимодействующих объектов, выполняющих общую функциональную задачу. В ее основе лежит некоторый механизм связи.
    [ ГОСТ Р МЭК 61850-5-2011]

    система

    Набор элементов, которые взаимодействуют в соответствии с проектом, в котором элементом системы может быть другая система, называемая подсистемой; система может быть управляющей системой или управляемой системой и включать аппаратные средства, программное обеспечение и взаимодействие с человеком.
    Примечания
    1 Человек может быть частью системы. Например, человек может получать информацию от программируемого электронного устройства и выполнять действие, связанное с безопасностью, основываясь на этой информации, либо выполнять действие с помощью программируемого электронного устройства.
    2 Это определение отличается от приведенного в МЭС 351-01-01.
    [ ГОСТ Р МЭК 61508-4-2007]

    система
    Множество (совокупность) материальных объектов (элементов) любой, в том числе различной физической природы, а также информационных объектов, взаимосвязанных и взаимодействующих между собой для достижения общей цели.
    [ ГОСТ Р 43.0.2-2006]

    система
    Совокупность элементов, объединенная связями между ними и обладающая определенной целостностью.
    [ ГОСТ 34.003-90]

    система
    Совокупность взаимосвязанных и взаимодействующих элементов.
    [ ГОСТ Р ИСО 9000-2008]

    система

    -
    [IEV number 151-11-27]

    система
    Набор связанных элементов, работающих совместно для достижения общей Цели. Например: • Компьютерная система, состоящая из аппаратного обеспечения, программного обеспечения и приложений. • Система управления, состоящая из множества процессов, которые планируются и управляются совместно. Например, система менеджмента качества. • Система управления базами данных или операционная система, состоящая из множества программных модулей, разработанных для выполнения набора связанных функций.
    [Словарь терминов ITIL версия 1.0, 29 июля 2011 г.]

    система
    Множество элементов, находящихся в отношениях и связях друг с другом, которое образует определенную целостность, единство. Следует отметить, что это определение (взятое нами из Большой Советской Энциклопедии) не является ни единственным, ни общепризнанным. Есть десятки определений понятия “С.”, которые с некоторой условностью можно поделить на три группы. Определения, принадлежащие к первой группе, рассматривают С. как комплекс процессов и явлений, а также связей между ними, существующий объективно, независимо от наблюдателя. Его задача состоит в том, чтобы выделить эту С. из окружающей среды, т.е. как минимум определить ее входы и выходы (тогда она рассматривается как “черный ящик”), а как максимум — подвергнуть анализу ее структуру (произвести структуризацию), выяснить механизм функционирования и, исходя из этого, воздействовать на нее в нужном направлении. Здесь С. — объект исследования и управления. Определения второй группы рассматривают С. как инструмент, способ исследования процессов и явлений. Наблюдатель, имея перед собой некоторую цель, конструирует (синтезирует) С. как некоторое абстрактное отображение реальных объектов. При этом С. (“абстрактная система”) понимается как совокупность взаимосвязанных переменных, представляющих те или иные свойства, характеристики объектов, которые рассматриваются в данной С. В этой трактовке понятие С. практически смыкается с понятием модели, и в некоторых работах эти два термина вообще употребляются как взаимозаменяемые. Говоря о синтезе С., в таких случаях имеют в виду формирование макромодели, анализ же С. совпадает в этой трактовке с микромоделированием отдельных элементов и процессов. Третья группа определений представляет собой некий компромисс между двумя первыми. С. здесь — искусственно создаваемый комплекс элементов (например, коллективов людей, технических средств, научных теорий и т.д.), предназначенный для решения сложной организационной, экономической, технической задачи. Следовательно, здесь наблюдатель не только выделяет из среды С. (и ее отдельные части), но и создает, синтезирует ее. С. является реальным объектом и одновременно — абстрактным отображением связей действительности. Именно в этом смысле понимает С. наука системотехника. Между этими группами определений нет непроходимых границ. Во всех случаях термин “С.” включает понятие о целом, состоящем из взаимосвязанных, взаимодействующих, взаимозависимых частей, причем свойства этих частей зависят от С. в целом, свойства С. — от свойств ее частей. Во всех случаях имеется в виду наличие среды, в которой С. существует и функционирует. Для исследуемой С. среда может рассматриваться как надсистема, соответственно, ее части — как подсистемы, а также элементы С., если их внутренняя структура не является предметом рассмотрения. С. делятся на материальные и нематериальные. К первым относятся, например, железная дорога, народное хозяйство, ко вторым — С. уравнений в математике, математика как наука, далее — С. наук. Автоматизированная система управления включает как материальные элементы (ЭВМ, документация, люди), так и нематериальные — математические модели, знания людей. Разделение это тоже неоднозначно: железную дорогу можно рассматривать не только как материальную С., но и как нематериальную С. взаимосвязей, соотношений, потоков информации и т.д. Закономерности функционирования систем изучаются общей теорией систем, оперирующей понятием абстрактной С. Наибольшее значение среди абстрактных С. имеют кибернетические С. Есть два понятия, близкие понятию С.: комплекс, совокупность (множество объектов). Они, однако, не тождественны ему, как нередко утверждают. Их можно рассматривать как усеченные, неполные понятия по отношению к С.: комплекс включает части, не обязательно обладающие системными свойствами (в том смысле, как это указано выше), но эти части сами могут быть системами, и элементы последних такими свойствами по отношению к ним способны обладать. Совокупность же есть множество элементов, не обязательно находящихся в системных отношениях и связях друг с другом. В данном словаре мы стремимся по возможности последовательно различать понятия С. и модели, рассматривая С. как некий объект (реальной действительности или воображаемый — безразлично), который подвергается наблюдению и изучению, а модель — как средство этого наблюдения и изучения. Разумеется, и модель, если она сама оказывается объектом наблюдения и изучения, в свою очередь рассматривается как С. (в частности, как моделируемая С.) — и так до бесконечности. Все это означает, что такие, например, понятия, как переменная или параметр, мы (в отличие от многих авторов) относим не к С., а к ее описанию, т.е. к модели (см. Параметры модели, Переменная модели), численные же их значения, характеризующие С., — к С. (например, координаты С.). • Системы математически описываются различными способами. Каждая переменная модели, выражающая определенную характеристику С., может быть задана множеством конкретных значений, которые эта переменная может принимать. Состояние С. описывается вектором (или кортежем, если учитываются также величины, не имеющие численных значений), каждая компонента которого соответствует конкретному значению определенной переменной. С. в целом может быть описана соответственно множеством ее состояний. Например, если x = (1, 2, … m) — вектор существенных переменных модели, каждая из которых может принять y значений (y = 1, 2, …, n), то матрица S = [ Sxy ] размерностью m ? n представляет собой описание данной С. Широко применяется описание динамической С. с помощью понятий, связанных с ее функционированием в среде. При этом С. определяется как три множества: входов X, выходов Y и отношений между ними R. Полученный “портрет системы” может записываться так: XRY или Y = ®X. Аналитическое описание С. представляет собой систему уравнений, характеризующих преобразования, выполняемые ее элементами и С. в целом в процессе ее функционирования: в непрерывном случае применяется аппарат дифференциальных уравнений, в дискретном — аппарат разностных уравнений. Графическое описание С. чаще всего состоит в построении графа, вершины которого соответствуют элементам С., а дуги — их связям. Существует ряд классификаций систем. Наиболее известны три: 1) Ст. Бир делит все С. (в природе и обществе), с одной стороны, на простые, сложные и очень сложные, с другой — на детерминированные и вероятностные; 2) Н.Винер исходит из особенностей поведения С. (бихевиористский подход) и строит дихотомическую схему: С., характеризующиеся пассивным и активным поведением; среди последних — нецеленаправленным (случайным) и целенаправленным; в свою очередь последние подразделяются на С. без обратной связи и с обратной связью и т.д.; 3) К.Боулдинг выделяет восемь уровней иерархии С., начиная с простых статических (например, карта земли) и простых кибернетических (механизм часов), продолжая разного уровня сложности кибернетическими С., вплоть до самых сложных — социальных организаций. Предложены также классификации по другим основаниям, в том числе более частные, например, ряд классификаций С. управления. См. также: Абстрактная система, Адаптирующиеся, адаптивные системы, Большая система, Вероятностная система, Выделение системы, Входы и выходы системы, Детерминированная система, Динамическая система, Дискретная система, Диффузная система, Замкнутая (закрытая) система, Иерархическая структура, Имитационная система, Информационная система, Информационно-развивающаяся система, Кибернетическая система, Координаты системы, Надсистема, Нелинейная система, Непрерывная система, Открытая система, Относительно обособленная система, Память системы, Подсистема, Портрет системы, Разомкнутая система, Рефлексная система, Решающая система, Самонастраивающаяся система, Самообучающаяся система, Самоорганизующаяся система, Сложная система, Состояние системы, Статическая система, Стохастическая система, Структура системы, Структуризация системы, Управляющая система, Устойчивость системы, Целенаправленная система, Экономическая система, Функционирование экономической системы..
    [ http://slovar-lopatnikov.ru/]

    EN

    system
    set of interrelated elements considered in a defined context as a whole and separated from their environment
    NOTE 1 – A system is generally defined with the view of achieving a given objective, e.g. by performing a definite function.
    NOTE 2 – Elements of a system may be natural or man-made material objects, as well as modes of thinking and the results thereof (e.g. forms of organisation, mathematical methods, programming languages).
    NOTE 3 – The system is considered to be separated from the environment and the other external systems by an imaginary surface, which cuts the links between them and the system.
    NOTE 4 – The term "system" should be qualified when it is not clear from the context to what it refers, e.g. control system, colorimetric system, system of units, transmission system.
    Source: 351-01-01 MOD
    [IEV number 151-11-27]

    system
    A number of related things that work together to achieve an overall objective. For example: • A computer system including hardware, software and applications • A management system, including the framework of policy, processes, functions, standards, guidelines and tools that are planned and managed together – for example, a quality management system • A database management system or operating system that includes many software modules which are designed to perform a set of related functions.
    [Словарь терминов ITIL версия 1.0, 29 июля 2011 г.]

    FR

    système, m
    ensemble d'éléments reliés entre eux, considéré comme un tout dans un contexte défini et séparé de son environnement
    NOTE 1 – Un système est en général défini en vue d'atteindre un objectif déterminé, par exemple en réalisant une certaine fonction.
    NOTE 2 – Les éléments d'un système peuvent être aussi bien des objets matériels, naturels ou artificiels, que des modes de pensée et les résultats de ceux-ci (par exemple des formes d'organisation, des méthodes mathématiques, des langages de programmation).
    NOTE 3 – Le système est considéré comme séparé de l'environnement et des autres systèmes extérieurs par une surface imaginaire qui coupe les liaisons entre eux et le système.
    NOTE 4 – Il convient de qualifier le terme "système" lorsque le concept ne résulte pas clairement du contexte, par exemple système de commande, système colorimétrique, système d'unités, système de transmission.
    Source: 351-01-01 MOD
    [IEV number 151-11-27]

    Тематики

    EN

    DE

    FR

    Русско-французский словарь нормативно-технической терминологии > система

  • 11 очистка сточных вод

    1. traitement des eaux d'égouts
    2. l´épuration des eaux usées
    3. épuration des eaux usées

     

    очистка сточных вод
    Обработка сточных вод с целью разрушения или удаления из них определенных веществ.
    [ ГОСТ 17.1.1.01-77]

    очистка сточных вод
    Совокупность технологических процессов обработки сточных вод с целью разрушения, обезвреживания и снижения концентрации загрязняющих веществ.
    [Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)]

    Для сохранения мест забора питьевой воды чистыми необходима качественная очистка сточных вод, потребление которых в России достигает 500 литров в сутки на душу городского населения. В настоящее время разработаны и развиваются современные технологии очистки сточных вод. Наибольший интерес и перспективу имеют естественные и самые дешевые биологические методы очистки, представляющие собой интенсификацию природных процессов разложения органических соединений микроорганизмами в аэробных или анаэробных условиях.

    Механическая очистка
    Механическую очистку сточных вод применяют преимущественно как предварительную. Механическая очистка обеспечивает удаление взвешенных веществ из бытовых сточных вод на 60-65 %, а из некоторых производственных сточных вод на 90-95 %. Задачи механической очистки заключаются в подготовке воды к физико-химической и биологической очисткам. Механическая очистка сточных вод является в известной степени самым дешевым методом их очистки, а поэтому всегда целесообразна наиболее глубокая очистка сточных вод механическими методами.
    В настоящее время к очистке предъявляют большие требования. Это приводит к созданию высокоэффективных методов физико-химической очистки, интенсификации процессов биологической очистки, разработке технологических схем с сочетанием механических, физико-химических и биологических способов очистки и повторным использованием очищенных вод в технологических процессах. Механическую очистку проводят для выделения из сточной воды находящихся в ней нерастворенных грубодисперсных примесей путем процеживания, отстаивания и фильтрования. Механическую очистку как самостоятельный метод применяют тогда, когда осветленная вода после этого способа очистки может быть использована в технологических процессах производства или спущена в водоемы без нарушения их экологического состояния. Во всех других случаях механическая очистка служит первой ступенью очистки сточных вод.

    Физико-химическая очистка
    Физико-химическая очистка заключается в том, что в очищаемую вводу вводят какое-либо вещество-реагент (коагулянт или флокулянт). Вступая в химическую реакцию с находящимися в воде примесями, это вещество способствует более полному выделению нерастворимых примесей, коллоидов и части растворимых соединений. При этом уменьшается концентрация вредных веществ в сточных водах, растворимые соединения переходят в нерастворимые или растворимые, но безвредные, изменяется реакция сточных вод (происходит их нейтрализация), обесцвечивается окрашенная вода. Физико-химическая очистка дает возможность резко интенсифицировать механическую очистку сточных вод. В зависимости от необходимой степени очистки сточных вод физико-химическая очистка может быть окончательной или второй ступенью очистки перед биологической.

    Биологическая очистка
    Биологическая очистка основана на жизнедеятельности микроорганизмов, которые способствуют окислению или восстановлению органических веществ, находящихся в сточных водах в виде тонких суспензий, коллоидов, в растворе и являются для микроорганизмов источником питания, в результате чего и происходит очистка сточных вод от загрязнения.

    Очистные сооружения биологической очистки можно разделить на два основных типа:

    • сооружения, в которых очистка происходит в условиях, близких к естественным;
    • сооружения, в которых очистка происходит в искусственно созданных условиях.

    К первому типу относятся сооружения, в которых происходит фильтрование очищаемых сточных вод через почву (поля орошения и поля фильтрации) и сооружения, представляющие собой водоемы (биологические пруды) с проточной водой. В таких сооружениях дыхание микроорганизмов кислородом происходит за счет непосредственного поглощения его из воздуха. В сооружениях второго типа микроорганизмы дышат кислородом главным образом за счет диффундирования его через поверхность воды (реаэрация) или за счет механической аэрации.

    В искусственных условиях биологическую очистку применяют в аэротенках, биофильтрах и аэрофильтрах. В этих условиях процесс очистки происходит более интенсивно, так как создаются лучшие условия для развития активной жизнедеятельности микроорганизмов.

    [http://www.water.ru/catalog/obsh_sved.shtml]
     

    Тематики

    Сопутствующие термины

    EN

    DE

    FR

    32. Очистка сточных вод

    D. Abwasserreinigung

    E. Waste water purification

    F. L´épuration des eaux usées

    Обработка сточных вод с целью разрушения или удаления из них определенных веществ

    Источник: ГОСТ 17.1.1.01-77: Охрана природы. Гидросфера. Использование и охрана вод. Основные термины и определения оригинал документа

    Русско-французский словарь нормативно-технической терминологии > очистка сточных вод

  • 12 ну

    I межд. разг.
    1) ( побудительное) eh bien!, allons!; voyons! ( при просьбе)

    ну, скоре́й! — allons, plus vite!

    ну что тебе́ сто́ит! — voyons, qu'est-ce que cela te fait ( или te coûte)!

    ну-ка, прочти́те! — allons, lisez!

    ну и... — en voilà!

    ну и пого́да! — en voilà un temps!

    ну да! — mais oui!, parfaitement!

    ну (уж) нет! — oh! pour cela non!; ah, non par exemple!; ah, zut alors! (fam)

    ну вот вы и рассерди́лись! — vous voilà fâché!

    ну и ну! — ça par exemple!, oh, là-là!

    ••

    (да) ну тебя! — finis, voyons!; tu m'ennuies, tu m'embêtes, tu me casses les pieds

    (да) ну его́ (её и т.д.)! — il m'ennuie, il m'embête, il me casse les pieds

    ну его́ (её и т.д.) к чёрту! — que le diable l'emporte!

    II частица

    ну да?, (да) ну? — vraiment?, pas vrai?, est-ce possible?, pas possible?, non!

    ну и что (же)?, ну так что (же)? — eh bien, quoi?, et après?

    ну что же, ты е́дешь? — eh bien, tu pars?

    ну не со́вестно ли вам? — vous n'avez pas honte?

    2) (для усиления значения следующего сло́ва) eh bien, mais, bien sûr

    ну, коне́чно — mais bien sûr

    ну, разуме́ется, ты мо́жешь идти́ гуля́ть — bien sûr que tu peux aller te promener

    ну, хорошо́ — eh bien, soit

    ну и не на́до — tant pis

    ну так... ( в смысле - тогда) — alors

    ну так уйди́ — alors va-t-en

    ну, пошёл я туда́ — j'y suis donc allé

    ну хорошо́, допу́стим, что... — bon, admettons que...

    Ми́ша, ты слы́шишь? - Ну? — Michel, tu entends? - Quoi? ( или Hein?)

    6) ( в смысле - начать) перев. оборотом de (+ infin)

    а он ну крича́ть — et lui de crier

    ••

    ну, ну не бу́ду — c'est bon, c'est bon ( или ça va, ça va), je ne recommencerai plus

    * * *
    predic.
    1) gener. aller, c', eh bien!, tu vois, voyons!, ça!, (выражает усиление) mais
    2) colloq. là, là!
    3) argo. zyva

    Dictionnaire russe-français universel > ну

  • 13 алгоритм

    1. algorithme

     

    алгоритм
    Конечный набор предписаний для получения решения задачи посредством конечного количества операций.
    [ ГОСТ 34.003-90]

    алгоритм
    Конечное упорядоченное множество точно определенных правил для решения конкретной задачи.
    [ИСО/МЭК 2382-1]
    [ ГОСТ Р 52292-2004]

    алгоритм
    Последовательность действий для определенного вычисления
    [ ГОСТ 30721-2000]
    [ ГОСТ Р 51294.3-99]

    алгоритм
    Набор упорядоченных шагов для решения задачи, такой как математическая формула или инструкция в программе. В контексте кодирования речи алгоритмами называют математические методы, используемые для компрессии речи. Уникальные алгоритмы кодирования речи патентуются. Конкретные реализации алгоритмов в компьютерных программах также являются субъектом авторского права.
    Совокупность четко определенных правил, процедур или команд, обеспечивающих решение поставленной задачи за конечное число шагов.
    [ http://www.morepc.ru/dict/]

    алгоритм
    алгорифм
    Точное предписание относительно последовательности действий (шагов), преобразующих исходные данные в искомый результат. Это понятие появилось за много веков до появления компьютеров, с которыми его обычно связывают. Термин же происходит от слова Algorithmi, так на латинском языке звучало имя хорезмского математика IX столетия аль-Хорезми, трактат которого в средние века был распространен в Европе. Тогда алгоритмом называлось десятичное счисление и искусство счета в этой системе. А. — основа решения любой экономико-математической задачи, задачи управления, а также построения многих экономико-математических моделей — особенно прикладных, предназначенных для практических расчетов на компьютерах. Оценка качества А. обычно определяется его сходимостью (если А. не сходится, он не годится), скоростью сходимости (чем она выше, т.е. чем меньше шагов требуется для решения, тем А. лучше); кроме того, важную роль играют время счета на компьютере (оно зависит не только от числа шагов, но и других обстоятельств), удобство обращения к А., возможность работы в режиме диалога человека и ЭВМ. Для наглядности алгоритм, если он относительно прост, можно отобразить в виде блок-схемы (см. рис. А.2). А., записанный таким образом, чтобы его могла выполнять вычислительная машина, называется программой. Рис.А.2 Блок-схема алгоритма вычисления среднего арифметического Среди важнейших (для экономико-математических приложений) видов алгоритмов назовем следующие: Алгоритмитеративный [iterative routine] - см. Итеративные методы. Алгоритм моделирующий. [simulator] - алгоритм (компьютерная программа), имитирующий при исследовании сложных систем взаимодействие элементов процесса и позволяющий при заданной совокупности экзогенных величин (параметров, управляющих переменных) получить эндогенные величины (выходы) или их искомые характеристики. Алгоритм циклический [cyclical algorithm] - алгоритм, при котором через какое-то (обычно большое) число шагов результаты начинают повторяться. Таков, например, А. вычисления на компьютере псевдослучайных чисел. Алгоритм управления [control procedure] - точно определенный порядок выработки управленческих решений, формирования планов, обмена информацией в процессе управления. Тщательная отработка А. у. — необходимый этап проектирования любой АСУ. Для проверки А.у. эффективно применение методов машинной имитации.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    Синонимы

    EN

    DE

    FR

    Русско-французский словарь нормативно-технической терминологии > алгоритм

  • 14 продольная дифференциальная защита

    1. protection différentielle longitudinale

     

    продольная дифференциальная защита
    Защита, действие и селективность которой зависят от сравнения величин (или фаз и величин) токов по концам защищаемой линии.
    [ http://docs.cntd.ru/document/1200069370]

    продольная дифференциальная защита

    Защита, срабатывание и селективность которой зависят от сравнения амплитуд или амплитуд и фаз токов на концах защищаемого участка.
    [Разработка типовых структурных схем микропроцессорных устройств РЗА на объектах ОАО "ФКС ЕЭС". Пояснительная записка. Новосибирск 2006 г.]

    продольная дифференциальная защита линий
    -
    [Интент]

    EN

    longitudinal differential protection
    line differential protection (US)

    protection the operation and selectivity of which depend on the comparison of magnitude or the phase and magnitude of the currents at the ends of the protected section
    [ IEV ref 448-14-16]

    FR

    protection différentielle longitudinale
    protection dont le fonctionnement et la sélectivité dépendent de la comparaison des courants en amplitude, ou en phase et en amplitude, entre les extrémités de la section protégée
    [ IEV ref 448-14-16]


    Продольная дифференциальная защита линий

    Защита основана на принципе сравнения значений и фаз токов в начале и конце линии. Для сравнения вторичные обмотки трансформаторов тока с обеих сторон линии соединяются между собой проводами, как показано на рис. 7.17. По этим проводам постоянно циркулируют вторичные токи I 1 и I 2. Для выполнения дифференциальной защиты параллельно трансформаторам тока (дифференциально) включают измерительный орган тока ОТ.
    Ток в обмотке этого органа всегда будет равен геометрической сумме токов, приходящих от обоих трансформаторов тока: I Р = I 1 + I 2 Если коэффициенты трансформации трансформаторов тока ТА1 и ТА2 одинаковы, то при нормальной работе, а также внешнем КЗ (точка K1 на рис. 7.17, а) вторичные токи равны по значению I 1 =I2 и направлены в ОТ встречно. Ток в обмотке ОТ I Р = I 1 + I 2 =0, и ОТ не приходит в действие. При КЗ в защищаемой зоне (точка К2 на рис. 7.17, б) вторичные токи в обмотке ОТ совпадут по фазе и, следовательно, будут суммироваться: I Р = I 1 + I 2. Если I Р >I сз, орган тока сработает и через выходной орган ВО подействует на отключение выключателей линии.
    Таким образом, дифференциальная продольная защита с постоянно циркулирующими токами в обмотке органа тока реагирует на полный ток КЗ в защищаемой зоне (участок линии, заключенный между трансформаторами тока ТА1 и ТА2), обеспечивая при этом мгновенное отключение поврежденной линии.
    Практическое использование схем дифференциальных защит потребовало внесения ряда конструктивных элементов, обусловленных особенностями работы этих защит на линиях энергосистем.
    Во-первых, для отключения протяженных линий с двух сторон оказалось необходимым подключение по дифференциальной схеме двух органов тока: одного на подстанции 1, другого на подстанции 2 (рис. 7.18). Подключение двух органов тока привело к неравномерному распределению вторичных токов между ними (токи распределялись обратно пропорционально сопротивлениям цепей), появлению тока небаланса и понижению чувствительности защиты. Заметим также, что этот ток небаланса суммируется в ТО с током небаланса, вызванным несовпадением характеристик намагничивания и некоторой разницей в коэффициентах трансформации трансформаторов тока. Для отстройки от токов небаланса в защите были применены не простые дифференциальные реле, а дифференциальные реле тока с торможением KAW, обладающие большей чувствительностью.
    Во-вторых, соединительные провода при их значительной длине обладают сопротивлением, во много раз превышающим допустимое для трансформаторов тока сопротивление нагрузки. Для понижения нагрузки были применены специальные трансформаторы тока с коэффициентом трансформации n, с помощью которых был уменьшен в п раз ток, циркулирующий по проводам, и тем самым снижена в n2 раз нагрузка от соединительных проводов (значение нагрузки пропорционально квадрату тока). В защите эту функцию выполняют промежуточные трансформаторы тока TALT и изолирующие TAL. В схеме защиты изолирующие трансформаторы TAL служат еще и для отделения соединительных проводов от цепей реле и защиты цепей реле от высокого напряжения, наводимого в соединительных проводах во время прохождения по линии тока КЗ.

    5313
    Рис. 7.17. Принцип выполнения продольной дифференциальной защиты линии и прохождение тока в органе тока при внешнем КЗ (а) и при КЗ в защищаемой зоне (б)

     

    5314
    Рис. 7.18. Принципиальная схема продольной дифференциальной защиты линии:
    ZA - фильтр токов прямой и обратной последовательностей; TALT - промежуточный трансформатор тока; TAL - изолирующий трансформатор; KAW - дифференциальное реле с торможением; Р - рабочая и T - тормозная обмотки реле

    Распространенные в электрических сетях продольные дифференциальные защиты типа ДЗЛ построены на изложенных выше принципах и содержат элементы, указанные на рис. 7.18. Высокая стоимость соединительных проводов во вторичных цепях ДЗЛ ограничивает область се применения линиями малой протяженности (10-15 км).
    Контроль исправности соединительных проводов. В эксплуатации возможны повреждения соединительных проводов: обрывы, КЗ между ними, замыкания одного провода на землю.
    При обрыве соединительного провода (рис. 7.19, а) ток в рабочей Р и тормозной Т обмотках становится одинаковым и защита может неправильно сработать при сквозном КЗ и даже при токе нагрузки (в зависимости от значения Ic з .
    Замыкание между соединительными проводами (рис. 7.19, б) шунтирует собой рабочие обмотки реле, и тогда защита может отказать в работе при КЗ в защищаемой зоне.
    Для своевременного выявления повреждений исправность соединительных проводов контролируется специальным устройством (рис. 7.20). Контроль основан на том, что на рабочий переменный ток, циркулирующий в соединительных проводах при их исправном состоянии, накладывается выпрямленный постоянный ток, не оказывающий влияния на работу защиты. Две секции вторичной обмотки TAL соединены разделительным конденсатором С1, представляющим собой большое сопротивление для постоянного тока и малое для переменного. Благодаря конденсаторам С1 в обоих комплектах защит создается последовательная цепь циркуляции выпрямленного тока по соединительным проводам и обмоткам минимальных быстродействующих реле тока контроля КА. Выпрямленное напряжение подводится к соединительным проводам только на одной подстанции, где устройство контроля имеет выпрямитель VS, получающий в свою очередь питание от трансформатора напряжения TV рабочей системы шин. Подключение устройства контроля к той или другой системе шин осуществляется вспомогательными контактами шинных разъединителей или. реле-повторителями шинных разъединителей защищаемой линии.
    Замыкающие контакты КЛ контролируют цепи выходных органов защиты.
    При обрыве соединительных проводов постоянный ток исчезает, и реле контроля КА снимает оперативный ток с защит на обеих подстанциях, и подастся сигнал о повреждении. При замыкании соединительных проводов между собой подается сигнал о выводе защиты из действия, но только с одной стороны - со стороны подстанции, где нет выпрямителя.
    5315
    Рис. 7.19. Прохождение тока в обмотках реле KAW при обрыве (а) и замыкании между собой соединительных проводов (б):
    К1 - точка сквозного КЗ; К2 - точка КЗ в защищаемой зоне
    В устройстве контроля имеется приспособление для периодических измерений сопротивления изоляции соединительных проводов относительно земли. Оно подаст сигнал при снижении сопротивления изоляции любого из соединительных проводов ниже 15-20 кОм.
    Если соединительные провода исправны, ток контроля, проходящий по ним, не превышает 5-6 мА при напряжении 80 В. Эти значения должны периодически проверяться оперативным персоналом в соответствии с инструкцией по эксплуатации защиты.
    Оперативному персоналу следует помнить, что перед допуском к любого рода работам на соединительных проводах необходимо отключать с обеих сторон продольную дифференциальную защиту, устройство контроля соединительных проводов и пуск от защиты устройства резервирования при отказе выключателей УРОВ.
    После окончания работ на соединительных проводах следует проверить их исправность. Для этого включается устройство контроля на подстанции, где оно не имеет выпрямителя, при этом должен появиться сигнал неисправности. Затем устройство контроля включают на другой подстанции (на соединительные провода подают выпрямленное напряжение) и проверяют, нет ли сигнала о повреждении. Защиту и цепь пуска УРОВ от защиты вводят в работу при исправных соединительных проводах.

    [ http://leg.co.ua/knigi/raznoe/obsluzhivanie-ustroystv-releynoy-zaschity-i-avtomatiki-5.html]

    Тематики

    Синонимы

    EN

    DE

    • Längsdifferentialschutz, m

    FR

    Русско-французский словарь нормативно-технической терминологии > продольная дифференциальная защита

  • 15 риск

    1. risque

     

    риск
    Сочетание вероятности нанесения и степени тяжести возможных травм или другого вреда здоровью в опасной ситуации.
    [ ГОСТ Р ИСО 12100-1:2007]

    риск
    Сочетание вероятности причинения ущерба и тяжести этого ущерба.
    [ИСО / МЭК Руководство 51]
    Примечание
    Дальнейшее обсуждение этой концепции содержится в МЭК 61508-5 (приложение А).
    [ ГОСТ Р МЭК 61508-4-2007]

    риск

    Комбинация вероятностей и степени тяжести возможных травм или нанесения другого вреда здоровью в опасной ситуации.
    [ГОСТ ЕН 1070-2003]
    [ ГОСТ Р 51333-99]

    риск
    Вероятностная мера неблагоприятных последствий реализации опасностей определенного класса для объекта, отдельного человека, его имущества, населения, хозяйственных объектов, собственности, состояния окружающей среды.
    [СО 34.21.307-2005]

    риск
    Вероятность причинения вреда жизни или здоровью граждан, имуществу физических или юридических лиц, государственному или муниципальному имуществу, окружающей среде, жизни или здоровью животных и растений с учетом тяжести этого вреда
    [Федеральный закон от 27.12.2002 № 184-ФЗ «О техническом регулировании»]
    [СТО Газпром РД 2.5-141-2005]

    риск
    Вероятность причинения вреда жизни, здоровью физических лиц, окружающей среде, в том числе животным или растениям, имуществу физических или юридических лиц, государственному или муниципальному имуществу с учетом тяжести этого вреда.
    [ ГОСТ Р 52551-2006]

    риск
    Сочетание вероятности события и его последствий.
    Примечания
    1. Термин «риск» обычно используют только тогда, когда существует возможность негативных последствий.
    2. В некоторых ситуациях риск обусловлен возможностью отклонения от ожидаемого результата или события.
    3. Применительно к безопасности см. Аспекты безопасности. Правила включения в стандарты.
    [ ГОСТ Р 51897-2002]

    риск
    Сочетание вероятности случайности и тяжести возможной травмы или нанесение вреда здоровью человека в опасной ситуации.
    [ ГОСТ Р МЭК 60204-1-2007]

    риск
    Возможность нежелательного исхода в будущем, вероятностькоторого надо учитывать при анализе деятельности любых экономических субъектов (компаний, предприятий, домашних хозяйств и др.), особенно в инвестиционной деятельности, и по возможности сводить к минимуму путем принятия рациональных управленческих решений. В задачах исследования операций риск — мера несоответствия между разными возможными результатами принятия определенных стратегий (решениями задачи). При этом считается, что каждая выбираемая стратегия может привести к разным результатам и что вероятности тех или иных результатов принимаемого решения известны или могут быть оценены (в отличие от детерминированных задач, где каждая стратегия дает единственный результат, и неопределенных задач, где результаты стратегии непредсказуемы). Задачи с Р. состоят в выборе некоторой i-й альтернативы, обеспечивающей лучший результат с заданной вероятностью, например, вероятностью pi и худший — вероятностью (1 — pi). Чаще всего максимизируется математическое ожидание полезности для каждой стратегии (хотя применяются и другие критерии). При выборе стратегий учитываются два фактора: вероятность получения тех или иных результатов (в некоторых работах она называется, на наш взгляд, не вполне удачно «мерой эффективности»), и полезность этих результатов. Принято считать экономическим Р. затраты или потери экономического эффекта, связанные с реализацией определенного планового варианта в условиях, иных по сравнению с теми, при которых он (вариант) был бы оптимальным. Принято разделать финансовые риски на три главные категории: процентый, систематический и несистематический (см. соответствующие статьи). Аналогично понимание термина Р. и в других сферах бизнеса, хозяйственной деятельности. При выборе альтернатив с разной степенью Р. чрезвычайное значение имеет психологический аспект. Лица, принимающие решения (как потребители, так и производители) разделяются на при категории: расположенные к риску, нерасположенные к Р. и безразличные к нему. Например, человек, предпочитающий стабильный доход определенного размера большему по размеру, но связанному с Р. доходу, считается нерасположенным к Р. Максимальное количество денег, которое он готов заплатить, чтобы избежать риска, называется в этом случае вознаграждением или премией за риск. Каждый инвестор сталкивается с взаимосвязью желаемой прибыли от проекта и риском. Выбор между безрисковыми (таковы, напр., государственные ценные бумаги) и отличающимися более высокой ожидаемой прибылью рисковыми активами — основная задача формирования инвестиционного портфеля. В портфельной теории в качестве меры риска обычно выбирается статистический показатель «стандартное отклонение от ожидаемой доходности портфеля». Чем меньше возможное отклонение от нее, тем менее рискован портфель, тем более он надежен. Для снижения Р. («управления риском») применяются методы диверсификации производства, разного рода формы страхования, накопление резервов,получение дополнительной информации о различных вариантах экономического поведения и их возможных последствиях.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

    DE

    FR

    Русско-французский словарь нормативно-технической терминологии > риск

См. также в других словарях:

  • тогда как — в то время как, несмотря на то, что Словарь русских синонимов. тогда как предл, кол во синонимов: 2 • в то время как (17) • …   Словарь синонимов

  • Тогда как — ТОГДА, мест. нареч. Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949 1992 …   Толковый словарь Ожегова

  • Тогда Как — союз 1. Употребляется при присоединении придаточной части сложноподчиненного предложения (при сопоставлении действий или явлений главной и придаточной частей, не соответствующих друг другу), соответствуя по значению сл.: в то время как. 2.… …   Современный толковый словарь русского языка Ефремовой

  • тогда как — тогда/ как, союз …   Слитно. Раздельно. Через дефис.

  • тогда как — союз; наречие + союз 1. Союз. То же, что «но, хотя, в то время как». Синтаксические конструкции, начинающиеся с союза «тогда как», выделяются знаками препинания (запятыми). При этом первый знак препинания ставится перед словом «тогда», а не перед …   Словарь-справочник по пунктуации

  • тогда как — I см. как, тогда II см. тогда; союз. 1) Выражает противопоставление. Он работал, тогда как ты всё время бездельничал. Мать прекрасно играет на скрипке, тогда как дочь лишена музыкального слуха. 2) Несмотря на то, что; хотя. Её отругали, тогда как …   Словарь многих выражений

  • тогда как — • в то время как, между тем как, тогда как Стр. 0180 Стр. 0181 Стр. 0182 Стр. 0183 Стр. 0184 …   Новый объяснительный словарь синонимов русского языка

  • тогда как — тогд а как, союз …   Русский орфографический словарь

  • тогда как — союз …   Орфографический словарь русского языка

  • ТОГДА — ТОГДА. 1. нареч. В то время, в тот или иной момент в прошлом или будущем, не теперь. «Я проживал тогда в Швейцарии.» А.Тургенев. «Тогда имели вы хоть жалость, хоть уважение к летам… а нынче!» Пушкин. Он казался мне тогда ужасно ученым, умным и… …   Толковый словарь Ушакова

  • как — КАК. 1. нареч. вопросительное. Обозначает вопрос об обстоятельствах, образе, способе действия, в знач.: каким образом? Как вы сюда попали? Как пройти на Мясницкую? Как вы нашли нас в толпе? || Обозначает вопрос о качестве действия или состояния,… …   Толковый словарь Ушакова

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»