Перевод: с русского на английский

с английского на русский

теория+принятия+решений

  • 41 наука об управлении

    1. management science

     

    наука об управлении
    Точнее, комплекс наук, занимающихся вопросами управления, социальная, общественная наука о принципах и закономерностях управления общественным производством на различных его уровнях. Степень научности управления определяется глубиной познания качественных и количественных закономерностей функционирования и развития экономики. На Западе распространено двойное понимание термина «Н.у.»: в единственном числе (management science) как приложения количественных методов в управлении (синоним исследования операций) и во множественном числе (management sciences) как приложения в управлении не только количественных методов, но также экономики, психологии, социологии. Научно-технический прогресс ознаменовался кардинальными сдвигами в области хозяйственного управления. Объективная необходимость этих сдвигов определяется колоссальным развитием производства и его возросшими связями с наукой, усложнением технологических процессов. Большое значение имеет увеличение численности и повышение культурно-технического уровня рабочего класса и интеллигенции. Объективная возможность этих сдвигов определяется достижениями XX в. в области таких фундаментальных наук, как математика, логика, кибернетика, психология и социология, ряда прикладных наук, а также успехами в области производства электронно-вычислительной техники. Их достижения синтезирует целый комплекс дисциплин, рассматривающих с разных сторон вопросы управления, в том числе и управления экономическими процессами: это экономическая кибернетика, системный анализ, теория экономической информации, эвристические методы, теория (принятия) решений, теория игр и другие. Они исходят из того, что процесс управления (с кибернетической точки зрения) есть процесс сбора, переработки информации и выдачи продукта такой переработки в виде новой информации, т.е. решений, указаний и т.д. Общая задача перечисленных дисциплин — усовершенствование технологии этого процесса путем построения и реализации систем менеджмента: производственных, маркетинговых, финансовых, экологических, банковских, фондовых, транспортных и т.д.. Не следует преувеличивать значение такой технологии управления, ибо человек был и остается главным фактором в управлении. Но современная технология помогает человеку принимать более эффективные решения, добиваться более высоких результатов и сфера ее применения неуклонно расширяется. Важнейшими предвозвестниками менеджмента как системы методов управления капиталистическими фирмами и предприятиями были американские ученые Ф.Тейлор и Э.Мэйо, французский специалист А.Файоль. За последние годы в центр внимания многих концепций управления выдвигаются процессы принятия решений с использованием математической формализации (в том числе оптимизационных моделей), а также построенных на ее основе компьютьерных систем поддержки решений, экспертных систем, систем искусственного интеллекта. Создается ряд конкурирующих между собой «моделей управления», например, управление по отклонениям (management by exception), управление по конечным результатам (management by results), управление на основе делегирования прав и ответственности (management by delegation) и др. В России одним из предвозвестников современной Н.у. был философ-марксист А.А.Богданов, выдвинувший идею создания науки об общих законах организации — тектологии. С первых лет Советской власти работы в этой области были связаны в большой мере с именем А.К.Гастева, который с 1920-го по 1938 г. руководил Центральным институтом труда, был инициатором и организатором широкого движения за научную организацию труда (НОТ), пропагандировал популярную в те годы систему Ф.Тейлора. При Сталине Институт труда был разогнан, Гастев — репрессирован, исследования в области науки об управлении, так же как в ряде других областей современной экономики, были свернуты, переводы научной экономической литературы — практически прекращены. Все это было возобновлено лишь в начале 60-х гг. В настоящее время в стране вопросами Н.у. занимаются крупные научные коллективы — Институт системных исследований, ЦЭМИ, Институт проблем управления им. В.Трапезникова, Институт проблем управления сложными системами и др. Для обучения хозяйственных кадров созданы Академия народного хозяйства (соединившаяся в 2012 году с Академией государственной службы), факультеты управления и организации производства в ряде экономических институтов, множество школ, университетов и академий менеджмента.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > наука об управлении

  • 42 принять решение

    1. come a decision
    2. make a decision

    решающая функция; функция выбора решенияdecision function

    3. take a decision
    4. arrive at a decision

    решение, имеющее важное значениеconsequential decision

    решение, констатирующее отказ от праваwaiver decision

    процедура принятия решения; алгоритмdecision procedure

    Синонимический ряд:
    решить (глаг.) вынести решение; постановить; решить

    Русско-английский большой базовый словарь > принять решение

  • 43 поведение

    1. behaviour

     

    поведение

    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    поведение
    Совокупность действий, изменений изучаемой системы, ее всякая реакция на внешние воздействия: изменение, развитие, рост. Изучают, например, экономическое П. людей, П. экономико-математических моделей при компьютерном расчете. Модели экономического П. людей — основа таких научных дисциплин, как теория организации, теория деловых игр, психология труда, психологическая теория принятия решений и т.д. В этих моделях экономическое П. формально определяется как принятие и осуществление производителем или потребителем своих решений в пределах той свободы выбора, которая ему предоставлена моделью. Экономическое П. предприятий — реакция владельцев, менеджеров и производственных коллективов на изменения внешних по отношению к ним условий (плановых заданий, систем стимулирования, цен, банковского процента и т.п.), а также результат действия и выражение внутренних законов функционирования предприятия (см. Функциональный подход). П. системы отражается в ее модели как функция времени и параметров (функция отклика). Последнее можно записать, например, так: совокупность параметров обозначим символом Q, время t, функциональную зависимость — F = F (Q, t).
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

    3.3 поведение (behaviour): Способ действия и реакции всей системы или ее части на выполнение функции.

    Примечание - Заимствовано из ИСО 15704:2000.

    Источник: ГОСТ Р ИСО 19439-2008: Интеграция предприятия. Основа моделирования предприятия оригинал документа

    Русско-английский словарь нормативно-технической терминологии > поведение

  • 44 принятие

    n. assumption, taking, admission, acceptance; теория принятия решений, decision theory

    Русско-английский словарь математических терминов > принятие

  • 45 принятие

    n. assumption, taking, admission, acceptance;

    теория принятия решений - decision theory

    Русско-английский математический словарь > принятие

  • 46 принятие

    n.
    assumption, taking, admission, acceptance

    Русско-английский словарь по математике > принятие

  • 47 решение

    1. model solution
    2. decision

     

    решение
    Выбор альтернативы.
    [ http://tourlib.net/books_men/meskon_glossary.htm]

    решение
    (в планировании и управлении, исследовании операций, экономико-математическом моделировании) — 1. Выбор одной или нескольких альтернатив из множества возможных (вариантов Р.). 2. Процесс (алгоритм) осуществления такого выбора. Этот выбор основывается на оценке и сопоставлении ожидаемых результатов принятия тех или иных альтернатив с точки зрения целей (или цели), поставленных в решаемой задаче. Для принятия Р., таким образом, необходимы: четко сформулированная цель; список альтернативных возможностей (стратегий, т.е. вариантов распределения сил и средств и т.д.) и правила выбора между ними, т.е. в общем случае, критерий качества Р.; знание факторов, которые могут повлиять на результат при принятии того или иного Р. В исследовании операций и в целом в экономико-математических методах распространено обоснование Р. не непосредственно (например, путем реального экономического эксперимента), а с помощью экономико-математических моделей. Принято говорить о решении модели, т.е. о выборе такой совокупности значений ее переменных, которая обеспечивает наилучшее по какому-либо критерию значение целевой функции. Как видно, данное выше общее определение относится и к понятию «Р. модели», поскольку оно означает отбор из ряда возможных вариантов (векторов) значений переменных (каждый из них — альтернатива) того варианта, который приводит к лучшему результату. Надо лишь учесть, что поскольку модель не может быть точным отражением действительности, Р. модели не обязательно будет решением реальной задачи; во всяком случае при переходе от модели к действительности нужна дополнительная проверка адекватности Р. Процессы Р. моделей подразделяются на аналитические и численные. Метод аналитического Р. — последовательность математических преобразований, приводящих к заданному результату (например, к формуле, выражающей зависимость экстремального значения функции от ее аргументов). В этом случае численные значения переменных (см. Аналитические методы решения моделей) включаются лишь на последнем этапе. Численные методы получения Р., среди которых наибольшее значение имеют итеративные (см. Численные методы оптимизации), отличаются тем, что в них численные значения переменных участвуют в процессе Р. с самого начала, и на каждом этапе проверяется, соответствуют ли они заданной цели: в случае положительного ответа процесс Р. заканчивается, в случае отрицательного — продолжается. Полученное Р. обычно не является окончательным — изменение условий и целей всегда может поставить вопрос о его корректировке, подстройке. Корректировка (иногда она также называется “управление решением”) — необходимое условие успешного внедрения моделей в практику. Классификация моделей принятия Р. пока не разработана. Есть лишь частичные классификации по отдельным аспектам. Например, а) по степени сложности: простые, принимаемые по одному критерию оценки и выбора альтернатив, и сложные — принимаемые по нескольким критериям; б) по имеющейся информации о возможных результатах: Р., принимаемые в условиях определенности (см. Детерминированные задачи), неопределенности, риска (частичной неопределенности); в) по временному охвату: стратегические и тактические; г) по виду зависимости переменных от времени: статические и динамические; д) по числу лиц, принимающих Р.: индивидуальные и групповые. В последнем случае возникает необходимость согласования индивидуальных Р. (см., например, Теория группового выбора, Согласование плановых решений), различаются также дискретные и непрерывные Р. См. также: Алгоритм управления, Дерево решений, Лицо, принимающее решения, Многошаговые процессы принятия решений, Область допустимых решений, Планово-экономическая задача, Последовательные методы принятия решений, Решение игры, Системы поддержки решений, Теория решений, Экономико-математический анализ решения оптимизационных задач, Экономические решения.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

    3.9 решение (decision): Результат выбора между различными направлениями действия.

    Источник: ГОСТ Р ИСО 19439-2008: Интеграция предприятия. Основа моделирования предприятия оригинал документа

    Русско-английский словарь нормативно-технической терминологии > решение

  • 48 statistical decision theory

    теория статистических решений; статистическая теория решений

    Англо-русский словарь промышленной и научной лексики > statistical decision theory

  • 49 иерархическая управляющая система

    1. hierarchical controlling system

     

    иерархическая управляющая система
    Централизованная управляющая система, подсистема принятия решений которой распределена по нескольким подчиненным уровням, каждый из которых выполняет часть функции принятия решений.
    [Сборник рекомендуемых терминов. Выпуск 107. Теория управления.
     Академия наук СССР. Комитет научно-технической терминологии. 1984 г.]

    Тематики

    • автоматизация, основные понятия

    Обобщающие термины

    EN

    Русско-английский словарь нормативно-технической терминологии > иерархическая управляющая система

  • 50 информация

    1. information
    2. en

     

    информация
    Значимые данные.
    [ ГОСТ Р ИСО 9000-2008]

    информация
    Любой вид знаний о предметах, фактах, понятиях и т. д. проблемной области, которыми обмениваются пользователи информационной системы
    [ ГОСТ 34.320-96]

    информация
    Сведения (сообщения, данные) независимо от формы их представления.
    Примечание
    В соответствии с определением, приведенным в ГОСТ Р ИСО 9000, информацией являются значимые данные.
    [ ГОСТ Р 52653-2006]

    информация
    Сведения, воспринимаемые человеком и (или) специальными устройствами как отражение фактов материального или духовного мира в процессе коммуникации
    [ГОСТ 7.0-99]

    информация
    Сведения о лицах, предметах, фактах, событиях, явлениях и процессах независимо от формы их представления.
    [Руководящий документ "Основные положения развития Взаимоувязанной сети связи Российской Федерации на перспективу до 2005 года"]
    [ОСТ 45.127-99]

    информация
    сведения

    Одно из наиболее актуальных, фундаментальных и дискуссионных понятий в современной науке и практике. В связи с отсутствием общего определения, в различных предметных областях имеет различные интерпретации. Философия рассматривает две противостоящие друг другу концепции: первая квалифицирует информацию как свойство всех материальных объектов, т.е. как атрибут материи (атрибутивный подход), а вторая связывает ее лишь с функционированием самоорганизующихся систем (функциональный подход). Наиболее распространенным (но не общепринятым) является определение У.Р.Эшби, дополненное А.Д.Урсулом, которые рассматривают информацию как отраженное разнообразие в любых объектах (процессах) живой и не живой природы. На бытовом уровне информация чаще всего воспринимается интуитивно и связывается с получением сведений о чем или о ком-либо. В информатике – это совокупность фактов, явлений, событий, представляющих интерес, подлежащих регистрации и обработке (по Э.А.Якубайтису). Наиболее прагматичным определением оперирует вычислительная техника, в которой информация есть содержание, присваиваемое данным (по В.И.Першикову и В.М.Савинкову).
    [http://www.rol.ru/files/dict/internet/#I].
    Примеры сочетаний:
    information agent - информационный агент - программа, выполняющая поиск информации в Сети без указания пользователем места ее нахождения
    information appliances - информационная бытовая электроника
    information security - информационная безопасность
    information theory - теория информации
    information warfare (infowar) - информационная война
    management information - управленческая информация
    status information - информация о состоянии
    [ http://www.morepc.ru/dict/]

    Тематики

    EN

    3.34 информация (information): Любые данные, представленные в электронной форме, написанные на бумаге, высказанные на совещании или находящиеся на любом другом носителе, используемые финансовым учреждением для принятия решений, перемещения денежных средств, установления ставок, предоставления ссуд, обработки операций и т.п., включая компоненты программного обеспечения системы обработки.

    Источник: ГОСТ Р ИСО/ТО 13569-2007: Финансовые услуги. Рекомендации по информационной безопасности

    3.34 информация (information): Любые данные, представленные в электронной форме, написанные на бумаге, высказанные на совещании или находящиеся на любом другом носителе, используемые финансовым учреждением для принятия решений, перемещения денежных средств, установления ставок, предоставления ссуд, обработки операций и т.п., включая компоненты программного обеспечения системы обработки.

    Источник: ГОСТ Р ИСО ТО 13569-2007: Финансовые услуги. Рекомендации по информационной безопасности

    2.9 информация (Information): Основана на понятии «данные». Добавляет значения величин для понимания предмета в заданном контексте. Является источником знаний.

    Источник: ГОСТ Р 53894-2010: Менеджмент знаний. Термины и определения оригинал документа

    Русско-английский словарь нормативно-технической терминологии > информация

  • 51 часть книги

    Книга разделена на пять частей. Первая часть посвящена проблеме индивидуального принятия решений. Во второй части рассматривается теория игр. В третьей части начинается исследование проблемы рыночных равновесий. Четвертая часть существенно обобщает наше предыдущее исследование конкурентных рынков на контекст общего равновесия. В пятой части изучается экономика благосостояния. Здесь обсуждаются возможности агрегирования индивидуальных предпочтений в сферу общественных предпочтений как при сравнениях межличностных полезностей, так и без них. — The book is divided into five parts. Part I covers individual decision making. Part II covers game theory. Part III initiates the investigation of market equilibria. Part IV substantially extends our previous study of competitive markets to the general equilibrium context. Part V studies welfare economics. It discusses the possibilities for aggregation of individual preferences into social preferences both with and without interpersonal utility comparisons.

    Russian-English Dictionary "Microeconomics" > часть книги

  • 52 экономика управления

    Применение экономических принципов в процессе принятия решений в торговых фирмах других административных подразделений. Основные концепции заимствованы главным образом из микроэкономической теории. ([см. микроэкономическая теория]) — Application of economic principles to decision-making in business firms of other management units. The basic concepts are derived mainly from microeconomic theory.

    Russian-English Dictionary "Microeconomics" > экономика управления

  • 53 автоматизированная система управления

    1. MIS
    2. management information system
    3. computerized control system
    4. automatized management system
    5. automatized control system
    6. automated data management system
    7. automated controlling system
    8. automated control system
    9. automated
    10. ACS

     

    автоматизированная система, управляющая
    АСУ

    Управляющая система, часть функций которой, главным образом функцию принятия решений, выполняет человек-оператор.
    Примечание
    В зависимости от объектов управления различают, например: АСУ П, когда объектом управления является предприятие; АСУ ТП, когда объектом управления является технологический процесс; ОАСУ, когда объектом управления является организационный объект или комплекс.
    [Сборник рекомендуемых терминов. Выпуск 107. Теория управления.  Академия наук СССР. Комитет научно-технической терминологии. 1984 г.]

    автоматизированная система управления
    АСУ

    Совокупность математических методов, технических средств (компьютеров, средств связи, устройств отображения информации и т. д.) и организационных комплексов, обеспечивающих рациональное управление сложным объектом (процессом) в соответствии с заданной целью. АСУ принято делить на основу и функциональную часть. В основу входят информационное, техническое и математическое обеспечение. К функциональной части относят набор взаимосвязанных программ, автоматизирующих конкретные функции управления (планирование, финансово-бухгалтерскую деятельность и др.). Различают АСУ объектами (технологическими процессами - АСУТП, предприятием - АСУП, отраслью - ОАСУ) и функциональными автоматизированными системами, например, проектирования, расчетов, материально-технического и др. обеспечения.
    [ http://www.morepc.ru/dict/]

    автоматизированная система управления
    АСУ

    Система управления, в которой применяются современные автоматические средства обработки данных и экономико-математические методы для решения основных задач управления производственно-хозяйственной деятельностью. Это человеко-машинная система: в ней ряд операций и действий передается для исполнения машинам и другим устройствам (особенно это относится к так называемым рутинным, повторяющимся, стандартным операциям расчетов), но главное решение всегда остается за человеком. Этим АСУ отличаются от автоматических систем, т.е. таких технических устройств, которые действуют самостоятельно, по установленной для них программе, без вмешательства человека. АСУ подразделяются прежде всего на два класса: автоматизированные системы организационного управления и автоматизированные системы управления технологическими процессами (последние часто бывают автоматическими, первые ими принципиально быть не могут). Традиционно термин АСУ закрепился за первым из названных классов. Отличие АСУ от обычной, неавтоматизированной, но также использующей ЭВМ, системы управления показано на рис. А.1, а, б. Стрелками обозначены потоки информации. В первом случае компьютер используется для решения отдельных задач управления, например для производства плановых расчетов, результаты которых рассматриваются органом управления и либо принимаются, либо отвергаются. При этом необходимые данные собираются специально для решения каждой задачи и вводятся в компьютер, а потом за ненадобностью уничтожаются. Во втором случае существенная часть информации от объекта управления собирается непосредственно вычислительным центром, в том числе по каналам связи. При этом нет необходимости каждый раз вводить в компьютер все данные: часть из них (цены, нормативы и т. п.) хранится в ее запоминающем устройстве. Из вычислительного центра выработанные задания поступают, с одной стороны, в орган управления, а с другой (обычно через контрольное звено) — к объекту управления. В свою очередь информация, поступающая от объекта управления, влияет на принимаемые решения, т.е. здесь используется кибернетический принцип обратной связи. Это — АСУ. Принято рассматривать каждую АСУ одновременно в двух аспектах: с точки зрения ее функций — того, что и как она делает, и с точки зрения ее схемы, т.е. с помощью каких средств и методов эти функции реализуются. Соответственно АСУ подразделяют на две группы подсистем — функциональные и обеспечивающие. Создание АСУ на действующем экономическом объекте (в фирме, на предприятии, в банке и т.д.) — не разовое мероприятие, а длительный процесс. Отдельные подсистемы АСУ проектируются и вводятся в действие последовательными очередями, в состав функций включаются также все новые и новые задачи; при этом АСУ органически «вписывается» в систему управления. Обычно первые очереди АСУ ограничиваются решением чисто информационных задач. В дальнейшем их функции усложняются, включая использование оптимизационных расчетов, элементов оптимального управления. Степень участия АСУ в процессах управления может быть весьма различной, вплоть до самостоятельной выдачи компьютером, на основе получаемых им данных, оперативных управляющих «команд». Поскольку внедрение АСУ требует приспособления документации для машинной обработки, создаются унифицированные системы документации, а также классификаторы технико-экономической информации и т.д. Экономическая эффективность АСУ определяется прежде всего ростом эффективности самого производства в результате лучшей загрузки оборудования, повышения ритмичности, сокращения незавершенного производства и других материальных запасов, повышения качества продукции. РисА.1. Системы управления с использованием компьютеров а — неавтоматизированная, б — автоматизированная; I — управляющий центр; II — автоматизированная управляемая система (например, производство), III — контроль; тонкая черная стрелка — канал непосредственного управления компьютером некоторыми технологическими процессами (бывает не во всех АСУ); тонкая пунктирная стрелка показывает ту часть информации, которая поступает непосредственно в центр, минуя компьютер.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    Синонимы

    EN

    Русско-английский словарь нормативно-технической терминологии > автоматизированная система управления

  • 54 децентрализованная управляющая система

    1. decentralized controlling system

     

    децентрализованная управляющая система
    Управляющая система с несколькими независимыми подсистемами, выполняющими функцию принятия решений.
    [Сборник рекомендуемых терминов. Выпуск 107. Теория управления.
     Академия наук СССР. Комитет научно-технической терминологии. 1984 г.]

    Тематики

    • автоматизация, основные понятия

    Обобщающие термины

    EN

    Русско-английский словарь нормативно-технической терминологии > децентрализованная управляющая система

  • 55 функция управляющего объекта

    1. controlling object function

     

    функция управляющего объекта
    Совокупность действий управляющего объекта, относительно однородная по некоторому признаку, направленная на достижение частной цели, подчиненной общей цели управления.
    Примечание
    К числу функций управляющих объектов, например, относят: функцию сбора, передачи и преобразований исходной информации; функцию принятия решений; функцию диагностирования; функцию осуществления управляющих воздействий; функцию документирования и др.
    [Сборник рекомендуемых терминов. Выпуск 107. Теория управления.
     Академия наук СССР. Комитет научно-технической терминологии. 1984 г.]

    Тематики

    • автоматизация, основные понятия

    EN

    Русско-английский словарь нормативно-технической терминологии > функция управляющего объекта

  • 56 централизованная управляющая система

    1. centralized controlling system

     

    централизованная управляющая система
    Управляющая система с одной подсистемой, выполняющей функцию принятия решений.
    [Сборник рекомендуемых терминов. Выпуск 107. Теория управления.
     Академия наук СССР. Комитет научно-технической терминологии. 1984 г.]

    Тематики

    • автоматизация, основные понятия

    Обобщающие термины

    EN

    Русско-английский словарь нормативно-технической терминологии > централизованная управляющая система

  • 57 экономико-математические исследования в бывш. СССР и России

    1. economico-mathematical studies in the ex-USSR and russia

     

    экономико-математические исследования в бывш. СССР и России
    (исторический очерк) Э.-м.и. — направление научных исследований, которые ведутся на стыке экономики, математики и кибернетики и имеют основной целью повышение экономической эффективности общественного производства с помощью математического анализа экономических процессов и явлений и основанных на нем методов принятия оптимальных (шире — рациональных) плановых и иных управленческих решений. Они затрагивают также общую проблематику оптимального распределения ресурсов безотносительно к характеру социально-экономического строя. Развитие Э.-м.и. в бывш. СССР надо рассматривать как этап противоречивого процесса развития отечественной экономической науки и часть общего процесса развития мировой экономической науки, в настоящее время во многом практически математизированной. Первым достижением в развитии Э.-м.и. явилась разработка советскими учеными межотраслевого баланса производства и распределения продукции в народном хозяйстве страны за 1923/24 хозяйственный год. В основу методологии их исследования были положены модели воспроизводства К.Маркса, а также модели В.К.Дмитриева. Эта работа нашла международное признание и предвосхитила развитие американским экономистом русского происхождения В.В.Леонтьевым его прославленного метода «затраты-выпуск».. (Впоследствии, после длительного перерыва, вызванного тем, что Сталин потребовал прекратить межотраслевые исследования, они стали широко применяться и в нашей стране под названием метода межотраслевого баланса.) Примерно в это же время советский экономист Г.А.Фельдман представил в Комиссию по составлению первого пятилетнего плана доклад «К теории темпов народного дохода», в котором предложил ряд моделей анализа и планирования синтетических показателей развития экономики. Этим самым были заложены основы теории экономического роста. Другой выдающийся ученый Н.К.Кондратьев разработал теорию долговременных экономических циклов, нашедшую мировое признание. Однако в начале тридцатых годов Э.м.и. в СССР были практически свернуты, а Фельдман, Кондратьев и сотни других советских экономистов были репрессированы, погибли в застенках Гулага. Продолжались лишь единичные, разрозненные исследования. В одном из них, работе Л.В.Канторовича «Математические методы организации и планирования производства» (1939 г.) были впервые изложены принципы новой отрасли математики, которая позднее получила название линейного программирования, а если смотреть шире, то этим были заложены основы фундаментальной для экономики теории оптимального распределения ресурсов. Л.В.Канторович четко сформулировал понятие экономического оптимума и ввел в науку оптимальные, объективно обусловленные оценки — средство решения и анализа оптимизационных задач. Одновременно советский экономист В.В.Новожилов пришел к аналогичным выводам относительно распределения ресурсов. Он выработал понятие оптимального плана народного хозяйства, как такого плана, который требует для заданного объема продукции наименьшей суммы трудовых затрат, и ввел понятия, позволяющие находить этот минимум: в частности, понятие «дифференциальных затрат народного хозяйства по данному продукту», близкое по смыслу к оптимальным оценкам Л.В.Канторовича. Большой вклад в разработку экономико-математических методов внес академик В.С.Немчинов: он создал ряд новых моделей МОБ, в том числе модель экономического района; очень велики его заслуги в области организационного оформления и развития экономико-математического направления советской науки. Он основал первую в стране экономико-математическую лабораторию, впоследствии на ее базе и на базе нескольких других коллективов был создан Центральный экономико-математический институт АН СССР, ныне ЦЭМИ РАН (см.ниже).. В 1965 г. академикам Л.В.Канторовичу, В.С.Немчинову и проф. В.В.Новожилову за научную разработку метода линейного программирования и экономических моделей была присуждена Ленинская премия. В 1975 г. Л.В.Канторович был также удостоен Нобелевской премии по экономике. В 50 — 60-x гг. развернулась широкая работа по составлению отчетных, а затем и плановых МОБ народного хозяйства СССР и отдельных республик. За цикл исследований по разработке методов анализа и планирования межотраслевых связей и отраслевой структуры народного хозяйства, построению плановых и отчетных МОБ академику А.Н.Ефимову (руководитель работы), Э.Ф.Баранову, Л.Я.Берри, Э.Б.Ершову, Ф.Н.Клоцвогу, В.В.Коссову, Л.Е.Минцу, С.С.Шаталину, М.Р.Эйдельману в 1968 г. была присуждена Государственная премия СССР. Развитие Э.-м.и., накопление опыта решения экономико-математических задач, выработка новых теоретических положений и переосмысление многих старых положений экономической науки, вызванное ее соединением с математикой и кибернетикой, позволили в начале 60-х гг. академику Н.П.Федоренко выступить с идеей о необходимости теоретической разработки и поэтапной реализации единой системы оптимального функционирования социалистической экономики (СОФЭ). Стало ясно, что внедрение математических методов в экономические исследования должно приводить и приводит к совершенствованию всей системы экономических знаний, обеспечивает дальнейшую систематизацию, уточнение и развитие основных понятий и категорий науки, усиливает ее действенность, т.е. прежде всего ее влияние на рост эффективности народного хозяйства. С 60-х годов расширилось число научных учреждений, ведущих Э.-м.и., в частности, были созданы Центральный экономико-математический институт АН СССР, Институт экономики и организации промышленного производства СО АН СССР, развернулась подготовка кадров экономистов-математиков и специалистов по экономической кибернетике в МГУ, НГУ, МИНХ им. Плеханова и других вузах страны. Исследования охватили теоретическую разработку проблем оптимального функционирования экономики, системного анализа, а также такие прикладные области как отраслевое перспективное планирование, материально-техническое снабжение, создание математических методов и моделей для автоматизированных систем управления предприятиями и отраслями. На первых этапах возрождения Э.-м.и. в СССР усилия в области моделирования концентрировались на построении макромоделей, отражающих функционирование народного хозяйства страны в целом, а также ряда частных моделей и на развитии соответствующего математического аппарата. Такие попытки имели немалое методологическое значение и способствовали углублению понимания общих вопросов экономико-математического моделироdания (в том числе таких, как адекватность моделей, границы их познавательных возможностей и т.д.). Но скоро стала очевидна ограниченность такого подхода. Концепция СОФЭ стимулировала развитие иного подхода — системного моделирования экономических процессов, были расширены методологические поиски экономических рычагов воздействия на экономику: оптимального ценообразования, платы за использование природных и трудовых ресурсов и т.д. На этой основе начались параллельные разработки ряда систем моделей, из которых наиболее известны многоуровневая система среднесрочного прогнозирования (рук. Б.Н.Михалевский), система моделей для расчетов по определению общих пропорций развития народного хозяйства и согласованию отраслевых и территориальных разрезов плана — СМОТР (рук. Э.Ф.Баранов), система многоступенчатой оптимизации экономики (рук. В.Ф.Пугачев), межотраслевая межрайонная модель (рук. А.Г.Гранберг). Существенно углубилось понимание народнохозяйственного оптимума, роли и места экономических стимулов в его достижении. Наряду с распространенной ранее скалярной оптимизацией в исследованиях стала более активно применяться многокритериальная, лучше учитывающая многосложность условий и обстоятельств решения плановой задачи. Более того, стало меняться общее отношение к оптимизации как универсальному принципу: вместе с ней (но не вместо нее, как иногда можно прочитать) начали разрабатываться методы принятия рациональных (не обязательно оптимальных в строгом смысле этого слова) решений, теория компромисса и неантагонистических игр (Ю.Б.Гермейер) и другие методы, учитывающие не только технико-экономические, но и человеческие факторы: интересы участников процессов принятия и реализации решений. В начале 70-х гг. экономисты-математики провели широкие исследования в области применения программно-целевых методов в планировании и управлении народным хозяйством. Они приняли также активное участие в разработке методики регулярного (раз в пять лет) составления Комплексной программы научно-технического прогресса на очередное двадцатилетие. Впервые в работе такого масштаба при определении общих пропорций развития народного хозяйства на перспективу и решении некоторых частных задач был использован аппарат экономико-математических методов. Началось широкое внедрение программно-целевого метода в практику народнохозяйственного планирования. Были продолжены работы по созданию АСПР — автоматизированной системы плановых расчетов Госплана СССР и Госпланов союзных республик, и в 1977 г. введена в действие ее первая очередь, а в 1985 г. — вторая очередь. Выявились и немалые трудности непосредственного внедрения оптимизационных принципов в практику хозяйствования. В условиях, когда предприятия, объединения, отраслевые министерства были заинтересованы не столько в выявлении производственных резервов, сколько в их сокрытии, чтобы избежать получения напряженных плановых заданий, учитывающих эти резервы, оптимизация не могла найти повсеместную поддержку: ее смысл как раз в выявлении резервов. Поэтому работа по созданию АСУ не всегда давала должные результаты: усилия затрачивались на учет, анализ, расчеты по заработной плате, но не на оптимизацию, т.е. повышение эффективности производства (оптимизационные задачи в большинстве АСУ занимали лишь 2 — 3% общего объема решаемых задач). В результате эффективность производства не росла, а штаты управления увеличивались: создавались отделы АСУ, вычислительные центры. Эти обстоятельства способствовали некоторому спаду экономико-математических исследований к началу 80-х гг. Большой удар по экономико-математическому направлению был нанесен в 1983 г., когда бывший тогда секретарем ЦК КПСС К.У.Черненко обрушился с явно несправедливой и предвзятой критикой на ЦЭМИ АН СССР, после чего институт жестоко пострадал: подвергся реорганизации, был разделен надвое, потом еще раз надвое, из него ушел ряд ведущих ученых. Тем не менее, прошедшие годы ознаменовались серьезными научными и практическими достижениями экономико-математического крыла советской экономической науки. В ряде аспектов, прежде всего теоретических — оно заняло передовые позиции в мировой науке. Например, в области математической экономики и эконометрии (не говоря уже об открытиях Л.В.Канторовича) широко известны советские исследования процессов оптимального экономического роста (В.Л.Макаров, С.М.Мовшович, А.М.Рубинов и др.), ряд моделей экономического равновесия; сделанная еще в 1976 г. В.М.Полтеровичем попытка синтеза теории равновесия и теории экономического роста; работы отечественных ученых в области теории игр, теории группового (социального) выбора и многие другие. В каком-то смысле опережая время, экономисты-математики еще в 70-е гг. приступили к моделированию и изучению таких явлений, приобретших острую актуальность в период перестройки, как «самоусиление дефицита», экономика двух рынков — с фиксированными и гибкими ценами, функционирование экономики в условиях неравновесия. Активно развивается математический аппарат, в частности, такие его разделы, как линейное и нелинейное программирование (Е.Г.Гольштейн), дискретное программирование (А.А.Фридман), теория оптимального управления (Л.С.Понтрягин и его школа), методы прикладного математико-статистического анализа (С.А.Айвазян). За последние годы развернулось широкое использование имитационных методов, являющихся характерной чертой современного этапа развития экономико-математических методов. Хотя сама по себе идея машинной имитации зародилась существенно раньше, ее практическая реализация оказалась возможной именно теперь, когда появились электронные вычислительные машины новых поколений, обеспечивающие прямой диалог человека с машиной. Наконец, новым направлением прикладной работы, синтезирующим достижения в области экономико-математического моделирования и информатики, стала разработка и реализация концепции АРМ (автоматизированного рабочего места плановика и экономиста), а также концепции стендового экспериментирования над экономическими системами (В.Л.Макаров). Начинается (во всяком случае должна начинаться) переориентация Э.-м.и. на изучение путей формирования и эффективного функционирования рынка (особенно переходного процесса — это самостоятельная тема). Тут может быть использован богатый арсенал экономико-математических методов, накопленный не только в нашей стране, но и в странах с развитой рыночной экономикой.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > экономико-математические исследования в бывш. СССР и России

  • 58 экономико-математические методы

    1. economico-mathematical methods
    2. econometrics

     

    экономико-математические методы
    эконометрика


    [Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.]

    экономико-математические методы
    ЭММ
    Обобщающее название комплекса экономических и математических научных дисциплин, объединенных для изучения экономики. Введено академиком В.С.Немчиновым в начале 60-х годов. Встречаются высказывания о том, что это название весьма условно и не отвечает современному уровню развития экономической науки, так как «они (ЭММ. — авт.) не имеют собственного предмета исследования, отличного от пред¬мета исследования специфических экономических дисциплин»[1]. Однако, хотя тенденция подмечена верно, она, по-видимому, реализуется еще не скоро. ЭММ в действительности имеют общий объект исследования с другими экономическими дисциплинами — экономику (или шире: социально-экономическую систему), но разный предмет науки: т.е. они изучают разные стороны этого объекта, подходят к нему с разных позиций. И главное, при этом используются особые методы исследования, развитые настолько, что сами они становятся отдельными научными дисциплинами особого методологического характера. В отличие от дисциплин, в которых преобладают онтологические аспекты, а методы исследования выступают лишь в большей или меньшей степени как вспомогательные средства, в «методологических» дисциплинах, составляющих значительную часть комплекса ЭММ, методы сами оказываются объектом исследования. Кроме того, действительный синтез экономики и математики еще впереди, потребуется немало времени, пока он осуществится в полной мере. Общепринятая классификация экономико-математических дисциплин, явившихся сплавом экономики, математики и кибернетики, пока не выработана. С известной долей условности ее можно представить в виде следующей схемы[2]. 0. Принципы экономико-математических методов: теория экономико-математического моделирования, включая экономико-статистическое моделирование; теория оптимизации экономических процессов. 1.Математическая статистика (ее экономические приложения): выборочный метод; дисперсионный анализ; корреляционный анализ; регрессионный анализ; многомерный статистический анализ; факторный анализ; теория индексов и др. 2. Математическая экономия и эконометрия: теория экономического роста (модели макроэкномической динамики); теория производственных функций; межотраслевые балансы (статические и динамические); национальные счета, интегрированные материально-финансовые балансы; анализ спроса и потребления; региональный и пространственный анализ; глобальное моделирование и др. 3. Методы принятия оптимальных решений, включая исследование операций: оптимальное (математическое) программирование; линейное программирование; нелинейное программирование; динамическое программирование; дискретное (целочисленное) программирование; блочное программирование; дробно-линейное программирование; параметрическое программирование; сепарабельное программирование; стохастическое программирование; геометрическое программирование; методы ветвей и границ; сетевые методы планирования и управления; программно-целевые методы планирования и управления; теория и методы управления запасами; теория массового обслуживания; теория игр; теория решений; теория расписаний. 4. ЭММ и дисциплины, специфичные для централизованно планируемой экономики: теория оптимального функционирования социалистической экономики (СОФЭ); оптимальное планирование: народнохозяйственное; перспективное и текущее; отраслевое и региональное; теория оптимального ценообразования; 5. ЭММ, специфичные для конкурентной экономики: модели рынка и свободной конкуренции; модели делового цикла; модели монополии, дуополии, олигополии; модели индикативного планирования; модели международных экономических отношений; модели теории фирмы. 6. Экономическая кибернетика: системный анализ экономики; теория экономической информации, включая экономическую семиотику; теория управляющих систем, включая теорию автоматизированных систем управления. 7. Методы экспериментального изучения экономических явлений (экспериментальная экономика): математические методы планирования и анализа экономических экспериментов; методы машинной имитации и стендового экспериментирования; «деловые игры». В ЭММ применяются различные разделы математики, математической статистики и математической логики; большую роль в машинном решении экономико-математических задач играют вычислительная математика, теория алгоритмов и другие смежные дисциплины. [1] Шаталин С.С. Функционирование экономики развитого социализма. — М.: Изд-во МГУ, 1982. [2] Приведенная схема была разработана автором в 1976-78 гг., для Комитета по социальным наукам Международной федерации документации и использована им при составлении библиографической классификации (УДК) по разделу «Математические методы в экономике».
    [ http://slovar-lopatnikov.ru/]

    Тематики

    Синонимы

    EN

    Русско-английский словарь нормативно-технической терминологии > экономико-математические методы

  • 59 альтернатива

    1. alternative strategy
    2. alternative decision
    3. alternative

     

    альтернатива

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    альтернатива
    альтернативная стратегия
    Понятие исследования операций, теории игр, теории решений, — возможный вариант решения задачи. Обычно под термином «А.», понимается как само решение, так и результат (исход) его реализации. Соответственно, множество альтернатив совпадает с множеством конечных исходов, результатов (изоморфно ему). [1] Такое отождествление в большинстве случаев оправданно, однако возможны ситуации, когда эти понятия необходимо различать (например, в ситуациях риска и неопределенности). Те задачи исследования операций, которые состоят в выборе одной из существующих (известных) А., называются задачами оценки, а задачи, которые состоят в разработке новых стратегий (если, например, существующие оказываются недостаточными для достижения цели), называются задачами разработки. В ряде случаев, например, в играх (см. Теория игр), возникает необходимость выяснения альтернативных контрстратегий, т.е. возможных действий других участников игры или действий «природы«, способных отрицательно повлиять на результаты решения задачи, несмотря на удачный выбор стратегии. Постановка задачи исследования операций может считаться законченной лишь тогда, когда определен список альтернатив и способ (критерий) выбора наилучшей из них для достижения заданной цели. Для выбора необходимо упорядочение альтернатив. — их размещение в определенном порядке, как правило, в порядке возрастания полезности ожидаемых или фактических конечных исходов (хотя возможны и иные принципы упорядочения). Используется,например, такая запись: если альтернатива x предпочитается или равноценна альтернативе y, то они составляют упорядоченную пару (x, y). Важные виды альтернатив: Альтернатива детерминированная (Determined, determinative alternative) - решение, о котором известно, что оно безусловно приведет к некоторому конкретному результату (исходу). Альтернативы допустимые ( Feasible alternatives) - отобранные в процессе принятия решения, о которых известно, что они осуществимы и (по предварительному прогнозу) их возможный результат желателен, т.е. не противоречит намерениям принимающего решение. Множество допустимых А. рассматривается в задаче принятия любого решения (см. также Область допустимых решений). Альтернатива стохастическая (Stochastic alternative) - решение, выбранное случайным образом из множества возможных (в зависимости, например, от склонности решающего к риску), или решение, исходы которого носят случайный характер, либо и то, и другое. Во втором из указанных случаев стохастическое решение удается сводить к детерминированному, если, например, результатом считать средний из возможных результатов принятия данной А. См. также Бинарное отношение, Доминирование альтернатив, Предпочтение, Ранжирование экономических величин. [1] В обыденной речи слово “альтернатива” понимается как необходимость выбора между взаимоисключающими возможностями (вариантами решений).
    [ http://slovar-lopatnikov.ru/]

    Тематики

    Синонимы

    EN

    Русско-английский словарь нормативно-технической терминологии > альтернатива

См. также в других словарях:

  • ТЕОРИЯ ПРИНЯТИЯ РЕШЕНИЙ — (decision theory) Теория поведения разумных индивидов в рискованных и неясных ситуациях. Один из ее разделов изучает индивида в неопределенной обстановке природа ; второй, теория игр (game theory) – влияние друг на друга разумных индивидов,… …   Политология. Словарь.

  • теория принятия решений — — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в целом EN decision theory …   Справочник технического переводчика

  • Теория принятия решений — Виктор Васнецов. Витязь на распутье. 1878 Теория принятия решений  область исследования, вовлекающая понятия и методы математики, статистики …   Википедия

  • ТЕОРИЯ ПРИНЯТИЯ РЕШЕНИЙ — один из видов теории рационального выбора (см.); применима и к случаю коллективного поведения и к ситуации принятия решений. Утверждает, что выбор имеет форму рационального решения и осуществляется в несколько этапов: сбор информации о событиях,… …   Российская социологическая энциклопедия

  • ТЕОРИЯ ПРИНЯТИЯ РЕШЕНИЙ — Название для любой теории, которая пытается описывать и объяснять принятие решений. Подходы варьируются от крайне формальных математических подходов, основанных на теории игр и теории вероятности, до неформальных, интуитивных теорий, которые… …   Толковый словарь по психологии

  • принятия решений теории —         ПРИНЯТИЯ РЕШЕНИЙ ТЕОРИИ методы улучшения рациональной деятельности в сложных условиях управления современными производственными, экономическими, социальными и другими процессами. В своей повседневной жизни каждый человек, незаметно для… …   Энциклопедия эпистемологии и философии науки

  • Процесс принятия решений — Принятие решения это процесс рационального или иррационального выбора альтернатив, имеющий целью достижение осознаваемого результата Рациональный выбор альтернатив Рациональный выбор альтернатив состоит из следующих этапов: Ситуационный анализ… …   Википедия

  • ТЕОРИЯ СТАТИСТИЧЕСКИХ РЕШЕНИЙ — система математических методов, позволяющих выявить законы (правила), по которым принимаются решения в технике связи, общей теории систем, экономике и др. Весьма полезным являются методы Т. с. р. при исследовании процессов принятия решения в… …   Энциклопедический словарь по психологии и педагогике

  • Дескриптивные методы принятия решений — Дескриптивные методы принятия решений  это оценочно описательный метод исследования, направленный на эмпирическое исследование и описания поведения отдельных лиц и групп людей в процессе принятия решений. Она носит ярко выраженный… …   Википедия

  • Система поддержки принятия решений — Эту статью следует викифицировать. Пожалуйста, оформите её согласно правилам оформления статей. Система поддержки принятия решений (СППР) (англ. Decision Support System …   Википедия

  • теория решений — статистическая теория принятия решений Дисциплина (раздел исследования операций), которая изучает математические (математико статистические) правила принятия решений, в первую очередь экономических. Иногда это название применяют к более общей… …   Справочник технического переводчика

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»