Перевод: со всех языков на английский

с английского на все языки

стандарт+(шина)

  • 1 шина USB

    1. USB
    2. Universal Serial Bus

     

    шина USB
    универсальная последовательная шина

    Стандарт, для обмена данными между ПК и среднескоростными периферийными устройствами. Подключение устройства не требует перезагрузки компьютера, переконфигурирования системы или установки интерфейсной карты. Распознавание устройства и установка соответствующего драйвера выполняется компьютером автоматически, без вмешательства человека. К одному порту USB можно последовательно присоединить до 127 устройств, длина кабеля до пяти метров, скорость пересылки данных - 12 Мбайт/с. USB-кабель содержит четыре провода: два - витая пара, питание 5 В и общий провод. Таким образом, через него можно запитывать маломощные устройства. Поддерживается технология plug and play, а также "горячая" замена.
    [ http://www.morepc.ru/dict/]

    Тематики

    Синонимы

    EN

    Русско-английский словарь нормативно-технической терминологии > шина USB

  • 2 полевая шина

    1. fieldbus
    2. field bus

     

    полевая шина
    -
    [Интент]

    полевая магистраль по зарубежной терминологии
    Имеет много терминов-синонимов и обозначает специализированные последовательные магистрали малых локальных сетей (МЛС), ориентированны на сопряжение с ЭВМ рассредоточенных цифровых датчиков и исполнительных органов. Магистрали рассчитаны на применение в машиностроении, химической промышленности, в системах автоматизации зданий, крупных установках, бытовых электронных системах, системах автомобильного оборудования, малых контрольно-измерительных и управляющих системах на основе встраиваемых микроЭВМ и т. п. Основными магистралями являются Bitbus, MIL STD-1553В. В настоящее время рабочими группами IEC (65С и SP-50) стандартизируются два основных типа МЛС: высокоскоростные и низкоскоростные, ориентированные на датчики.
    [Е.С.Алексеев, А.А.Мячев. Англо-русский толковый словарь по системотехнике ЭВМ. Москва 1993]

    ЧТО ТАКОЕ FIELDВUS?
    Так пишется оригинальный термин, который в русском переводе звучит как «промышленная сеть». Fieldbus — это не какой-то определенный протокол передачи данных и не тип сетевой архитектуры, этот термин не принадлежит ни одной отдельно взятой компании и обозначает скорее сферу применения, чем какую-либо конкретную сетевую технологию.
    Давайте попробуем сформулировать лишь некоторые основные требования, которые можно предъявить к «идеальной» промышленной сети.
    1. Производительность.
    2. Предсказуемость времени доставки информации.
    3. Помехоустойчивость.
    4. Доступность и простота организации физического канала передачи данных.
    5. Максимальный сервис для приложений верхнего уровня.
    6. Минимальная стоимость устройств аппаратной реализации, особенно на уровне контроллеров.
    7. Возможность получения «распределенного интеллекта», путем предоставления максимального доступа к каналу нескольким ведущим узлам.
    8.Управляемость и самовосстановление в случае возникновения нештатных ситуаций.

    [Сергей Гусев. Краткий экскурс в историю промышленных сетей]


    Международный стандарт IEC 61158 “Fieldbus for use in Industrial Control Systems” («Промышленная управляющая сеть для применения в промышленных системах управления») определяет восемь независимых и несовместимых коммуникационных технологий, из которых FOUNDATION Fieldbus H1 и PROFIBUS PA стали в значительной степени преобладающими в различных отраслях промышленности.
    Эти промышленные сети соответствуют требованиям стандарта IEC 61158 2, который устанавливает физический уровень так называемых промышленных сетей H1.
    Основными требованиями к промышленным сетям H1 являются:
    ● передача данных и питание устройств нижнего уровня по одной витой паре;
    ● гибкость при проектировании различных топологий сети;
    ● совместимость всех полевых приборов;
    ● взрывобезопасность при установкево взрывоопасных зонах;
    ● распределение одной инфраструктуры на многочисленные сегменты.

    [Виктор Жданкин. Концепция FieldConnex® для промышленных сетей FOUNDATION Fieldbus H1 и PROFIBUS_PA: повышение производительности и снижение затрат. СТА 2/2009]


    Термин полевая шина является дословным переводом английского термина fieldbus.
    Термин промышленная сеть является более точным переводом и в настоящее время именно он используется в профессиональной технической литературе.

    Промышленная сеть — сеть передачи данных, связывающая различные датчики, исполнительные механизмы, промышленные контроллеры и используемая в промышленной автоматизации. Термин употребляется преимущественно в автоматизированной системе управления технологическими процессами (АСУТП).

    Устройства используют сеть для:

    • передачи данных, между датчиками, контроллерами и исполнительными механизмами;
    • диагностики и удалённого конфигурирования датчиков и исполнительных механизмов;
    • калибрования датчиков;
    • питания датчиков и исполнительных механизмов;
    • связи между датчиками, исполнительными механизмами, ПЛК и АСУ ТП верхнего уровня.

    В промышленных сетях для передачи данных применяют:

    • электрические линии;
    • волоконно-оптические линии;
    • беспроводную связь (радиомодемы и Wi-Fi).

    Промышленные сети могут взаимодействовать с обычными компьютерными сетями, в частности использовать глобальную сеть Internet.

    [ Википедия]


    Главной функцией полевой шины является обеспечение сетевого взаимодействия между контроллерами и удаленной периферией (например, узлами ввода/вывода). Помимо этого, к полевой шине могут подключаться различные контрольно-измерительные приборы ( Field Devices), снабженные соответствующими сетевыми интерфейсами. Такие устройства часто называют интеллектуальными ( Intelligent Field Devices), так как они поддерживают высокоуровневые протоколы сетевого обмена.

    Пример полевой шины представлен на рисунке 1.

    4911
    Рис. 1. Полевая шина.

    Как уже было отмечено, существует множество стандартов полевых шин, наиболее распространенные из которых приведены ниже:

    1. Profibus DP
    2. Profibus PA
    3. Foundation Fieldbus
    4. Modbus RTU
    5. HART
    6. DeviceNet

    Несмотря на нюансы реализации каждого из стандартов (скорость передачи данных, формат кадра, физическая среда), у них есть одна общая черта – используемый алгоритм сетевого обмена данными, основанный на классическом принципе Master-Slave или его небольших модификациях.
    Современные полевые шины удовлетворяют строгим техническим требованиям, благодаря чему становится возможной их эксплуатация в тяжелых промышленных условиях. К этим требованиям относятся:

    1. Детерминированность. Под этим подразумевается, что передача сообщения из одного узла сети в другой занимает строго фиксированный отрезок времени. Офисные сети, построенные по технологии Ethernet, - это отличный пример недетерминированной сети. Сам алгоритм доступа к разделяемой среде по методу CSMA/CD не определяет время, за которое кадр из одного узла сети будет передан другому, и, строго говоря, нет никаких гарантий, что кадр вообще дойдет до адресата. Для промышленных сетей это недопустимо. Время передачи сообщения должно быть ограничено и в общем случае, с учетом количества узлов, скорости передачи данных и длины сообщений, может быть заранее рассчитано.
    2. Поддержка больших расстояний. Это существенное требование, ведь расстояние между объектами управления может порой достигать нескольких километров. Применяемый протокол должен быть ориентирован на использование в сетях большой протяженности.
    3. Защита от электромагнитных наводок. Длинные линии в особенности подвержены пагубному влиянию электромагнитных помех, излучаемых различными электрическими агрегатами. Сильные помехи в линии могут исказить передаваемые данные до неузнаваемости. Для защиты от таких помех применяют специальные экранированные кабели, а также оптоволокно, которое, в силу световой природы информационного сигнала, вообще нечувствительно к электромагнитным наводкам. Кроме этого, в промышленных сетях должны использоваться специальные методы цифрового кодирования данных, препятствующие их искажению в процессе передачи или, по крайней мере, позволяющие эффективно детектировать искаженные данные принимающим узлом.
    4. Упрочненная механическая конструкция кабелей и соединителей. Здесь тоже нет ничего удивительного, если представить, в каких условиях зачастую приходиться прокладывать коммуникационные линии. Кабели и соединители должны быть прочными, долговечными и приспособленными для использования в самых тяжелых окружающих условиях (в том числе агрессивных атмосферах).

    По типу физической среды полевые шины делятся на два типа:

    1. Полевые шины, построенные на базе оптоволоконного кабеля.
      Преимущества использования оптоволокна очевидны: возможность построения протяженных коммуникационных линий (протяженностью до 10 км и более); большая полоса пропускания; иммунитет к электромагнитным помехам; возможность прокладки во взрывоопасных зонах.
      Недостатки: относительно высокая стоимость кабеля; сложность физического подключения и соединения кабелей. Эти работы должны выполняться квалифицированными специалистами.
    2. Полевые шины, построенные на базе медного кабеля.
      Как правило, это двухпроводной кабель типа “витая пара” со специальной изоляцией и экранированием. Преимущества: удобоваримая цена; легкость прокладки и выполнения физических соединений. Недостатки: подвержен влиянию электромагнитных наводок; ограниченная протяженность кабельных линий; меньшая по сравнению с оптоволокном полоса пропускания.

    Итак, перейдем к рассмотрению методов обеспечения отказоустойчивости коммуникационных сетей, применяемых на полевом уровне. При проектировании и реализации этот аспект становится ключевым, так как в большой степени определяет характеристики надежности всей системы управления в целом.

    На рисунке 2 изображена базовая архитектура полевой шины – одиночная (нерезервированная). Шина связывает контроллер С1 и четыре узла ввода/вывода IO1-IO4. Очевидно, что такая архитектура наименее отказоустойчива, так как обрыв шины, в зависимости от его локализации, ведет к потере коммуникации с одним, несколькими или всеми узлами шины. В нашем случае в результате обрыва теряется связь с двумя узлами.

    4912
    Рис. 2. Нерезервированная шина.

    Здесь важное значение имеет термин “единичная точка отказа” (SPOF, single point of failure). Под этим понимается место в системе, отказ компонента или обрыв связи в котором приводит к нарушению работы всей системы. На рисунке 2 единичная точка отказа обозначена красным крестиком.

    На рисунке 3 показана конфигурация в виде дублированной полевой шины, связывающей резервированный контроллер с узлами ввода/вывода. Каждый узел ввода/вывода снабжен двумя интерфейсными модулями. Если не считать сами модули ввода/вывода, которые резервируются редко, в данной конфигурации единичной точки отказа нет.

    4913
    Рис. 3. Резервированная шина.

    Вообще, при построении отказоустойчивых АСУ ТП стараются, чтобы единичный отказ в любом компоненте (линии связи) не влиял на работу всей системы. В этом плане конфигурация в виде дублированной полевой шины является наиболее распространенным техническим решением.

    На рисунке 4 показана конфигурация в виде оптоволоконного кольца. Контроллер и узлы ввода/вывода подключены к кольцу с помощью резервированных медных сегментов. Для состыковки медных сегментов сети с оптоволоконными применяются специальные конверторы среды передачи данных “медь<->оптоволокно” (OLM, Optical Link Module). Для каждого из стандартных протоколов можно выбрать соответствующий OLM.

    4914
    Рис. 4. Одинарное оптоволоконное кольцо.

    Как и дублированная шина, оптоволоконное кольцо устойчиво к возникновению одного обрыва в любом его месте. Система такой обрыв вообще не заметит, и переключение на резервные интерфейсные и коммуникационные модули не произойдет. Более того, обрыв одного из двух медных сегментов, соединяющих узел с оптоволоконным кольцом, не приведет к потере связи с этим узлом. Однако второй обрыв кольца может привести к неработоспособности системы. В общем случае два обрыва кольца в диаметрально противоположных точках ведут к потере коммуникации с половиной подключенных узлов.

    На рисунке 5 изображена конфигурация с двойным оптическим кольцом. В случае если в результате образования двух точек обрыва первичное кольцо выходит из строя, система переключается на вторичное кольцо. Очевидно, что такая архитектура сети является наиболее отказоустойчивой. На рисунке 5 пошагово изображен процесс деградации сети. Обратите внимание, сколько отказов система может перенести до того, как выйдет из строя.

    4915
    Рис. 5. Резервированное оптоволоконное кольцо.

    [ http://kazanets.narod.ru/NT_PART1.htm]

    Тематики

    Синонимы

    EN

    Русско-английский словарь нормативно-технической терминологии > полевая шина

  • 3 двойная шина с распределенной очередью

    1. DQDB
    2. Distributed Queue Dual Bus

     

    двойная шина с распределенной очередью
    Тип локальной сети кольцевого типа со скоростью передачи до 155 Мбит/с (стандарт IEEE 802.6). В такой сети головные станции, расположенные на разных концах двух однонаправленных шин, генерируют ”пустые” кадры длительностью по 125 мкс, которые передаются в противоположных направлениях. Каждая абонентская станция может подключиться к двум шинам одновременно и передавать информацию по любой из них, предварительно извещая об этом своего верхнего по потоку соседа, который резервирует место для своих данных в одном из следующих кадров передачи. Таким образом, очередь на передачу становится распределенной.
    [Л.М. Невдяев. Телекоммуникационные технологии. Англо-русский толковый словарь-справочник. Под редакцией Ю.М. Горностаева. Москва, 2002]

    Тематики

    • электросвязь, основные понятия

    EN

    Русско-английский словарь нормативно-технической терминологии > двойная шина с распределенной очередью

  • 4 Distributed Queue Dual Bus

    abbr. DQDB
    двухсторонняя шина с распределённой очередью; стандарт DQDB (стандарт на городскую сеть, разработанный комитетом 802.6 ИИЭР)

    Англо-русский словарь промышленной и научной лексики > Distributed Queue Dual Bus

  • 5 интерфейс RS-485

    1. RS-485

     

    интерфейс RS-485
    Промышленный стандарт для полудуплексной передачи данных. Позволяет объединять в сеть протяженностью 1200 м до 32 абонентов.
    [ http://www.morepc.ru/dict/]

    Интерфейс RS-485 - широко распространенный высокоскоростной и помехоустойчивый промышленный последовательный интерфейс передачи данных. Практически все современные компьютеры в промышленном исполнении, большинство интеллектуальных датчиков и исполнительных устройств, программируемые логические контроллеры наряду с традиционным интерфейсом RS-232 содержат в своем составе ту или иную реализацию интерфейса RS-485.
    Интерфейс RS-485 основан на стандарте EIA RS-422/RS-485.

    К сожалению, полноценного эквивалентного российского стандарта не существует, поэтому в данном разделе предлагаются некоторые рекомендации по применению интерфейса RS-485.

    Традиционный интерфейс RS-232 в промышленной автоматизации применяется достаточно редко. Сигналы этого интерфейса передаются перепадами напряжения величиной (3...15) В, поэтому длина линии связи RS-232, как правило, ограничена расстоянием в несколько метров из-за низкой помехоустойчивости. Интерфейс RS-232 имеется в каждом PC–совместимом компьютере, где используется в основном для подключения манипулятора типа “мышь”, модема, и реже – для передачи данных на небольшое расстояние из одного компьютера в другой. Передача производится последовательно, пословно, каждое слово длиной (5...8) бит предваряют стартовым битом
    и заканчивают необязательным битом четности и стоп-битами.
    Интерфейс RS-232 принципиально не позволяет создавать сети, так как соединяет только 2 устройства (так называемое соединение “точка - точка”).

    5151

    Сигналы интерфейса RS-485 передаются дифференциальными перепадами напряжения величиной (0,2...8) В, что обеспечивает высокую помехоустойчивость и общую длину линии связи до 1 км (и более с использованием специальных устройств – повторителей). Кроме того, интерфейс RS-485 позволяет создавать сети путем параллельного подключения многих устройств к одной физической линии (так называемая “мультиплексная шина”).
    В обычном PC-совместимом персональном компьютере (не промышленного исполнения) этот интерфейс отсутствует, поэтому необходим специальный адаптер - преобразователь интерфейса RS-485/232.

    5152
    Наша компания рекомендует использовать полностью автоматические преобразователи интерфейса, не требующие сигнала управления передатчиком. Такие преобразователи, как правило, бывают двух видов:

    • преобразователи, требующие жесткого указания скорости обмена и длины передаваемого слова (с учетом стартовых, стоповых бит и бита четности) для расчета времени окончания передачи: например, преобразователь ADAM-4520 производства компании Advantech. Все параметры задаются переключателями в самом преобразователе, причем для задания этих параметров корпус преобразователя необходимо разобрать;
    • преобразователи на основе технологий “Self Tuner” и им подобных, не требующие никаких указаний вообще, и, соответственно, не имеющие никаких органов управления: например, преобразователь I-7520 производства компании ICP DAS. Данный преобразователь предпочтительнее для использования в сетях с приборами МЕТАКОН.


    В автоматических преобразователях выходы интерфейса RS-485 обычно имеют маркировку “DATA+” и “DATA-“. В I-7520 и ADAM-4520 вывод “DATA+” функционально эквивалентен выводу “A” регулятора МЕТАКОН, вывод “DATA-“ - выводу “B”.

    Устройства, подключаемые к интерфейсу RS-485, характеризуются важным параметром по входу приемопередатчика: “единица нагрузки” (“Unit Load” - UL). По стандарту в сети допускается использование до 32 единиц нагрузки, т.е. до 32 устройств, каждое из которых нагружает линию в 1 UL. В настоящее время существуют микросхемы приемопередатчиков с характеристикой менее 1 UL, например - 0,25 UL. В этом случае количество физи
    чески подключенных к линии устройств можно увеличить, но суммарное количество UL в одной линии не должно превышать 32.

    В качестве линии связи используется экранированная витая пара с волновым сопротивлением ≈120 Ом. Для защиты от помех экран (оплетка) витой пары заземляется в любой точке, но только один раз: это исключает протекание больших токов по экрану из-за неравенства потенциалов “земли”. Выбор точки, в которой следует заземлять кабель, не регламентируется стандартом, но, как правило, экран линии связи заземляют на одном из ее концов.

    5153
    Устройства к сети RS-485 подключаются последовательно, с соблюдением полярности контактов A и B:

    5154
    Как видно из рисунка, длинные ответвления (шлейфы) от магистрали до периферийных устройств не допускаются. Стандарт исходит из предположения, что длина шлейфа равна нулю, но на практике этого достичь невозможно (небольшой шлейф всегда имеется внутри любого периферийного устройства: от клеммы
    до микросхемы приемопередатчика).

    Качество витой пары оказывает большое влияние на дальность связи и максимальную скорость обмена в линии. Существуют специальные методики расчета допустимых скоростей обмена и максимальной длины линии связи, основанные на паспортных параметрах кабеля (волновое сопротивление, погонная емкость, активное сопротивление) и микросхем приемопередатчиков (допустимые искажения фронта сигнала). Но на относительно низких скоростях обмена (до 19200 бит/с) основное влияние на допустимую длину линии связи оказывает активное сопротивление кабеля. Опытным путем установлено, что на расстояниях до 600 м допускается использовать кабель с медной жилой сечением 0,35 мм (например, кабель КММ 2х0,35), на большие расстояния сечение кабеля необходимо пропорционально увеличить. Этот эмпирический результат хорошо согласуется с результатами, полученными расчетными методами.

    Даже для скоростей обмена порядка 19200 бит/с кабель уже можно считать длинной линией, а любая длинная линия для исключения помех от отраженного сигнала должна быть согласована на концах. Для согласования используются резисторы
    сопротивлением 120 Ом (точнее, с сопротивлением, равным волновому сопротивлению кабеля, но, как правило, используемые витые пары имеют волновое сопротивление около 120 Ом и точно подбирать резистор нет необходимости) и мощностью не менее 0,25 Вт – так называемый “терминатор”. Терминаторы устанавливаются на обоих концах линии связи, между контактами A и B витой пары.
    В сетях RS-485 часто наблюдается состояние, когда все подключенные к сети устройства находятся в пассивном состоянии, т.е. в сети отсутствует передача и все приемопередатчики “слушают” сеть. В этом случае приемопередатчики не могут корректно распознать никакого устойчивого логического состояния в линии, а непосредственно после передачи все приемопередатчики распознают в линии состояние, соответствующее последнему переданному биту, что эквивалентно помехе в линии связи. На эту проблему не так часто обращают внимания, борясь с ее последствиями программными методами, но тем не менее решить ее аппаратно несложно. Достаточно с помощью специальных цепей смещения создать в линии потенциал, эквивалентный состоянию отсутствия передачи (так называемое состояние “MARK”: передатчик включен, но передача не ведется). Цепи смещения и терминатор реализованы в преобразователе I-7520. Для корректной работы цепей смещения необходимо наличие двух терминаторов в линии связи.

    В сети RS-485 возможна конфликтная ситуация, когда 2 и более устройства начинают передачу одновременно. Это происходит в следующих случаях:
    • в момент включения питания из-за переходных процессов устройства кратковременно могут находится в режиме передачи;
    • одно или более из устройств неисправно;
    • некорректно используется так называемый “мульти-мастерный” протокол, когда инициаторами обмена могут быть несколько устройств.
    В первых двух случаях быстро устранить конфликт невозможно, что теоретически может привести к перегреву и выходу из строя приемопередатчиков RS-485. К счастью, такая ситуация предусмотрена стандартом и дополнительная защита приемопередатчика обычно не требуется. В последнем случае необходимо предусмотреть программное разделение канала между устройствами-инициаторами обмена, так как в любом случае для нормального функционирования линия связи может одновременно предоставляться только одному передатчику.

    [ http://www.metodichka-contravt.ru/?id=3937]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > интерфейс RS-485

  • 6 HP-IB

    Hewlett Packard Interface Busинтерфейсная шина «Хьюлетт Паккард» (первоначальный вариант стандарта на оснащение шины, позже превратившийся в стандарт GPIB)

    Англо-русский словарь промышленной и научной лексики > HP-IB

  • 7 MCA

    1. MicroChannel Architectureархитектура микроканала, шина MCA
    2. master controller adapter адаптер главного ( ведущего) контроллера; графический стандарт MCA (корпорации IBM); см. также CGA, CGI, EGA, GDI, HGA, MDA., PGA, VGA
    maximum calling areaмаксимальная географическая зона обслуживания, в которой абоненты могут вызвать друг друга путём простого набора номера

    Англо-русский словарь промышленной и научной лексики > MCA

См. также в других словарях:

  • шина USB — универсальная последовательная шина Стандарт, для обмена данными между ПК и среднескоростными периферийными устройствами. Подключение устройства не требует перезагрузки компьютера, переконфигурирования системы или установки интерфейсной карты.… …   Справочник технического переводчика

  • Шина PCI — Разъём 32 разрядной PCI на материнской плате Разъём 64 разрядной PCI в Power Macintosh G4 PCI (англ. Peripheral component interconnect, дословно  взаимосвязь периферийных компонентов)  шина ввода/вывода для подключения периферийных устройств к… …   Википедия

  • Шина (энергосистема) — У этого термина существуют и другие значения, см. Шина (значения). Шины на ток 1500 А (ввод в крупное здание) …   Википедия

  • Шина PCI Express — На фотографии 4 слота PCI Express: x4, x16, x1, опять x16, внизу стандартный 32 разрядный слот PCI, на материнской плате DFI LanParty nForce4 SLI DR PCI Express или PCIe или PCI E, (также известная как 3GIO for 3rd Generation I/O; не путать с PCI …   Википедия

  • Шина AGP — Разъём AGP на материнской плате (обычно коричневого или зелёного цветов). AGP (от англ. Accelerated Graphics Port, ускоренный графический порт)  разработанная в 1997 году компанией системная шина для видеокарты. Появилась одновременно с чипсетами …   Википедия

  • Универсальная последовательная шина — Символ USB USB (англ. Universal Serial Bus  универсальная последовательная шина) последовательный интерфейс передачи данных для среднескоростных и низкоскоростных периферийных устройств. Разработка спецификаций на шину USB производится в рамках… …   Википедия

  • Автомобильная шина — Эта статья об автомобильных пневматических шинах; для прочих значений, смотрите шина …   Википедия

  • S-100 (шина данных) — S 100 Универсальная интерфейсная шина спроектированная компанией MITS в 1974 году специально для Altair 8800, считающимся на сегодняшний день первым персональным компьютером. Шина S 100 была первой интерфейсной шиной для микрокомпьютерной… …   Википедия

  • полевая шина — [Интент] полевая магистраль по зарубежной терминологии Имеет много терминов синонимов и обозначает специализированные последовательные магистрали малых локальных сетей (МЛС), ориентированны на сопряжение с ЭВМ рассредоточенных цифровых датчиков и …   Справочник технического переводчика

  • полевая шина — [Интент] полевая магистраль по зарубежной терминологии Имеет много терминов синонимов и обозначает специализированные последовательные магистрали малых локальных сетей (МЛС), ориентированны на сопряжение с ЭВМ рассредоточенных цифровых датчиков и …   Справочник технического переводчика

  • полевая шина — [Интент] полевая магистраль по зарубежной терминологии Имеет много терминов синонимов и обозначает специализированные последовательные магистрали малых локальных сетей (МЛС), ориентированны на сопряжение с ЭВМ рассредоточенных цифровых датчиков и …   Справочник технического переводчика

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»