Перевод: со всех языков на русский

с русского на все языки

при+аппроксимации

  • 1 dimensionality problem

    English-Russian electronics dictionary > dimensionality problem

  • 2 dimensionality problem

    The New English-Russian Dictionary of Radio-electronics > dimensionality problem

  • 3 time truncation

    усечение времени (Численная погрешность, возникающая вследствие того, что при аппроксимации частная производная по времени заменяется на выражение в конечных разностях. Ошибка имеет порядок временного шага.)

    English-Russian oil and gas dictionary with explanation > time truncation

  • 4 curve fitting compaction

    Вычислительная техника: уплотнение информации о кривой при помощи приближенного описания кривой (напр. с использованием кусочно-линейной аппроксимации), уплотнение (информации о кривой) при помощи приближенного описания кривой (напр. с использованием кусочно-линейной аппроксимации)

    Универсальный англо-русский словарь > curve fitting compaction

  • 5 diviseur initial

    Французско-русский универсальный словарь > diviseur initial

  • 6 stress-intensity factor

    Коэффициент интенсивности напряжения.
    Масштабный коэффициент, обычно обозначаемый символом K используемый в линейной упругой механике разрушения для описания увеличения приложенного напряжения в вершине трещины известного размера и формы. В начале быстрого распространения трещины в любой структуре, содержащей трещину, коэффициент называется критическим коэффициентом интенсивности напряжений или вязкостью разрушения. Индексы справа внизу используются для обозначения условий нагрузки:
    Kc - Критический коэффициент интенсивности напряжений при плоской деформации. Значение интенсивности напряжения, при котором распространение трещины становится быстродействующим на участках более тонких, чем те, в которых преобладает плосконапряженное состояние.
    KI> - Коэффициент интенсивности напряжения для условий нагрузки, при котором края трещины смещаются в направлении нормали к плоскости трещины (также известна как открывающая мода деформации).
    KIc - Критический коэффициент интенсивности напряжений при плоском напряженном состоянии. Минимальное значение IQ для любого данного материала, которое достигается при быст-родействующем распространении трещины при плосконапряженном состоянии KId>—Динамическая вязкость разрушения. Вязкость разрушения, определяемая при динамическом нагружении; используется для аппроксимации Kс для очень вязких материалов.
    KISCC> - Пороговый коэффициент интенсивности напряжений при коррозии под напряжением. Критические значения приобретает в особых условиях.
    KQ> - Временное значение вязкости разрушения при плоской деформации.
    K— - Пороговая интенсивность напряжения для трещинообразования от коррозии под напряжением. Критическая интенсивность напряжения в начале трещинообразования от коррозии под напряжением при определенных условиях.
    K - Пороговый коэффициент интенсивности напряжений при усталостном нагружении.

    Англо-русский металлургический словарь > stress-intensity factor

  • 7 stress-intensity factor

    1. коэффициент интенсивности напряжения

     

    коэффициент интенсивности напряжения
    Масштабный коэффициент, обычно обозначаемый символом K используемый в линейной упругой механике разрушения для описания увеличения приложенного напряжения в вершине трещины известного размера и формы. В начале быстрого распространения трещины в любой структуре, содержащей трещину, коэффициент называется критическим коэффициентом интенсивности напряжений или вязкостью разрушения. Индексы справа внизу используются для обозначения условий нагрузки:
    Kc — Критический коэффициент интенсивности напряжений при плоской деформации. Значение интенсивности напряжения, при котором распространение трещины становится быстродействующим на участках более тонких, чем те, в которых преобладает плосконапряженное состояние.
    KI — Коэффициент интенсивности напряжения для условий нагрузки, при котором края трещины смещаются в направлении нормали к плоскости трещины (также известна как открывающая мода деформации).
    KIc — Критический коэффициент интенсив-ности напряжений при плоском напряженном состоянии. Минимальное значение IQ для любого данного материала, которое достигается при быстродействующем распространении трещины при
    плосконапряженном состоянии.
    KId -Динамическая вязкость разрушения. Вязкость разрушения, определяемая при динамическом нагружении; используется для аппроксимации Kс для очень вязких материалов.
    KISCC — Пороговый коэффициент интенсивности напряжений при коррозии под напряжением. Критические значения приобретает в особых условиях.
    KQ — Временное значение вязкости разрушения при плоской деформации.
    Kth — Пороговая интенсивность напряжения для трещинообразования от коррозии под напряжением. Критическая интенсивность напряжения в начале трещинообразования от коррозии под напряжением при определенных условиях.
    K — Пороговый коэффициент интенсивности напряжений при усталостном нагружении.
    [ http://www.manual-steel.ru/eng-a.html]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > stress-intensity factor

  • 8 RTD

    1. фиктивное реальное время (о режиме работы)
    2. термометр сопротивления
    3. температурный датчик сопротивления
    4. релейный элемент выдержки времени
    5. распределение времени пребывания
    6. номинальное значение
    7. двусторонняя задержка

     

    двусторонняя задержка
    Задержка из-за подтверждения приема (при прохождении сигнала в оба конца) (МСЭ-Т Х.148).
    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    Тематики

    • электросвязь, основные понятия

    EN

     

    номинальное значение
    Количественное значение, указанное, как правило, изготовителем для определенного рабочего состояния детали, устройства или аппарата.
    МЭК 60050(151-04-03).
    [ ГОСТ Р 50030. 1-2000 ( МЭК 60947-1-99)]


    номинальное значение
    Значение величины, установленное обычно изготовителем для определенных рабочих условий компонента, прибора или оборудования.
    [ ГОСТ Р 52319-2005 (МЭК 60050-151 [10], позиция 151-04-03)]

    номинальное значение
    Значение параметра электротехнического изделия (устройства), указанное изготовителем, при котором оно должно работать, являющееся исходным для отсчета отклонений.
    Примечание
    К числу параметров относятся, например, ток, напряжение, мощность.
    [ ГОСТ 18311-80]


    номинальное значение
    -

    [
    IEV number 442-01-01]

    EN

    nominal value
    value of a quantity used to designate and identify a component, device, equipment, or system
    NOTE – The nominal value is generally a rounded value.
    [IEV number 151-16-09]


    rated value
    a quantity value assigned, generally by a manufacturer, for a specified operating condition of a component, device or equipment
    Source: 151-04-03
    [IEV number 442-01-01]

    FR

    valeur nominale, f
    valeur de dénomination, f
    valeur d'une grandeur, utilisée pour dénommer et identifier un composant, un dispositif, un matériel ou un système
    NOTE – La valeur nominale est généralement une valeur arrondie.
    [IEV number 151-16-09]


    valeur assignée
    valeur d'une grandeur fixée, généralement par le constructeur, pour un fonctionnement spécifié d'un composant, d'un dispositif ou d'un matériel
    Source: 151-04-03
    [IEV number 442-01-01]

    Синонимы

    EN

    DE

    FR

     

    распределение времени пребывания
    (напр. тепловыделяющего элемента в активной зоне ядерного реактора, частиц угля в зоне горения топки котла и др.)
    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    релейный элемент выдержки времени

    [Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.]

    Тематики

    • электротехника, основные понятия

    EN

     

    температурный датчик сопротивления

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    термометр сопротивления
    Термометр, принцип действия которого основан на использовании зависимости электрического сопротивления материала чувствительного элемента термометра от температуры.
    [РД 01.120.00-КТН-228-06]

    Термометр сопротивления ТС это термометр, как правило, в металлическом или керамическом корпусе, чувствительный элемент которого представляет собой резистор, выполненный из металлической проволоки или пленки и имеющий известную зависимость электрического сопротивления от температуры. Самый популярный тип термометра – платиновый термометр сопротивления, это объясняется высоким температурным коэффициентом платины, ее устойчивостью к окислению и хорошей технологичностью. В качестве рабочих средств измерений применяются также медные и никелевые термометры. Новый межгосударственный стандарт на технические требования к рабочим термометрам сопротивления: ГОСТ 6651-2009, разработанный на основе российского стандарта ГОСТ Р 8. 625-2006 ( Термометры сопротивления из платины, меди и никеля. Общие технические требования и методы испытаний). Ознакомиться со стандартом можно в разделе Российские стандарты. В стандарте приведены диапазоны, классы допуска ТС, таблицы НСХ и стандартные зависимости сопротивление-температура. Эти данные приведены также на нашем сайте в разделе справочник. Главное преимущество термометров сопротивления – широкий диапазон температур, высокая стабильность, близость характеристики к линейной зависимости, высокая взаимозаменяемость. Пленочные платиновые термометры сопротивления отличаются повышенной вибропрочностью, но меньшим диапазоном температур. Изготавливаются также герметичные чувствительные элементы термометров сопротивления различных размеров, что позволяет их использовать в местах, где важно устанавливать миниатюрный датчик температуры. Недостаток термометров и чувствительных элементов сопротивления – необходимость использования для точных измерений трех- или четырех- проводной схемы включения, т.к. при подключении датчика с помощью двух проводов, их сопротивление включается измеренное сопротивление термометра. Важнейшей технологической проблемой для ТС проволочного типа является герметизация корпуса ЧЭ специальной глазурью, состав глазури должен быть подобран так, чтобы при колебаниях температуры в пределах рабочего диапазона не происходило разрушение герметизирующего слоя.

    Промышленные платиновые термометры сопротивления в большинстве случаев используются со стандартной зависимостью сопротивление-температура (НСХ), что обуславливает допуск не лучше 0,1 °С (класс АА при 0 °С). Однако высокая стабильность некоторых термометров позволяет делать их индивидуальную градуировку и определять характерную именно для них зависимость сопротивление-температура. Такая градуировка может повысить точность до нескольких сотых градуса. Следует отметить, что использование функции МТШ-90 (что возможно сейчас для многих цифровых термометров) может точнее описать индивидуальную зависимость ТС, использование квадратичного уравнения Каллендара Ван Дьюзена ограничивает точность аппроксимации до 0,01-0,03 °С в зависимости от диапазона температур.

    Эталонные платиновые термометры (ПТС, ТСПН) первого разряда и термометры-рабочие эталоны по точности превосходят промышленные термометры сопротивления (расширенная неопределенность ПТС 1 разряда при 0 °С равна 0,002 °С), но они требуют очень осторожного обращения, не выносят тряски и резких тепловых. Кроме того, их стоимость в десятки раз выше стоимости рабочих термометров сопротивления. Стандарт на образцовые ПТС первого и второго разряда: ГОСТ Р 51233-98 «Термометры сопротивления платиновые эталонные 1 и 2 разрядов. Общие технические требования» (см. раздел Российские стандарты). Подробная информация о свойствах эталонных платиновых термометров сопротивления и методах работы с ними приводится в разделе "Платиновый термометр сопротивления - основной интерполяционный прибор МТШ-90"

    Для точного изменения криогенных температур с успехом применяются железо-родиевые термометры сопротивления. Их действие основано, на эффекте аномальной температурной зависимости сплава 0,5 ат.% железа к родию при низких температурах с положительным коэффициентом сопротивления. Опыт работы с термометрами показал, что их стабильность может достигать 0,15 мК/год при 20 К. Зависимость сопротивление - температура в диапазоне 0,5-27 К хорошо аппроксимируется полиномами не высоких степеней (8 -11 степень). Однако, сложности возникают при попытке аппроксимировать диапазоны, включающие 28 К, т.к. в этой точке «низкотемпературное» сопротивление, обусловленное примесями, уступает место «высокотемпературному» сопротивлению, обусловленному рассеянием на фононах.

    ...

    [ http://temperatures.ru/pages/termometry_soprotivleniya]

    Недопустимые, нерекомендуемые

    Тематики

    EN

     

    фиктивное реальное время (о режиме работы)

    [Е.С.Алексеев, А.А.Мячев. Англо-русский толковый словарь по системотехнике ЭВМ. Москва 1993]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > RTD

  • 9 resistance temperature detector

    1. термометр сопротивления
    2. температурный датчик сопротивления

     

    температурный датчик сопротивления

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    термометр сопротивления
    Термометр, принцип действия которого основан на использовании зависимости электрического сопротивления материала чувствительного элемента термометра от температуры.
    [РД 01.120.00-КТН-228-06]

    Термометр сопротивления ТС это термометр, как правило, в металлическом или керамическом корпусе, чувствительный элемент которого представляет собой резистор, выполненный из металлической проволоки или пленки и имеющий известную зависимость электрического сопротивления от температуры. Самый популярный тип термометра – платиновый термометр сопротивления, это объясняется высоким температурным коэффициентом платины, ее устойчивостью к окислению и хорошей технологичностью. В качестве рабочих средств измерений применяются также медные и никелевые термометры. Новый межгосударственный стандарт на технические требования к рабочим термометрам сопротивления: ГОСТ 6651-2009, разработанный на основе российского стандарта ГОСТ Р 8. 625-2006 ( Термометры сопротивления из платины, меди и никеля. Общие технические требования и методы испытаний). Ознакомиться со стандартом можно в разделе Российские стандарты. В стандарте приведены диапазоны, классы допуска ТС, таблицы НСХ и стандартные зависимости сопротивление-температура. Эти данные приведены также на нашем сайте в разделе справочник. Главное преимущество термометров сопротивления – широкий диапазон температур, высокая стабильность, близость характеристики к линейной зависимости, высокая взаимозаменяемость. Пленочные платиновые термометры сопротивления отличаются повышенной вибропрочностью, но меньшим диапазоном температур. Изготавливаются также герметичные чувствительные элементы термометров сопротивления различных размеров, что позволяет их использовать в местах, где важно устанавливать миниатюрный датчик температуры. Недостаток термометров и чувствительных элементов сопротивления – необходимость использования для точных измерений трех- или четырех- проводной схемы включения, т.к. при подключении датчика с помощью двух проводов, их сопротивление включается измеренное сопротивление термометра. Важнейшей технологической проблемой для ТС проволочного типа является герметизация корпуса ЧЭ специальной глазурью, состав глазури должен быть подобран так, чтобы при колебаниях температуры в пределах рабочего диапазона не происходило разрушение герметизирующего слоя.

    Промышленные платиновые термометры сопротивления в большинстве случаев используются со стандартной зависимостью сопротивление-температура (НСХ), что обуславливает допуск не лучше 0,1 °С (класс АА при 0 °С). Однако высокая стабильность некоторых термометров позволяет делать их индивидуальную градуировку и определять характерную именно для них зависимость сопротивление-температура. Такая градуировка может повысить точность до нескольких сотых градуса. Следует отметить, что использование функции МТШ-90 (что возможно сейчас для многих цифровых термометров) может точнее описать индивидуальную зависимость ТС, использование квадратичного уравнения Каллендара Ван Дьюзена ограничивает точность аппроксимации до 0,01-0,03 °С в зависимости от диапазона температур.

    Эталонные платиновые термометры (ПТС, ТСПН) первого разряда и термометры-рабочие эталоны по точности превосходят промышленные термометры сопротивления (расширенная неопределенность ПТС 1 разряда при 0 °С равна 0,002 °С), но они требуют очень осторожного обращения, не выносят тряски и резких тепловых. Кроме того, их стоимость в десятки раз выше стоимости рабочих термометров сопротивления. Стандарт на образцовые ПТС первого и второго разряда: ГОСТ Р 51233-98 «Термометры сопротивления платиновые эталонные 1 и 2 разрядов. Общие технические требования» (см. раздел Российские стандарты). Подробная информация о свойствах эталонных платиновых термометров сопротивления и методах работы с ними приводится в разделе "Платиновый термометр сопротивления - основной интерполяционный прибор МТШ-90"

    Для точного изменения криогенных температур с успехом применяются железо-родиевые термометры сопротивления. Их действие основано, на эффекте аномальной температурной зависимости сплава 0,5 ат.% железа к родию при низких температурах с положительным коэффициентом сопротивления. Опыт работы с термометрами показал, что их стабильность может достигать 0,15 мК/год при 20 К. Зависимость сопротивление - температура в диапазоне 0,5-27 К хорошо аппроксимируется полиномами не высоких степеней (8 -11 степень). Однако, сложности возникают при попытке аппроксимировать диапазоны, включающие 28 К, т.к. в этой точке «низкотемпературное» сопротивление, обусловленное примесями, уступает место «высокотемпературному» сопротивлению, обусловленному рассеянием на фононах.

    ...

    [ http://temperatures.ru/pages/termometry_soprotivleniya]

    Недопустимые, нерекомендуемые

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > resistance temperature detector

  • 10 resistance thermometer

    1. термометр сопротивления

     

    термометр сопротивления
    Термометр, принцип действия которого основан на использовании зависимости электрического сопротивления материала чувствительного элемента термометра от температуры.
    [РД 01.120.00-КТН-228-06]

    Термометр сопротивления ТС это термометр, как правило, в металлическом или керамическом корпусе, чувствительный элемент которого представляет собой резистор, выполненный из металлической проволоки или пленки и имеющий известную зависимость электрического сопротивления от температуры. Самый популярный тип термометра – платиновый термометр сопротивления, это объясняется высоким температурным коэффициентом платины, ее устойчивостью к окислению и хорошей технологичностью. В качестве рабочих средств измерений применяются также медные и никелевые термометры. Новый межгосударственный стандарт на технические требования к рабочим термометрам сопротивления: ГОСТ 6651-2009, разработанный на основе российского стандарта ГОСТ Р 8. 625-2006 ( Термометры сопротивления из платины, меди и никеля. Общие технические требования и методы испытаний). Ознакомиться со стандартом можно в разделе Российские стандарты. В стандарте приведены диапазоны, классы допуска ТС, таблицы НСХ и стандартные зависимости сопротивление-температура. Эти данные приведены также на нашем сайте в разделе справочник. Главное преимущество термометров сопротивления – широкий диапазон температур, высокая стабильность, близость характеристики к линейной зависимости, высокая взаимозаменяемость. Пленочные платиновые термометры сопротивления отличаются повышенной вибропрочностью, но меньшим диапазоном температур. Изготавливаются также герметичные чувствительные элементы термометров сопротивления различных размеров, что позволяет их использовать в местах, где важно устанавливать миниатюрный датчик температуры. Недостаток термометров и чувствительных элементов сопротивления – необходимость использования для точных измерений трех- или четырех- проводной схемы включения, т.к. при подключении датчика с помощью двух проводов, их сопротивление включается измеренное сопротивление термометра. Важнейшей технологической проблемой для ТС проволочного типа является герметизация корпуса ЧЭ специальной глазурью, состав глазури должен быть подобран так, чтобы при колебаниях температуры в пределах рабочего диапазона не происходило разрушение герметизирующего слоя.

    Промышленные платиновые термометры сопротивления в большинстве случаев используются со стандартной зависимостью сопротивление-температура (НСХ), что обуславливает допуск не лучше 0,1 °С (класс АА при 0 °С). Однако высокая стабильность некоторых термометров позволяет делать их индивидуальную градуировку и определять характерную именно для них зависимость сопротивление-температура. Такая градуировка может повысить точность до нескольких сотых градуса. Следует отметить, что использование функции МТШ-90 (что возможно сейчас для многих цифровых термометров) может точнее описать индивидуальную зависимость ТС, использование квадратичного уравнения Каллендара Ван Дьюзена ограничивает точность аппроксимации до 0,01-0,03 °С в зависимости от диапазона температур.

    Эталонные платиновые термометры (ПТС, ТСПН) первого разряда и термометры-рабочие эталоны по точности превосходят промышленные термометры сопротивления (расширенная неопределенность ПТС 1 разряда при 0 °С равна 0,002 °С), но они требуют очень осторожного обращения, не выносят тряски и резких тепловых. Кроме того, их стоимость в десятки раз выше стоимости рабочих термометров сопротивления. Стандарт на образцовые ПТС первого и второго разряда: ГОСТ Р 51233-98 «Термометры сопротивления платиновые эталонные 1 и 2 разрядов. Общие технические требования» (см. раздел Российские стандарты). Подробная информация о свойствах эталонных платиновых термометров сопротивления и методах работы с ними приводится в разделе "Платиновый термометр сопротивления - основной интерполяционный прибор МТШ-90"

    Для точного изменения криогенных температур с успехом применяются железо-родиевые термометры сопротивления. Их действие основано, на эффекте аномальной температурной зависимости сплава 0,5 ат.% железа к родию при низких температурах с положительным коэффициентом сопротивления. Опыт работы с термометрами показал, что их стабильность может достигать 0,15 мК/год при 20 К. Зависимость сопротивление - температура в диапазоне 0,5-27 К хорошо аппроксимируется полиномами не высоких степеней (8 -11 степень). Однако, сложности возникают при попытке аппроксимировать диапазоны, включающие 28 К, т.к. в этой точке «низкотемпературное» сопротивление, обусловленное примесями, уступает место «высокотемпературному» сопротивлению, обусловленному рассеянием на фононах.

    ...

    [ http://temperatures.ru/pages/termometry_soprotivleniya]

    Недопустимые, нерекомендуемые

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > resistance thermometer

  • 11 scattergraph method

    мат. метод графической аппроксимации (аналитический метод, основанный на построении прямой линии, показывающей линейную зависимость между точками в системе координат; в управленческом учете используется при определении средних темпов изменения смешанных затрат; для этого проводится линия зависимости объема затрат (ось У) от объемов деятельности (ось Х) таким образом, что выше и ниже проведенной линии располагается примерно одинаковое количество точек, демонстрирующих наблюдаемые показатели затрат при разных объемах деятельности; наклон линии позволяет определить темп изменений смешанных затрат в зависимости от роста объемов деятельности)
    See:

    Англо-русский экономический словарь > scattergraph method

  • 12 corner frequency

    Универсальный англо-русский словарь > corner frequency

  • 13 corner frequency

    частота излома (при кусочно-ломаной аппроксимации АЧХ)

    Большой англо-русский и русско-английский словарь > corner frequency

  • 14 curve fitting compaction

    уплотнение (информации о кривой) при помощи приближенного описания кривой (напр. с использованием кусочно-линейной аппроксимации)

    Большой англо-русский и русско-английский словарь > curve fitting compaction

  • 15 curve-pattern compaction

    уплотнение (информации о кривой) при помощи приближенного описания кривой (напр. с использованием кусочно-линейной аппроксимации)

    Большой англо-русский и русско-английский словарь > curve-pattern compaction

  • 16 trial divisor

    начальный [пробный] делитель, начальное значение делителя (при первой аппроксимации)

    Большой англо-русский и русско-английский словарь > trial divisor

  • 17 break frequency

    Англо-русский словарь технических терминов > break frequency

  • 18 corner frequency

    Англо-русский словарь технических терминов > corner frequency

  • 19 break frequency

    Универсальный англо-русский словарь > break frequency

  • 20 curve curve-pattern compaction

    Вычислительная техника: уплотнение информации о кривой при помощи приближенного описания кривой (напр. с использованием кусочно-линейной аппроксимации)

    Универсальный англо-русский словарь > curve curve-pattern compaction

См. также в других словарях:

  • НАКОПЛЕНИЕ ПОГРЕШНОСТИ — при численном решении алгебраических уравнений суммарное влияние округлений, сделанных на отдельных шагах вычислительного процесса, на точность полученного решения линейной алгебраич. системы. Наиболее распространенным способом априорной оценки… …   Математическая энциклопедия

  • РАЗНОСТНЫХ СХЕМ ТЕОРИЯ — раздел вычислительной математики, изучающий методы приближенного решения дифференциальных уравнений путем их замены конечноразностными уравнениями (р а з н о с т н ы м и с х е м а м и). Р. с. т. изучает способы построения разностных схем,… …   Математическая энциклопедия

  • Кривая видового накопления — графическое представление числа видов, найденных на определенной территории (или в определенном биотопе и т. п.), как функции от кумулятивной совокупности исследовательских усилий, направленных на их нахождения. Исследовательское усилие может… …   Википедия

  • КРАЕВАЯ ЗАДАЧА — численные методы решения для уравнений с частными производными приближенные методы решения, в результате к рых решение задачи представляется таблицей чисел. Точно решения (в виде явных формул, рядов и т. п.) К. з. можно построить лишь в редких… …   Математическая энциклопедия

  • РАЗНОСТНЫЙ ОПЕРАТОР — оператор, действующий в пространстве сеточных функций. Р. о. возникают при аппроксимации дифференциальной задачи разностной и являются предметом изучения разностных схем теории. Разностную схему можно рассматривать как операторное уравнение с… …   Математическая энциклопедия

  • ЛИНЕЙНАЯ АЛГЕБРА — численные методы раздел вычислительной математики, посвященный математич. описанию и исследованию процессов численного решения задач линейной алгебры. Среди задач Л. а. наибольшее значение имеют две: решение системы линейных алгебраич. уравнений… …   Математическая энциклопедия

  • ОКЕАНОЛОГИИ МАТЕМАТИЧЕСКИЕ ЗАДАЧИ — математические задачи в области физики, химии, геологии и биологии океана. В физике океана это прежде всего задачи геофизич. гидродинамики (определяемой как гидродинамика природных течений вращающихся бароклинных стратифицированных жидкостей).… …   Математическая энциклопедия

  • ПАРАБОЛИЧЕСКОГО ТИПА УРАВНЕНИЕ — численные методы решения методы решения уравнений параболич. типа на основе вычислительных алгоритмов. Для решения П. т. у. часто применяются приближенные численные методы, рассчитанные на использование быстродействующих ЭВМ. Наиболее… …   Математическая энциклопедия

  • КВАДРАТУРНЫХ СУММ МЕТОД — метод аппроксимации интегрального оператора при построении численных методов решения интегральных уравнений. Простейший вариант К. с. м. состоит в замене интегрального оператора, напр, вида в интегральном уравнении на оператор с конечномерной… …   Математическая энциклопедия

  • Запаздывания блок —         блок задержки, электронное моделирующее устройство для воспроизведения сигнала с отставанием на заданный интервал времени т. З. б. применяется в электромоделировании технологических процессов, связанных с переносом вещества или… …   Большая советская энциклопедия

  • УДАРНАЯ ВОЛНА — (скачок уплотнения), распространяющаяся со сверхзвуковой скоростью тонкая переходная область, в к рой происходит резкое увеличение плотности, давления и скорости в ва. У. в. возникают при взрывах, детонации, при сверхзвуковых движениях тел, при… …   Физическая энциклопедия

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»