Перевод: с английского на русский

с русского на английский

принимать+полностью

  • 101 oil-cooled transformer

    1. трансформатор с масляным охлаждением
    2. масляный трансформатор

     

     

    масляный трансформатор
    Трансформатор с жидким диэлектриком, в котором основной изолирующей средой и теплоносителем служит трансформаторное масло
    [ ГОСТ 16110-82]


    масляный трансформатор
    Трансформатор, магнитная система и обмотки которого погружены в масло
    (МЭС 421-01-14)
    [ ГОСТ 30830-2002]

    EN

    oil-immersed type transformer
    a transformer of which the magnetic circuit and windings are immersed in oi
    [IEV number 421-01-14]

    FR

    transformateur immergé dans l'huile
    transformateur dont le circuit magnétique et les enroulements sont immergés dans l'huile
    [IEV number 421-01-14]

    Oil transformers
    The magnetic circuit and the windings are immersed in a liquid dielectric that provides insulation and evacuates the heat losses of the transformer.
    This liquid expands according to the load and the ambient temperature. PCBs and TCBs are now prohibited and mineral oil is generally used. It is flammable and requires protective measures against the risks of fire, explosion and pollution.

    The most commonly used protective measures are the DGPT or the DGPT2: Gas, Pressure and Temperature sensor with 1 or 2 sensing levels on the temperature. This system cuts off the LV load (1st level) then the HV supply (2nd level) when there is a fault inside the transformer. A holding tank is used to recover all the liquid dielectric.

    Of the four types of immersed transformer: free breathing transformers, gas cushion transformers, transformers with expansion tank and transformers with integral filling, only the latter are currently installed.

    [Legrand]

    Масляные трансформаторы
    Магнитная система и обмотки трансформатора погружены в жидкий диэлектрик, служащий изоляцией и теплоносителем.
    Жидкий диэлектрик изменяет свой объем в соответствии с нагрузкой трансформатора и температурой окружающей среды. Поскольку в настоящее время применение полихлорированных дифенилов и тетрахлорбифенилов запрещено, то в основном используют минеральное масло. Оно огнеопасно, поэтому необходимо принимать меры против возникновения пожара, взрыва и загрязнения окружающей среды.

    Как правило, применяются системы DGPT (одноуровневые системы, использующие датчики газа, давления и температуры) или DGPT2 – двухуровневые системы.
    В случае возникновения аномального состояния трансформатора данные системы отключают нагрузку цепей низшего напряжения (первый уровень защиты), а затем питание обмотки высшего напряжения (второй уровень защиты). Активная часть трансформатора находится в баке и полностью покрыта жидким диэлектриком.

    Существует четыре типа масляных трансформаторов: трансформаторы с системой свободного дыхания, трансформаторы с газовой подушкой между зеркалом масла и крышкой трансформатора, трансформаторы с расширительным баком и трансформаторы с гофрированным баком. В настоящее время применяют только трансформаторы последнего типа

    [Интент]

    0375
    [http://www.ramo-chelny.ru/konschasti.html]

    Масляный трансформатор:

    1. Шихтованный магнитопровод
    2. Обмотка низшего напряжения
    3. Обмотка высшего напряжения
    4. Трубчатый бак
    5. Термометр
    6. Переключатель регулировочных отводов обмотки высшего напряжения
    7. Ввод (проходной изолятор) обмотки низшего напряжения
    8. Ввод (проходной изолятор) обмотки высшего напряжения
    9. Расширительный бак

    0376
    [http://transfcomplect.narod.ru/transformator.html]

    Тематики

    Классификация

    >>>

    EN

    DE

    FR

     

    трансформатор с масляным охлаждением

    [Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.]

    Тематики

    • электротехника, основные понятия

    EN

    Англо-русский словарь нормативно-технической терминологии > oil-cooled transformer

  • 102 oil-immersed type transformer

    1. масляный трансформатор

     

     

    масляный трансформатор
    Трансформатор с жидким диэлектриком, в котором основной изолирующей средой и теплоносителем служит трансформаторное масло
    [ ГОСТ 16110-82]


    масляный трансформатор
    Трансформатор, магнитная система и обмотки которого погружены в масло
    (МЭС 421-01-14)
    [ ГОСТ 30830-2002]

    EN

    oil-immersed type transformer
    a transformer of which the magnetic circuit and windings are immersed in oi
    [IEV number 421-01-14]

    FR

    transformateur immergé dans l'huile
    transformateur dont le circuit magnétique et les enroulements sont immergés dans l'huile
    [IEV number 421-01-14]

    Oil transformers
    The magnetic circuit and the windings are immersed in a liquid dielectric that provides insulation and evacuates the heat losses of the transformer.
    This liquid expands according to the load and the ambient temperature. PCBs and TCBs are now prohibited and mineral oil is generally used. It is flammable and requires protective measures against the risks of fire, explosion and pollution.

    The most commonly used protective measures are the DGPT or the DGPT2: Gas, Pressure and Temperature sensor with 1 or 2 sensing levels on the temperature. This system cuts off the LV load (1st level) then the HV supply (2nd level) when there is a fault inside the transformer. A holding tank is used to recover all the liquid dielectric.

    Of the four types of immersed transformer: free breathing transformers, gas cushion transformers, transformers with expansion tank and transformers with integral filling, only the latter are currently installed.

    [Legrand]

    Масляные трансформаторы
    Магнитная система и обмотки трансформатора погружены в жидкий диэлектрик, служащий изоляцией и теплоносителем.
    Жидкий диэлектрик изменяет свой объем в соответствии с нагрузкой трансформатора и температурой окружающей среды. Поскольку в настоящее время применение полихлорированных дифенилов и тетрахлорбифенилов запрещено, то в основном используют минеральное масло. Оно огнеопасно, поэтому необходимо принимать меры против возникновения пожара, взрыва и загрязнения окружающей среды.

    Как правило, применяются системы DGPT (одноуровневые системы, использующие датчики газа, давления и температуры) или DGPT2 – двухуровневые системы.
    В случае возникновения аномального состояния трансформатора данные системы отключают нагрузку цепей низшего напряжения (первый уровень защиты), а затем питание обмотки высшего напряжения (второй уровень защиты). Активная часть трансформатора находится в баке и полностью покрыта жидким диэлектриком.

    Существует четыре типа масляных трансформаторов: трансформаторы с системой свободного дыхания, трансформаторы с газовой подушкой между зеркалом масла и крышкой трансформатора, трансформаторы с расширительным баком и трансформаторы с гофрированным баком. В настоящее время применяют только трансформаторы последнего типа

    [Интент]

    0375
    [http://www.ramo-chelny.ru/konschasti.html]

    Масляный трансформатор:

    1. Шихтованный магнитопровод
    2. Обмотка низшего напряжения
    3. Обмотка высшего напряжения
    4. Трубчатый бак
    5. Термометр
    6. Переключатель регулировочных отводов обмотки высшего напряжения
    7. Ввод (проходной изолятор) обмотки низшего напряжения
    8. Ввод (проходной изолятор) обмотки высшего напряжения
    9. Расширительный бак

    0376
    [http://transfcomplect.narod.ru/transformator.html]

    Тематики

    Классификация

    >>>

    EN

    DE

    FR

    Англо-русский словарь нормативно-технической терминологии > oil-immersed type transformer

  • 103 mass privatisation

    1. массовая приватизация (бесплатная, ваучерная)

     

    массовая приватизация (бесплатная, ваучерная)
    Этап приватизации в России, продолжавшийся в 1992-1994 гг. Есть разные способы приватизации, и в разных постсоциалистических странах она приняла разные формы. Россия, как и некоторые другие страны (такие, как Чехия и Эстония), избрала метод ваучерной приватизации. Каждому гражданину был выдан ваучер (приватизационный чек), свидетельствующий о его праве владеть частью общего достояния. Гражданин мог обменять его на акции конкретного выбранного им предприятия или продать.. Образовался рынок ваучеров. Цены на нем менялись, наиболее удачливые скапливали на их перепродаже первые капиталы или же формировали пакеты акций приглянувшихся им предприятий. Принципиальное отличие массовой приватизации – как реформы собственности – от эпизодически проводимой приватизации в некоторых капиталистических странах, состоит в системном характере преобразования отношений в обществе. Речь идет не об отдельных предприятиях и отдельных покупателях, а о преобразовании экономики страны в целом. Это был один из побудительных мотивов того, что в России приняли метод «ваучеризации всей страны», второй ипостасью которого являлось акционирование конкретных государственных предприятий. Последнее означало выпуск в обращение акций предприятия (бумаг или электронных записей), удостоверявших право граждан на долевое участие во владении этим предприятием. Другие мотивы носили вынужденный характер. Например, в разоренной коммунистическим правлением стране почти не было людей, обладавших сколько-нибудь значительными накоплениями, достаточными для приобретения в собственность предприятий, кроме «подпольных» миллионеров – спекулянтов, «цеховиков», крупных партийных чиновников и преступников. Да и их капиталы к началу приватизации были почти «съедены» инфляцией. В такой ситуации создать покупательский спрос на акции можно было только с помощью ваучеров. Подготовка к массовой приватизации началась с осени 1991 г. Стремясь ускорить процесс, правительство добилось, что Президиум Верховного Совета принял 27 декабря 1991 г. «Основные положения программы приватизации в Российской Федерации на 1992 г.», которые были сразу же утверждены Указом президента. Это позволило еще до принятия Верховным Советом самой программы приватизации на 1992 г. начать «малую приватизацию», то есть приватизацию сферы бытового обслуживания, приступить к акционированию государственных и муниципальных предприятий, развернуть подготовку к легальной приватизации. Процесс приватизации в России вошел в русло закона, перестал быть стихийным. В июне 1992 г. программа приватизации в полном объеме была утверждена Верховным Советом РФ. Она стала вторым после Закона «О приватизации…» основополагающим документом массовой приватизации. Были определены предприятия, подлежащие приватизации, и те, для которых она запрещалась или отодвигалась на будущее, установлены варианты, сроки и масштабы проведения приватизации по регионам и отраслям. В программе отразился клубок компромиссов, на которые приходилось идти организаторам приватизации. Например, платная приватизация выгоднее для увеличения доходов бюджета, столь необходимых для выполнения обязательств перед бюджетниками. Но по критерию политической проходимости и социальной справедливости выгоднее безвозмездная. Как согласовать, примирить эти противоположности? Особенно острым было противоречие между принципом широкой приватизации для всех – с одной стороны, и разделом собственности конкретных предприятий среди их работников – с другой. При обсуждении программы приватизации в Верховном Совете левые выдвинули старый революционный лозунг:«Заводы – рабочим!» Другую его часть – «Землю – крестьянам!» – они предусмотрительно «забыли», поскольку боролись с попытками распустить колхозы. Они требовали передать все предприятия в собственность их коллективам, причем не конкретным гражданам, а именно целиком, коллективам – по «югославскому» образцу. Понятно, что в этом случае предприятия оказывались бы в руках «красных директоров» без какой-либо перспективы перехода в руки более эффективных собственников. Оставался открытым вопрос: что получат от такой приватизации учителя, врачи, военные? Получалась явная несправедливость. Принятые компромиссные решения вели к очевидным, с экономической точки зрения, недостаткам. Так, оценка имущества предприятий проводилась не по рыночной стоимости, которую тогда невозможно было определить из-за отсутствия рынка акций, а по так называемой остаточной стоимости, взятой из бухгалтерского баланса. Игнорировалась проблема привлечения инвестиций в ходе приватизации, а значит, ставилась под вопрос реструктуризация промышленности под запросы рынка.. Чтобы преодолеть сопротивление приватизации со стороны директоров предприятий, которые фактически ими распоряжались, пришлось предусмотреть для них льготы. Иначе все замыслы сторонников реформ были бы сорваны. Приватизируемые предприятия сначала преобразовывались в акционерные общества, затем производилось распределение акций по трем основным вариантам, которые различались прежде всего набором льгот, предоставлявшихся работникам предприятий (и частично – их руководителям). Подавляющее большинство коллективов приняло Второй вариант. По нему работники предприятия могли принять решение приобрести по закрытой подписке 51% (контрольный пакет) акций, если за это проголосует 2/3 трудового коллектива. При этом до 50% стоимости акций могли быть оплачены ваучерами. Иными словами, контрольный пакет оставался за предприятием. Было понятно, что в дальнейшем это сильно осложнит привлечение эффективных собственников, способных реорганизовать и поднять производство, а значит, и привлечение их капиталов. Не располагая контрольным пакетом, а следовательно, правом принимать решения, мало кто захочет вкладывать свои деньги в предприятие. Но в целом, несмотря на недостатки, значение массовой приватизации велико. Сегодня ее сравнивают с отменой крепостного права. Она полностью изменила экономические реалии в стране, поставила Россию в один ряд (в части отношений собственности) с другими странами. Она позволила жителям России быстро, на собственном опыте освоить законы рыночной экономики, по которым уже давно живет остальной мир.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > mass privatisation

  • 104 modular data center

    1. модульный центр обработки данных (ЦОД)

     

    модульный центр обработки данных (ЦОД)
    -
    [Интент]

    Параллельные тексты EN-RU

    [ http://loosebolts.wordpress.com/2008/12/02/our-vision-for-generation-4-modular-data-centers-one-way-of-getting-it-just-right/]

    [ http://dcnt.ru/?p=9299#more-9299]

    Data Centers are a hot topic these days. No matter where you look, this once obscure aspect of infrastructure is getting a lot of attention. For years, there have been cost pressures on IT operations and this, when the need for modern capacity is greater than ever, has thrust data centers into the spotlight. Server and rack density continues to rise, placing DC professionals and businesses in tighter and tougher situations while they struggle to manage their IT environments. And now hyper-scale cloud infrastructure is taking traditional technologies to limits never explored before and focusing the imagination of the IT industry on new possibilities.

    В настоящее время центры обработки данных являются широко обсуждаемой темой. Куда ни посмотришь, этот некогда малоизвестный аспект инфраструктуры привлекает все больше внимания. Годами ИТ-отделы испытывали нехватку средств и это выдвинуло ЦОДы в центр внимания, в то время, когда необходимость в современных ЦОДах стала как никогда высокой. Плотность серверов и стоек продолжают расти, все больше усложняя ситуацию для специалистов в области охлаждения и организаций в их попытках управлять своими ИТ-средами. И теперь гипермасштабируемая облачная инфраструктура подвергает традиционные технологии невиданным ранее нагрузкам, и заставляет ИТ-индустрию искать новые возможности.

    At Microsoft, we have focused a lot of thought and research around how to best operate and maintain our global infrastructure and we want to share those learnings. While obviously there are some aspects that we keep to ourselves, we have shared how we operate facilities daily, our technologies and methodologies, and, most importantly, how we monitor and manage our facilities. Whether it’s speaking at industry events, inviting customers to our “Microsoft data center conferences” held in our data centers, or through other media like blogging and white papers, we believe sharing best practices is paramount and will drive the industry forward. So in that vein, we have some interesting news to share.

    В компании MicroSoft уделяют большое внимание изучению наилучших методов эксплуатации и технического обслуживания своей глобальной инфраструктуры и делятся результатами своих исследований. И хотя мы, конечно, не раскрываем некоторые аспекты своих исследований, мы делимся повседневным опытом эксплуатации дата-центров, своими технологиями и методологиями и, что важнее всего, методами контроля и управления своими объектами. Будь то доклады на отраслевых событиях, приглашение клиентов на наши конференции, которые посвящены центрам обработки данных MicroSoft, и проводятся в этих самых дата-центрах, или использование других средств, например, блоги и спецификации, мы уверены, что обмен передовым опытом имеет первостепенное значение и будет продвигать отрасль вперед.

    Today we are sharing our Generation 4 Modular Data Center plan. This is our vision and will be the foundation of our cloud data center infrastructure in the next five years. We believe it is one of the most revolutionary changes to happen to data centers in the last 30 years. Joining me, in writing this blog are Daniel Costello, my director of Data Center Research and Engineering and Christian Belady, principal power and cooling architect. I feel their voices will add significant value to driving understanding around the many benefits included in this new design paradigm.

    Сейчас мы хотим поделиться своим планом модульного дата-центра четвертого поколения. Это наше видение и оно будет основанием для инфраструктуры наших облачных дата-центров в ближайшие пять лет. Мы считаем, что это одно из самых революционных изменений в дата-центрах за последние 30 лет. Вместе со мной в написании этого блога участвовали Дэниел Костелло, директор по исследованиям и инжинирингу дата-центров, и Кристиан Белади, главный архитектор систем энергоснабжения и охлаждения. Мне кажется, что их авторитет придаст больше веса большому количеству преимуществ, включенных в эту новую парадигму проектирования.

    Our “Gen 4” modular data centers will take the flexibility of containerized servers—like those in our Chicago data center—and apply it across the entire facility. So what do we mean by modular? Think of it like “building blocks”, where the data center will be composed of modular units of prefabricated mechanical, electrical, security components, etc., in addition to containerized servers.

    Was there a key driver for the Generation 4 Data Center?

    Наши модульные дата-центры “Gen 4” будут гибкими с контейнерами серверов – как серверы в нашем чикагском дата-центре. И гибкость будет применяться ко всему ЦОД. Итак, что мы подразумеваем под модульностью? Мы думаем о ней как о “строительных блоках”, где дата-центр будет состоять из модульных блоков изготовленных в заводских условиях электрических систем и систем охлаждения, а также систем безопасности и т.п., в дополнение к контейнеризованным серверам.
    Был ли ключевой стимул для разработки дата-центра четвертого поколения?


    If we were to summarize the promise of our Gen 4 design into a single sentence it would be something like this: “A highly modular, scalable, efficient, just-in-time data center capacity program that can be delivered anywhere in the world very quickly and cheaply, while allowing for continued growth as required.” Sounds too good to be true, doesn’t it? Well, keep in mind that these concepts have been in initial development and prototyping for over a year and are based on cumulative knowledge of previous facility generations and the advances we have made since we began our investments in earnest on this new design.

    Если бы нам нужно было обобщить достоинства нашего проекта Gen 4 в одном предложении, это выглядело бы следующим образом: “Центр обработки данных с высоким уровнем модульности, расширяемости, и энергетической эффективности, а также возможностью постоянного расширения, в случае необходимости, который можно очень быстро и дешево развертывать в любом месте мира”. Звучит слишком хорошо для того чтобы быть правдой, не так ли? Ну, не забывайте, что эти концепции находились в процессе начальной разработки и создания опытного образца в течение более одного года и основываются на опыте, накопленном в ходе развития предыдущих поколений ЦОД, а также успехах, сделанных нами со времени, когда мы начали вкладывать серьезные средства в этот новый проект.

    One of the biggest challenges we’ve had at Microsoft is something Mike likes to call the ‘Goldilock’s Problem’. In a nutshell, the problem can be stated as:

    The worst thing we can do in delivering facilities for the business is not have enough capacity online, thus limiting the growth of our products and services.

    Одну из самых больших проблем, с которыми приходилось сталкиваться Майкрософт, Майк любит называть ‘Проблемой Лютика’. Вкратце, эту проблему можно выразить следующим образом:

    Самое худшее, что может быть при строительстве ЦОД для бизнеса, это не располагать достаточными производственными мощностями, и тем самым ограничивать рост наших продуктов и сервисов.

    The second worst thing we can do in delivering facilities for the business is to have too much capacity online.

    А вторым самым худшим моментом в этой сфере может слишком большое количество производственных мощностей.

    This has led to a focus on smart, intelligent growth for the business — refining our overall demand picture. It can’t be too hot. It can’t be too cold. It has to be ‘Just Right!’ The capital dollars of investment are too large to make without long term planning. As we struggled to master these interesting challenges, we had to ensure that our technological plan also included solutions for the business and operational challenges we faced as well.
    So let’s take a high level look at our Generation 4 design

    Это заставило нас сосредоточиваться на интеллектуальном росте для бизнеса — refining our overall demand picture. Это не должно быть слишком горячим. И это не должно быть слишком холодным. Это должно быть ‘как раз, таким как надо!’ Нельзя делать такие большие капиталовложения без долгосрочного планирования. Пока мы старались решить эти интересные проблемы, мы должны были гарантировать, что наш технологический план будет также включать решения для коммерческих и эксплуатационных проблем, с которыми нам также приходилось сталкиваться.
    Давайте рассмотрим наш проект дата-центра четвертого поколения

    Are you ready for some great visuals? Check out this video at Soapbox. Click here for the Microsoft 4th Gen Video.

    It’s a concept video that came out of my Data Center Research and Engineering team, under Daniel Costello, that will give you a view into what we think is the future.

    From a configuration, construct-ability and time to market perspective, our primary goals and objectives are to modularize the whole data center. Not just the server side (like the Chicago facility), but the mechanical and electrical space as well. This means using the same kind of parts in pre-manufactured modules, the ability to use containers, skids, or rack-based deployments and the ability to tailor the Redundancy and Reliability requirements to the application at a very specific level.


    Посмотрите это видео, перейдите по ссылке для просмотра видео о Microsoft 4th Gen:

    Это концептуальное видео, созданное командой отдела Data Center Research and Engineering, возглавляемого Дэниелом Костелло, которое даст вам наше представление о будущем.

    С точки зрения конфигурации, строительной технологичности и времени вывода на рынок, нашими главными целями и задачами агрегатирование всего дата-центра. Не только серверную часть, как дата-центр в Чикаго, но также системы охлаждения и электрические системы. Это означает применение деталей одного типа в сборных модулях, возможность использования контейнеров, салазок, или стоечных систем, а также возможность подстраивать требования избыточности и надежности для данного приложения на очень специфичном уровне.

    Our goals from a cost perspective were simple in concept but tough to deliver. First and foremost, we had to reduce the capital cost per critical Mega Watt by the class of use. Some applications can run with N-level redundancy in the infrastructure, others require a little more infrastructure for support. These different classes of infrastructure requirements meant that optimizing for all cost classes was paramount. At Microsoft, we are not a one trick pony and have many Online products and services (240+) that require different levels of operational support. We understand that and ensured that we addressed it in our design which will allow us to reduce capital costs by 20%-40% or greater depending upon class.


    Нашими целями в области затрат были концептуально простыми, но трудно реализуемыми. В первую очередь мы должны были снизить капитальные затраты в пересчете на один мегаватт, в зависимости от класса резервирования. Некоторые приложения могут вполне работать на базе инфраструктуры с резервированием на уровне N, то есть без резервирования, а для работы других приложений требуется больше инфраструктуры. Эти разные классы требований инфраструктуры подразумевали, что оптимизация всех классов затрат имеет преобладающее значение. В Майкрософт мы не ограничиваемся одним решением и располагаем большим количеством интерактивных продуктов и сервисов (240+), которым требуются разные уровни эксплуатационной поддержки. Мы понимаем это, и учитываем это в своем проекте, который позволит нам сокращать капитальные затраты на 20%-40% или более в зависимости от класса.

    For example, non-critical or geo redundant applications have low hardware reliability requirements on a location basis. As a result, Gen 4 can be configured to provide stripped down, low-cost infrastructure with little or no redundancy and/or temperature control. Let’s say an Online service team decides that due to the dramatically lower cost, they will simply use uncontrolled outside air with temperatures ranging 10-35 C and 20-80% RH. The reality is we are already spec-ing this for all of our servers today and working with server vendors to broaden that range even further as Gen 4 becomes a reality. For this class of infrastructure, we eliminate generators, chillers, UPSs, and possibly lower costs relative to traditional infrastructure.

    Например, некритичные или гео-избыточные системы имеют низкие требования к аппаратной надежности на основе местоположения. В результате этого, Gen 4 можно конфигурировать для упрощенной, недорогой инфраструктуры с низким уровнем (или вообще без резервирования) резервирования и / или температурного контроля. Скажем, команда интерактивного сервиса решает, что, в связи с намного меньшими затратами, они будут просто использовать некондиционированный наружный воздух с температурой 10-35°C и влажностью 20-80% RH. В реальности мы уже сегодня предъявляем эти требования к своим серверам и работаем с поставщиками серверов над еще большим расширением диапазона температур, так как наш модуль и подход Gen 4 становится реальностью. Для подобного класса инфраструктуры мы удаляем генераторы, чиллеры, ИБП, и, возможно, будем предлагать более низкие затраты, по сравнению с традиционной инфраструктурой.

    Applications that demand higher level of redundancy or temperature control will use configurations of Gen 4 to meet those needs, however, they will also cost more (but still less than traditional data centers). We see this cost difference driving engineering behavioral change in that we predict more applications will drive towards Geo redundancy to lower costs.

    Системы, которым требуется более высокий уровень резервирования или температурного контроля, будут использовать конфигурации Gen 4, отвечающие этим требованиям, однако, они будут также стоить больше. Но все равно они будут стоить меньше, чем традиционные дата-центры. Мы предвидим, что эти различия в затратах будут вызывать изменения в методах инжиниринга, и по нашим прогнозам, это будет выражаться в переходе все большего числа систем на гео-избыточность и меньшие затраты.

    Another cool thing about Gen 4 is that it allows us to deploy capacity when our demand dictates it. Once finalized, we will no longer need to make large upfront investments. Imagine driving capital costs more closely in-line with actual demand, thus greatly reducing time-to-market and adding the capacity Online inherent in the design. Also reduced is the amount of construction labor required to put these “building blocks” together. Since the entire platform requires pre-manufacture of its core components, on-site construction costs are lowered. This allows us to maximize our return on invested capital.

    Еще одно достоинство Gen 4 состоит в том, что он позволяет нам разворачивать дополнительные мощности, когда нам это необходимо. Как только мы закончим проект, нам больше не нужно будет делать большие начальные капиталовложения. Представьте себе возможность более точного согласования капитальных затрат с реальными требованиями, и тем самым значительного снижения времени вывода на рынок и интерактивного добавления мощностей, предусматриваемого проектом. Также снижен объем строительных работ, требуемых для сборки этих “строительных блоков”. Поскольку вся платформа требует предварительного изготовления ее базовых компонентов, затраты на сборку также снижены. Это позволит нам увеличить до максимума окупаемость своих капиталовложений.
    Мы все подвергаем сомнению

    In our design process, we questioned everything. You may notice there is no roof and some might be uncomfortable with this. We explored the need of one and throughout our research we got some surprising (positive) results that showed one wasn’t needed.

    В своем процессе проектирования мы все подвергаем сомнению. Вы, наверное, обратили внимание на отсутствие крыши, и некоторым специалистам это могло не понравиться. Мы изучили необходимость в крыше и в ходе своих исследований получили удивительные результаты, которые показали, что крыша не нужна.
    Серийное производство дата центров


    In short, we are striving to bring Henry Ford’s Model T factory to the data center. http://en.wikipedia.org/wiki/Henry_Ford#Model_T. Gen 4 will move data centers from a custom design and build model to a commoditized manufacturing approach. We intend to have our components built in factories and then assemble them in one location (the data center site) very quickly. Think about how a computer, car or plane is built today. Components are manufactured by different companies all over the world to a predefined spec and then integrated in one location based on demands and feature requirements. And just like Henry Ford’s assembly line drove the cost of building and the time-to-market down dramatically for the automobile industry, we expect Gen 4 to do the same for data centers. Everything will be pre-manufactured and assembled on the pad.

    Мы хотим применить модель автомобильной фабрики Генри Форда к дата-центру. Проект Gen 4 будет способствовать переходу от модели специализированного проектирования и строительства к товарно-производственному, серийному подходу. Мы намерены изготавливать свои компоненты на заводах, а затем очень быстро собирать их в одном месте, в месте строительства дата-центра. Подумайте о том, как сегодня изготавливается компьютер, автомобиль или самолет. Компоненты изготавливаются по заранее определенным спецификациям разными компаниями во всем мире, затем собираются в одном месте на основе спроса и требуемых характеристик. И точно так же как сборочный конвейер Генри Форда привел к значительному уменьшению затрат на производство и времени вывода на рынок в автомобильной промышленности, мы надеемся, что Gen 4 сделает то же самое для дата-центров. Все будет предварительно изготавливаться и собираться на месте.
    Невероятно энергоэффективный ЦОД


    And did we mention that this platform will be, overall, incredibly energy efficient? From a total energy perspective not only will we have remarkable PUE values, but the total cost of energy going into the facility will be greatly reduced as well. How much energy goes into making concrete? Will we need as much of it? How much energy goes into the fuel of the construction vehicles? This will also be greatly reduced! A key driver is our goal to achieve an average PUE at or below 1.125 by 2012 across our data centers. More than that, we are on a mission to reduce the overall amount of copper and water used in these facilities. We believe these will be the next areas of industry attention when and if the energy problem is solved. So we are asking today…“how can we build a data center with less building”?

    А мы упоминали, что эта платформа будет, в общем, невероятно энергоэффективной? С точки зрения общей энергии, мы получим не только поразительные значения PUE, но общая стоимость энергии, затраченной на объект будет также значительно снижена. Сколько энергии идет на производство бетона? Нам нужно будет столько энергии? Сколько энергии идет на питание инженерных строительных машин? Это тоже будет значительно снижено! Главным стимулом является достижение среднего PUE не больше 1.125 для всех наших дата-центров к 2012 году. Более того, у нас есть задача сокращения общего количества меди и воды в дата-центрах. Мы думаем, что эти задачи станут следующей заботой отрасли после того как будет решена энергетическая проблема. Итак, сегодня мы спрашиваем себя…“как можно построить дата-центр с меньшим объемом строительных работ”?
    Строительство дата центров без чиллеров

    We have talked openly and publicly about building chiller-less data centers and running our facilities using aggressive outside economization. Our sincerest hope is that Gen 4 will completely eliminate the use of water. Today’s data centers use massive amounts of water and we see water as the next scarce resource and have decided to take a proactive stance on making water conservation part of our plan.

    Мы открыто и публично говорили о строительстве дата-центров без чиллеров и активном использовании в наших центрах обработки данных технологий свободного охлаждения или фрикулинга. Мы искренне надеемся, что Gen 4 позволит полностью отказаться от использования воды. Современные дата-центры расходуют большие объемы воды и так как мы считаем воду следующим редким ресурсом, мы решили принять упреждающие меры и включить экономию воды в свой план.

    By sharing this with the industry, we believe everyone can benefit from our methodology. While this concept and approach may be intimidating (or downright frightening) to some in the industry, disclosure ultimately is better for all of us.

    Делясь этим опытом с отраслью, мы считаем, что каждый сможет извлечь выгоду из нашей методологией. Хотя эта концепция и подход могут показаться пугающими (или откровенно страшными) для некоторых отраслевых специалистов, раскрывая свои планы мы, в конечном счете, делаем лучше для всех нас.

    Gen 4 design (even more than just containers), could reduce the ‘religious’ debates in our industry. With the central spine infrastructure in place, containers or pre-manufactured server halls can be either AC or DC, air-side economized or water-side economized, or not economized at all (though the sanity of that might be questioned). Gen 4 will allow us to decommission, repair and upgrade quickly because everything is modular. No longer will we be governed by the initial decisions made when constructing the facility. We will have almost unlimited use and re-use of the facility and site. We will also be able to use power in an ultra-fluid fashion moving load from critical to non-critical as use and capacity requirements dictate.

    Проект Gen 4 позволит уменьшить ‘религиозные’ споры в нашей отрасли. Располагая базовой инфраструктурой, контейнеры или сборные серверные могут оборудоваться системами переменного или постоянного тока, воздушными или водяными экономайзерами, или вообще не использовать экономайзеры. Хотя можно подвергать сомнению разумность такого решения. Gen 4 позволит нам быстро выполнять работы по выводу из эксплуатации, ремонту и модернизации, поскольку все будет модульным. Мы больше не будем руководствоваться начальными решениями, принятыми во время строительства дата-центра. Мы сможем использовать этот дата-центр и инфраструктуру в течение почти неограниченного периода времени. Мы также сможем применять сверхгибкие методы использования электрической энергии, переводя оборудование в режимы критической или некритической нагрузки в соответствии с требуемой мощностью.
    Gen 4 – это стандартная платформа

    Finally, we believe this is a big game changer. Gen 4 will provide a standard platform that our industry can innovate around. For example, all modules in our Gen 4 will have common interfaces clearly defined by our specs and any vendor that meets these specifications will be able to plug into our infrastructure. Whether you are a computer vendor, UPS vendor, generator vendor, etc., you will be able to plug and play into our infrastructure. This means we can also source anyone, anywhere on the globe to minimize costs and maximize performance. We want to help motivate the industry to further innovate—with innovations from which everyone can reap the benefits.

    Наконец, мы уверены, что это будет фактором, который значительно изменит ситуацию. Gen 4 будет представлять собой стандартную платформу, которую отрасль сможет обновлять. Например, все модули в нашем Gen 4 будут иметь общепринятые интерфейсы, четко определяемые нашими спецификациями, и оборудование любого поставщика, которое отвечает этим спецификациям можно будет включать в нашу инфраструктуру. Независимо от того производите вы компьютеры, ИБП, генераторы и т.п., вы сможете включать свое оборудование нашу инфраструктуру. Это означает, что мы также сможем обеспечивать всех, в любом месте земного шара, тем самым сводя до минимума затраты и максимальной увеличивая производительность. Мы хотим создать в отрасли мотивацию для дальнейших инноваций – инноваций, от которых каждый сможет получать выгоду.
    Главные характеристики дата-центров четвертого поколения Gen4

    To summarize, the key characteristics of our Generation 4 data centers are:

    Scalable
    Plug-and-play spine infrastructure
    Factory pre-assembled: Pre-Assembled Containers (PACs) & Pre-Manufactured Buildings (PMBs)
    Rapid deployment
    De-mountable
    Reduce TTM
    Reduced construction
    Sustainable measures

    Ниже приведены главные характеристики дата-центров четвертого поколения Gen 4:

    Расширяемость;
    Готовая к использованию базовая инфраструктура;
    Изготовление в заводских условиях: сборные контейнеры (PAC) и сборные здания (PMB);
    Быстрота развертывания;
    Возможность демонтажа;
    Снижение времени вывода на рынок (TTM);
    Сокращение сроков строительства;
    Экологичность;

    Map applications to DC Class

    We hope you join us on this incredible journey of change and innovation!

    Long hours of research and engineering time are invested into this process. There are still some long days and nights ahead, but the vision is clear. Rest assured however, that we as refine Generation 4, the team will soon be looking to Generation 5 (even if it is a bit farther out). There is always room to get better.


    Использование систем электропитания постоянного тока.

    Мы надеемся, что вы присоединитесь к нам в этом невероятном путешествии по миру изменений и инноваций!

    На этот проект уже потрачены долгие часы исследований и проектирования. И еще предстоит потратить много дней и ночей, но мы имеем четкое представление о конечной цели. Однако будьте уверены, что как только мы доведем до конца проект модульного дата-центра четвертого поколения, мы вскоре начнем думать о проекте дата-центра пятого поколения. Всегда есть возможность для улучшений.

    So if you happen to come across Goldilocks in the forest, and you are curious as to why she is smiling you will know that she feels very good about getting very close to ‘JUST RIGHT’.

    Generations of Evolution – some background on our data center designs

    Так что, если вы встретите в лесу девочку по имени Лютик, и вам станет любопытно, почему она улыбается, вы будете знать, что она очень довольна тем, что очень близко подошла к ‘ОПИМАЛЬНОМУ РЕШЕНИЮ’.
    Поколения эволюции – история развития наших дата-центров

    We thought you might be interested in understanding what happened in the first three generations of our data center designs. When Ray Ozzie wrote his Software plus Services memo it posed a very interesting challenge to us. The winds of change were at ‘tornado’ proportions. That “plus Services” tag had some significant (and unstated) challenges inherent to it. The first was that Microsoft was going to evolve even further into an operations company. While we had been running large scale Internet services since 1995, this development lead us to an entirely new level. Additionally, these “services” would span across both Internet and Enterprise businesses. To those of you who have to operate “stuff”, you know that these are two very different worlds in operational models and challenges. It also meant that, to achieve the same level of reliability and performance required our infrastructure was going to have to scale globally and in a significant way.

    Мы подумали, что может быть вам будет интересно узнать историю первых трех поколений наших центров обработки данных. Когда Рэй Оззи написал свою памятную записку Software plus Services, он поставил перед нами очень интересную задачу. Ветра перемен двигались с ураганной скоростью. Это окончание “plus Services” скрывало в себе какие-то значительные и неопределенные задачи. Первая заключалась в том, что Майкрософт собиралась в еще большей степени стать операционной компанией. Несмотря на то, что мы управляли большими интернет-сервисами, начиная с 1995 г., эта разработка подняла нас на абсолютно новый уровень. Кроме того, эти “сервисы” охватывали интернет-компании и корпорации. Тем, кому приходится всем этим управлять, известно, что есть два очень разных мира в области операционных моделей и задач. Это также означало, что для достижения такого же уровня надежности и производительности требовалось, чтобы наша инфраструктура располагала значительными возможностями расширения в глобальных масштабах.

    It was that intense atmosphere of change that we first started re-evaluating data center technology and processes in general and our ideas began to reach farther than what was accepted by the industry at large. This was the era of Generation 1. As we look at where most of the world’s data centers are today (and where our facilities were), it represented all the known learning and design requirements that had been in place since IBM built the first purpose-built computer room. These facilities focused more around uptime, reliability and redundancy. Big infrastructure was held accountable to solve all potential environmental shortfalls. This is where the majority of infrastructure in the industry still is today.

    Именно в этой атмосфере серьезных изменений мы впервые начали переоценку ЦОД-технологий и технологий вообще, и наши идеи начали выходить за пределы общепринятых в отрасли представлений. Это была эпоха ЦОД первого поколения. Когда мы узнали, где сегодня располагается большинство мировых дата-центров и где находятся наши предприятия, это представляло весь опыт и навыки проектирования, накопленные со времени, когда IBM построила первую серверную. В этих ЦОД больше внимания уделялось бесперебойной работе, надежности и резервированию. Большая инфраструктура была призвана решать все потенциальные экологические проблемы. Сегодня большая часть инфраструктуры все еще находится на этом этапе своего развития.

    We soon realized that traditional data centers were quickly becoming outdated. They were not keeping up with the demands of what was happening technologically and environmentally. That’s when we kicked off our Generation 2 design. Gen 2 facilities started taking into account sustainability, energy efficiency, and really looking at the total cost of energy and operations.

    Очень быстро мы поняли, что стандартные дата-центры очень быстро становятся устаревшими. Они не поспевали за темпами изменений технологических и экологических требований. Именно тогда мы стали разрабатывать ЦОД второго поколения. В этих дата-центрах Gen 2 стали принимать во внимание такие факторы как устойчивое развитие, энергетическая эффективность, а также общие энергетические и эксплуатационные.

    No longer did we view data centers just for the upfront capital costs, but we took a hard look at the facility over the course of its life. Our Quincy, Washington and San Antonio, Texas facilities are examples of our Gen 2 data centers where we explored and implemented new ways to lessen the impact on the environment. These facilities are considered two leading industry examples, based on their energy efficiency and ability to run and operate at new levels of scale and performance by leveraging clean hydro power (Quincy) and recycled waste water (San Antonio) to cool the facility during peak cooling months.

    Мы больше не рассматривали дата-центры только с точки зрения начальных капитальных затрат, а внимательно следили за работой ЦОД на протяжении его срока службы. Наши объекты в Куинси, Вашингтоне, и Сан-Антонио, Техас, являются образцами наших ЦОД второго поколения, в которых мы изучали и применяли на практике новые способы снижения воздействия на окружающую среду. Эти объекты считаются двумя ведущими отраслевыми примерами, исходя из их энергетической эффективности и способности работать на новых уровнях производительности, основанных на использовании чистой энергии воды (Куинси) и рециклирования отработанной воды (Сан-Антонио) для охлаждения объекта в самых жарких месяцах.

    As we were delivering our Gen 2 facilities into steel and concrete, our Generation 3 facilities were rapidly driving the evolution of the program. The key concepts for our Gen 3 design are increased modularity and greater concentration around energy efficiency and scale. The Gen 3 facility will be best represented by the Chicago, Illinois facility currently under construction. This facility will seem very foreign compared to the traditional data center concepts most of the industry is comfortable with. In fact, if you ever sit around in our container hanger in Chicago it will look incredibly different from a traditional raised-floor data center. We anticipate this modularization will drive huge efficiencies in terms of cost and operations for our business. We will also introduce significant changes in the environmental systems used to run our facilities. These concepts and processes (where applicable) will help us gain even greater efficiencies in our existing footprint, allowing us to further maximize infrastructure investments.

    Так как наши ЦОД второго поколения строились из стали и бетона, наши центры обработки данных третьего поколения начали их быстро вытеснять. Главными концептуальными особенностями ЦОД третьего поколения Gen 3 являются повышенная модульность и большее внимание к энергетической эффективности и масштабированию. Дата-центры третьего поколения лучше всего представлены объектом, который в настоящее время строится в Чикаго, Иллинойс. Этот ЦОД будет выглядеть очень необычно, по сравнению с общепринятыми в отрасли представлениями о дата-центре. Действительно, если вам когда-либо удастся побывать в нашем контейнерном ангаре в Чикаго, он покажется вам совершенно непохожим на обычный дата-центр с фальшполом. Мы предполагаем, что этот модульный подход будет способствовать значительному повышению эффективности нашего бизнеса в отношении затрат и операций. Мы также внесем существенные изменения в климатические системы, используемые в наших ЦОД. Эти концепции и технологии, если применимо, позволят нам добиться еще большей эффективности наших существующих дата-центров, и тем самым еще больше увеличивать капиталовложения в инфраструктуру.

    This is definitely a journey, not a destination industry. In fact, our Generation 4 design has been under heavy engineering for viability and cost for over a year. While the demand of our commercial growth required us to make investments as we grew, we treated each step in the learning as a process for further innovation in data centers. The design for our future Gen 4 facilities enabled us to make visionary advances that addressed the challenges of building, running, and operating facilities all in one concerted effort.

    Это определенно путешествие, а не конечный пункт назначения. На самом деле, наш проект ЦОД четвертого поколения подвергался серьезным испытаниям на жизнеспособность и затраты на протяжении целого года. Хотя необходимость в коммерческом росте требовала от нас постоянных капиталовложений, мы рассматривали каждый этап своего развития как шаг к будущим инновациям в области дата-центров. Проект наших будущих ЦОД четвертого поколения Gen 4 позволил нам делать фантастические предположения, которые касались задач строительства, управления и эксплуатации объектов как единого упорядоченного процесса.


    Тематики

    Синонимы

    EN

    Англо-русский словарь нормативно-технической терминологии > modular data center

  • 105 pension

    1. пенсия

     

    пенсия
    Установленная сумма, регулярно выплачиваемая получателю по достижении им определенного возраста или вследствие прекращения работы по найму. Обычно выплачивается с момента наступления одного из этих двух событий и до смерти. Вдова имеет право на получение пенсии с момента смерти ее мужа. В Великобритании пенсии по выслуге лет (retirement pensions) выплачиваются государством за счет накопленных взносов работников и предпринимателей, мужчинам начиная с 65-летнего возраста, женщинам - с 60-летнего, вне зависимости от того, были ли выходящие на пенсию лица полностью занятыми (см.: pension age (пенсионный возраст)). Неработающая супруга или вдова тоже получают от государства пенсию, выплачиваемую из пенсионных взносов супруга. Пенсионные взносы должны делать и мелкие предприниматели, работающие на себя. Государство выплачивает обязательные (независимо от наличия пенсионных взносов) пенсии по старости лицам старше 80 лет, если они еще не получили пенсии по достижении пенсионного возраста. С 1978 г. государственные пенсии дополняются выплатами в соответствии с Государственной пенсионной программой “в зависимости от доходов” (State Eamins-Related Pensions Scheme (SERFS)) с целью привязки пенсий к росту цен и обеспечения равенства доходов женщин и мужчин. Предприниматели могут не участвовать в той части государственной программы пенсионного обеспечения, которая касается пенсий по достижении пенсионного возраста и вдовам, при условии, что она будет заменена системой пенсионного обеспечения по месту работы (occupational pension scheme) в соответствии с Законом о социальном обеспечении 1976 г. Лица наемного труда, работодатели которых не участвуют в этой системе, также могут не принимать участия в Государственной пенсионной программе “в зависимости от доходов” и прибегнуть к программе личного пенсионного обеспечения (personal pension scheme), утвержденной соответствующими государственными органами. Широкий выбор пенсионных систем предлагают и частные страховые компании-аннуитеты (annuities) и страхование/накопительное страхование-вклад endowment assurance). См. также: executive pension plan (пенсионный фонд для управляющих); single-life pension (пенсия на одного человека).
    [ http://www.vocable.ru/dictionary/533/symbol/97]

    пенсия
    Регулярное (обычно — ежемесячное) денежное пособие, которое платят лицам, которые: достигли пенсионного возраста (пенсии по старости), имеют инвалидность, потеряли кормильца. Виды пенсий и условия их назначения различаются, во-первых, для трудовых пенсий и во-вторых – для государственных пенсий (точнее: пенсий по государственному обеспечению): 1. Трудовая пенсия по старости (право на нее получают мужчины, достигшие возраста 60 лет, и женщины, достигшие возраста 55 лет). Назначается при наличии не менее пяти лет страхового стажа, причем бессрочно. Гражданам, не имеющим по каким-либо причинам права на трудовую пенсию, устанавливается социальная пенсия на условиях, которые определяются Федеральным законом «О государственном пенсионном обеспечении в Российской Федерации». 2. Трудовая пенсия по инвалидности — это ежемесячная денежная выплата, назначаемая гражданам, признанным учреждениями медико-социальной экспертизы инвалидами I, II, III группы. Признание гражданина инвалидом и установление группы инвалидности производится в порядке, предусмотренном Федеральным законом «О социальной защите инвалидов в Российской Федерации». 3. Трудовая пенсия по случаю потери кормильца. Право на нее имеют нетрудоспособные члены семьи умершего кормильца, состоявшие на его иждивении. Назначается на срок, в течение которого соответствующее лицо считается нетрудоспособным, в том числе и бессрочно. 4. Пенсия по государственному обеспечению (государственная пенсия) – это ежемесячная государственная денежная выплата, которая предоставляется гражданину в целях компенсации заработка (дохода), утраченного в связи с прекращением государственной службы при достижении установленной законом выслуги, при выходе на трудовую пенсию по старости (инвалидности); либо в целях компенсации вреда, нанесенного здоровью граждан при прохождении военной службы, в результате радиационных или техногенных катастроф, в случае наступления инвалидности или потери кормильца, при достижении установленного законом возраста; либо нетрудоспособным гражданам в целях предоставления им средств к существованию. 5. Негосударственные пенсии –см. например, Пенсионные планы компании. См. также: Пенсионная система, Пенсионная схема, Пенсионные накопления. (Частично заимствовано с официального сайта Пенсионного фонда Российской федерации).
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > pension

  • 106 earnings per share

    1. прибыль на одну акцию
    2. прибыль на акцию
    3. прибыль в расчете на одну акцию

     

    прибыль в расчете на одну акцию
    Прибыль компании за установленный период (как правило, за год), разделенная на количество обыкновенных акций, выпущенных компанией. Эта прибыль (иногда называемая чистой прибылью компании (available earnings)) рассчитывается как годовая прибыль за вычетом налогов и других исключительных выплат. Полностью распределенная прибыль в расчете на одну акцию (fully diluted earnings per share) калькулируется с учетом всех тех акций, которые компания обязуется выпустить, но до сих пор не выпустила (например, конверсионных выпусков (convertibles)). См. также: price-earnings ratio (отношение рыночной цены акции компании к ее прибыли в расчете на одну акцию).
    [ http://www.vocable.ru/dictionary/533/symbol/97]

    Тематики

    EN

     

    прибыль на акцию
    Отношение чистой прибыли держателей обыкновенных акций (чистая прибыль минус дивиденды по привилегированным акциям) к среднему количеству невыкупленных обыкновенных акций. Сумма может показываться, включая или не включая эквиваленты обыкновенных акций.
    В соответствии с российским законодательством, базовая прибыль (убыток) на акцию определяется как отношение базовой прибыли (убытка) отчетного периода к средневзвешенному количеству обыкновенных акций, находящихся в обращении в течение отчетного периода.
    Базовая прибыль (убыток) отчетного периода определяется путем уменьшения (увеличения) прибыли (убытка) отчетного периода, остающейся в распоряжении организации после налогообложения и других обязательных платежей в бюджет и внебюджетные фонды, на сумму дивидендов по привилегированным акциям, начисленным их владельцам за отчетный период.
    При исчислении базовой прибыли (убытка) отчетного периода не учитываются дивиденды по привилегированным акциям, в том числе по кумулятивным, за предыдущие отчетные периоды, которые были выплачены или объявлены в течение отчетного периода (Методические рекомендации по раскрытию информации о прибыли приходящейся на одну акцию, утвержденные приказом Минфина России от 21 марта 2000 г. № 29н).
    [ http://www.lexikon.ru/dict/uprav/index.html]

    Тематики

    EN

     

    прибыль на одну акцию
    Показатель, включаемый в отчет о прибылях и убытках компании. Характеризует прибыльность бизнеса и используетсяпри сравнении различных компаний ;один из основных показателей оценки бизнеса. Рассчитывается как частное от деления чистой прибыли (с исключением экстраординарных статей) за минусом суммы привилегированных акций, на средневзвешенное количество обыкновенных акций, обращавшихся в отчетном году(См. Акции в обращении).. Необходимо принимать во внимание, что расчеты чистой прибыли различаются в разных странах в силу отличий местных стандартов финансовой отчетности, что затрудняет межстрановые сравнения. Это относится и к количеству выпущенных акций: опционы на акции, конвертируемые ценные бумаги (облигации), иные подобные факторы увеличивают сумму эмиссии акций и, таким образом, «разводняют» прибыль в расчете на одну акцию. В последнем случае к числителю формулы прибавляют расходы на конвертируемые облигации прошлого года, а к знаменателю — количество акций, полученных в результате конвертирования.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > earnings per share

  • 107 optimal functioning theory for a socialist economy

    1. теория оптимального функционирования социалистической экономики

     

    теория оптимального функционирования социалистической экономики
    Теоретическое обоснование системы оптимального функционирования экономики (СОФЭ), которая на протяжении ряда лет разрабатывалась советскими экономистами-математиками в качестве возможного варианта будущего социально-экономического механизма страны. Оценивая ее, следует учитывать, что работы в этом направлении велись в условиях, когда в экономической науке господствовали догматические представления, сформированные под влиянием культа личности Сталина и поддерживавшие сталинистскую модель социализма, сложившуюся в стране. Неудивительно, что идеи СОФЭ подвергались жестокой критике со стороны ряда центральных изданий, партийных и хозяйственных руководителей. Сторонников СОФЭ обвиняли в «антимарксизме» за творческий подход к марксовой теории трудовой стоимости, которая догматиками была низведена до обоснования полностью опорочившей себя концепции планового затратного ценообразования, за стремление к учету ограниченности ресурсов при принятии экономических решений (что было давно уже азбучной истиной на Западе), за требование стоимостной оценки считавшихся «бесплатными» природных ресурсов и развития «горизонтальных» товарно-денежных (т.е.фактически рыночных) взаимоотношений между предприятиями и т.д. Между тем, в течение 70-х - 80-х гг. экономико-математические исследования в стране велись под влиянием концепции СОФЭ, которая сыграла выдающуюся роль в их развитии. Как видно из названия теории, особое значение в ее разработке придавалось принципу оптимальности. Он требует последовательно учитывать объективные цели общества и реальные средства их достижения всегда, когда приходится принимать любое экономическое решение, на любом уровне управления народным хозяйством. Поэтому режим оптимального функционирования народного хозяйства рассматривался представителями этого направления как такой, при котором достигается наилучшее (оптимальное) использование всех ресурсов общества (природных, трудовых, производственных и т.д.) для достижения объективных целей этого общества. Многие основные положения теории СОФЭ, которые с порога подвергались критике, постепенно принимались и становились общепринятыми. Это способствовало очень быстрому — по историческим меркам — восприятию и распространению идей современной экономической мысли в России после начала кардинальных рыночных реформ. Анализ социально-экономических аспектов СОФЭ показал неправомерность прямого отождествления оптимизационных категорий с, казалось бы, соответствующими им явлениями экономической действительности (оптимальных оценок продукции — с ценами, действующими в хозяйственной практике, оценок трудовых ресурсов — со ставками заработной платы, оценок воспроизводимых капитальных ресурсов — с платой за фонды, оценок природных ресурсов — с рентными платежами). Дело в том, что подобные хозяйственные категории по необходимости выполняют не только функции соизмерения затрат и результатов, но и несут социальные нагрузки, а также, что важнее, являются исторически преходящими, т.е. могут появляться, исчезать или изменять свою роль в процессе развития производственных отношений. В рамках теории СОФЭ сложилась концепция программно-целевого планирования и управления. Особое внимание уделялось (и, по-видимому, эта тенденция вообще будет усиливаться в экономических исследованиях) статистическому (или вероятностному) подходу к изучению экономических явлений. В известном смысле итоги многолетних исследований в этой области подвело получившее широкий общественный резонанс десятитомное издание — серия коллективных монографий «Вопросы оптимального планирования и управления экономикой», выпущенная ЦЭМИ и издательством «Наука» в 1983-1986 гг. В ней были сформулированы и направления дальнейших исследований, нерешенные задачи. В разработку теории СОФЭ внесли большой вклад советские экономисты и математики — лауреаты Ленинской премии академики Л.В.Канторович и В.С.Немчинов и профессор В.В.Новожилов, а также академики А.Г.Аганбегян, А.Г.Гранберг, Н.Я.Петраков, Н.П.Федоренко, С.С.Шаталин, доктора наук В.А.Волконский, В.Ф.Пугачев, Ю.В.Сухотин и многие другие. К сказанному надо добавить, что Л.В.Канторович — пока единственный из отечественных экономистов — был удостоен Нобелевской премии по экономике.Нельзя не признать, впрочем, что переход к рыночной экономике, подтвердив практическую значимость одних положений теории СОФЭ, отрицает другие, имевшие целью усовершенствование отжившей системы централизованного планирования. Тем не менее, она занимает достойное место в истории отечественной экономической мысли.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > optimal functioning theory for a socialist economy

  • 108 generic object oriented substation event

    1. широковещательное объектно-ориентированное сообщение о событии на подстанции

     

    GOOSE-сообщение
    -

    [Интент]

    широковещательное объектно-ориентированное сообщение о событии на подстанции

    Широковещательный высокоскоростной внеочередной отчет, содержащий статус каждого из входов, устройств пуска, элементов выхода и реле, реальных и виртуальных.
    Примечание. Этот отчет выдается многократно последовательно, как правило, сразу после первого отчета с интервалами 2, 4, 8,…, 60000 мс. Значение задержки первого повторения является конфигурируемым. Такой отчет обеспечивает выдачу высокоскоростных сигналов отключения с высокой вероятностью доставки.
    [ ГОСТ Р 54325-2011 (IEC/TS 61850-2:2003)]

    общие объектно-ориентированные события на подстанции
    -
    [ ГОСТ Р МЭК 61850-7-2-2009]

    GOOSE
    Generic Object Oriented Substation Event
    (стандарт МЭК 61850-8-1)
    Протокол передачи данных о событиях на подстанции.
    Один из трех протоколов передачи данных, предлагаемых к использованию в МЭК 61850.
    Фактически данный протокол служит для замены медных кабельных связей, предназначенных для передачи дискретных сигналов между устройствами.
    [ Цифровые подстанции. Проблемы внедрения устройств РЗА]

    EN

    generic object oriented substation event
    on the occurrence of any change of state, an IED will multicast a high speed, binary object, Generic Object Oriented Substation Event (GOOSE) report by exception, typically containing the double command state of each of its status inputs, starters, output elements and relays, actual and virtual.

    This report is re-issued sequentially, typically after the first report, again at intervals of 2, 4, 8…60000 ms. (The first repetition delay value is an open value it may be either shorter or longer).

    A GOOSE report enables high speed trip signals to be issued with a high probability of delivery
    [IEC 61850-2, ed. 1.0 (2003-08)]

    До недавнего времени для передачи дискретных сигналов между терминалами релейной защиты и автоматики (РЗА) использовались дискретные входы и выходные реле. Передача сигнала при этом осуществляется подачей оперативного напряжения посредством замыкания выходного реле одного терминала на дискретный вход другого терминала (далее такой способ передачи будем называть традиционным).
    Такой способ передачи информации имеет следующие недостатки:

    • необходимо большое количество контрольных кабелей, проложенных между шкафами РЗА,
    • терминалы РЗА должны иметь большое количество дискретных входов и выходных реле,
    • количество передаваемых сигналов ограничивается определенным количеством дискретных входов и выходных реле,
    • отсутствие контроля связи между терминалами РЗА,
    • возможность ложного срабатывания дискретного входа при замыкании на землю в цепи передачи сигнала.

    Информационные технологии уже давно предоставляли возможность для передачи информации между микропроцессорными терминалами по цифровой сети. Разработанный недавно стандарт МЭК 61850 предоставил такую возможность для передачи сигналов между терминалами РЗА.
    Стандарт МЭК 61850 использует для передачи данных сеть Ethernet. Внутри стандарта МЭК 61850 предусмотрен такой механизм, как GOOSE-сообщения, которые и используются для передачи сообщений между терминалами РЗА.
    Принцип передачи GOOSE-сообщений показан на рис. 1.

    5683

    Устройство-отправитель передает по сети Ethernet информацию в широковещательном диапазоне.
    В сообщении присутствует адрес отправителя и адреса, по которым осуществляется его передача, а также значение сигнала (например «0» или «1»).
    Устройство-получатель получит сообщение, а все остальные устройства его проигнорируют.
    Поскольку передача GOOSE-сообщений осуществляется в широковещательном диапазоне, т.е. нескольким адресатам, подтверждение факта получения адресатами сообщения отсутствует. По этой причине передача GOOSE-сообщений в установившемся режиме производится с определенной периодичностью.
    При наступлении нового события в системе (например, КЗ и, как следствие, пуска измерительных органов защиты) начинается спонтанная передача сообщения через увеличивающиеся интервалы времени (например, 1 мс, 2 мс, 4 мс и т.д.). Интервалы времени между передаваемыми сообщениями увеличиваются, пока не будет достигнуто предельное значение, определяемое пользователем (например, 50 мс). Далее, до момента наступления нового события в системе, передача будет осуществляется именно с таким периодом. Указанное проиллюстрировано на рис. 2.

    5684

    Технология повторной передачи не только гарантирует получение адресатом сообщения, но также обеспечивает контроль исправности линии связи и устройств – любые неисправности будут обнаружены по истечении максимального периода передачи GOOSE-сообщений (с точки зрения эксплуатации практически мгновенно). В случае передачи сигналов традиционным образом неисправность выявляется либо в процессе плановой проверки устройств, либо в случае неправильной работы системы РЗА.

    Еще одной особенностью передачи GOOSE-сообщений является использование функций установки приоритетности передачи телеграмм (priority tagging) стандарта Ethernet IEEE 802.3u, которые не используются в других протоколах, в том числе уровня TCP/IP. То есть GOOSE-сообщения идут в обход «нормальных» телеграмм с более высоким приоритетом (см. рис. 3).

    5685


    Однако стандарт МЭК 61850 декларирует передачу не только дискретной информации между терминалами РЗА, но и аналоговой. Это означает, что в будущем будет иметься возможность передачи аналоговой информации от ТТ и ТН по цифровым каналам связи. На данный момент готовых решений по передаче аналоговой информации для целей РЗА (в рамках стандарта МЭК 61850) ни один из производителей не предоставляет.
    Для того чтобы использовать GOOSE-сообщения для передачи дискретных сигналов между терминалами РЗА необходима достаточная надежность и быстродействие передачи GOOSE-сообщений. Надежность передачи GOOSE-сообщений обеспечивается следующим:

    • Протокол МЭК 61850 использует Ethernet-сеть, за счет этого выход из строя верхнего уровня АСУ ТП и любого из устройств РЗА не отражается на передаче GOOSE-сообщений оставшихся в работе устройств,
    • Терминалы РЗА имеют два независимых Ethernet-порта, при выходе одного из них из строя второй его полностью заменяет,
    • Сетевые коммутаторы, к которым подключаются устройства РЗА, соединяются в два независимых «кольца»,
    • Разные порты одного терминала РЗА подключаются к разным сетевым коммутаторам, подключенным к разным «кольцам»,
    • Каждый сетевой коммутатор имеет дублированное питание от разных источников,
    • Во всех устройствах РЗА осуществляется постоянный контроль возможности прохождения каждого сигнала. Это позволяет автоматически определить не только отказы цифровой связи, но и ошибки параметрирования терминалов.

    5686

    На рис. 4 изображен пример структурной схемы сети Ethernet (100 Мбит/c) подстанции. Отказ в передаче GOOSE-сообщения от одного устройства защиты другому возможен в результате совпадения как минимум двух событий. Например, одновременный отказ двух коммутаторов, к которым подключено одно устройство или одновременный отказ обоих портов одного устройства. Могут быть и более сложные отказы, связанные с одновременным наложением большего количества событий. Таким образом, единичные отказы оборудования не могут привести к отказу передачи GOOSEсообщений. Дополнительно увеличивает надежность то обстоятельство, что даже в случае отказа в передаче GOOSE-сообщения, устройство, принимающее сигнал, выдаст сигнал неисправности, и персонал примет необходимые меры для ее устранения.

    Быстродействие.
    В соответствии с требованиями стандарта МЭК 61850 передача GOOSE-сообщений должна осуществляться со временем не более 4 мс (для сообщений, требующих быстрой передачи, например, для передачи сигналов срабатывания защит, пусков АПВ и УРОВ и т.п.). Вообще говоря, время передачи зависит от топологии сети, количества устройств в ней, загрузки сети и загрузки вычислительных ресурсов терминалов РЗА, версии операционной системы терминала, коммуникационного модуля, типа центрального процессора терминала, количества коммутаторов и некоторых других аспектов. Поэтому время передачи GOOSE-сообщений должно быть подтверждено опытом эксплуатации.
    Используя для передачи дискретных сигналов GOOSE-сообщения необходимо обращать внимание на то обстоятельство, что при использовании аппаратуры некоторых производителей, в случае отказа линии связи, значение передаваемого сигнала может оставаться таким, каким оно было получено в момент приема последнего сообщения.
    Однако при отказе связи бывают случаи, когда сигнал должен принимать определенное значение. Например, значение сигнала блокировки МТЗ ввода 6–10 кВ в логике ЛЗШ при отказе связи целесообразно установить в значение «1», чтобы при КЗ на отходящем присоединении не произошло ложного отключения ввода. Так, к примеру, при проектировании терминалов фирмы Siemens изменить значение сигнала при отказе связи возможно с помощью свободно-программируемой CFCлогики (см. рис. 5).

    5687

    К CFC-блоку SI_GET_STATUS подводится принимаемый сигнал, на выходе блока мы можем получить значение сигнала «Value» и его статус «NV». Если в течение определенного времени не поступит сообщение со значением сигнала, статус сигнала «NV» примет значение «1». Далее статус сигнала и значение сигнала подводятся к элементу «ИЛИ», на выходе которого будет получено значение сигнала при исправности линии связи или «1» при нарушении исправности линии связи. Изменив логику, можно установить значение сигнала равным «0» при обрыве связи.
    Использование GOOSE-сообщений предъявляет специальные требования к наладке и эксплуатации устройств РЗА. Во многом процесс наладки становится проще, однако при выводе устройства из работы необходимо следить не только за выводом традиционных цепей, но и не забывать отключать передачу GOOSE-сообщений.
    При изменении параметрирования одного устройства РЗА необходимо производить загрузку файла параметров во все устройства, с которыми оно было связано.
    В нашей стране имеется опыт внедрения и эксплуатации систем РЗА с передачей дискретных сигналов с использованием GOOSE-сообщений. На первых объектах GOOSE-сообщения использовались ограниченно (ПС 500 кВ «Алюминиевая»).
    На ПС 500 кВ «Воронежская» GOOSEсообщения использовались для передачи сигналов пуска УРОВ, пуска АПВ, запрета АПВ, действия УРОВ на отключение смежного элемента, положения коммутационных аппаратов, наличия/отсутствия напряжения, сигналы ЛЗШ, АВР и т.п. Кроме того, на ОРУ 500 кВ и 110 кВ ПС «Воронежская» были установлены полевые терминалы, в которые собиралась информация с коммутационного оборудования и другая дискретная информация с ОРУ (рис. 6). Далее информация с помощью GOOSE-сообщений передавалась в терминалы РЗА, установленные в ОПУ подстанции (рис. 7, 8).
    GOOSE-сообщения также были использованы при проектировании уже введенных в эксплуатацию ПС 500 кВ «Бескудниково», ПС 750 кВ «Белый Раст», ПС 330кВ «Княжегубская», ПС 220 кВ «Образцово», ПС 330 кВ «Ржевская». Эта технология применяется и при проектировании строящихся и модернизируемых подстанций ПС 500 кВ «Чагино», ПС 330кВ «Восточная», ПС 330 кВ «Южная», ПС 330 кВ «Центральная», ПС
    330 кВ «Завод Ильич» и многих других.
    Основные преимущества использования GOOSE-сообщений:

    • позволяет снизить количество кабелей вторичной коммутации на ПС;
    • обеспечивает лучшую помехозащищенность канала связи;
    • позволяет снизить время монтажных и пусконаладочных работ;
    • исключает проблему излишнего срабатывания дискретных входов терминалов из-за замыканий на землю в цепях оперативного постоянного тока;
    • убирает зависимость количества передаваемых сигналов от количества дискретных входов и выходных реле терминалов;
    • обеспечивает возможность реконструкции и изменения связей между устройствами РЗА без прокладки дополнительных кабельных связей и повторного монтажа в шкафах;
    • позволяет использовать МП терминалы РЗА с меньшим количеством входов и выходов (уменьшение габаритов и стоимости устройства);
    • позволяет контролировать возможность прохождения сигнала (увеличивается надежность).

    Безусловно, для окончательных выводов должен появиться достаточный опыт эксплуатации. В настоящее время большинство производителей устройств РЗА заявили о возможности использования GOOSEсообщений. Стандарт МЭК 61850 определяет передачу GOOSE-сообщений между терминалами разных производителей. Использование GOOSE-сообщений для передачи дискретных сигналов – это качественный скачок в развитии систем РЗА. С развитием стандарта МЭК 61850, переходом на Ethernet 1 Гбит/сек, с появлением новых цифровых ТТ и ТН, новых выключателей с возможностью подключения их блока управления к шине процесса МЭК 61850, эффективность использования GOOSE-сообщений намного увеличится. Облик будущих подстанций представляется с минимальным количеством контрольных кабелей, с передачей всех сообщений между устройствами РЗА, ТТ, ТН, коммутационными аппаратами через цифровую сеть. Устройства РЗА будут иметь минимальное количество выходных реле и дискретных входов

    [ http://romvchvlcomm.pbworks.com/f/goosepaper1.pdf]


    В стандарте определены два способа передачи данных напрямую между устройствами: GOOSE и GSSE. Это тоже пример наличия двух способов для реализации одной функции. GOOSE - более новый способ передачи сообщений, разработан специально для МЭК 61850. Способ передачи сообщений GSSE ранее присутствовал в стандарте UCA 2.0, являющимся одним из предшественников МЭК 61850. По сравнению с GSSE, GOOSE имеет более простой формат (Ethernet против стека OSI протоколов) и возможность передачи различных типов данных. Вероятно, способ GSSE включили в МЭК 61850 для того, чтобы производители, имеющие в своих устройствах протокол UCA 2.0, могли сразу декларировать соответствие МЭК 61850. В настоящее время все производители используют только GOOSE для передачи сообщений между устройствами.
    Для выбора списка передаваемых данных в GOOSE, как и в отчѐтах, используются наборы данных. Однако тут требования уже другие. Время обработки GOOSE-сообщений должно быть минимальным, поэтому логично передавать наиболее простые типы данных. Обычно передаѐтся само значение сигнала и в некоторых случаях добавляется поле качества. Метка времени обычно включается в набор данных.
    ...
    В устройствах серии БЭ2704 в передаваемых GOOSE-сообщениях содержатся данные типа boolean. Приниматься могут данные типа boolean, dbpos, integer.
    Устоявшаяся тенденция существует только для передачи дискретной информации. Аналоговые данные пока передают немногие производители, и поэтому устоявшаяся тенденция в передаче аналоговой информации в данный момент отсутствует.
    [ Источник]


     

    Тематики

    Синонимы

    EN

    Англо-русский словарь нормативно-технической терминологии > generic object oriented substation event

  • 109 GOOSE

    1. широковещательное объектно-ориентированное сообщение о событии на подстанции

     

    GOOSE-сообщение
    -

    [Интент]

    широковещательное объектно-ориентированное сообщение о событии на подстанции

    Широковещательный высокоскоростной внеочередной отчет, содержащий статус каждого из входов, устройств пуска, элементов выхода и реле, реальных и виртуальных.
    Примечание. Этот отчет выдается многократно последовательно, как правило, сразу после первого отчета с интервалами 2, 4, 8,…, 60000 мс. Значение задержки первого повторения является конфигурируемым. Такой отчет обеспечивает выдачу высокоскоростных сигналов отключения с высокой вероятностью доставки.
    [ ГОСТ Р 54325-2011 (IEC/TS 61850-2:2003)]

    общие объектно-ориентированные события на подстанции
    -
    [ ГОСТ Р МЭК 61850-7-2-2009]

    GOOSE
    Generic Object Oriented Substation Event
    (стандарт МЭК 61850-8-1)
    Протокол передачи данных о событиях на подстанции.
    Один из трех протоколов передачи данных, предлагаемых к использованию в МЭК 61850.
    Фактически данный протокол служит для замены медных кабельных связей, предназначенных для передачи дискретных сигналов между устройствами.
    [ Цифровые подстанции. Проблемы внедрения устройств РЗА]

    EN

    generic object oriented substation event
    on the occurrence of any change of state, an IED will multicast a high speed, binary object, Generic Object Oriented Substation Event (GOOSE) report by exception, typically containing the double command state of each of its status inputs, starters, output elements and relays, actual and virtual.

    This report is re-issued sequentially, typically after the first report, again at intervals of 2, 4, 8…60000 ms. (The first repetition delay value is an open value it may be either shorter or longer).

    A GOOSE report enables high speed trip signals to be issued with a high probability of delivery
    [IEC 61850-2, ed. 1.0 (2003-08)]

    До недавнего времени для передачи дискретных сигналов между терминалами релейной защиты и автоматики (РЗА) использовались дискретные входы и выходные реле. Передача сигнала при этом осуществляется подачей оперативного напряжения посредством замыкания выходного реле одного терминала на дискретный вход другого терминала (далее такой способ передачи будем называть традиционным).
    Такой способ передачи информации имеет следующие недостатки:

    • необходимо большое количество контрольных кабелей, проложенных между шкафами РЗА,
    • терминалы РЗА должны иметь большое количество дискретных входов и выходных реле,
    • количество передаваемых сигналов ограничивается определенным количеством дискретных входов и выходных реле,
    • отсутствие контроля связи между терминалами РЗА,
    • возможность ложного срабатывания дискретного входа при замыкании на землю в цепи передачи сигнала.

    Информационные технологии уже давно предоставляли возможность для передачи информации между микропроцессорными терминалами по цифровой сети. Разработанный недавно стандарт МЭК 61850 предоставил такую возможность для передачи сигналов между терминалами РЗА.
    Стандарт МЭК 61850 использует для передачи данных сеть Ethernet. Внутри стандарта МЭК 61850 предусмотрен такой механизм, как GOOSE-сообщения, которые и используются для передачи сообщений между терминалами РЗА.
    Принцип передачи GOOSE-сообщений показан на рис. 1.

    5683

    Устройство-отправитель передает по сети Ethernet информацию в широковещательном диапазоне.
    В сообщении присутствует адрес отправителя и адреса, по которым осуществляется его передача, а также значение сигнала (например «0» или «1»).
    Устройство-получатель получит сообщение, а все остальные устройства его проигнорируют.
    Поскольку передача GOOSE-сообщений осуществляется в широковещательном диапазоне, т.е. нескольким адресатам, подтверждение факта получения адресатами сообщения отсутствует. По этой причине передача GOOSE-сообщений в установившемся режиме производится с определенной периодичностью.
    При наступлении нового события в системе (например, КЗ и, как следствие, пуска измерительных органов защиты) начинается спонтанная передача сообщения через увеличивающиеся интервалы времени (например, 1 мс, 2 мс, 4 мс и т.д.). Интервалы времени между передаваемыми сообщениями увеличиваются, пока не будет достигнуто предельное значение, определяемое пользователем (например, 50 мс). Далее, до момента наступления нового события в системе, передача будет осуществляется именно с таким периодом. Указанное проиллюстрировано на рис. 2.

    5684

    Технология повторной передачи не только гарантирует получение адресатом сообщения, но также обеспечивает контроль исправности линии связи и устройств – любые неисправности будут обнаружены по истечении максимального периода передачи GOOSE-сообщений (с точки зрения эксплуатации практически мгновенно). В случае передачи сигналов традиционным образом неисправность выявляется либо в процессе плановой проверки устройств, либо в случае неправильной работы системы РЗА.

    Еще одной особенностью передачи GOOSE-сообщений является использование функций установки приоритетности передачи телеграмм (priority tagging) стандарта Ethernet IEEE 802.3u, которые не используются в других протоколах, в том числе уровня TCP/IP. То есть GOOSE-сообщения идут в обход «нормальных» телеграмм с более высоким приоритетом (см. рис. 3).

    5685


    Однако стандарт МЭК 61850 декларирует передачу не только дискретной информации между терминалами РЗА, но и аналоговой. Это означает, что в будущем будет иметься возможность передачи аналоговой информации от ТТ и ТН по цифровым каналам связи. На данный момент готовых решений по передаче аналоговой информации для целей РЗА (в рамках стандарта МЭК 61850) ни один из производителей не предоставляет.
    Для того чтобы использовать GOOSE-сообщения для передачи дискретных сигналов между терминалами РЗА необходима достаточная надежность и быстродействие передачи GOOSE-сообщений. Надежность передачи GOOSE-сообщений обеспечивается следующим:

    • Протокол МЭК 61850 использует Ethernet-сеть, за счет этого выход из строя верхнего уровня АСУ ТП и любого из устройств РЗА не отражается на передаче GOOSE-сообщений оставшихся в работе устройств,
    • Терминалы РЗА имеют два независимых Ethernet-порта, при выходе одного из них из строя второй его полностью заменяет,
    • Сетевые коммутаторы, к которым подключаются устройства РЗА, соединяются в два независимых «кольца»,
    • Разные порты одного терминала РЗА подключаются к разным сетевым коммутаторам, подключенным к разным «кольцам»,
    • Каждый сетевой коммутатор имеет дублированное питание от разных источников,
    • Во всех устройствах РЗА осуществляется постоянный контроль возможности прохождения каждого сигнала. Это позволяет автоматически определить не только отказы цифровой связи, но и ошибки параметрирования терминалов.

    5686

    На рис. 4 изображен пример структурной схемы сети Ethernet (100 Мбит/c) подстанции. Отказ в передаче GOOSE-сообщения от одного устройства защиты другому возможен в результате совпадения как минимум двух событий. Например, одновременный отказ двух коммутаторов, к которым подключено одно устройство или одновременный отказ обоих портов одного устройства. Могут быть и более сложные отказы, связанные с одновременным наложением большего количества событий. Таким образом, единичные отказы оборудования не могут привести к отказу передачи GOOSEсообщений. Дополнительно увеличивает надежность то обстоятельство, что даже в случае отказа в передаче GOOSE-сообщения, устройство, принимающее сигнал, выдаст сигнал неисправности, и персонал примет необходимые меры для ее устранения.

    Быстродействие.
    В соответствии с требованиями стандарта МЭК 61850 передача GOOSE-сообщений должна осуществляться со временем не более 4 мс (для сообщений, требующих быстрой передачи, например, для передачи сигналов срабатывания защит, пусков АПВ и УРОВ и т.п.). Вообще говоря, время передачи зависит от топологии сети, количества устройств в ней, загрузки сети и загрузки вычислительных ресурсов терминалов РЗА, версии операционной системы терминала, коммуникационного модуля, типа центрального процессора терминала, количества коммутаторов и некоторых других аспектов. Поэтому время передачи GOOSE-сообщений должно быть подтверждено опытом эксплуатации.
    Используя для передачи дискретных сигналов GOOSE-сообщения необходимо обращать внимание на то обстоятельство, что при использовании аппаратуры некоторых производителей, в случае отказа линии связи, значение передаваемого сигнала может оставаться таким, каким оно было получено в момент приема последнего сообщения.
    Однако при отказе связи бывают случаи, когда сигнал должен принимать определенное значение. Например, значение сигнала блокировки МТЗ ввода 6–10 кВ в логике ЛЗШ при отказе связи целесообразно установить в значение «1», чтобы при КЗ на отходящем присоединении не произошло ложного отключения ввода. Так, к примеру, при проектировании терминалов фирмы Siemens изменить значение сигнала при отказе связи возможно с помощью свободно-программируемой CFCлогики (см. рис. 5).

    5687

    К CFC-блоку SI_GET_STATUS подводится принимаемый сигнал, на выходе блока мы можем получить значение сигнала «Value» и его статус «NV». Если в течение определенного времени не поступит сообщение со значением сигнала, статус сигнала «NV» примет значение «1». Далее статус сигнала и значение сигнала подводятся к элементу «ИЛИ», на выходе которого будет получено значение сигнала при исправности линии связи или «1» при нарушении исправности линии связи. Изменив логику, можно установить значение сигнала равным «0» при обрыве связи.
    Использование GOOSE-сообщений предъявляет специальные требования к наладке и эксплуатации устройств РЗА. Во многом процесс наладки становится проще, однако при выводе устройства из работы необходимо следить не только за выводом традиционных цепей, но и не забывать отключать передачу GOOSE-сообщений.
    При изменении параметрирования одного устройства РЗА необходимо производить загрузку файла параметров во все устройства, с которыми оно было связано.
    В нашей стране имеется опыт внедрения и эксплуатации систем РЗА с передачей дискретных сигналов с использованием GOOSE-сообщений. На первых объектах GOOSE-сообщения использовались ограниченно (ПС 500 кВ «Алюминиевая»).
    На ПС 500 кВ «Воронежская» GOOSEсообщения использовались для передачи сигналов пуска УРОВ, пуска АПВ, запрета АПВ, действия УРОВ на отключение смежного элемента, положения коммутационных аппаратов, наличия/отсутствия напряжения, сигналы ЛЗШ, АВР и т.п. Кроме того, на ОРУ 500 кВ и 110 кВ ПС «Воронежская» были установлены полевые терминалы, в которые собиралась информация с коммутационного оборудования и другая дискретная информация с ОРУ (рис. 6). Далее информация с помощью GOOSE-сообщений передавалась в терминалы РЗА, установленные в ОПУ подстанции (рис. 7, 8).
    GOOSE-сообщения также были использованы при проектировании уже введенных в эксплуатацию ПС 500 кВ «Бескудниково», ПС 750 кВ «Белый Раст», ПС 330кВ «Княжегубская», ПС 220 кВ «Образцово», ПС 330 кВ «Ржевская». Эта технология применяется и при проектировании строящихся и модернизируемых подстанций ПС 500 кВ «Чагино», ПС 330кВ «Восточная», ПС 330 кВ «Южная», ПС 330 кВ «Центральная», ПС
    330 кВ «Завод Ильич» и многих других.
    Основные преимущества использования GOOSE-сообщений:

    • позволяет снизить количество кабелей вторичной коммутации на ПС;
    • обеспечивает лучшую помехозащищенность канала связи;
    • позволяет снизить время монтажных и пусконаладочных работ;
    • исключает проблему излишнего срабатывания дискретных входов терминалов из-за замыканий на землю в цепях оперативного постоянного тока;
    • убирает зависимость количества передаваемых сигналов от количества дискретных входов и выходных реле терминалов;
    • обеспечивает возможность реконструкции и изменения связей между устройствами РЗА без прокладки дополнительных кабельных связей и повторного монтажа в шкафах;
    • позволяет использовать МП терминалы РЗА с меньшим количеством входов и выходов (уменьшение габаритов и стоимости устройства);
    • позволяет контролировать возможность прохождения сигнала (увеличивается надежность).

    Безусловно, для окончательных выводов должен появиться достаточный опыт эксплуатации. В настоящее время большинство производителей устройств РЗА заявили о возможности использования GOOSEсообщений. Стандарт МЭК 61850 определяет передачу GOOSE-сообщений между терминалами разных производителей. Использование GOOSE-сообщений для передачи дискретных сигналов – это качественный скачок в развитии систем РЗА. С развитием стандарта МЭК 61850, переходом на Ethernet 1 Гбит/сек, с появлением новых цифровых ТТ и ТН, новых выключателей с возможностью подключения их блока управления к шине процесса МЭК 61850, эффективность использования GOOSE-сообщений намного увеличится. Облик будущих подстанций представляется с минимальным количеством контрольных кабелей, с передачей всех сообщений между устройствами РЗА, ТТ, ТН, коммутационными аппаратами через цифровую сеть. Устройства РЗА будут иметь минимальное количество выходных реле и дискретных входов

    [ http://romvchvlcomm.pbworks.com/f/goosepaper1.pdf]


    В стандарте определены два способа передачи данных напрямую между устройствами: GOOSE и GSSE. Это тоже пример наличия двух способов для реализации одной функции. GOOSE - более новый способ передачи сообщений, разработан специально для МЭК 61850. Способ передачи сообщений GSSE ранее присутствовал в стандарте UCA 2.0, являющимся одним из предшественников МЭК 61850. По сравнению с GSSE, GOOSE имеет более простой формат (Ethernet против стека OSI протоколов) и возможность передачи различных типов данных. Вероятно, способ GSSE включили в МЭК 61850 для того, чтобы производители, имеющие в своих устройствах протокол UCA 2.0, могли сразу декларировать соответствие МЭК 61850. В настоящее время все производители используют только GOOSE для передачи сообщений между устройствами.
    Для выбора списка передаваемых данных в GOOSE, как и в отчѐтах, используются наборы данных. Однако тут требования уже другие. Время обработки GOOSE-сообщений должно быть минимальным, поэтому логично передавать наиболее простые типы данных. Обычно передаѐтся само значение сигнала и в некоторых случаях добавляется поле качества. Метка времени обычно включается в набор данных.
    ...
    В устройствах серии БЭ2704 в передаваемых GOOSE-сообщениях содержатся данные типа boolean. Приниматься могут данные типа boolean, dbpos, integer.
    Устоявшаяся тенденция существует только для передачи дискретной информации. Аналоговые данные пока передают немногие производители, и поэтому устоявшаяся тенденция в передаче аналоговой информации в данный момент отсутствует.
    [ Источник]


     

    Тематики

    Синонимы

    EN

    Англо-русский словарь нормативно-технической терминологии > GOOSE

См. также в других словарях:

  • ГОСТ 28668-90 Э: Низковольтные комплектные устройства распределения и управления. Часть 1. Требования к устройствам, испытанным полностью или частично — Терминология ГОСТ 28668 90 Э: Низковольтные комплектные устройства распределения и управления. Часть 1. Требования к устройствам, испытанным полностью или частично оригинал документа: 7.7. Внутреннее разделение НКУ ограждениями или перегородками… …   Словарь-справочник терминов нормативно-технической документации

  • ГОСТ 28668-90: Низковольтные комплектные устройства распределения и управления. Часть 1. Требования к устройствам, испытанным полностью или частично — Терминология ГОСТ 28668 90: Низковольтные комплектные устройства распределения и управления. Часть 1. Требования к устройствам, испытанным полностью или частично оригинал документа: 2.6.6. Аварийный ток: Ток, возникающий в результате пробоя или… …   Словарь-справочник терминов нормативно-технической документации

  • Чайтанья Махапрабху — Мурти Чайтаньи Махапрабху в храме Международного общества сознания Кришны в Маяпуре, Индия Чайтанья Махапрабху (бенг. চৈতন্য মহাপ্রভূ, Caitanya Mahāprabhu …   Википедия

  • Вишвамбхара — Кришнаизм Международное общество сознания Кришны Ачарьи сампрадаи до Чайтаньи Кришна · Брахма · Нарада · Вьяса · Мадхва …   Википедия

  • Махапрабху — Кришнаизм Международное общество сознания Кришны Ачарьи сампрадаи до Чайтаньи Кришна · Брахма · Нарада · Вьяса · Мадхва …   Википедия

  • Нимай — Кришнаизм Международное общество сознания Кришны Ачарьи сампрадаи до Чайтаньи Кришна · Брахма · Нарада · Вьяса · Мадхва …   Википедия

  • Нимай Пандит — Кришнаизм Международное общество сознания Кришны Ачарьи сампрадаи до Чайтаньи Кришна · Брахма · Нарада · Вьяса · Мадхва …   Википедия

  • Сачинандана — Кришнаизм Международное общество сознания Кришны Ачарьи сампрадаи до Чайтаньи Кришна · Брахма · Нарада · Вьяса · Мадхва …   Википедия

  • Чайтанья — Мурти Чайтаньи Махапрабху в храме Международного общества сознания Кришны в Маяпуре, Индия Чайтанья Махапрабху (бенг. চৈতন্য মহাপ্রভ …   Википедия

  • Шри Кришна Чайтанья — Кришнаизм Международное общество сознания Кришны Ачарьи сампрадаи до Чайтаньи Кришна · Брахма · Нарада · Вьяса · Мадхва …   Википедия

  • Шри Чайтанья Махапрабху — Кришнаизм Международное общество сознания Кришны Ачарьи сампрадаи до Чайтаньи Кришна · Брахма · Нарада · Вьяса · Мадхва …   Википедия

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»