Перевод: со всех языков на английский

с английского на все языки

практическое+использование

  • 1 практическое использование

    4) Ecology: common use
    5) Patents: practical use

    Универсальный русско-английский словарь > практическое использование

  • 2 практическое использование

    Русско-английский биологический словарь > практическое использование

  • 3 практическое использование

    Русско-английский словарь по патентам и товарным знакам > практическое использование

  • 4 практическое использование

    Banks. Exchanges. Accounting. (Russian-English) > практическое использование

  • 5 практическое использование холода

    Универсальный русско-английский словарь > практическое использование холода

  • 6 теория и практическое использование звуковой разведки ЗА

    Универсальный русско-английский словарь > теория и практическое использование звуковой разведки ЗА

  • 7 использование

    1) use, utilization, usage; (применение) application, employment; (прав) exercise; (в своих интересах) exploitation
    3) (распоряжение чем-л. по своему усмотрению) disposition of

    Banks. Exchanges. Accounting. (Russian-English) > использование

  • 8 использование, практическое применение

    Engineering: application

    Универсальный русско-английский словарь > использование, практическое применение

  • 9 передача технологии

    (1. процесс распространения научно-технических знаний 2. практическое использование научных знаний, полученных в другой организации 3. переход от фундаментальных знаний к техническим средствам 4. приспособление существующей техники к новому использованию) technology transfer

    Русско-английский словарь по нефти и газу > передача технологии

  • 10 дрожжи

    внетаксономическая группа одноклеточных грибов (см. грибы), утративших мицелиальное строение в связи с переходом к обитанию в жидких и полужидких богатых органическим веществом субстратах; объединяет около 1500 видов, относящихся к аскомицетам и базидиомицетам. Д. размножаются почкованием, реже — спорами или простым делением клетки; у некоторых видов установлен половой процесс. В анаэробных условиях дрожжи могут использовать в качестве источника энергии только углеводы, причем в основном гексозы и построенные на их основе олигосахариды. Практическое использование в биотехнологических процессах получили в основном истинные (спорообразующие) Д., размножающиеся половым способом (напр., сахаромицеты), которые обычно не патогенны для человека. Так, пекарские и пивные Д. (Saccharomyces cerevisiae) широко используют для хлебопечения и пивоварения, Kluyveromyces fragilis осуществляет сбраживание лактозы, Saccharomycopsis lipolytica деградирует углеводороды и используется для получения белковой массы. Находят применение и некоторые дейтеромицеты (несовершенные грибы): Candida utilis растет в сульфитных сточных водах (отходы бумажной промышленности); Trichosporon cutaneum, окисляющий многочисленные органические соединения, включая некоторые токсичные (напр., фенол), играет важную роль в системах аэробной переработки стоков; Phaffia rhodozyma синтезирует астаксантин — каротиноид, который придает мякоти форели и лосося, выращиваемых на фермах, характерный оранжевый или розоватый цвет. Промышленные Д. обычно не размножаются половым путем, не образуют спор и полиплоидны. Последним объясняется их сила и способность быстро адаптироваться к изменениям среды культивирования.

    Толковый биотехнологический словарь. Русско-английский. > дрожжи

  • 11 олигосахариды

    [греч. oligos — немногочисленный, незначительный, sakcharonсахар и eidos — вид]
    углеводы (см. углеводы), молекулы которых построены из нескольких моносахаридных остатков (от 2 до 10—20), соединенных гликозидными связями (экзоциклическая связь аномерного атома углерода моносахарида с атомом кислорода соседнего моносахаридного остатка). В соответствии со степенью полимеризации различают дисахариды (биозы), трисахариды (триозы), тетрасахариды (тетраозы) и т.д. В состав О. могут входить или остатки одного и того же моносахарида (гомоолигосахариды), или разных моносахаридов (гетероолигосахариды). Каждый моносахаридный остаток может находиться в одной из четырех возможных циклических форм и соединяться гликозидной связью с любой гидроксильной группой соседнего остатка. О., в которых к спиртовым гидроксилам каждого моносахаридного остатка присоединено не более одного соседнего остатка, называются линейными (неразветвленными); присоединение двух и более моносахаридов к спиртовым гидроксилам одного и того же моносахаридного остатка приводит к разветвлению О. Главным источником получения разнообразных О. служат реакции частичного (химического или ферментативного) расщепления природных полисахаридов, гликолипидов и гликопротеидов. Однако существует несколько групп О., встречающихся в природе в свободном состоянии. Группа сахарозы широко представлена в растениях, где выполняет роль легкомобилизуемого энергетического резерва. Налажено промышленное производство сахарозы (она находит наибольшее практическое использование), лактозы и циклодекстринов, которые применяются в пищевой и фармацевтической промышленности. Синтетические О., идентичные антигенным детерминантам бактериальных полисахаридов, находят применение при синтезе искусственных антигенов, перспективных для получения специфических вакцин.

    Толковый биотехнологический словарь. Русско-английский. > олигосахариды

  • 12 ретровирусный вектор

    [лат. retro- — приставка, означающая "направленный назад", "обратно", и virus — яд; лат. vector — везущий, несущий]
    вектор, содержащий элементы генома ретровируса (см. ретровирусы), необходимые для его репликации в клетках. В наиболее простом варианте из вирусного генома удаляют гены, кодирующие специфические антигены (gag), обратную транскриптазу (pol) или белки оболочки вируса (env), и вместо них вставляют селективный маркерный ген (напр., ген неомицинфосфотрансферазы). Обычно Р.в. содержит также дополнительно полилинкер, позволяющий клонировать в нем чужеродные гены, и ген, позволяющий проводить отбор клеток с интегрированным Р.в. на селективной среде. Р.в. сохраняет присущую ретровирусам способность внедряться в геном клеток-хозяев и размножаться в них, но только в присутствии вирусапомощника. Р.в. используют для эффективного встраивания чужеродной ДНК в геном эукариотических клеток, однако он имеет ряд свойств, ограничивающих практическое использование в медицине. В частности, Р.в. при внедрении в геном может вызывать инсерционные мутации, приводящие к различным патологиям организма. Кроме того, т. к. репликация Р.в., также как и природных ретровирусов, осуществляется с чередованием пребывания генома в виде ДНК (провирус) и РНК (геном вирусных частиц), при клонировании в Р.в. фрагментов ДНК, содержащих интроны, последние, как правило, утрачиваются в результате сплайсинга (см. сплайсинг). Тем не менее Р.в. продолжают использовать в экспериментальной биологии, а также для генной терапии.

    Толковый биотехнологический словарь. Русско-английский. > ретровирусный вектор

  • 13 фототрофные бактерии

    = фотосинтезирующие бактерии
    [греч. phos (photos)свет и trophe — пища, питание; греч. bacterion — палочка]
    бактерии, которые в качестве источника энергии используют солнечный свет. Основным источником углерода в одних случаях является углекислый газ (фотоавтотрофы), в других — органические кислоты (фотогетеротрофы). К. Ф.б. относятся пурпурные и зеленые бактерии, цианобактерии, прохлорофиты и некоторые галобактерии. Фотосинтез у всех Ф.б. (за исключением галобактерий) присходит с участием хлорофиллов. Фотосинтетический аппарат Ф.б. состоит из трех основных компонентов:
    1) светособирающих пигментов, поглощающих энергию света и передающих ее в реакционные центры;
    2) фотохимических реакционных центров, где происходит трансформация электромагнитной формы энергии в химическую;
    3) фотосинтетических электронтранспортных систем, обеспечивающих перенос электронов, сопряженный с запасанием энергии в молекулах АТФ (см. аденозинтрифосфат). В фотохимической реакции участвуют, как правило, хлорофиллы или бактериохлорофиллы a в модифицированной форме. Эти же виды хлорофиллов, наряду с другими, а также пигментами иных типов (фикобилипротеины, каротиноиды) выполняют функцию антенны. У некоторых пурпурных бактерий, содержащих только бактериохлорофилл b, он выполняет обе функции. У недавно описанных гелиобактерий бактериохлорофилл g также служит светособирающим пигментом и входит в состав реакционного центра. Многие Ф.б. усваивают молекулярный азот. Активно участвуют в накоплении органических веществ. Ф.б., особенно цианобактерии, играют значительную роль в круговороте углерода и азота, а серобактерии — и серы. Некоторые Ф.б. получили практическое использование, напр. азотфиксирующие цианобактерии применяют для повышения плодородия рисовых полей, пурпурные бактерии и цианобактерии культивируют в промышленных масштабах для получения кормового белка и т.д.

    Толковый биотехнологический словарь. Русско-английский. > фототрофные бактерии

  • 14 направленная токовая защита нулевой последовательности

    1. directional neutral current relay

     

    направленная токовая защита нулевой последовательности

    [В.А.Семенов. Англо-русский словарь по релейной защите]

    Нулевая последовательность фаз.
    Согласно теории симметричных составляющих любую несимметричную систему трех токов или напряжений - обозначим их А, В, С - можно представить в виде трех систем прямой, обратной и нулевой последовательностей фаз (рис. 7.9, а-в). Первые две системы симметричны и уравновешены, последняя симметрична, но не уравновешена.
    Система прямой последовательности (рис. 7.9, а) состоит из трех вращающихся векторов A 1, B 1, C 1, равных по значению и повернутых на 120° относительно друг друга, причем вектор B1 следует за вектором А 1.
    5300
    Рис. 7.8. Принципиальная схема максимальной токовой защиты с пуском от реле минимального напряжения:
    КА - реле тока (токовый пусковой орган); КV - реле минимального напряжения (пусковой орган по напряжению); КТ - реле времени
    Система обратной последовательности (рис. 7.9, б) состоит также из трех векторов A 2, B 2, C 2, равных по значению и повернутых на 120° относительно друг друга, но при вращении в ту же сторону, что и векторы прямой последовательности, вектор B 2 опережает вектор A 2 на 120°.
    Система нулевой последовательности (рис. 7.9, в) состоит из трех векторов A 0, B 0, C 0, совпадающих по фазе.
    Очевидно, что сложение одноименных векторов этих трех систем дает ту несимметричную систему, которая была разложена на, ее составляющие:

    В качестве примера сложение векторов фазы С выполнено на рис. 7.9, г.
    Существует и метод расчета симметричных составляющих, согласно которому составляющая нулевой последовательности

    5301
    Рис. 7.9. Симметричные составляющие:
    а, б, в - прямой, обратной и нулевой последовательности соответственно; г - сложение векторов трех последовательностей фазы С
    5302
    Рис. 7.10. Однофазное КЗ на землю на ненагруженной линии с односторонним питанием:
    а - схема линии; б - векторная диаграмма напряжения и тока для точки К ; в, г - векторные диаграммы напряжения и токов, построенные с помощью симметричных составляющих

    Таким образом, для нахождения A 0 надо геометрически сложить три составляющие вектора и взять одну треть от суммы.
    Целесообразность представления несимметричных систем тремя симметричными составляющими состоит в том, что анализ и расчеты напряжений и токов для системы нулевой последовательности могут выполняться независимо от систем прямой и обратной последовательностей, что во многих случаях упрощает расчеты.
    Включение же защит на составляющие нулевой последовательности дает ряд преимуществ по сравнению с включением их на полные токи и напряжения фаз для действия при КЗ на землю.
    Практическое использование составляющих нулевой последовательности. Рассмотрим металлическое замыкание фазы А на землю в сети с эффективно заземленной нейтралью (рис. 7.10, а). Этот вид повреждения относится к несимметричным КЗ и характеризуется тем, что в замкнутом контуре действует ЭДС E A, под действием которой в поврежденной фазе А проходит ток IA=Ik отстающий от E A на 90°; напряжение фазы А относительно земли в месте повреждения (точка К) UAк =0, так как эта точка непосредственно соединена с землей; токи в неповрежденных фазах IB и IC отсутствуют. С учетом сказанного на рис. 7.10, б построена векторная диаграмма для точки К.
    На рис. 7.10, в и г приведены векторные диаграммы напряжений и токов, построенные с помощью симметричных составляющих для того же случая однофазного КЗ.
    Сравнение диаграммы, представленной на рис. 7.10, б, с диаграммами рис. 7.10, в и г показывает, что вектор I к равен вектору 3I0, а ЕА =U B к + U C к = 3U0к. Значит, полный ток фазы в месте повреждения может быть представлен утроенным значением тока нулевой последовательности, а ЭДС - ЕА - утроенным значением напряжения нулевой последовательности.
    Практически ток нулевой последовательности получают соединением вторичных обмоток трансформаторов тока в фильтр токов нулевой последовательности (рис. 7.11). Из схемы видно, что ток в реле КА равен геометрической сумме токов трех фаз:

    Ток в реле появляется только при однофазном или двухфазном КЗ на землю. Короткие замыкания между фазами являются симметричными системами, и соответственно этому ток в реле Iр=0.
    Для получения напряжения нулевой последовательности вторичные обмотки трансформатора напряжения соединяют в разомкнутый треугольник (рис. 7.12) и обязательно заземляют нейтраль его первичной обмотки. В этом случае

    5303
    Рис. 7.11. Соединение трансформаторов тока в фильтр токов нулевой последовательности
    В нормальном режиме работы и КЗ между фазами (без земли) геометрическая сумма напряжений вторичных обмоток, соединенных в разомкнутый треугольник, равна нулю, и поэтому Up также равно нулю (рис. 7.12, б). И только при однофазных (или двухфазных) КЗ на землю на зажимах разомкнутого треугольника появляется напряжение Up=3U0 (рис. 7.12, в).
    Фазные напряжения систем прямой и обратной последовательностей образуют симметричные звезды, и поэтому суммы их векторов в схеме разомкнутого треугольника всегда равны нулю.

    5304
    Рис. 7.12. Соединение однофазных трансформаторов напряжении в фильтр напряжения нулевой последовательности:
    а - общая схема трансформатора напряжения; б - векторные диаграммы в нормальном режиме работы; с - то же при замыкании фазы А на землю в сети с заземленной нейтралью; PV - вольтметр контроля исправности цепей вторичной обмотки

    В сетях с эффективным заземлением нейтрали около 80% повреждений связано с замыканиями на землю. Для защиты оборудования применяют устройства, реагирующие на составляющие нулевой последовательности.
    Схема и некоторые вопросы эксплуатации токовой направленной защиты нулевой последовательности. Принципиальная схема защиты показана на рис. 7.13. Пусковое токовое реле КА, включенное на фильтр токов нулевой последовательности, реагирует на появление КЗ на землю, когда в нулевом проводе проходит ток 3I0.
    Реле мощности KW фиксирует направление мощности КЗ, обеспечивая селективность действия: защита работает при направлении мощности КЗ от шин подстанции в защищаемую линию. Напряжение 3U0 подводится к реле мощности от обмотки разомкнутого треугольника трансформатора напряжения (шинки EV, H, KV, K).
    Реле времени КТ создает выдержку времени, необходимую по условию селективности.
    На рис. 7.14 показано размещение токовых направленных защит нулевой последовательности в сети, работающей с заземленными нейтралями с обеих сторон рассматриваемого участка. График характеристик выдержек времени построен по встречно-ступенчатому принципу. Из графика видно, что каждая защита отстраивается от защиты смежного участка ступенью времени Δt =t1-t3.
    Значение тока срабатывания пускового токового реле выбирается по условию надежного действия реле при КЗ в конце следующего (второго) участка сети, а также по условию отстройки от тока небаланса.
    Появление тока небаланса в реле связано с погрешностью трансформаторов тока, неидентичностью трансформаторов тока, неидентичностью их характеристик намагничивания и имеет решающее значение. Чтобы не допустить действия пускового токового реле от тока небаланса, ток срабатывания реле принимают больше тока небаланса. Ток небаланса определяется для нормального рабочего режима или для режима трехфазного КЗ в зависимости от выдержки времени защиты.
    При наличии в защищаемой сети автотрансформаторов, электрически связывающих сети двух напряжений, однофазное или двухфазное замыкание на землю к сети среднего напряжения приводит к появлению тока I0 в линиях высшего напряжения. Чтобы избежать ложных срабатываний защит линий высшего напряжения, уставки их защит по току срабатывания и выдержкам времени согласуют с уставками защит в сети среднего напряжения. По указанной причине избегают, как правило, заземления нейтралей обмоток звезд высшего и среднего напряжений у одного трансформатора. Заметим также, что у трансформатора со схемой соединения звезда-треугольник замыкание на землю на стороне треугольника не вызывает появления тока I0 на стороне звезды.
    Ток I0 появляется в линиях при неполнофазных режимах работы участков сетей. Такие режимы могут быть кратковременными и длительными. От кратковременных неполнофазных режимов, возникающих, например, в цикле ОАПВ линии, а также АПВ при неодновременном включении трех фаз выключателя защиты отстраиваются по току срабатывания или выдержки времени защит принимаются больше, чем время t ОАПВ. При возможных неполнофазных режимах работы линий (например, при пофазном ремонте под напряжением) токовые направленные защиты нулевой последовательности ремонтируемой линии и смежных участков должны проверяться и отстраиваться от несимметрии или выводиться из работы, так как они мало приспособлены для работы в таких условиях.
    В процессе эксплуатации токовых защит нулевой последовательности должны строго учитываться все заземленные нейтрали автотрансформаторов и трансформаторов, являющиеся как бы источниками токов нулевой последовательности. Распределение тока I0 в сети определяется исключительно расположением заземленных нейтралей, а не генераторов электростанций.
    Контроль исправности цепей напряжения разомкнутого треугольника осуществляется с помощью вольтметра, периодически подключаемого с помощью кнопки SB (см. рис. 7.12). Вольтметр измеряет напряжение небаланса, имеющего значение 1-3 В. При нарушении цепей показание вольтметра пропадает.
    Наряду с рассмотренной токовой направленной защитой нулевой последовательности широкое распространение в сетях 110 кВ и выше получили направленные отсечки и ступенчатые защиты пулевой последовательности. Наиболее совершенными являются четырехступенчатые защиты, первая ступень которых обычно выполняется без выдержки времени. Первая и вторая ступени защиты предназначены для действий при замыканиях на землю в пределах защищаемой линии и на шинах противоположной подстанции. Последние ступени выполняют в основном роль резервирования.
    5305
    Рис. 7.13. Схема токовой направленной защиты нулевой последовательности
    [ http://leg.co.ua/knigi/raznoe/obsluzhivanie-ustroystv-releynoy-zaschity-i-avtomatiki-3.html]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > направленная токовая защита нулевой последовательности

  • 15 продольная дифференциальная защита

    1. longitudinal differential protection
    2. line differential protection

     

    продольная дифференциальная защита
    Защита, действие и селективность которой зависят от сравнения величин (или фаз и величин) токов по концам защищаемой линии.
    [ http://docs.cntd.ru/document/1200069370]

    продольная дифференциальная защита

    Защита, срабатывание и селективность которой зависят от сравнения амплитуд или амплитуд и фаз токов на концах защищаемого участка.
    [Разработка типовых структурных схем микропроцессорных устройств РЗА на объектах ОАО "ФКС ЕЭС". Пояснительная записка. Новосибирск 2006 г.]

    продольная дифференциальная защита линий
    -
    [Интент]

    EN

    longitudinal differential protection
    line differential protection (US)

    protection the operation and selectivity of which depend on the comparison of magnitude or the phase and magnitude of the currents at the ends of the protected section
    [ IEV ref 448-14-16]

    FR

    protection différentielle longitudinale
    protection dont le fonctionnement et la sélectivité dépendent de la comparaison des courants en amplitude, ou en phase et en amplitude, entre les extrémités de la section protégée
    [ IEV ref 448-14-16]


    Продольная дифференциальная защита линий

    Защита основана на принципе сравнения значений и фаз токов в начале и конце линии. Для сравнения вторичные обмотки трансформаторов тока с обеих сторон линии соединяются между собой проводами, как показано на рис. 7.17. По этим проводам постоянно циркулируют вторичные токи I 1 и I 2. Для выполнения дифференциальной защиты параллельно трансформаторам тока (дифференциально) включают измерительный орган тока ОТ.
    Ток в обмотке этого органа всегда будет равен геометрической сумме токов, приходящих от обоих трансформаторов тока: I Р = I 1 + I 2 Если коэффициенты трансформации трансформаторов тока ТА1 и ТА2 одинаковы, то при нормальной работе, а также внешнем КЗ (точка K1 на рис. 7.17, а) вторичные токи равны по значению I 1 =I2 и направлены в ОТ встречно. Ток в обмотке ОТ I Р = I 1 + I 2 =0, и ОТ не приходит в действие. При КЗ в защищаемой зоне (точка К2 на рис. 7.17, б) вторичные токи в обмотке ОТ совпадут по фазе и, следовательно, будут суммироваться: I Р = I 1 + I 2. Если I Р >I сз, орган тока сработает и через выходной орган ВО подействует на отключение выключателей линии.
    Таким образом, дифференциальная продольная защита с постоянно циркулирующими токами в обмотке органа тока реагирует на полный ток КЗ в защищаемой зоне (участок линии, заключенный между трансформаторами тока ТА1 и ТА2), обеспечивая при этом мгновенное отключение поврежденной линии.
    Практическое использование схем дифференциальных защит потребовало внесения ряда конструктивных элементов, обусловленных особенностями работы этих защит на линиях энергосистем.
    Во-первых, для отключения протяженных линий с двух сторон оказалось необходимым подключение по дифференциальной схеме двух органов тока: одного на подстанции 1, другого на подстанции 2 (рис. 7.18). Подключение двух органов тока привело к неравномерному распределению вторичных токов между ними (токи распределялись обратно пропорционально сопротивлениям цепей), появлению тока небаланса и понижению чувствительности защиты. Заметим также, что этот ток небаланса суммируется в ТО с током небаланса, вызванным несовпадением характеристик намагничивания и некоторой разницей в коэффициентах трансформации трансформаторов тока. Для отстройки от токов небаланса в защите были применены не простые дифференциальные реле, а дифференциальные реле тока с торможением KAW, обладающие большей чувствительностью.
    Во-вторых, соединительные провода при их значительной длине обладают сопротивлением, во много раз превышающим допустимое для трансформаторов тока сопротивление нагрузки. Для понижения нагрузки были применены специальные трансформаторы тока с коэффициентом трансформации n, с помощью которых был уменьшен в п раз ток, циркулирующий по проводам, и тем самым снижена в n2 раз нагрузка от соединительных проводов (значение нагрузки пропорционально квадрату тока). В защите эту функцию выполняют промежуточные трансформаторы тока TALT и изолирующие TAL. В схеме защиты изолирующие трансформаторы TAL служат еще и для отделения соединительных проводов от цепей реле и защиты цепей реле от высокого напряжения, наводимого в соединительных проводах во время прохождения по линии тока КЗ.

    5313
    Рис. 7.17. Принцип выполнения продольной дифференциальной защиты линии и прохождение тока в органе тока при внешнем КЗ (а) и при КЗ в защищаемой зоне (б)

     

    5314
    Рис. 7.18. Принципиальная схема продольной дифференциальной защиты линии:
    ZA - фильтр токов прямой и обратной последовательностей; TALT - промежуточный трансформатор тока; TAL - изолирующий трансформатор; KAW - дифференциальное реле с торможением; Р - рабочая и T - тормозная обмотки реле

    Распространенные в электрических сетях продольные дифференциальные защиты типа ДЗЛ построены на изложенных выше принципах и содержат элементы, указанные на рис. 7.18. Высокая стоимость соединительных проводов во вторичных цепях ДЗЛ ограничивает область се применения линиями малой протяженности (10-15 км).
    Контроль исправности соединительных проводов. В эксплуатации возможны повреждения соединительных проводов: обрывы, КЗ между ними, замыкания одного провода на землю.
    При обрыве соединительного провода (рис. 7.19, а) ток в рабочей Р и тормозной Т обмотках становится одинаковым и защита может неправильно сработать при сквозном КЗ и даже при токе нагрузки (в зависимости от значения Ic з .
    Замыкание между соединительными проводами (рис. 7.19, б) шунтирует собой рабочие обмотки реле, и тогда защита может отказать в работе при КЗ в защищаемой зоне.
    Для своевременного выявления повреждений исправность соединительных проводов контролируется специальным устройством (рис. 7.20). Контроль основан на том, что на рабочий переменный ток, циркулирующий в соединительных проводах при их исправном состоянии, накладывается выпрямленный постоянный ток, не оказывающий влияния на работу защиты. Две секции вторичной обмотки TAL соединены разделительным конденсатором С1, представляющим собой большое сопротивление для постоянного тока и малое для переменного. Благодаря конденсаторам С1 в обоих комплектах защит создается последовательная цепь циркуляции выпрямленного тока по соединительным проводам и обмоткам минимальных быстродействующих реле тока контроля КА. Выпрямленное напряжение подводится к соединительным проводам только на одной подстанции, где устройство контроля имеет выпрямитель VS, получающий в свою очередь питание от трансформатора напряжения TV рабочей системы шин. Подключение устройства контроля к той или другой системе шин осуществляется вспомогательными контактами шинных разъединителей или. реле-повторителями шинных разъединителей защищаемой линии.
    Замыкающие контакты КЛ контролируют цепи выходных органов защиты.
    При обрыве соединительных проводов постоянный ток исчезает, и реле контроля КА снимает оперативный ток с защит на обеих подстанциях, и подастся сигнал о повреждении. При замыкании соединительных проводов между собой подается сигнал о выводе защиты из действия, но только с одной стороны - со стороны подстанции, где нет выпрямителя.
    5315
    Рис. 7.19. Прохождение тока в обмотках реле KAW при обрыве (а) и замыкании между собой соединительных проводов (б):
    К1 - точка сквозного КЗ; К2 - точка КЗ в защищаемой зоне
    В устройстве контроля имеется приспособление для периодических измерений сопротивления изоляции соединительных проводов относительно земли. Оно подаст сигнал при снижении сопротивления изоляции любого из соединительных проводов ниже 15-20 кОм.
    Если соединительные провода исправны, ток контроля, проходящий по ним, не превышает 5-6 мА при напряжении 80 В. Эти значения должны периодически проверяться оперативным персоналом в соответствии с инструкцией по эксплуатации защиты.
    Оперативному персоналу следует помнить, что перед допуском к любого рода работам на соединительных проводах необходимо отключать с обеих сторон продольную дифференциальную защиту, устройство контроля соединительных проводов и пуск от защиты устройства резервирования при отказе выключателей УРОВ.
    После окончания работ на соединительных проводах следует проверить их исправность. Для этого включается устройство контроля на подстанции, где оно не имеет выпрямителя, при этом должен появиться сигнал неисправности. Затем устройство контроля включают на другой подстанции (на соединительные провода подают выпрямленное напряжение) и проверяют, нет ли сигнала о повреждении. Защиту и цепь пуска УРОВ от защиты вводят в работу при исправных соединительных проводах.

    [ http://leg.co.ua/knigi/raznoe/obsluzhivanie-ustroystv-releynoy-zaschity-i-avtomatiki-5.html]

    Тематики

    Синонимы

    EN

    DE

    • Längsdifferentialschutz, m

    FR

    Русско-английский словарь нормативно-технической терминологии > продольная дифференциальная защита

  • 16 большой

    Amply-dimensional flywheels...

    A major installation such as our laboratory...

    Profound (or Gross) changes occur in the physical and chemical properties of the substance.

    A sizable arc forms between the contacts.

    The solar system may remain in existence without major changes for... additional years.

    Metal is not believed to make much ( of a) contribution to the interior material of the mantle.

    * * *
    Большой -- considerable, substantial, significant, large, major, great; sizable, marked (ощутимый, заметный); extreme (очень большой); wide (широкий)
     The initial conditions on these numericial solutions were altered to impart a sizeable value to the initial derivative of outlet flowrate.

    Русско-английский научно-технический словарь переводчика > большой

  • 17 преимущество

    (см. также достоинство, недостаток) advantage, preference, the benefits of, the advantages of
    ... имеют многочисленные преимущества. - The advantages of... are manifold/numerous/many.
    Важное преимущество (3.7) по отношению (3.3) состоит в том, что... - The important advantage of (3.7) over (3.3) is that...
    Важное преимущество такой переформулировки состоит в том, что... - An important advantage of this reformulation is that...
    Возможно, лишь небольшое преимущество будет достигнуто (путем)... - There is perhaps little advantage to be gained by...
    Главное преимущество данного метода заключается в том, что... - The chief advantage of the method is that...
    Главное преимущество данной процедуры по сравнению с традиционными методами состоит в том, что... - The major advantage of this procedure over the traditional method is that...
    Главное преимущество соотношения (5) состоит в том, что... - The principal advantage of (5) is that...
    Главным преимуществом данного метода имеется его общность. - The principal advantage of the method is its generality.
    Главным преимуществом данного метода является его простота. - The principal virtue of the method is its simplicity.
    Данный метод имеет много важных преимуществ. - The method has many important advantages.
    Как мы увидим, такое обозначение имеет несколько преимуществ, особенно когда... - This notation has several advantages, as we shall see, especially when...
    Каковы преимущества данной процедуры? - What are the advantages of this procedure?
    Метод обладает очевидным преимуществом... - The method possesses the obvious advantage of...
    Мы не видим никаких существенных преимуществ в использовании... - There would seem to be little advantage in using...
    Мы проиллюстрируем преимущества и недостатки (чего-л). - We will illustrate the advantages and disadvantages of...
    Наиболее важным преимуществом данной процедуры является то, что... - The primary advantage of this procedure is that...
    Наконец, для некоторых целей могло бы принести преимущества... - Finally, it might be advantageous for some purposes to...
    Находится под вопросом, может ли эта процедура дать какие-либо реальные преимущества. - It is doubtful that this procedure can be used to any real advantage.
    Нет никаких особых преимуществ в использовании... - There is no special merit in using...
    Одним из преимуществ этой процедуры является то, что... - One advantage of this procedure is that...
    Основное преимущество метода состоит в его простоте. - The main advantage of the procedure lies in its simplicity.
    Отличительным преимуществом данной процедуры является то, что... - A distinct advantage of the procedure is that...
    Очевидно, это было бы огромным преимуществом, если... - It would obviously be a great advantage if...
    Первым преимуществом данной процедуры является то, что становится легче... - The first advantage of this procedure is that it is easier to...
    Перед тем, как использовать его (метода) преимущество, мы должны... - Before taking advantage of this, we must...
    Потенциальное преимущество данной процедуры состоит в том, что... - A potential advantage of this procedure lies in the fact that...
    Преимущество этого выбора состоит в том, что... - The advantage of this choice is that...
    Преимущество этого метода заключается в том, что... - The advantage of this method lies in the fact that...
    Преимущество этой процедуры состоит в том, что... - The advantage of this procedure is that...
    Преимущество этой процедуры, следовательно, состоит в том, что она обеспечивает простой... - The advantage of this procedure, therefore, is that it provides a simple...
    Преимуществом уравнения (3) является то, что оно позволяет... - The advantage of (3) is that it permits...
    Преимуществом этого (метода) является то, что... - The advantage of this is...
    Третье практическое преимущество этой формы состоит в том, что... - A third practical advantage of this form lies in the fact that...
    Фундаментальным преимуществом этой процедуры является то, что... - A fundamental advantage of this procedure is that...
    Использование альтернативной формулы (2) часто имеет свои преимущества. - It is often advantageous to use the alternative formula (2).
    Чтобы воспользоваться преимуществами данной процедуры, необходимо... - In order to take advantage of this procedure, one must...
    Это имеет то преимущество, что становится вполне понятно, что... - This has the advantage of making it quite clear that...
    Это не обязательно является преимуществом, так как... - This is not necessarily an advantage, since...
    Это соотношение имеет то преимущество, что... - This relation has the advantage that...
    Этот подход имеет то преимущество, что... - This approach has the advantage that...
    Этот подход предлагает существенные математические преимущества, потому что... - This approach offers considerable mathematical advajitages, because...

    Русско-английский словарь научного общения > преимущество

  • 18 бериллий

    1. beryllium
    2. Be

     

    бериллий
    Be

    Элемент II группы Периодич. системы, ат. н. 4, ат. м. 9,0122; легкий светло-серый металл. Имеет один стабильный изотоп 9Ве. Металлич. Be впервые получили в 1828 г. немец. химик Ф. Велер и франц. химикА. Бюсси независимо друг от друга.
    Be — редкий элемент, среднее содержание его в земной коре 6 • 10 %. Be находится в рудах гл. образом в форме собственных минералов, а также (обычно не более 5—10 %) в виде изоморфной примеси в породообразующих материалах. Известно около 40 минералов Be. Из них наибольшее практическое значение имеет берилл (содержащий 10—12 % ВеО), перспективны и частично используются фенакит (42-45 %), гельвин (10-12 %), хризоберилл (18-20 %), бертрандит (40-42 %).
    Кристаллическая решетка Be - ГПУ: а = = 0,2855 нм и с = 0,3584 нм. Be легче Аl, у= 1847,7 кг/м3, tm= 1284 °С, /кнп= 2450 °С. Be обладает наиб. высокой из всех металлов теплоемкостью - 1,8 кг/м3, высокой теплопроводностью - 178 Вт/м •К (при 50 °С), а = = 10,3-13,1 • 10"' (25-100 oС), Е= 3-Ю5 МПа, ств = 200-550 МПа, удлинение 0,2-2 %. Be -хрупкий металл; его ударная вязкость - 1,0— 5,0 Дж/см2; темп-pa перехода из хрупкого состояния в пластич. 200—400 °С. В хим. соединениях Be двухвалентен; обладает высокой хим. активностью, но компактный Be устойчив на воздухе благодаря образованию тонкой и прочной окисной пленки ВеО. При нагревании > 800 °С быстро окисляется. С водой до 100 °С практич. не взаимодействует. Be легко растворяется в HF, HCl, разбавл. H2SO4, слабо реагирует с концентриров. H2SO4 и разбавл. HNO3. Р-ряется в водных р-рах щелочей, образуя бериллиаты, напр. Na2BeO2. При комн. темп-ре реагирует с фтором, а при повышенных - с др. галогенами и с H2S. Взаимодействует с N2 при t > 650 °С с образованием Be3N2 и при t > 1200 °С с углеродом, образуя Ве2С. С водородом практически не реагирует во всем диапазоне темп-р. При высоких темп-pax Be взаимодействует с большинством металлов, образуя бериллиды; с Аl и Si образует эвтектич. сплавы.
    Металлич. Be и его соединения получают переработкой берилла в Ве(ОН)2 или BeSO4, из к-рых разными способами - BeF2 или ВеСl2, а затем восстановлением, в частности ВеСl2 в смеси с NaCl при 350 °С — металлич. Be. Получ. металл переплавляют в вакууме. Металл высокой чистоты получают дистилляцией в вакууме, а в неб. кол-вах — зонной плавкой; применяют также электролитич. рафинирование. Вследствие низких технологич. св. изделия из Be обычно получают методами порошковой металлургии. Be измельчают в порошок и подвергают горячему прессованию в вакууме при 1140-1180 °С. Прутки, трубы и другие профили получают выдавливанием при 800—1050 °С (горячее выдавливание) или при 400—500 °С (теплое выдавливание). Листы из Be изготовляют прокаткой горячепрессованных заготовок или полос при 760-840 °С. Применяют также ковку, штамповку, волочение. Переработка Be осложняется высокой токсичностью летучих соединений и пыли, содержащих Be, поэтому при работе с Be и его соединениями нужны специальные меры защиты.
    В Be выгодно сочетаются малая плотность, высокие модуль упругости, прочность и теплопроводность. По уд. прочности Be превосходит все металлы. Благодаря этому Be применяют в авиац., ракетной и космич. технике, гидроприборостроении.
    Однако высокая хрупкость Be при комн. темп-ре — главный фактор, сдерживающий его широкое использование как конструкц. материала. Поэтому Be в большем кол-ве используют в кач-ве легир. добавки сплавов на основе Al, Mg, Си и др. цв. металлов. Be - один из лучших материалов для заменителей и отражателей нейтронов в атомных реакторах.
    [ http://metaltrade.ru/abc/a.htm]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > бериллий

  • 19 эколого-экономическое моделирование

    1. ecologico-economic modelling

     

    эколого-экономическое моделирование
    Описание экономических и экологических процессов в их взаимосвязи в виде эколого-экономических моделей, основной исследовательский метод новой экономической дисциплины, которую можно было бы назвать экологической экономикой, но чаще (особенно в вузовских программах) определяют как экономику природопользования. Непосредственной причиной возникновения данной области исследований явились тревожащие человечество процессы изменений в окружающей среде, связанные с происходящей в мире научно-технической революцией, и соответственно потребность в целенаправленных действиях по сдерживанию этих процессов как в глобальном масштабе, так и в локальных рамках отдельных экономических объектов. Разработка показателей, характеризующих качество окружающей среды, прогнозирование возможных изменений среды в результате принятия тех или иных (главным образом хозяйственных) решений, прогнозирование обратного влияния экологических факторов на производство и экономические процессы в целом, планирование мероприятий по охране окружающей среды (например, строительство очистных сооружений, создание безотходных технологий) — таковы основные сферы применения Э.-э.м. Причем следует отметить, что главным принципом здесь должен быть принцип оптимизации: во всех случаях использование ресурсов природы, улучшение тех или иных объектов окружающей среды (например, устранение загрязнений воды или воздуха) должны приносить максимум (общественной) полезности при минимуме затрат на соответствующую деятельность. В частном случае критерием оптимальности может выступать сопоставление затрат на улучшение природы, уничтожение загрязнителей и т.п. с полученным экономическим эффектом. Степень «участия» экологических и экономических факторов в эколого-экономической модели может быть различной. В одних случаях в «чисто» экономической модели, например, наряду с выпуском продукции учитывается и выпуск «побочной» продукции — отходов как загрязнителей среды. В других случаях моделируются взаимосвязи экологических факторов, однако результаты расчетов используются в тех или иных прогнозных или плановых производственных задачах. Такова, например, модель природной экосистемы, содержащая уравнения баланса живого органического вещества (биомассы). Рядом исследователей делаются попытки построения комплексов и систем эколого-экономических моделей в целях планирования и управления состоянием окружающей среды. Практическое применение (для прогнозирования воздействий структуры экономики на окружающую среду) в ряде стран приобретают расширенные модели межотраслевого баланса, включающие наряду с производственными отраслями также «отрасли», уничтожающие вредные отходы. Решающую роль в развитии этого направления сыграли работы В.В.Леонтьева, который утверждал, что «…загрязнение и другие нежелательные (или желательные) внешние эффекты производственной деятельности с чисто практической точки зрения следует рассматривать как часть экономической системы»[1].На­конец, существует еще более широкий подход к эколого-экономическому балансу, исходящий из законов термодинамики: количество вещества, взятого из природы для производства благ, сравнивается с ко­личеством отходов жизнедеятельности человека в целом (materials balance principle). См. Вэйст-индекс, Дифференциальные экологические затраты, Глобальные модели.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > эколого-экономическое моделирование

См. также в других словарях:

  • Практическое использование водорослей —         Повсеместное распространение водорослей в природе и обильное, а подчас и массовое развитие их в водоемах разного типа, на наземных субстратах и в почве определяют огромное значение этих растений как в повседневной жизни человека, так и в… …   Биологическая энциклопедия

  • ПРАКТИЧЕСКОЕ ИСПОЛЬЗОВАНИЕ ЛИШАЙНИКОВ —         Экономическое значение лишайников в жизни человека велико. Во первых, это важнейшие кормовые растения. Лишайники служат основным кормом для северных оленей животных, играющих большую роль в жизни народов Крайнего Севера.         Основу… …   Биологическая энциклопедия

  • Практическое использование фагов —         Первыми были выделены фаги, активные против патогенных микроорганизмов (дизентерийной палочки).         Вполне естественно, что у исследователей многих стран возник вопрос об использовании фагов для лечения и профилактики инфекционных… …   Биологическая энциклопедия

  • Использование —         Начало орхидологии восходит к древней Греции, когда Теофраст (IV III вв. до н. э.) в своем «Исследовании о растениях» впервые употребил греческое слово orchis для обозначения одного из этих растений, а затем в I в. н. э. это же название… …   Биологическая энциклопедия

  • Практическое пособие по эксплуатации основных фондов объектов капитального строительства производственного назначения — Терминология Практическое пособие по эксплуатации основных фондов объектов капитального строительства производственного назначения: 4.2. Контроль за техническим состоянием объектов капитального строительства осуществляется путем проведения… …   Словарь-справочник терминов нормативно-технической документации

  • Практическое применение раскраски графов — Эту статью следует викифицировать. Пожалуйста, оформите её согласно правилам оформления статей. Раскраска графов практически применяется (постановку задачи различиных раскрасок здесь обсуждаться не будет) дл …   Википедия

  • КОСМОСА ИССЛЕДОВАНИЕ И ИСПОЛЬЗОВАНИЕ — экспериментальное исследование и практическое использование пространства за пределами земной атмосферы при помощи пилотируемых космических кораблей (КК), искусственных спутников Земли (ИСЗ) и автоматических межпланетных станций (АМС). В понятие… …   Энциклопедия Кольера

  • Добросовестное использование — (англ. fair use)  правовая доктрина в США, которая описывает исключения и ограничения исключительного права, предоставляемого автору творческого произведения законом. В рамках данной доктрины допускается свободное использование… …   Википедия

  • Культивирование энтомофторовых грибов и практическое значение их —         Долгое время энтомофторовые грибы считали строгими паразитами, неспособными расти вне тела хозяина. Однако в дальнейшем исследо вателям удалось выделить из насекомых несколько видов грибов этого семейства и вырастить их более чем на 40… …   Биологическая энциклопедия

  • СССР. Ресурсы внутренних вод и их использование —         Распределение и динамика водных ресурсов          Основное практическое значение имеют ежегодно восстанавливающиеся ресурсы речного стока, величина которых колеблется от года к году и в течение года; важным резервом водоснабжения являются …   Большая советская энциклопедия

  • Роль в природе и практическое значение харофитов —         Место, занимаемое харовыми водорослями в природе, сравнительно невелико, что определяется их обитанием в основном в водоемах озерного и прудового характера, да и то далеко не во всех. Однако там, где они поселяются, влияние их на… …   Биологическая энциклопедия

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»