-
1 получать название
Получать названиеIt is from these members that the regenerator developed its name "structural strongback".The expression subsequently became one of the best known relationships in lubrication theory and attracted the title Petrov's law.Русско-английский научно-технический словарь переводчика > получать название
-
2 получать название
•Hence, axb is not a true vector and therefore is given the title pseudovector.
•Alberite derives (or takes, or gets) its name from the Albert Mines.
•Alkaloids draw their name from a variety of sources.
•A cyanoethyl group on gave the process the name cyanoethylation.
•Apophyllite exfoliates when heated, is losing water, and is named from this characteristic.
•Borite thus received the name Bologna stone.
•The experimental tests of baryon-number conservation have come to be known as proton-decay experiments.
Русско-английский научно-технический словарь переводчика > получать название
-
3 получать название
Mathematics: draw its name from, get its name from -
4 получать
Получать - to obtain, to get, to produce, to develop, to derive, to gain, to have, to receive; to acquire, to generate, to collect; to arrive at (о решении, о значении величины); to achieve (результат)Analytical results describing the global stability phenomenon were developed by numerically integrating the temperature response equations (...).A dimensionless representation of the blockage-related pressure loss can be achieved by rationing P6 with the velocity head 1/2 V2.см. тж. получить—получать ответ на—получать право наРусско-английский научно-технический словарь переводчика > получать
-
5 название
см. быть известным под названием; идти под названием; идти под общим названием; известный под названием; как видно из названия; носить название; получать название; это название объясняется тем, что* * *Русско-английский научно-технический словарь переводчика > название
-
6 название
Русско-английский научно-технический словарь переводчика > название
-
7 получать своё название за то, что
Получать своё название за то, что-- It gets its name because the non-circular driven gears are affixed to the bevel and carrier of the differential.Русско-английский научно-технический словарь переводчика > получать своё название за то, что
-
8 называть
•By a long slug is meant one which is long enough to be the subject of a steady-state extrusion.
•This portion of the wave will be denoted (or named, or designated, or called) the stable section.
•When the ratio is unity, the propeller is described as a square propeller.
•This system is designated as Model M-50.
•Such a plot is generally identified as a "Stress-Number of Cycles Curve".
•This phenomenon is known as piping.
•Such absorption is termed chemical.
•This type of magnetism is given the name temporary magnetism.
•Actinomycetales are often spoken of as "higher", "filamentous", or "mouldlike" bacteria.
•This relationship has been labelled as Stefan's law.
•When there are more than two alleles of a given gene, they are said to be multiple alleles.
•The minimum current density needed to start lasing action in a diode is termed (or referred to as) the threshold current density.
Русско-английский научно-технический словарь переводчика > называть
-
9 называть
•By a long slug is meant one which is long enough to be the subject of a steady-state extrusion.
•This portion of the wave will be denoted (or named, or designated, or called) the stable section.
•When the ratio is unity, the propeller is described as a square propeller.
•This system is designated as Model M-50.
•Such a plot is generally identified as a "Stress-Number of Cycles Curve".
•This phenomenon is known as piping.
•Such absorption is termed chemical.
•This type of magnetism is given the name temporary magnetism.
•Actinomycetales are often spoken of as "higher", "filamentous", or "mouldlike" bacteria.
•This relationship has been labelled as Stefan's law.
•When there are more than two alleles of a given gene, they are said to be multiple alleles.
•The minimum current density needed to start lasing action in a diode is termed (or referred to as) the threshold current density.
* * *см. тж. называтьсяРусско-английский научно-технический словарь переводчика > называть
-
10 называться
1. be identified as2. be referred to as3. be termed as4. call; be calledСинонимический ряд:1. именоваться (глаг.) зваться; именоваться2. получать название (глаг.) получать название3. сказываться (глаг.) сказываться -
11 бактерии
bacteria, ед. ч. bacteriumГруппа ( тип) микроскопических, преимущественно одноклеточных организмов, обладающих клеточной стенкой, но не имеющих оформленного ядра ( роль его выполняет молекула ДНК), размножающихся делением. Бактерии широко распространены в природе (вызывают гниение, брожение и т. д.); некоторые бактерии используются в сельском хозяйстве (см. также азотобактер), для микробиологического синтеза и др.; болезнетворные ( патогенные) бактерии – возбудители многих болезней человека, животных и растений (см. также палочки и кокки).
Бактерии, которые могут синтезировать органические вещества из неорганичных в результате фотосинтеза или хемосинтеза (см. также автотрофы).
Бактерии, обладающие способностью усваивать молекулярный азот воздуха и переводить его в доступные для растений формы. Играют важную роль в круговороте азота в природе (см. также азотфиксация).
Бактерии, использующие кислород в минимальных количествах для своей жизнедеятельности (см. также анаэробы).
Бактерии рода Clostridium (например, Clostridium acetobutylicum), у которых основными продуктами сбраживания углеводов являются ацетон и бутанол.
Бактерии, жизнеспособные в очень кислой среде; получают энергию за счёт окисления железа, серы и других веществ; используются для выщелачивания бедных руд с целью получения меди, цинка, никеля, молибдена, урана и в молочной промышленности.
Бактерии, которые требуют кислорода для основного ( элементарного) выживания, роста и процесса воспроизводства. Аэробные бактерии очень распространенны в природе и играют главную роль в самых разных биологических процессах (см. также аэробы).
водородные бактерии — hydrogenotrophic bacteria, hydrogen-oxidizing bacteria
Большая группа бактерий, способных к использованию ( окислению) молекулярного водорода. Различают анаэробные водородные бактерии, у которых окисление H2 сопровождается восстановлением сульфата до сульфита или CO2 до метана (например, Desulfovibrio vulgaris, Methanobacterium), и аэробные водородные бактерии, которые используют кислород как конечный акцептор электронов и способны к автотрофной фиксации CO2 (например, Alcaligenes eutrophus, Pseudomonas facilis и другие).
Бактерии, обладающие способностью при росте на некоторых субстратах образовывать газ (H2, CO2 и другие). Это свойство используется как диагностический признак.
Бактерии, живущие в средах с высоким содержанием солей; встречаются на кристаллах соли в прибрежной полосе, на солёной рыбе, на засоленных шкурах животных, на рассольных сырах, в капустных и огуречных рассолах (см. также галобактерии).
Бактерии, использующие в качестве источника энергии и углерода углеродсодержащие ( органические) соединения (см. также гетеротрофы).
Бактерии, которые при окрашивании по Граму могут окрашиваться как в тёмно-синий, так и в розово-красный цвет.
Бактерии, которые при использовании окраски по Граму обесцвечиваются при промывке. После обесцвечивания они обычно окрашиваются дополнительным красителем ( фуксином) в розовый цвет. Многие грамотрицательные бактерии патогенны.
Бактерии, которые окрашиваются по методу Грама основным красителем в тёмно-фиолетовый цвет и не обесцвечиваются при промывке.
Бактерии, способные восстанавливать нитрат через нитрит до газообразной закиси азота (N2O) и азота (N2) (например, Pseudomonas aeruginosa, Pseudomonas fluorescens, Pseudomonas stutzeri и другие). В отсутствие кислорода нитрат служит конечным акцептором водорода.
Группа бактерий, для которых характерно наличие хлоросом – органелл, содержащих пигмент бактериохлорофилл.
Бактерии, имеющие форму спирально извитых или дугообразных изогнутых палочек; обитают в водоёмах и кишечнике животных.
клубеньковые бактерии — nodule bacteria, root nodule bacteria
Бактерии, вызывающие образование клубеньков у бобовых растений; относятся к родам Rhizobium, Bradyrhizobium, Sinorhizobium, Azorhizobium (см. также бактероиды).
Группа бактерий, типичными представителями которой являются роды Escherichia, Salmonella и Shigella; обитают в кишечнике животных и человека.
Бактерии группы кишечной палочки; относятся к классу граммотрицательных бактерий, имеют форму палочек, в основном живут и размножаются в нижнем отделе пищеварительного тракта человека и большинства теплокровных животных.
Бактерии, инфицированные умеренным фагом и включившие профаг в ДНК.
люминесцирующие бактерии — luminescent bacteria, luminous bacteria
Бактерии, культуры которых в присутствии кислорода светятся белым или голубоватым светом; принадлежат к различным систематическим группам. Распространены в поверхностном слое воды морей. Некоторые виды обитают в органах свечения головоногих моллюсков и рыб.
Гетероферментативные молочнокислые бактерии рода Leuconostoc. Образуют зооглеи – скопления клеток, заключенные в одну общую капсулу. При этом слизистые экзополимеры выделяются бактериальной клеткой в большом количестве, частично отделяются от неё и образуют рыхлый слизистый слой (см. также слизь).
Бактерии рода Clostridium (Clostridium butyricum, Clostridium pasteurianum, Clostridium pectinovorum), у которых основными продуктами сбраживания являются масляная и уксусная кислоты.
Бактерии, для которых температурный оптимум для роста лежит в пределах от 20°C до 42°C; к мезофильным бактериям относятся большинство почвенных и водных бактерий.
метанобразующие бактерии — methanogenic bacteria, methanogens
Бактерии, способные получать энергию за счёт восстановления CO2 до метана; морфологически разнообразная группа, строгие анаэробы (см. также метаногены).
метаноокисляющие бактерии — methane oxidizing bacteria, methane oxidizers
Бактерии, специализирующиеся на использовании C1-соединений. Относятся к метилотрофным организмам.
Бактерии, окисляющие метан, а также способные использовать метанол, метилированные амины, диметиловый эфир, формальдегид и формиат. Включают роды Methylomonas, Methylococcus, Methylosinus.
Тривиальное название группы бактерий, образующих молочную кислоту при сбраживании углеводов. К молочнокислым бактериям относятся роды Lactobacillus и Streptococcus.
бактерии, не образующие газа — non-gas-producing bacteria
бактерии, не способные адсорбировать фаг — nonreceptive bacteria
Бактерии, безопасные для человека, животных и растений.
Группа бактерий с преимущественно фотогетеротрофным метаболизмом. Бактерии чувствительны к H2S, их рост подавляется низкими концентрациями сульфида.
нитрифицирующие бактерии — nitrifying bacteria, nitrifiers
Бактерии, получающие энергию при окислении аммиака в нитрит или нитрита в нитрат. Наиболее известные виды – Nitrosomonas europaea и Nitrobacter winogradskyi, а также виды рода Nitrosolobus (см. также нитрификация).
Бактерии, растущие в виде длинных нитей, состоящих из цепочки клеток ( раньше их называли охровыми бактериями). Нитчатые бактерии широко распространены в водах, богатых железом, канавах, дренажных трубах и болотах. Наиболее известна Sphaerotilus natans.
Нитчатые бактерии рода Leptothrix. Естественные места их обитания бедны пригодными для них органическими веществами, но богаты железом, поэтому органические вещества там часто образуют комплексы с железом. Из-за этого чехлы этих бактерий пронизаны и окружены частицами окиси железа.
палочковидные бактерии — rodlike bacteria, rod-shaped bacteria, bacilli
Самая распространенная форма бактерий. Палочковидные бактерии различаются по форме, величине в длину и ширину, по форме концов клетки, а также по взаимному расположению. Палочки могут быть правильной и неправильной формы, в том числе ветвящиеся. Общее число палочковидных бактерий значительно больше, чем кокковидных (см. также бациллы).
Бактерии, вызывающие болезни человека, животных и растений.
Группа бактерий (например, Mycobacterium tuberculosis, Pseudomonas aeruginosa, Serratia marcescens и другие) с яркой окраской, обусловленной пигментацией самой клетки. Среди пигментов могут встречаться представители различных классов веществ: каротиноиды, феназиновые красители, пирролы, азахиноны, антоцианы и другие.
Бактерии родов Propionibacterium, Veillonella, Clostridium, Selemonas, Micromonospora и другие, выделяющие пропионовую и уксусную кислоты как основные продукты брожения. Обитают в рубце и кишечнике жвачных животных. В промышленности используются, например, при производстве швейцарского сыра.
Бактерии, обладающие специальными выростами – простеками. Большинство простековых бактерий обнаружено среди олиготрофных микроорганизмов, обитающих в воде. У фотосинтезирующих зелёных бактерий рода Prosthecochloris в простеках располагаются хлоросомы, содержащие бактериохлорофилл.
Холодолюбивые бактерии, растущие с максимальной скоростью при температурах ниже 2°C. Психрофильные бактерии составляют большую группу сапрофитических микроорганизмов – обитателей почвы, морей, пресных водоёмов, сточных вод. К ним относятся некоторые железобактерии, псевдомонады, светящиеся бактерии, бациллы и другие. Некоторые психрофильные бактерии могут вызывать порчу продуктов питания, хранящихся при низкой температуре (см. также психрофильные организмы).
Общим для всех пурпурных бактерий Rhodospirillales является способность использовать в качестве основного источника энергии свет, но многие растут и в темноте за счёт энергии, образуемой при окислительном фосфорилировании. Их фотосинтетический аппарат находится на внутренних мембранах – тилакоидах. По способности использовать в качестве донора электронов элементарную серу в группе пурпурных бактерий выделяют два семейства: пурпурные серные бактерии и пурпурные несерные бактерии.
Группа бактерий (например, Chromatium, Thiocapsa, Ectothiorhodospira и Thiospirillum jenense), входящая в состав пурпурных бактерий. Отличительной особенностью этой группы является внутриклеточное отложение серы, образующейся при окислении H2S.
Бактерии, которые могут расти на простых средах, содержащих одно вещество в качестве источника углерода и энергии, а также несколько неорганических солей для обеспечения потребности в других элементах. Для многих бактерий предпочтительным источником углерода служит глюкоза.
Бактерии, превращающие органические вещества в неорганические, участвуя тем самым в круговороте веществ в природе; к сапрофитным относятся большинство бактерий.
Хемоорганотрофные бактерии ( роды Photobacterium и Beneckea), в основном обитающие в морях; свечение этих бактерий наблюдается только в присутствии кислорода.
Бактерии, временно накапливающие или выделяющие серу. Для аэробных серных бактерий (роды Beggiatoa, Thiothrix, Achromatium, Thiovulum) сера служит источником энергии, для анаэробных фототрофных серных бактерий ( род Chromatium) – донором электронов. Включения серы у некоторых бактерий представляют собой продукты обеззараживания сероводорода, часто присутствующего в местах обитания этих организмов.
Бактерии, образующие капсулу ( более или менее толстые слои сильно обводнённого материала), которая отделяется в окружающую среду в виде слизи. Известный пример слизеобразующей бактерии – Leuconostoc mesenteroides, так называемая бактерия лягушачьей икры.
Бактерии, обладающие способностью образовывать терморезистентные споры. Аэробные и факультативно анаэробные спорообразующие бактерии сведены в роды Sporolactobacillus, Bacillus и Sporosarcina, а анаэробные – роды Clostridium и Desulfotomaculum.
Некоторые широко распространённые бактерии, «сидящие» на стебельках из слизи. К стебельковым бактериям, образующим специальные выросты или простеки, относятся Caulobacter и другие.
Бактерии, встречающиеся главным образом в сероводородном иле, где органические вещества подвергаются анаэробному разложению. Эти бактерии приспособлены к использованию продуктов неполного разложения углеводов. Имеют большое экономическое значение, так как с их помощью можно, например, получать сероводород, а следовательно, и серу путём восстановления сульфатов морской воды за счёт органических отходов. К важнейшим и наиболее распространённым сульфатредуцирующим бактериям относятся Desulfovibrio desulfuricans, Desulfovibrio vulgaris, Desulfotomaculum nigrificans, Desulfotomaculum orientis и другие.
Теплолюбивые бактерии, хорошо растущие при температурах выше 40°C, для большинства из них верхний предел температуры 70°C (Thermoactinomyces vulgaris, Bacillus stearothermophilus). Некоторые термофильные бактерии способны расти при температурах более 70°C ( отдельные виды Bacillus и Clostridium), более 80°C ( Sulfolobus acidocaldarius) или даже 105°C ( Pyrodictium occultum) (см. также чёрные курильщики).
уксуснокислые бактерии — acetic-acid bacteria, vinegar bacteria
Группа бактерий, способных образовывать кислоты путём неполного окисления сахаров или спиртов. Конечными продуктами такого окисления могут быть уксусная, гликолевая, нейлоновая и другие кислоты. Уксусные бактерии делятся на две группы: peroxydans ( типичный представитель Gluconobacter oxydans), т. е. организмы, накапливающие уксусную кислоту в качестве промежуточного продукта, и suboxydans (например, Acetobacter aceti и Acetobacter pasteurianum), у которых уксусная кислота не окисляется дальше. Благодаря своей способности почти в стехиометрических количествах превращать органические соединения в частично окисленные органические продукты, эти бактерии имеют большое промышленное значение, в частности, используются для производства уксуса из продуктов, содержащих спирт.
Бактерии, способные использовать свет как источник энергии, необходимой для роста. Это свойство присуще нескольким группам бактерий: 1) пурпурным, зёленым и галобактериям ( класс Anoxyphotobacteria), фотосинтез у которых протекает без выделения O2, и 2) цианобактериям ( класс Oxyphotobacteria), выделяющим O2 на свету (см. также фотосинтез).
Большая группа хемолитотрофных бактерий, у которых CO2 является единственным и главным источником клеточного углерода. Почти все бактерии этого типа ассимилируют углерод CO2 через рибулозо-бисфосфатный цикл. Благодаря своей высокой специализации многие бактерии этой группы занимают монопольное положение в своей экологической нише.
Бактерии, ассимилирующие органическое вещество в процессе окисления неорганического донора электронов.
Бактерии, способные использовать неорганические ионы или соединения (ионы аммония, нитрита, сульфида, тиосульфата, сульфита, двухвалентного железа, а также элементарную серу, молекулярный водород и CO) в качестве доноров водорода или электронов, т. е. получать за счёт их окисления энергию для синтетических процессов.
Бактерии, образующие различные красящие вещества или пигменты, вследствие чего их скопления в природе и на искусственных средах являются окрашенными в различный цвет (см. также хромобактерии).
целлюлолитические бактерии — cellulose-fermenting bacteria, cellulolytic bacteria
Бактерии, разлагающие целлюлозу. Целлюлолитические бактерии секретируют, в основном, эндоглюканазы, большинство из которых проявляет низкую активность по отношению к кристаллической целлюлозе; являются важным звеном в круговороте углерода в природе и существенной частью экосистемы (см. также целлюлоза).
Русско-английский словарь терминов по микробиологии > бактерии
-
12 звание
1. capacity2. knowledge3. rank; title; class; standing4. degree5. titleСинонимический ряд:название (сущ.) название; наименование; прозвание -
13 свой
—лучше остановить свой выбор на—обращать свой взор наРусско-английский научно-технический словарь переводчика > свой
-
14 метаматериалы
МетаматериалыИскусственно созданные материалы (в природе не существуют), обладающие уникальными электрическими, магнитными, оптическим и др. свойствами. Метаматериалы – это структуры с отрицательным показателем преломления. Среды с отрицательным показателем преломления – это среды, в которых как диэлектрическая, так и магнитная проницаемость µ меньше нуля. В этом случае векторы электрического поля, магнитного поля и волновой вектор, как следует из уравнений Максвелла, образуют левую тройку. Это значит, что фазовая скорость направлена противоположно групповой, определяемой направлением вектора Умова-Пойнтинга. Необычные свойства таких сред были предсказаны отечественным ученым В.Г. Веселаго еще в 1966 году, им же предложено название ―левые материалы‖ (в иностранной литературе left-handed materials). Экспериментаторы уже занимаются разработкой технологий, в которых используются удивительные свойства метаматериалов, и создают суперлинзы, позволяющие получать изображения с деталями меньше длины волны используемого света. С их помощью можно было бы делать микросхемы с наноскопическими элементами и записывать на оптические диски огромные объемы информации.Расчетные данные для распространения света в стакане с металлическим стержнемRussian-English dictionary of Nanotechnology > метаматериалы
-
15 metamaterials
МетаматериалыИскусственно созданные материалы (в природе не существуют), обладающие уникальными электрическими, магнитными, оптическим и др. свойствами. Метаматериалы – это структуры с отрицательным показателем преломления. Среды с отрицательным показателем преломления – это среды, в которых как диэлектрическая, так и магнитная проницаемость µ меньше нуля. В этом случае векторы электрического поля, магнитного поля и волновой вектор, как следует из уравнений Максвелла, образуют левую тройку. Это значит, что фазовая скорость направлена противоположно групповой, определяемой направлением вектора Умова-Пойнтинга. Необычные свойства таких сред были предсказаны отечественным ученым В.Г. Веселаго еще в 1966 году, им же предложено название ―левые материалы‖ (в иностранной литературе left-handed materials). Экспериментаторы уже занимаются разработкой технологий, в которых используются удивительные свойства метаматериалов, и создают суперлинзы, позволяющие получать изображения с деталями меньше длины волны используемого света. С их помощью можно было бы делать микросхемы с наноскопическими элементами и записывать на оптические диски огромные объемы информации.Расчетные данные для распространения света в стакане с металлическим стержнемRussian-English dictionary of Nanotechnology > metamaterials
-
16 интеллектуальный учет электроэнергии
интеллектуальный учет электроэнергии
-
[Интент]Учет электроэнергии
Понятия «интеллектуальные измерения» (Smart Metering), «интеллектуальный учет», «интеллектуальный счетчик», «интеллектуальная сеть» (Smart Grid), как все нетехнические, нефизические понятия, не имеют строгой дефиниции и допускают произвольные толкования. Столь же нечетко определены и задачи Smart Metering в современных электрических сетях.
Нужно ли использовать эти термины в такой довольно консервативной области, как электроэнергетика? Что отличает новые системы учета электроэнергии и какие функции они должны выполнять? Об этом рассуждает Лев Константинович Осика.
SMART METERING – «ИНТЕЛЛЕКТУАЛЬНЫЙ УЧЕТ» ЭЛЕКТРОЭНЕРГИИ
Определения и задачи
По многочисленным публикациям в СМИ, выступлениям на конференциях и совещаниях, сложившемуся обычаю делового оборота можно сделать следующие заключения:
• «интеллектуальные измерения» производятся у потребителей – физических лиц, проживающих в многоквартирных домах или частных домовладениях;
• основная цель «интеллектуальных измерений» и реализующих их «интеллектуальных приборов учета» в России – повышение платежной дисциплины, борьба с неплатежами, воровством электроэнергии;
• эти цели достигаются путем так называемого «управления электропотреблением», под которым подразумеваются ограничения и отключения неплательщиков;
• средства «управления электропотреблением» – коммутационные аппараты, получающие команды на включение/отключение, как правило, размещаются в одном корпусе со счетчиком и представляют собой его неотъемлемую часть.
Главным преимуществом «интеллектуального счетчика» в глазах сбытовых компаний является простота осуществления отключения (ограничения) потребителя за неплатежи (или невнесенную предоплату за потребляемую электроэнергию) без применения физического воздействия на существующие вводные выключатели в квартиры (коттеджи).
В качестве дополнительных возможностей, стимулирующих установку «интеллектуальных приборов учета», называются:
• различного рода интеграция с измерительными приборами других энергоресурсов, с биллинговыми и информационными системами сбытовых и сетевых компаний, муниципальных администраций и т.п.;
• расширенные возможности отображения на дисплее счетчика всей возможной (при первичных измерениях токов и напряжений) информации: от суточного графика активной мощности, напряжения, частоты до показателей надежности (времени перерывов в питании) и денежных показателей – стоимости потребления, оставшейся «кредитной линии» и пр.;
• двухсторонняя информационная (и управляющая) связь сбытовой компании и потребителя, т.е. передача потребителю различных сообщений, дистанционная смена тарифа, отключение или ограничение потребления и т.п.
ЧТО ТАКОЕ «ИНТЕЛЛЕКТУАЛЬНЫЕ ИЗМЕРЕНИЯ»?
Приведем определение, данное в тематическом докладе комитета ЭРРА «Нормативные аспекты СМАРТ ИЗМЕРЕНИЙ», подготовленном известной международной компанией КЕМА:
«…Для ясности необходимо дать правильное определение смарт измерениям и описать организацию инфраструктуры смарт измерений. Необходимо отметить, что между смарт счетчиком и смарт измерением существует большая разница. Смарт счетчик – это отдельный прибор, который установлен в доме потребителя и в основном измеряет потребление энергии потребителем. Смарт измерения – это фактическое применение смарт счетчиков в большем масштабе, то есть применение общего принципа вместо отдельного прибора. Однако, если рассматривать пилотные проекты смарт измерений или национальные программы смарт измерений, то иногда можно найти разницу в определении смарт измерений. Кроме того, также часто появляются такие термины, как автоматическое считывание счетчика (AMR) и передовая инфраструктура измерений (AMI), особенно в США, в то время как в ЕС часто используется достаточно туманный термин «интеллектуальные системы измерений …».
Представляют интерес и высказывания В.В. Новикова, начальника лаборатории ФГУП ВНИИМС [1]: «…Это автоматизированные системы, которые обеспечивают и по-требителям, и сбытовым компаниям контроль и управление потреблением энергоресурсов согласно установленным критериям оптимизации энергосбережения. Такие измерения называют «интеллектуальными измерениями», или Smart Metering, как принято за рубежом …
…Основные признаки Smart Metering у счетчиков электрической энергии. Их шесть:
1. Новшества касаются в меньшей степени принципа измерений электрической энергии, а в большей – функциональных возможностей приборов.
2. Дополнительными функциями выступают, как правило, измерение мощности за короткие периоды, коэффициента мощности, измерение времени, даты и длительности провалов и отсутствия питающего напряжения.
3. Счетчики имеют самодиагностику и защиту от распространенных методов хищения электроэнергии, фиксируют в журнале событий моменты вскрытия кожуха, крышки клеммной колодки, воздействий сильного магнитного поля и других воздействий как на счетчик, его информационные входы и выходы, так и на саму электрическую сеть.
4. Наличие функций для управления нагрузкой и подачи команд на включение и отключение электрических приборов.
5. Более удобные и прозрачные функции для потребителей и энергоснабжающих организаций, позволяющие выбирать вид тарифа и энергосбытовую компанию в зависимости от потребностей в энергии и возможности ее своевременно оплачивать.
6. Интеграция измерений и учета всех энергоресурсов в доме для выработки решений, минимизирующих расходы на оплату энергоресурсов. В эту стратегию вовлекаются как отдельные потребители, так и управляющие компании домами, энергоснабжающие и сетевые компании …».
Из этих цитат нетрудно заметить, что первые 3 из 6 функций полностью повторяют требования к счетчикам АИИС КУЭ на оптовом рынке электроэнергии и мощности (ОРЭМ), которые не менялись с 2003 г. Функция № 5 является очевидной функцией счетчика при работе потребителя на розничных рынках электроэнергии (РРЭ) в условиях либеральной (рыночной) энергетики. Функция № 6 практически повторяет многочисленные определения понятия «умный дом», а функция № 4, провозглашенная в нашей стране, полностью соответствует желаниям сбытовых компаний найти наконец действенное средство воздействия на неплательщиков. При этом ясно, что неплатежи – не следствие отсутствия «умных счетчиков», а результат популистской политики правительства. Отключить физических (да и юридических) лиц невозможно, и эта функция счетчика, безусловно, останется невостребованной до внесения соответствующих изменений в нормативно-правовые акты.
На функции № 4 следует остановиться особо. Она превращает измерительный прибор в управляющую систему, в АСУ, так как содержит все признаки такой системы: наличие измерительного компонента, решающего компонента (выдающего управляющие сигналы) и, в случае размещения коммутационных аппаратов внутри счетчика, органов управления. Причем явно или неявно, как и в любой системе управления, подразумевается обратная связь: заплатил – включат опять.
Обоснованное мнение по поводу Smart Grid и Smart Metering высказал В.И. Гуревич в [2]. Приведем здесь цитаты из этой статьи с локальными ссылками на используемую литературу: «…Обратимся к истории. Впервые этот термин встретился в тексте статьи одного из западных специалистов в 1998 г. [1]. В названии статьи этот термин был впервые использован Массудом Амином и Брюсом Волленбергом в их публикации «К интеллектуальной сети» [2]. Первые применения этого термина на Западе были связаны с чисто рекламными названиями специальных контроллеров, предназначенных для управления режимом работы и синхронизации автономных ветрогенераторов (отличающихся нестабильным напряжением и частотой) с электрической сетью. Потом этот термин стал применяться, опять-таки как чисто рекламный ход, для обозначения микропроцессорных счетчиков электроэнергии, способных самостоятельно накапливать, обрабатывать, оценивать информацию и передавать ее по специальным каналам связи и даже через Интернет. Причем сами по себе контроллеры синхронизации ветрогенераторов и микропроцессорные счетчики электроэнергии были разработаны и выпускались различными фирмами еще до появления термина Smart Grid. Это название возникло намного позже как чисто рекламный трюк для привлечения покупателей и вначале использовалось лишь в этих областях техники. В последние годы его использование расширилось на системы сбора и обработки информации, мониторинга оборудования в электроэнергетике [3] …
1. Janssen M. C. The Smart Grid Drivers. – PAC, June 2010, p. 77.
2. Amin S. M., Wollenberg B. F. Toward a Smart Grid. – IEEE P&E Magazine, September/October, 2005.
3. Gellings C. W. The Smart Grid. Enabling Energy Efficiency and Demand Response. – CRC Press, 2010. …».
Таким образом, принимая во внимание столь различные мнения о предмете Smart Grid и Smart Metering, сетевая компания должна прежде всего определить понятие «интеллектуальная система измерения» для объекта измерений – электрической сети (как актива и технологической основы ОРЭМ и РРЭ) и представить ее предметную область именно для своего бизнеса.
БИЗНЕС И «ИНТЕЛЛЕКТУАЛЬНЫЙ УЧЕТ»
В результате изучения бизнес-процессов деятельности ряда сетевых компаний и взаимодействия на РРЭ сетевых, энергосбытовых компаний и исполнителей коммунальных услуг были сформулированы следующие исходные условия.
1. В качестве главного признака новой интеллектуальной системы учета электроэнергии (ИСУЭ), отличающей ее от существующей системы коммерческого и технического учета электроэнергии, взято расширение функций, причем в систему вовлекаются принципиально новые функции: определение технических потерь, сведение балансов в режиме, близком к on-line, определение показателей надежности. Это позволит, среди прочего, получить необходимую информацию для решения режимных задач Smart Grid – оптимизации по реактивной мощности, управления качеством электроснабжения.
2. Во многих случаях (помимо решения задач, традиционных для сетевой компании) рассматриваются устройства и системы управления потреблением у физических лиц, осуществляющие их ограничения и отключения за неплатежи (традиционные задачи так называемых систем AMI – Advanced Metering Infrastructure).
Учитывая вышеизложенное, для электросетевой компании предлагается принимать следующее двойственное (по признаку предметной области) определение ИСУЭ:
в отношении потребителей – физических лиц: «Интеллектуальная система измерений – это совокупность устройств управления нагрузкой, приборов учета, коммуникационного оборудования, каналов передачи данных, программного обеспечения, серверного оборудования, алгоритмов, квалифицированного персонала, которые обеспечивают достаточный объем информации и инструментов для управления потреблением электроэнергии согласно договорным обязательствам сторон с учетом установленных критериев энергоэффективности и надежности»;
в отношении системы в целом: «Интеллектуальная система измерений – это автоматизированная комплексная система измерений электроэнергии (с возможностью измерений других энергоресурсов), определения учетных показателей и решения на их основе технологических и бизнес-задач, которая позволяет интегрировать различные информационные системы субъектов рынка и развиваться без ограничений в обозримом будущем».
ЗАДАЧИ «ИНТЕЛЛЕКТУАЛЬНОГО УЧЕТА»
Далее мы будем основываться на том, что ИСУЭ позволит осуществить следующие функции в бытовом секторе:
• дистанционное получение от каждой точки измерения (узла учета) у бытового потребителя сведений об отпущенной или потребленной электроэнергии;
• расчет внутриобъектового (многоквартирный жилой дом, поселок) баланса поступления и потребления энергоресурсов с целью выявления технических и коммерческих потерь и принятия мер по эффективному энергосбережению;
• контроль параметров поставляемых энергоресурсов с целью обнаружения и регистрации их отклонений от договорных значений;
• обнаружение фактов несанкционированного вмешательства в работу приборов учета или изменения схем подключения электроснабжения;
• применение санкций против злостных неплательщиков методом ограничения потребляемой мощности или полного отключения энергоснабжения;
• анализ технического состояния и отказов приборов учета;
• подготовка отчетных документов об электропотреблении;
• интеграция с биллинговыми системами.
«ИНТЕЛЛЕКТУАЛЬНЫЙ КОММЕРЧЕСКИЙ УЧЕТ»
Остановимся подробно на одном из атрибутов ИСУЭ, который считаю ключевым для основного электросетевого бизнеса.
Особенностью коммерческого учета электроэнергии (КУЭ) распределительных сетевых компаний является наличие двух сфер коммерческого оборота электроэнергии – ОРЭМ и РРЭ, которые хотя и сближаются в нормативном и организационном плане, но остаются пока существенно различными с точки зрения требований к КУЭ.
Большинство сетевых компаний является субъектом как ОРЭМ, так и РРЭ. Соответственно и сам коммерческий учет в отношении требований к нему разделен на два вида:
• коммерческий учет на ОРЭМ (технические средства – АИИС КУЭ);
• коммерческий учет на РРЭ (технические средства – АСКУЭ).
Кроме того, к коммерческому учету, т.е. к определению тех показателей, которые служат для начисления обязательств и требований сетевой компании (оплата услуг по транспорту электроэнергии, купля-продажа технологических потерь), следует отнести и измерения величин, необходимых для определения показателей надежности сети в отношении оказания услуг по передаче электроэнергии.
Отметим, что сложившиеся технологии АИИС КУЭ и АСКУЭ по своей функциональной полноте (за исключением функции коммутации нагрузки внутри систем) – это технологии Smart Metering в том понимании, которое мы обсуждали выше. Поэтому далее будем считать эти понятия полностью совпадающими.
Подсистема ИСУЭ на РРЭ, безусловно, самая сложная и трудоемкая часть всей интеллектуальной системы как с точки зрения организации сбора информации (включая измерительные системы (ИС) и средства связи в автоматизированных системах), так и с точки зрения объема точек поставки и соответственно средств измерений. Последние отличаются большим многообразием и сложностью контроля их и метрологических характеристик (МХ).
Если технические требования к ИС на ОРЭМ и к ИС крупных потребителей (по крайней мере потребителей с присоединенной мощностью свыше 750 кВА) принципиально близки, то в отношении нормативного и организационного компонентов имеются сильные различия. Гармоничная их интеграция в среде разных компонентов – основная задача создания современной системы ИСУЭ любой сетевой компании.
Особенностью коммерческого учета для нужд сетевого комплекса – основного бизнеса компании в отличие от учета электроэнергии потребителей, генерирующих источников и сбытовых компаний – является сам характер учетных показателей, вернее, одного из них – технологических потерь электроэнергии. Здесь трудность состоит в том, что границы балансовой принадлежности компании должны оснащаться средствами учета в интересах субъектов рынка – участников обращения электроэнергии, и по правилам, установленным для них, будь то ОРЭМ или РРЭ. А к измерению и учету важнейшего собственного учетного показателя, потерь, отдельные нормативные требования не предъявляются, хотя указанные показатели должны определяться по своим технологиям.
При этом сегодня для эффективного ведения бизнеса перед сетевыми компаниями, по мнению автора, стоит задача корректного определения часовых балансов в режиме, близком к on-line, в условиях, когда часть счетчиков (со стороны ОРЭМ) имеют автоматические часовые измерения электроэнергии, а подавляющее большинство (по количеству) счетчиков на РРЭ (за счет физических лиц и мелкомоторных потребителей) не позволяют получать такие измерения. Актуальность корректного определения фактических потерь следует из необходимости покупки их объема, не учтенного при установлении тарифов на услуги по передаче электроэнергии, а также предоставления информации для решения задач Smart Grid.
В то же время специалистами-практиками часто ставится под сомнение практическая востребованность определения технологических потерь и их составляющих в режиме on-line. Учитывая это мнение, которое не согласуется с разрабатываемыми стратегиями Smart Grid, целесообразно оставить окончательное решение при разработке ИСУЭ за самой компанией.
Cистемы АИИС КУЭ сетевых компаний никогда не создавались целенаправленно для решения самых насущных для них задач, таких как:
1. Коммерческая задача купли-продажи потерь – качественного (прозрачного и корректного в смысле метрологии и требований действующих нормативных документов) инструментального или расчетно-инструментального определения технологических потерь электроэнергии вместе с их составляющими – техническими потерями и потреблением на собственные и хозяйственные нужды сети.
2. Коммерческая задача по определению показателей надежности электроснабжения потребителей.
3. Управленческая задача – получение всех установленных учетной политикой компании балансов электроэнергии и мощности по уровням напряжения, по филиалам, по от-дельным подстанциям и группам сетевых элементов, а также КПЭ, связанных с оборотом электроэнергии и оказанием услуг в натуральном выражении.
Не ставилась и задача технологического обеспечения возможного в перспективе бизнеса сетевых компаний – предоставления услуг оператора коммерческого учета (ОКУ) субъектам ОРЭМ и РРЭ на территории обслуживания компании.
Кроме того, необходимо упорядочить систему учета для определения коммерческих показателей в отношении определения обязательств и требований оплаты услуг по транспорту электроэнергии и гармонизировать собственные интересы и интересы смежных субъектов ОРЭМ и РРЭ в рамках существующей системы взаимодействий и возможной системы взаимодействий с введением института ОКУ.
Именно исходя из этих целей (не забывая при этом про коммерческие учетные показатели смежных субъектов рынка в той мере, какая требуется по обязательствам компании), и нужно строить подлинно интеллектуальную измерительную систему. Иными словами, интеллект измерений – это главным образом интеллект решения технологических задач, необходимых компании.
По сути, при решении нового круга задач в целевой модели интеллектуального учета будет реализован принцип придания сетевой компании статуса (функций) ОКУ в зоне обслуживания. Этот статус формально прописан в действующей редакции Правил розничных рынков (Постановление Правительства РФ № 530 от 31.08.2006), однако на практике не осуществляется в полном объеме как из-за отсутствия необходимой технологической базы, так и из-за организационных трудностей.
Таким образом, сетевая компания должна сводить баланс по своей территории на новой качественной ступени – оперативно, прозрачно и полно. А это означает сбор информации от всех присоединенных к сети субъектов рынка, формирование учетных показателей и передачу их тем же субъектам для определения взаимных обязательств и требований.
Такой подход предполагает не только новую схему расстановки приборов в соответствии с комплексным решением всех поставленных технологами задач, но и новые функциональные и метрологические требования к измерительным приборам.
ПРЕИМУЩЕСТВА ИСУЭ
Внедрение ИСУЭ даст новые широкие возможности для всех участников ОРЭМ и РРЭ в зоне обслуживания электросетевой компании.
Для самой компании:
1. Повышение эффективности существующего бизнеса.
2. Возможности новых видов бизнеса – ОКУ, регистратор единой группы точек поставки (ГТП), оператор заправки электрического транспорта и т.п.
3. Обеспечение внедрения технологий Smart grid.
4. Создание и развитие программно-аппаратного комплекса (с сервисно-ориентированной архитектурой) и ИС, снимающих ограничения на развитие технологий и бизнеса в долгосрочной перспективе.
Для энергосбытовой деятельности:
1. Автоматический мониторинг потребления.
2. Легкое определение превышения фактических показателей над планируемыми.
3. Определение неэффективных производств и процессов.
4. Биллинг.
5. Мониторинг коэффициента мощности.
6. Мониторинг показателей качества (напряжение и частота).
Для обеспечения бизнеса – услуги для генерирующих, сетевых, сбытовых компаний и потребителей:
1. Готовый вариант на все случаи жизни.
2. Надежность.
3. Гарантия качества услуг.
4. Оптимальная и прозрачная стоимость услуг сетевой компании.
5. Постоянное внедрение инноваций.
6. Повышение «интеллекта» при работе на ОРЭМ и РРЭ.
7. Облегчение технологического присоединения энергопринимающих устройств субъектов ОРЭМ и РРЭ.
8. Качественный консалтинг по всем вопросам электроснабжения и энергосбережения.
Успешная реализации перечисленных задач возможна только на базе информационно-технологической системы (программно-аппаратного комплекса) наивысшего достигнутого на сегодняшний день уровня интеграции со всеми возможными информационными системами субъектов рынка – измерительно-учетными как в отношении электроэнергии, так и (в перспективе) в отношении других энергоресурсов.
ЛИТЕРАТУРА
1. Новиков В.В. Интеллектуальные измерения на службе энергосбережения // Энергоэксперт. 2011. № 3.
2. Гуревич В.И. Интеллектуальные сети: новые перспективы или новые проблемы? // Электротехнический рынок. 2010. № 6.
[ http://www.news.elteh.ru/arh/2011/71/14.php]Тематики
EN
Русско-английский словарь нормативно-технической терминологии > интеллектуальный учет электроэнергии
-
17 резервная транша
резервная транша
25 % квоты страны в Международном валютном фонде (International Monetary Fund). В пределах этой суммы страна может автоматически получать беспроцентные (а при необходимости - и безвозвратные) ссуды. Резервная транша эквивалентна тем 25 % квоты страны, которые были внесены ею в МВФ не в своей национальной валюте, а в форме специальных прав заимствования (Special Drawing Rights (CDRs)) или в валютах других стран-членов МВФ. Резервная транша расценивается как часть официальных резервов страны в иностранной валюте. Поскольку до 1978 г. резервная транша выплачивалась в золоте, она носила название золотой транши (gold tranche). Подобно всем кредитам МВФ, резервная транша может использоваться только для решения проблем с платежным балансом, однако МВФ и не имеет права в ответ на просьбу страны-члена этой организации об оказании помощи оспорить предоставление этой транши или навязать стране проведение корректирующих мероприятий за счет транши. Страна может дополнительно получить необходимые ей средства из кредитных транш, но выдача ей кредитов будет связана с выполнением определенных условий (см.: conditionality (обусловленность)). Страны-члены МВФ в наибольшей мере прибегали к использованию резервной транши в 1970-е гг., когда им был необходим доступ к нефтяным кредитам МВФ (1974-1976 гг.), а объем закупок США за счет резервной транши достиг рекордного уровня (1978 г.).
[ http://www.vocable.ru/dictionary/533/symbol/97]Тематики
EN
Русско-английский словарь нормативно-технической терминологии > резервная транша
См. также в других словарях:
получать — власть получить • обладание, начало вопрос получить • действие, получатель воспитание получить • действие, объект год получить • обладание, начало данные получить • обладание, начало информацию получить • действие, получатель награду получить •… … Глагольной сочетаемости непредметных имён
название — (не) знать названия • знание (не) помнить названия • Neg, знание встречать название • восприятие дать название • действие забыть название • прерывание, знание заслуживать названия • оценка, соответствие изменить название • изменение название… … Глагольной сочетаемости непредметных имён
Получать — несов. перех. 1. Брать, принимать что либо вручаемое, присылаемое, выдаваемое. отт. разг. Зарабатывать. отт. Становиться обладателем чего либо предоставляемого. отт. перен. Достигать, добиваться чего либо желаемого, искомого. 2. Добывать,… … Современный толковый словарь русского языка Ефремовой
начало — брать начало • действие вести начало • действие, продолжение давать начало • действие, каузация дать начало • действие, каузация ждать начала • модальность, ожидание класть начало • действие начало положит • действие ожидать начала • модальность … Глагольной сочетаемости непредметных имён
обладание — (не) давать повод • обладание, каузация (не) давать покоя • обладание, каузация (не) давать полного представления • обладание, каузация (не) знать покоя • обладание (не) знать пределов • обладание (не) иметь оснований • обладание (не) иметь… … Глагольной сочетаемости непредметных имён
Римские дороги — О Римской дороге см. Via Romea Аппиева дорога (Via Appia Antica) … Википедия
Римская дорога — Аппиева дорога (Via Appia Antica) Содержание 1 История 1.1 Первые стратегические дороги … Википедия
называться — Носить имя, именоваться, величаться, прозываться, титуловаться. ... Словарь русских синонимов и сходных по смыслу выражений. под. ред. Н. Абрамова, М.: Русские словари, 1999. называться зваться, прозываться, носить имя, именоваться, величаться,… … Словарь синонимов
Американский космический корабль Dragon — Ракета Falcon 9 взорвалась после запуска к МКС Частный американский транспортный космический корабль Dragon (Дракон) был разработан компанией SpaceX. Корабль предназначен как для автономных полетов (в этом случае он будет получать название… … Энциклопедия ньюсмейкеров
Медицина — I Медицина Медицина система научных знаний и практической деятельности, целями которой являются укрепление и сохранение здоровья, продление жизни людей, предупреждение и лечение болезней человека. Для выполнения этих задач М. изучает строение и… … Медицинская энциклопедия
Железо — (Ferrum) Металл железо, свойства металла, получение и применение Информация о металле железо, физические и химические свойства металла, добыча и применение железа Содержание Содержание Определение термина Этимология История железа Происхождение… … Энциклопедия инвестора