Перевод: со всех языков на английский

с английского на все языки

позволяет+использовать

  • 41 печать среднего качества

    1. near letter quality (NLQ)

     

    печать среднего качества
    качественная печать

    Печать текста, качество которой отвечает требованиям выполнения документации для внутренней переписки и большого объема почтовых отправлений и позволяет использовать более высокую скорость печати по сравнению с режимом высококачественной печати.
    [ ГОСТ Р ИСО/МЭК 2382-23-2004]

    Тематики

    Обобщающие термины

    Синонимы

    EN

    Русско-английский словарь нормативно-технической терминологии > печать среднего качества

  • 42 плазменная газификация

    1. plasma gasification

     

    плазменная газификация
    Газификация, при к-рой нагрев реагентов осуществляется плазм, струями, генерир. плазматронами в плазм, реакторах; обеспечивает получение высокоэнтальпийных газов со степенью конверсии, недостижимой при обычных способах термич. г.
    Отсутствие окислителей в продуктах п. г. позволяет использовать их в кач-ве эффективных газ. восстановителей, напр., при прямом восстановл. железорудных концентратов. П. г. часто используется на конечной стадии процесса, в к-ром основной объем идет в термич. ступени. При этом сохраняется общее экологическое преимущество г. перед сжиганием топлива — резкое снижение вредных выбросов в атмосферу.
    [ http://metaltrade.ru/abc/a.htm]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > плазменная газификация

  • 43 плазменный энергетический комплекс

    1. plasma energy system

     

    плазменный энергетический комплекс
    Металлургич. комплекс, в к-ром произ-во и потребление энергии осуществляется с использов. генераторов плазмы (плазматронов). Ведущими российскими учеными предложена схема такого комплекса: экологически чистая тепловая электростанция, включающая блок получения газообр. водородсодерж. топлива, химич. сырья и восстановителя (синтез-газа) и химико-металлургич. произ-во. Замена сжигания топлива на газификацию позволяет использовать низкосортное органич. топливо (торф, древесные отходы, низкокач-венные угли и т.п.), резко уменьшает вредные выбросы в атмосферу. Сочетание в газификаторе первичной термич. ступени и вторичной плазм, обеспечивает получение синтез-газа, не содерж. окислителей, что облегчает его использование как топлива в газовых турбинах ТЭС и в кач-ве сырья химич. произ-в, напр, для произ-ва метанола или восстановителя для металлургич. произ-ва, в частности для прямого получения железа.
    Металлургич. блок в завис-ти от перерабат. сырья и требований к получ. продукту может включать агрегаты: струйно-плазм. для восст. или синтеза и получения порошков металлов, сплавов и соединений; шахтные плазм, для получения масс, металлов и ферросплавов; плазм, печи для переработки металлич. и комплексных руд и концентратов, разного рода промотходы и др.
    Создание подобного рода комплексов должно привести к оптим. решению осн. проблем соврем, энергетики, химич. технологии и металлургии.
    [ http://metaltrade.ru/abc/a.htm]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > плазменный энергетический комплекс

  • 44 платформа Microsoft.net

    1. Microsoft.net

     

    платформа Microsoft.net
    Платформа для создания приложений, разработанная компанией Microsoft. Позволяет использовать одновременно несколько языков программирования: к примеру, C++ и Visual Basic.
    [ http://www.morepc.ru/dict/]

    Тематики

    EN

    • Microsoft.net

    Русско-английский словарь нормативно-технической терминологии > платформа Microsoft.net

  • 45 полиморфизм длин рестрикционных фрагментов

    1. RFLP
    2. restriction fragment length polymorphism

     

    полиморфизм длин рестрикционных фрагментов
    ПДРФ

    Изменчивость размеров фрагментов ДНК, выщепляемых рестриктазами endonucleases, обусловленная возникновением или изменением в результате мутаций сайтов рестрикции; в связи с этим анализ ПДРФ позволяет использовать отдельные аллели (по причине Менделевского характера их наследуемости) в качестве популяционных маркеров, а также применять их в пренатальной и обычной диагностике мутаций в генах, обусловливающих различные НЗЧ, и определять их локализацию в геноме методом рестрикционного картирования.
    [Арефьев В.А., Лисовенко Л.А. Англо-русский толковый словарь генетических терминов 1995 407с.]

    Тематики

    Синонимы

    EN

    Русско-английский словарь нормативно-технической терминологии > полиморфизм длин рестрикционных фрагментов

  • 46 предельный анализ

    1. marginal analysis

     

    предельный анализ
    Применение дифференциального исчисления в экономической науке. В экономике широко используются средние величины: средняя себестоимость продукции, средняя производительность труда и т.д. Это полезный инструмент экономического анализа. Но часто, например, при планировании развития производства, возникает такая задача: требуется узнать, на какую величину вырастет результат, если будут увеличены затраты и, наоборот, насколько уменьшится результат, если затраты сократятся. Средние величины ответа на такой вопрос не дадут. Здесь речь идет о приростах переменных величин. В подобных задачах нужно найти предел соотношения приростов, или, как говорят, предельный эффект. Следовательно, здесь применимы понятия дифференциального исчисления — производная в случае зависимости переменной от одного аргумента и частная производная, если мы имеем дело с переменной, которая зависит от нескольких аргументов. Дифференциальное исчисление в форме П.а. применяется в экономике, в частности, при решении задач оптимального программирования, а также в моделях теории экономического роста и др. На выводах П.а. основаны ряд важнейших положений современной экономической науки — например, необходимость равенства предельной нормы замещения конкурирующих благ, производственных факторов и т.п. для получения максимального результата. Надо учесть, однако, что экономика не всегда позволяет использовать предельные величины в силу неделимости многих объектов экономических расчетов. Кроме того, применению предельных величин препятствует прерывность (дискретность) экономических показателей во времени: в большинстве случаев в практическом моделировании приходится пользоваться годовыми (реже месячными и т.д.) показателями. Но все же нередко, особенно в теоретических исследованиях, когда оказывается возможным отвлечься от дискретности, П.а. служит полезным инструментом экономической науки.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > предельный анализ

  • 47 протокол H.323

    1. H.323

     

    протокол H.323
    Протокол передачи данных, а также передачи в реальном времени аудио- и видеоинформации по сетям, поддерживающим пакетную коммутацию. В число таких сетей входят сети, работающие по протоколу IP (включая Интернет), местные сети, поддерживающие обмен Интернет-пакетами, производственные, городские и региональные сети. H.232 может применяться для многополюсных мультимедиа-коммуникаций. Эта технология предоставляет огромный массив услуг, что позволяет использовать ее в коммерческих, бизнес- и развлекательных приложениях. H.232 является важнейшим элементом, обеспечивающим совместимость мобильных мультимедиа-приложений и услуг, появление которых ожидается с внедрением третьего поколения беспроводных технологий. Характеристики стандарта H.232 были уточнены 16-й исследовательской группой организации ITU-T. Изначальный стандарт был разработан в 1996 г., в последующие годы производилась его доработка, вплоть до 3-й версии.
    [ http://www.morepc.ru/dict/]

    Тематики

    EN

    • H.323

    Русско-английский словарь нормативно-технической терминологии > протокол H.323

  • 48 сетевой сервис масштаба предприятия

    1. enterprise network services
    2. ENS

     

    сетевой сервис масштаба предприятия
    Программный продукт на базе Banyan Systems Directory Service для VINES, который позволяет использовать службу каталогов VINES в других сетевых операционных системах. 
    [ http://www.lexikon.ru/dict/net/index.html]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > сетевой сервис масштаба предприятия

  • 49 система массового обслуживания

    1. serving system
    2. queueing system

     

    система массового обслуживания
    СМО

    Система, предназначенная для обслуживания случайных потоков вызовов абонентов в сетях связи (рис. Q-3). Общепринятое условное обозначение, используемое для описания систем массового обслуживания, состоит из трех символов - A/S/m, где символ А описывает динамику поступления вызовов, S - динамику, с которой обрабатываются вызовы, a m – число обслуживающих устройств. На практике наибольшее распространение получила модель обслуживания М/М/1, где динамика поступления вызовов с интенсивностью λ и обслуживания с интенсивностью λs описывается с помощью марковской модели с одним обслуживающим устройством (m=1).
    [Л.М. Невдяев. Телекоммуникационные технологии. Англо-русский толковый словарь-справочник. Под редакцией Ю.М. Горностаева. Москва, 2002]

    система массового обслуживания
    Совокупность пунктов (каналов, станций, приборов), на которые в случайные или неслучайные моменты времени поступают заявки на обслуживание (требования), подлежащие удовлетворению. Примеров таких систем можно привести очень много. Телефонная сеть — это С.м.о. Здесь заявка — вызов абонента, обслуживающее устройство — коммутатор. Универсам — это тоже С.м.о. Заявка в этом случае — приход в магазин покупателя, а обслуживающее устройство — касса. Можно, правда, рассматривать работу Универсама и с противоположных позиций: считать, что кассир, ожидающий покупателя, — это заявка на обслуживание, а обслуживающее устройство — это покупатель, способный удовлетворить заявку: подойти к кассе с покупками и прекратить вынужденный простой кассира. Возможность такого двойственного подхода к задачам теории массового обслуживания позволяет использовать их для оптимизации структуры исследуемых систем. Если, например, в магазине работает лишь одна касса, а покупатели заходят часто, то возникнет очередь покупателей, ожидающих обслуживания. Если же, наоборот, покупатели заходят редко, а кассиров несколько, то возникнет очередь кассиров, ожидающих покупателя. В обоих случаях магазин несет потери: в первом случае потому, что не все желающие купить товар будут обслужены, а во втором — потому, что кассиров слишком много и часть фонда их заработной платы будет расходоваться напрасно. Поэтому, например, критерием правильности организации работы магазина может служить средняя сумма времени ожидания покупателя и времени ожидания кассира. Работа магазина организована наилучшим образом, если эта величина минимальна. Для оценки системы применяются также показатели ее пропускной способности: абсолютной (среднее число заявок, которое может быть обслужено за единицу времени) и относительной (средняя доля обслуживаемых заявок в общем количестве поступающих в систему). Для того чтобы достаточно полно сформулировать математическую модель С.м.о., обычно необходимо задать: характеристики среды или входящего потока требований; характеристики механизма обслуживания; дисциплину обслуживания. Системы массового обслуживания классифицируются, во-первых, по характеру обслуживания: системы с отказами: требование, поступившее в момент, когда все каналы заняты, получает отказ, покидает систему и в дальнейшем процессе обслуживания не участвует; другое название — системы с потерями; системы с очередью (с ожиданием упорядоченным и неупорядоченным, случайным и т.д.). Такие системы делятся, далее, на системы с неограниченным ожиданием и ограниченным (предельной длиной очереди, временем и др.) ожиданием; во-вторых, по кругу обслуживаемых объектов: замкнутые системы (см. Очередь); открытые системы (см. Очередь); в-третьих, по количеству каналов и фаз обслуживания: одноканальные и многоканальные (см. Многоканальная система массового обслуживания); однофазные и многофазные (см. Многофазная система массового обслуживания).
    [ http://slovar-lopatnikov.ru/]

    Тематики

    Синонимы

    EN

    Русско-английский словарь нормативно-технической терминологии > система массового обслуживания

  • 50 транспьютер IMST805

    1. IMST805

     

    транспьютер IMST805
    Является модификацией транспьютера IMST800 в части разделения шин адреса и данных в интерфейсе внешней памяти, что позволяет использовать в качестве внешнего ОЗУ быстродействующие ОЗУ статической памяти. Число выводов кристалла – 100.
    [Е.С.Алексеев, А.А.Мячев. Англо-русский толковый словарь по системотехнике ЭВМ. Москва 1993]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > транспьютер IMST805

  • 51 шина SUN

    1. S-bus SUN

     

    шина SUN
    Стандартный системный интерфейс рабочих станций серии SPARCstation, имеет пропускную способность 100–160 Мбайт/с в зависимости от режима обмена. Организация интерфейса позволяет использовать контроллеры периферийных устройств без дополнительных буферных регистров и передатчиков. Это обеспечивает возможность экономичной реализации контроллеров дополнительных периферийных устройств.
    [Е.С.Алексеев, А.А.Мячев. Англо-русский толковый словарь по системотехнике ЭВМ. Москва 1993]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > шина SUN

  • 52 структурированное хранилище

    (позволяет COM-объектам совместно использовать общий файл на диске; состоит из хранилищ (storage) и потоков (stream)) structured storage

    Русско-английский словарь по вычислительной технике и программированию > структурированное хранилище

  • 53 метод

    method, process, procedure, approach, technique, practice, tool, strategy
    Безо всяких изменений данный метод подходит для... - The method lends itself readily to...
    Более подходящим методом является... - A better technique is to...
    Более прямой метод получения величины F рассматривается в главе 9. - A more direct procedure for obtaining F is considered in Chapter 9.
    Более подходящим методом является определение... - A more satisfactory method is to establish...
    Большинство из этих более продвинутых методов требует... - Most of these more advanced methods require...
    Были предложены несколько методов. - Several techniques have been suggested.
    Было довольно нелегко разработать метод для... - It was fairly difficult to develop a method for...
    Было довольно сложно разработать метод для... - It was quite difficult to develop a method for...
    Было легко разработать метод для... - It was easy to develop a method for...
    Было относительно легко (= просто) разработать метод для... - It was relatively easy to develop a method for... (not easy on an absolute scale, but less challenging than other tasks)
    Было почти невозможно разработать метод для... - It was almost impossible to develop a method for... (so hard that we nearly failed)
    В альтернативном методе мы вычисляем... - In the alternative method we calculate...
    В данной главе мы представим метод для... - In this chapter, we shall formulate the procedure for...
    В данном приближенном методе существенно... - In this approximation procedure it is essential to...
    В качестве примера применения описанного выше метода мы показываем, что... - As an example of the method described above we show that...
    В недавние годы этот метод был улучшен посредством использования (чего-л). - In recent years the subject has been enriched by the use of...
    В основном мы следуем методу... - In essence we follow the procedure of...
    В последние годы несколько авторов отказались от этого метода. - Several authors have, in recent years, departed from this procedure.
    В своих основных чертах это был метод, использовавшийся Смитом [1]. - In essence, this was the method employed by Smith [1].
    В соответствии с методом, намеченным в Главе 1, мы... - In accordance with the method outlined in Chapter 1, we...
    В этой главе мы даем эффективный метод... - In this chapter we give an efficient method for...
    Вместо этого давайте разработаем (один) общий метод, посредством которого... - Instead, let us develop a general method whereby...
    Во многих случаях необходимо обращаться за помощью к приближенным методам. - In many cases it is necessary to resort to approximate methods.
    Возможно, безопасно применить метод... к... - It is probably safe to apply the method of... to...
    Возможно, наилучшим методом является... - Perhaps the best approach is to...
    Все вышеупомянутые методы не применимы для малых х. - The foregoing methods all fail for small x.
    Второй метод вывода уравнения (1) формулируется следующим образом. - A second method of obtaining (1) is as follows.
    Второй метод точно согласуется с... - The latter method agrees precisely with...
    Вышеуказанным методом обнаружено (= найдено), что... - By the above method it is found that...
    Геометрически метод состоит в следующем. - Geometrically, the procedure is as follows.
    Главное преимущество данного метода заключается в том, что... - The chief advantage of the method is that...
    Главным преимуществом данного метода является его общность. - The principal advantage of the method is its generality.
    Главным преимуществом данного метода по сравнению с традиционными является то, что... - The major advantage of this procedure over the traditional method is that...
    Главным преимуществом данного метода является его простота. - The principal virtue of the method is its simplicity.
    Далее, в данном методе заранее предполагается, что... - Further, the method presupposes...
    Данное свойство является основой одного метода нахождения... - This property provides one method of determining...
    Данный метод был предложен в статье [1]. - The method was suggested by Smith, et al. [1].
    Данный метод намного точнее, чем... - The present method is much more precise than...
    Данный метод не применим для/в... - The method does not apply to...
    Данный метод невозможно применить, когда/ если... - The method is not applicable when...
    Данный метод одинаково успешно можно применять к... - The method can equally well be applied to...
    Данный метод особенно подходит в случае, когда... - The method is particularly appropriate when...
    Данный метод позволяет... - The method enables one to...
    Данный метод позволяет исследователю... - The method allows an investigator to...
    Данный метод применим к широкому классу (в широком классе)... - The method is applicable to a large class of...
    Данный метод прост и довольно интересен, однако... - This method is simple and quite interesting, but...
    Данный отчет описывает новый метод... - This report describes a new method of...
    Данным методом можно решить ряд важных практических задач. - This method enables us to solve several problems of practical importance.
    Детали этого метода можно найти в [1]. - Details of the method can be found in Smith [1].
    Для... можно применить несколько методов. - Several methods are available for...
    Для получения... был использован ряд методов. - A number of methods have been used to obtain...
    Для преодоления этой трудности был разработан один метод. - One method has been advanced for overcoming this difficulty.
    Должны быть развиты методы для измерения... - Methods should be developed for measuring...
    Достоинство этого метода состоит в том, что... - The advantage of the method is that...
    Другим недостатком этого метода является то, что... - The other disadvantage of this procedure is that...; Another disadvantage of this procedure is that...
    Его метод доказательства весьма оригинален. - The method of proof is quite ingenious.
    Единственный доступный нам в настоящее время метод - это... - The only method available to us so far is...
    Единственным известным недостатком этого метода является то, что... - The only known disadvantage of this procedure is that...
    Еще одним методом является... - Still another approach is to...
    Здесь рассматривается (один) общий метод получения этих решений. - A general method of obtaining these solutions is considered here.
    Важность наших методов состоит в том, что они будут давать... - The significance of our methods is that they will yield...
    Значительно более удобный метод состоит в том, что... - A far more convenient approach is to...
    Имеются два обычно используемых метода для... - There are two commonly used methods for...
    Имеются три метода решения такой задачи. - There are three ways of attacking such a problem.
    Интересным альтернативным методом является следующий. - An interesting alternative procedure is as follows.
    Используя данный метод, следует помнить, что... - In using this method it is well to remember that...
    Используя любой подобный метод, необходимо (помнить и т. п.)... - With any method such as this it is necessary to...
    Используя этот метод, они нашли, что... - Using the method, they found that...; Using the method, they learned that...; Using the method, they determined that...; Using the method, they discovered that...
    Используя этот новый метод, мы можем... - By this new method it will be possible to...
    Итак, мы наметим несколько методов, которые могут использоваться для того, чтобы... - We therefore outline some procedures which can be used to...
    К сожалению, этот метод оказался неприменим. - Unfortunately, the method was not applicable; The method, unfortunately, was not applicable.
    К счастью, имеется один простой и подходящий для этого метод. - Fortunately, there is a simple technique available for doing this.
    Каков недостаток этого метода? - What is the disadvantage of this procedure?
    Каковы преимущества данного метода? - What are the advantages of this procedure?
    Конечно, это могло бы быть следствием неподходящих методов. - Of course, this could reflect the use of inappropriate methods.
    Конечно, этот метод не всегда применим. - Of course, this method will not always work.
    Коротко, мы будем интересоваться методами, которые... - In short, we will inquire into the ways in which...
    Кратко опишем метод для его оценки. - A method for estimating this will be given shortly.
    Метод... должен быть применен к/в... - The method of... should apply to...
    Метод... мог бы быть надежно применен для... - The method of... could safely be applied to,..
    Метод анализа, намеченный в предыдущем абзаце, показывает... - The method of analysis outlined in the last paragraph shows...
    Метод может использоваться для оценки... - The method can be used to estimate...
    Метод обладает очевидным преимуществом... - The method possesses the obvious advantage of...
    Метод основывается на принципе, что... - This method is based on the principle that...
    Метод перестает быть достаточно точным, если... - The method ceases to be reasonably accurate if...
    Метод состоит в следующем. - The procedure is as follows.
    Метод состоит из двух шагов. - The approach is in two steps.
    Метод требует от пользователя обеспечить... - The method requires the user to provide...
    Метод, который здесь описывается, требует... - The method to be described here involves...
    Метод, который мы описали, в общем случае не подходит для... - The procedure we have described is not, in general, suitable for...
    Метод, приведенный в этом параграфе, подобным образом может быть применен к... - The method of sections may be applied in a similar way to...
    Метод, с помощью которой это было получено, известен как... - The technique by which this is achieved is known as...
    Методы, которые мы рассмотрели, позволяют нам... - The methods we have considered enable us to...
    Можно использовать множество методов. Например,... - A variety of methods may be employed, e. g.,...
    Можно ожидать, что метод обеспечит нахождение по меньшей мере одного корня. - The method can be expected to provide at least one root.
    Мы будем придерживаться этого метода. - We shall follow this method.
    Мы ввели широкий класс методов решения... - We have introduced a wide range of procedures for solving...
    Мы можем обратить метод и вывести, что... - We can reverse the process and deduce that...
    Мы наметим в общих чертах метод, основанный на... - We will outline a procedure based on...
    Мы откладываем обсуждение подобных методов до параграфа 5. - We defer the discussion of such methods to Section 5.
    Мы принимаем полностью отличный от данного метод. - We adopt an entirely different method.
    Мы проиллюстрируем данный метод для случая... - We shall illustrate the procedure for the case of...
    Мы считаем, что метод... можно применять к/в... - We believe that the method of... is applicable to...
    Мы увидим, что эти методы могут использоваться лишь тогда, когда... - It will be observed that these methods are only applicable when...
    Мы упоминаем лишь два таких метода... - We mention only two such methods of...
    На данный метод часто ссылаются как на... - This process is often referred to as...
    На самом деле оба метода используются на практике. - Both methods are in fact used in practice.
    На сегодняшний день важность этого метода заключается в том, что... - For the present, the significance of this process lies in the fact that...
    Наиболее важным преимуществом данного метода является то, что... - The primary advantage of this procedure is that...
    Наиболее просто следовать этому методу в случае... - The procedure is most simply followed for the case of...
    Наиболее часто используемые методы перечислены ниже:... - The methods that are most often used follow:...
    Наиболее широко используемые методы основываются на... - The techniques most widely used are based on...
    Наиболее широко используемый метод это тот, что был введен Смитом [1]. - The method most commonly employed is that introduced by Smith [1].
    Наш метод будет весьма существенно отличаться от данного. - Our procedure will be quite different from this.
    Нашей основной целью является описание систематических методов для... - Our first concern is to describe systematic methods for...
    Не существует систематического метода определения... - There is no systematic way of determining...
    Недостатком данного метода является то, что он требует... - The disadvantage of this procedure is that it requires...
    Недостаток этого метода можно видеть... - The flaw in this approach can be seen by...
    Несколько методов анализа были введены с помощью... - Several methods of analysis are introduced by means of...
    Ни один из этих методов не требует... - Neither of these methods requires...
    Ниже описываются два подобных метода. - Two such methods are described below.
    Обнаружилось, что данный метод (здесь) не приложим. - It turned out that the method was not applicable.
    Обнаружилось, что данный метод успешно используется в широкой области... - The method is found to be successful on a wide range of...
    Обычно считают, что Смит [1] положил начало этому методу. - Smith [1] is usually credited with originating this method.
    Обычным методом является измерение... - A common procedure is to measure...
    Один такой несколько искусственный метод занимается... - One such trick is concerned with...
    Одна элегантная версия данного метода использует... - An elegant version of this method employs...
    Однако данный метод требует предварительного знания... - However, this method presupposes a knowledge of...
    Однако лучше всего ввести этот метод, рассматривая... - However, the method is best introduced by considering...
    Однако метод может не сработать даже при отсутствии... - However, the procedure may fail even in the absence of...
    Однако мы воспользуемся здесь более общим методом, разработанным Воровичем [1]. - But we shall follow here a more general method due to Vorovich [1].
    Однако мы легко можем разработать метод для... - We can, however, easily devise a means for...
    Однако решения все еще могут быть получены при помощи чисто численных методов. - Solutions can still be obtained, however, by resorting to purely numerical methods.
    Однако существует стандартный метод работы с... - However, there is a standard method of dealing with...
    Однако этот метод не работает, будучи примененным к... - This approach, however, breaks down when applied to...
    Однако этот метод совершенно не удовлетворяет нашим целям. - This procedure, however, falls far short of our goal.
    Одним из преимуществ этого метода является то, что... - One advantage of this procedure is that...
    Одним общим недостатком данного метода является наличие... - One common drawback of this method is the presence of...
    Оказывается, данный метод первоначально появился в работах Смита [1]. - The method appears to have originated in the works of Smith [1].
    Описанная выше процедура представляет один строгий метод... - The procedure described above represents a rigorous method of...
    Описанный выше метод может быть использован для построения... - The procedure described above can be used to construct...
    Описанный здесь метод всегда приводит... - The procedure described here always yields...
    Основной слабостью метода является... - The main weakness of the method is...
    Отличительным преимуществом данного метода является то, что... - A distinct advantage of the procedure is that...
    Отличный от вышеупомянутого метод был предложен Джонсом [1]. - A different method has been given by Jones [1].
    Перед этим не имелось общепризнанного метода... - Prior to this, there was no generally accepted method of...
    Подобные методы могут использоваться в более сложных ситуациях. - Similar methods may be employed in more complicated cases.
    Подобный метод был рассмотрен Смитом [1], который... - Such a procedure has been considered by Smith [1], who...
    Подобный метод может быть принят, когда... - A similar method may be adopted when...
    Подобный метод применяется к/в... - A similar method applies to...
    Пользуясь такими методами, мы можем избежать... - By such expediencies we can avoid...
    Потенциальное преимущество данного метода состоит в том, что... - A potential advantage of this procedure lies in the fact that...
    Поэтому мы применяем слегка модифицированный метод. - We therefore adopt a slightly different method.
    Предпочтительным, однако, является метод... - The preferred method, however, is to...
    Преимущество этого метода заключается в том, что... - The advantage of this method lies in the fact that...
    Преимущество этого метода, следовательно, состоит в том, что он обеспечивает простой... - The advantage < this procedure, therefore, is that it provides a simple...
    Применение данного метода ограничено... - The application of this method is confined to...
    Применение данного метода показывает... - An application of this process shows...
    Применение данного специального метода оправдано (чем-л). - The adoption of this particular method is justified by...
    Проиллюстрируем общий метод, рассматривая... - We illustrate the general method by considering...
    Рассматриваемые до сих пор методы касаются... - The methods considered so far have been concerned with...
    Результаты всех этих методов согласуются с... - The results of all these methods are consistent with...
    Решающим недостатком этого метода является то, что... - The crucial disadvantage of this procedure is that...
    С другой стороны, этот метод даст... - On the other hand, this method will give...
    Открытие Смита сделало возможным новый метод... - Smith's discovery made possible a new method of...
    Самым простым из таких методов является (метод)... - The simplest such method is...
    Следовательно, необходимо развить общий метод для... - It is, therefore, necessary to devise a general method for...
    Следует подчеркнуть, что этот метод должен использоваться только если... - It is to be emphasized that this method should be used only; if...
    Следует уделить внимание методам... - Attention should be given to methods of...
    Следующее рассуждение иллюстрирует метод... - The following treatment illustrates the method of...
    Следующим недостатком этого метода является то, что... - A further disadvantage of this procedure is that...
    Смит [lj обнаружил метод для... - Smith [1] discovered a method for...
    Смит [1] предложил метод вычисления... - Smith [l] has proposed a method of calculating...
    Смит [1] применил этот метод к... - Smith [1] has applied this method to.,.
    Стандартным методом является следующий. - The standard procedure is as follows.
    Таким образом, мы имеем метод, который позволяет... - Thus we have a method which yields...
    Тем не менее, развитые нами методы обеспечивают основу для... - However, the methods we have developed provide a basis for...
    Теперь мы (полностью) готовы использовать методы, разработанные во втором параграфе. - We are now ready to use the methods of Section 2.
    Теперь мы обсудим систематические методы, которые f можно использовать в/ при... - We now discuss systematic methods which can be applied to...
    Теперь мы применим метод Римана, чтобы... - We now apply Riemann's method in order to...
    Только что описанный метод известен как... - The procedure we have described is known as...
    Тот же метод можно применять в/к... - The same method may be applied to...
    Удобным методом достижения необходимой цели является... - A convenient way to accomplish this is to...
    Усовершенствованные экспериментальные методы сделали возможным... - Refined experimental methods have made it possible to...
    Фундаментальным преимуществом этого метода является то, что... - A fundamental advantage of this procedure is that...
    Хотя этот метод и несколько необычен, он справедлив (= работает) как и любой из известных методов. - Although this method is somewhat unorthodox, it is as valid as any of the more familiar methods.
    Центральной идеей, на которой основывался подход Смита [1], была... - The essential idea behind Smith's approach was that...
    Чтобы воспользоваться преимуществами данного метода, необходимо... - In order to take advantage of this procedure, one must...
    Чтобы проиллюстрировать применение метода, мы... - То illustrate the process we...
    Эдисон изобрел новый метод для... - Edison invented a new method for...
    Эдисон обдумывал новый метод для... - Edison devised a new method for...
    Эти методы вводятся в следующем параграфе. - These methods are introduced in the next section.
    Эти методы весьма громоздки. - These processes are tedious.
    Эти методы настолько чувствительны, что... - These methods are so sensitive that...
    Эти методы нельзя применять в случае, когда... - These methods are not applicable in the case of...
    Эти методы очень чувствительны к малым изменениям в... - These methods are very sensitive to small changes in...
    Эти методы получают своих сторонников, так как... - These methods attract proponents because...
    Этим методом (= На этом пути) мы можем получить (вывести и т. п.)... - In this way we can arrive at...
    Это будет объяснено примерами, когда мы будем изучать метод... - This point will be clarified by examples when we study the method of...
    Это известный метод, принятый во многих работах... - This is a familiar procedure, undertaken in many studies of...
    Это иллюстрирует важный метод... - This illustrates an important method of...
    Это можно увидеть двумя методами. - This can be seen in two ways.
    Это несущественный недостаток метода, поскольку... - This is not a serious defect of the method because...
    Это приводит к полезным методам обращения с... - This leads to useful ways of dealing with...
    Это простой метод, который можно проиллюстрировать, рассматривая... - This is a simple procedure which can be illustrated by considering...
    Этот метод аналогичен использованному в... - The procedure is similar to that used in...
    Этот метод был описан Смитом [1]. - The method has been described by Smith [1].
    Этот метод был последовательно доведен до полной эффективности Смитом [3]. - This method was subsequently brought to full fruition by Smith [3].
    Этот метод вполне очевиден. - This procedure is quite straightforward.
    Этот метод доказательства довольно общий и применим к... - The method of proof is quite general and applies to...
    Этот метод известен как... - The procedure is known as...
    Этот метод имеет следующие недостатки. - The procedure has the following disadvantages.
    Этот метод интересен по следующей причине. - This method is of interest for the following reason.
    Этот метод легко адаптируется к/ для... - This procedure is readily adaptable to...
    Этот метод легко понять, замечая, что... - The process is easily understood by noting that...
    Этот метод лучше всего иллюстрируется примером. - The procedure is best illustrated by an example.
    Этот метод наиболее успешен в случае, когда он применяется в... - The method is most successful when applied to...
    Этот метод очевидным образом может быть распространен на (случай)... - This process can clearly be extended to...
    Этот метод принимается, поскольку... - This approach is adopted because...
    Этот метод являлся стандартным в течение многих лет. Несмотря на более новые разработки он будет использоваться и далее. - This approach has been standard for many years, and will continue to be of great use regardless of newer developments.
    Этот технически простой метод действительно требует... - This technically simple method does require...

    Русско-английский словарь научного общения > метод

  • 54 позволять

    (= позволить) permit, allow, enable, afford, make it possible
    Данные результаты все еще недостаточны, чтобы позволить сделать четкое заключение. - The results are not yet sufficient to allow definite conclusions.
    Данный метод позволяет... - The method enables one to...
    Данный метод позволяет достичь хороших результатов. - This method permits one to get good results.
    Данный метод позволяет исследователю... - The method allows an investigator to...
    Данный метод позволяет нам решить несколько практических задач. - This method enables us to solve several problems of practical importance.
    Заметьте, что мы не можем позволить себе пренебречь... - Notice that we could not afford to neglect...
    Методы, которые мы рассмотрели, позволяют нам... - The methods we have considered enable us to...
    Мы должны иметь другое правило, которое позволит нам (определить и т. п.)... - We must have another rule which will enable us to...
    Недостаток места не позволяет нам (обсудить и т. п.)... - Lack of space prevents us from...
    Новая методика позволила нам преодолеть указанные выше трудности. - The new procedure enabled us to overcome the above difficulties.
    По крайней мере в принципе это позволяет нам (доказать и т. п.)... - At least in principle, this enables us to...
    Понятно, что правила, выведенные в предыдущем параграфе, позволят нам... - It is clear that the rules of the previous section will enable us to...
    Преимуществом уравнения (3) является то, что оно позволяет... - The advantage of (3) is that it permits...
    Результаты данной главы позволяют нам... - The results of the present chapter enable us to...
    Следующая теорема позволяет нам показать, что... - The following theorem enables us to show that...
    Таким образом, мы имеем метод, который позволяет... - Thus we have a method which yields...
    Такое преобразование позволяет... - Such an arrangement permits...
    Целью следующего параграфа являетря нахождение условий, которые позволят нам... - The aim of the next section is to establish conditions which enable us to...
    Эта дополнительная информация позволяет нам (вычислить и т. п.)... - This additional information allows us to...
    Эта теорема позволяет нам... - This theorem provides us with...
    Эти равенства позволяют нам показать, что... - These identities enable us to show that...
    Эти факты позволяют нам... - These facts allow us to...
    Это позволило изучить... - This has made it possible to study...
    Это позволит нам определить... - This will enable us to identify...
    Это позволяет избежать необходимости решать, действительно ли... - This avoids the problem of having to decide whether...
    Это позволяет нам использовать (метод и т. п.)... - This allows us to make use of...
    Это позволяет нам привести уравнение (1) к следующему виду... - This enables us to reduce (1) to the form...
    Это позволяет нам установить естественное и полезное соотношение между... - This allows us to establish a natural and useful connection between...
    Это свойство позволяет найти... - This property enables one to find...
    Это чрезвычайно важный результат, поскольку он позволяет нам... - This is an exceedingly important result, as it enables us to...
    Этот результат мог бы нам позволить... - This result may allow us to...

    Русско-английский словарь научного общения > позволять

  • 55 интерфейс RS-485

    1. RS-485

     

    интерфейс RS-485
    Промышленный стандарт для полудуплексной передачи данных. Позволяет объединять в сеть протяженностью 1200 м до 32 абонентов.
    [ http://www.morepc.ru/dict/]

    Интерфейс RS-485 - широко распространенный высокоскоростной и помехоустойчивый промышленный последовательный интерфейс передачи данных. Практически все современные компьютеры в промышленном исполнении, большинство интеллектуальных датчиков и исполнительных устройств, программируемые логические контроллеры наряду с традиционным интерфейсом RS-232 содержат в своем составе ту или иную реализацию интерфейса RS-485.
    Интерфейс RS-485 основан на стандарте EIA RS-422/RS-485.

    К сожалению, полноценного эквивалентного российского стандарта не существует, поэтому в данном разделе предлагаются некоторые рекомендации по применению интерфейса RS-485.

    Традиционный интерфейс RS-232 в промышленной автоматизации применяется достаточно редко. Сигналы этого интерфейса передаются перепадами напряжения величиной (3...15) В, поэтому длина линии связи RS-232, как правило, ограничена расстоянием в несколько метров из-за низкой помехоустойчивости. Интерфейс RS-232 имеется в каждом PC–совместимом компьютере, где используется в основном для подключения манипулятора типа “мышь”, модема, и реже – для передачи данных на небольшое расстояние из одного компьютера в другой. Передача производится последовательно, пословно, каждое слово длиной (5...8) бит предваряют стартовым битом
    и заканчивают необязательным битом четности и стоп-битами.
    Интерфейс RS-232 принципиально не позволяет создавать сети, так как соединяет только 2 устройства (так называемое соединение “точка - точка”).

    5151

    Сигналы интерфейса RS-485 передаются дифференциальными перепадами напряжения величиной (0,2...8) В, что обеспечивает высокую помехоустойчивость и общую длину линии связи до 1 км (и более с использованием специальных устройств – повторителей). Кроме того, интерфейс RS-485 позволяет создавать сети путем параллельного подключения многих устройств к одной физической линии (так называемая “мультиплексная шина”).
    В обычном PC-совместимом персональном компьютере (не промышленного исполнения) этот интерфейс отсутствует, поэтому необходим специальный адаптер - преобразователь интерфейса RS-485/232.

    5152
    Наша компания рекомендует использовать полностью автоматические преобразователи интерфейса, не требующие сигнала управления передатчиком. Такие преобразователи, как правило, бывают двух видов:

    • преобразователи, требующие жесткого указания скорости обмена и длины передаваемого слова (с учетом стартовых, стоповых бит и бита четности) для расчета времени окончания передачи: например, преобразователь ADAM-4520 производства компании Advantech. Все параметры задаются переключателями в самом преобразователе, причем для задания этих параметров корпус преобразователя необходимо разобрать;
    • преобразователи на основе технологий “Self Tuner” и им подобных, не требующие никаких указаний вообще, и, соответственно, не имеющие никаких органов управления: например, преобразователь I-7520 производства компании ICP DAS. Данный преобразователь предпочтительнее для использования в сетях с приборами МЕТАКОН.


    В автоматических преобразователях выходы интерфейса RS-485 обычно имеют маркировку “DATA+” и “DATA-“. В I-7520 и ADAM-4520 вывод “DATA+” функционально эквивалентен выводу “A” регулятора МЕТАКОН, вывод “DATA-“ - выводу “B”.

    Устройства, подключаемые к интерфейсу RS-485, характеризуются важным параметром по входу приемопередатчика: “единица нагрузки” (“Unit Load” - UL). По стандарту в сети допускается использование до 32 единиц нагрузки, т.е. до 32 устройств, каждое из которых нагружает линию в 1 UL. В настоящее время существуют микросхемы приемопередатчиков с характеристикой менее 1 UL, например - 0,25 UL. В этом случае количество физи
    чески подключенных к линии устройств можно увеличить, но суммарное количество UL в одной линии не должно превышать 32.

    В качестве линии связи используется экранированная витая пара с волновым сопротивлением ≈120 Ом. Для защиты от помех экран (оплетка) витой пары заземляется в любой точке, но только один раз: это исключает протекание больших токов по экрану из-за неравенства потенциалов “земли”. Выбор точки, в которой следует заземлять кабель, не регламентируется стандартом, но, как правило, экран линии связи заземляют на одном из ее концов.

    5153
    Устройства к сети RS-485 подключаются последовательно, с соблюдением полярности контактов A и B:

    5154
    Как видно из рисунка, длинные ответвления (шлейфы) от магистрали до периферийных устройств не допускаются. Стандарт исходит из предположения, что длина шлейфа равна нулю, но на практике этого достичь невозможно (небольшой шлейф всегда имеется внутри любого периферийного устройства: от клеммы
    до микросхемы приемопередатчика).

    Качество витой пары оказывает большое влияние на дальность связи и максимальную скорость обмена в линии. Существуют специальные методики расчета допустимых скоростей обмена и максимальной длины линии связи, основанные на паспортных параметрах кабеля (волновое сопротивление, погонная емкость, активное сопротивление) и микросхем приемопередатчиков (допустимые искажения фронта сигнала). Но на относительно низких скоростях обмена (до 19200 бит/с) основное влияние на допустимую длину линии связи оказывает активное сопротивление кабеля. Опытным путем установлено, что на расстояниях до 600 м допускается использовать кабель с медной жилой сечением 0,35 мм (например, кабель КММ 2х0,35), на большие расстояния сечение кабеля необходимо пропорционально увеличить. Этот эмпирический результат хорошо согласуется с результатами, полученными расчетными методами.

    Даже для скоростей обмена порядка 19200 бит/с кабель уже можно считать длинной линией, а любая длинная линия для исключения помех от отраженного сигнала должна быть согласована на концах. Для согласования используются резисторы
    сопротивлением 120 Ом (точнее, с сопротивлением, равным волновому сопротивлению кабеля, но, как правило, используемые витые пары имеют волновое сопротивление около 120 Ом и точно подбирать резистор нет необходимости) и мощностью не менее 0,25 Вт – так называемый “терминатор”. Терминаторы устанавливаются на обоих концах линии связи, между контактами A и B витой пары.
    В сетях RS-485 часто наблюдается состояние, когда все подключенные к сети устройства находятся в пассивном состоянии, т.е. в сети отсутствует передача и все приемопередатчики “слушают” сеть. В этом случае приемопередатчики не могут корректно распознать никакого устойчивого логического состояния в линии, а непосредственно после передачи все приемопередатчики распознают в линии состояние, соответствующее последнему переданному биту, что эквивалентно помехе в линии связи. На эту проблему не так часто обращают внимания, борясь с ее последствиями программными методами, но тем не менее решить ее аппаратно несложно. Достаточно с помощью специальных цепей смещения создать в линии потенциал, эквивалентный состоянию отсутствия передачи (так называемое состояние “MARK”: передатчик включен, но передача не ведется). Цепи смещения и терминатор реализованы в преобразователе I-7520. Для корректной работы цепей смещения необходимо наличие двух терминаторов в линии связи.

    В сети RS-485 возможна конфликтная ситуация, когда 2 и более устройства начинают передачу одновременно. Это происходит в следующих случаях:
    • в момент включения питания из-за переходных процессов устройства кратковременно могут находится в режиме передачи;
    • одно или более из устройств неисправно;
    • некорректно используется так называемый “мульти-мастерный” протокол, когда инициаторами обмена могут быть несколько устройств.
    В первых двух случаях быстро устранить конфликт невозможно, что теоретически может привести к перегреву и выходу из строя приемопередатчиков RS-485. К счастью, такая ситуация предусмотрена стандартом и дополнительная защита приемопередатчика обычно не требуется. В последнем случае необходимо предусмотреть программное разделение канала между устройствами-инициаторами обмена, так как в любом случае для нормального функционирования линия связи может одновременно предоставляться только одному передатчику.

    [ http://www.metodichka-contravt.ru/?id=3937]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > интерфейс RS-485

  • 56 трехфазный источник бесперебойного питания (ИБП)

    1. three-phase UPS

     

    трехфазный ИБП
    -
    [Интент]


    Глава 7. Трехфазные ИБП

    ... ИБП большой мощности (начиная примерно с 10 кВА) как правило предназначены для подключения к трехфазной электрической сети. Диапазон мощностей 8-25 кВА – переходный. Для такой мощности делают чисто однофазные ИБП, чисто трехфазные ИБП и ИБП с трехфазным входом и однофазным выходом. Все ИБП, начиная примерно с 30 кВА имеют трехфазный вход и трехфазный выход. Трехфазные ИБП имеют и другое преимущество перед однофазными ИБП. Они эффективно разгружают нейтральный провод от гармоник тока и способствуют более безопасной и надежной работе больших компьютерных систем. Эти вопросы рассмотрены в разделе "Особенности трехфазных источников бесперебойного питания" главы 8. Трехфазные ИБП строятся обычно по схеме с двойным преобразованием энергии. Поэтому в этой главе мы будем рассматривать только эту схему, несмотря на то, что имеются трехфазные ИБП, построенные по схеме, похожей на ИБП, взаимодействующий с сетью.

    Схема трехфазного ИБП с двойным преобразованием энергии приведена на рисунке 18.

    4929
    Рис.18. Трехфазный ИБП с двойным преобразованием энергии

    Как видно, этот ИБП не имеет почти никаких отличий на уровне блок-схемы, за исключением наличия трех фаз. Для того, чтобы увидеть отличия от однофазного ИБП с двойным преобразованием, нам придется (почти впервые в этой книге) несколько подробнее рассмотреть элементы ИБП. Мы будем проводить это рассмотрение, ориентируясь на традиционную технологию. В некоторых случаях будут отмечаться схемные особенности, позволяющие улучшить характеристики.

    Выпрямитель

    Слева на рис 18. – входная электрическая сеть. Она включает пять проводов: три фазных, нейтраль и землю. Между сетью и ИБП – предохранители (плавкие или автоматические). Они позволяют защитить сеть от аварии ИБП. Выпрямитель в этой схеме – регулируемый тиристорный. Управляющая им схема изменяет время (долю периода синусоиды), в течение которого тиристоры открыты, т.е. выпрямляют сетевое напряжение. Чем большая мощность нужна для работы ИБП, тем дольше открыты тиристоры. Если батарея ИБП заряжена, на выходе выпрямителя поддерживается стабилизированное напряжение постоянного тока, независимо от нвеличины напряжения в сети и мощности нагрузки. Если батарея требует зарядки, то выпрямитель регулирует напряжение так, чтобы в батарею тек ток заданной величины.

    Такой выпрямитель называется шести-импульсным, потому, что за полный цикл трехфазной электрической сети он выпрямляет 6 полупериодов сингусоиды (по два в каждой из фаз). Поэтому в цепи постоянного тока возникает 6 импульсов тока (и напряжения) за каждый цикл трехфазной сети. Кроме того, во входной электрической сети также возникают 6 импульсов тока, которые могут вызвать гармонические искажения сетевого напряжения. Конденсатор в цепи постоянного тока служит для уменьшения пульсаций напряжения на аккумуляторах. Это нужно для полной зарядки батареи без протекания через аккумуляторы вредных импульсных токов. Иногда к конденсатору добавляется еще и дроссель, образующий совместно с конденсатором L-C фильтр.

    Коммутационный дроссель ДР уменьшает импульсные токи, возникающие при открытии тиристоров и служит для уменьшения искажений, вносимых выпрямителем в электрическую сеть. Для еще большего снижения искажений, вносимых в сеть, особенно для ИБП большой мощности (более 80-150 кВА) часто применяют 12-импульсные выпрямители. Т.е. за каждый цикл трехфазной сети на входе и выходе выпрямителя возникают 12 импульсов тока. За счет удвоения числа импульсов тока, удается примерно вдвое уменьшить их амплитуду. Это полезно и для аккумуляторов и для электрической сети.

    Двенадцати-импульсный выпрямитель фактически состоит из двух 6-импульсных выпрямителей. На вход второго выпрямителя (он изображен ниже на рис. 18) подается трехфазное напряжение, прошедшее через трансформатор, сдвигающий фазу на 30 градусов.

    В настоящее время применяются также и другие схемы выпрямителей трехфазных ИБП. Например схема с пассивным (диодным) выпрямителем и преобразователем напряжения постоянного тока, применение которого позволяет приблизить потребляемый ток к синусоидальному.

    Наиболее современным считается транзисторный выпрямитель, регулируемый высокочастотной схемой широтно-импульсной модуляции (ШИМ). Применение такого выпрямителя позволяет сделать ток потребления ИБП синусоидальным и совершенно отказаться от 12-импульсных выпрямителей с трансформатором.

    Батарея

    Для формирования батареи трехфазных ИБП (как и в однофазных ИБП) применяются герметичные свинцовые аккумуляторы. Обычно это самые распространенные модели аккумуляторов с расчетным сроком службы 5 лет. Иногда используются и более дорогие аккумуляторы с большими сроками службы. В некоторых трехфазных ИБП пользователю предлагается фиксированный набор батарей или батарейных шкафов, рассчитанных на различное время работы на автономном режиме. Покупая ИБП других фирм, пользователь может более или менее свободно выбирать батарею своего ИБП (включая ее емкость, тип и количество элементов). В некоторых случаях батарея устанавливается в корпус ИБП, но в большинстве случаев, особенно при большой мощности ИБП, она устанавливается в отдельном корпусе, а иногда и в отдельном помещении.

    Инвертор

    Как и в ИБП малой мощности, в трехфазных ИБП применяются транзисторные инверторы, управляемые схемой широтно-импульсной модуляции (ШИМ). Некоторые ИБП с трехфазным выходом имеют два инвертора. Их выходы подключены к трансформаторам, сдвигающим фазу выходных напряжений. Даже в случае применения относительно низкочастоной ШИМ, такая схема совместно с применением фильтра переменного тока, построенного на трансформаторе и конденсаторах, позволяет обеспечить очень малый коэффициент гармонических искажений на выходе ИБП (до 3% на линейной нагрузке). Применение двух инверторов увеличивает надежность ИБП, поскольку даже при выходе из строя силовых транзисторов одного из инверторов, другой инвертор обеспечит работу нагрузки, пусть даже при большем коэффициенте гармонических искажений.

    В последнее время, по мере развития технологии силовых полупроводников, начали применяться более высокочастотные транзисторы. Частота ШИМ может составлять 4 и более кГц. Это позволяет уменьшить гармонические искажения выходного напряжения и отказаться от применения второго инвертора. В хороших ИБП существуют несколько уровней защиты инвертора от перегрузки. При небольших перегрузках инвертор может уменьшать выходное напряжение (пытаясь снизить ток, проходящий через силовые полупроводники). Если перегрузка очень велика (например нагрузка составляет более 125% номинальной), ИБП начинает отсчет времени работы в условиях перегрузки и через некоторое время (зависящее от степени перегрузки – от долей секунды до минут) переключается на работу через статический байпас. В случае большой перегрузки или короткого замыкания, переключение на статический байпас происходит сразу.

    Некоторые современные высококлассные ИБП (с высокочакстотной ШИМ) имеют две цепи регулирования выходного напряжения. Первая из них осуществляет регулирование среднеквадратичного (действующего) значения напряжения, независимо для каждой из фаз. Вторая цепь измеряет мгновенные значения выходного напряжения и сравнивает их с хранящейся в памяти блока управления ИБП идеальной синусоидой. Если мгновенное значение напряжения отклонилось от соотвествующего "идеального" значения, то вырабатывается корректирующий импульс и форма синусоиды выходного напряжения исправляется. Наличие второй цепи обратной связи позволяет обеспечить малые искажения формы выходного напряжения даже при нелинейных нагрузках.

    Статический байпас

    Блок статического байпаса состоит из двух трехфазных (при трехфазном выходе) тиристорных переключателей: статического выключателя инвертора (на схеме – СВИ) и статического выключателя байпаса (СВБ). При нормальной работе ИБП (от сети или от батареи) статический выключатель инвертора замкнут, а статический выключатель байпаса разомкнут. Во время значительных перегрузок или выхода из строя инвертора замкнут статический переключатель байпаса, переключатель инвертора разомкнут. В момент переключения оба статических переключателя на очень короткое время замкнуты. Это позволяет обеспечить безразрывное питание нагрузки.

    Каждая модель ИБП имеет свою логику управления и, соответственно, свой набор условий срабатывания статических переключателей. При покупке ИБП бывает полезно узнать эту логику и понять, насколько она соответствует вашей технологии работы. В частности хорошие ИБП сконструированы так, чтобы даже если байпас недоступен (т.е. отсутствует синхронизация инвертора и байпаса – см. главу 6) в любом случае постараться обеспечить электроснабжение нагрузки, пусть даже за счет уменьшения напряжения на выходе инвертора.

    Статический байпас ИБП с трехфазным входом и однофазным выходом имеет особенность. Нагрузка, распределенная на входе ИБП по трем фазным проводам, на выходе имеет только два провода: один фазный и нейтральный. Статический байпас тоже конечно однофазный, и синхронизация напряжения инвертора производится относительно одной из фаз трехфазной сети (любой, по выбору пользователя). Вся цепь, подводящая напряжение к входу статического байпаса должна выдерживать втрое больший ток, чем входной кабель выпрямителя ИБП. В ряде случаев это может вызвать трудности с проводкой.

    Сервисный байпас

    Трехфазные ИБП имеют большую мощность и обычно устанавливаются в местах действительно критичных к электропитанию. Поэтому в случае выхода из строя какого-либо элемента ИБП или необходимости проведения регламентных работ (например замены батареи), в большинстве случае нельзя просто выключить ИБП или поставить на его место другой. Нужно в любой ситуации обеспечить электропитание нагрузки. Для этих ситуаций у всех трехфазных ИБП имеется сервисный байпас. Он представляет собой ручной переключатель (иногда как-то заблокированный, чтобы его нельзя было включить по ошибке), позволяющий переключить нагрузку на питание непосредственно от сети. У большинства ИБП для переключения на сервисный байпас существует специальная процедура (определенная последовательность действий), которая позволяет обеспечит непрерывность питания при переключениях.

    Режимы работы трехфазного ИБП с двойным преобразованием

    Трехфазный ИБП может работать на четырех режимах работы.

    • При нормальной работе нагрузка питается по цепи выпрямитель-инвертор стабилизированным напряжением, отфильтрованным от импульсов и шумов за счет двойного преобразования энергии.
    • Работа от батареи. На это режим ИБП переходит в случае, если напряжение на выходе ИБП становится таким маленьким, что выпрямитель оказывается не в состоянии питать инвертор требуемым током, или выпрямитель не может питать инвертор по другой причине, например из-за поломки. Продолжительность работы ИБП от батареи зависит от емкости и заряда батареи, а также от нагрузки ИБП.
    • Когда какой-нибудь инвертор выходит из строя или испытывает перегрузку, ИБП безразрывно переходит на режим работы через статический байпас. Нагрузка питается просто от сети через вход статического байпаса, который может совпадать или не совпадать со входом выпрямителя ИБП.
    • Если требуется обслуживание ИБП, например для замены батареи, то ИБП переключают на сервисный байпас. Нагрузка питается от сети, а все цепи ИБП, кроме входного выключателя сервисного байпаса и выходных выключателей отделены от сети и от нагрузки. Режим работы на сервисном байпасе не является обязательным для небольших однофазных ИБП с двойным преобразованием. Трехфазный ИБП без сервисного байпаса немыслим.

    Надежность

    Трехфазные ИБП обычно предназначаются для непрерывной круглосуточной работы. Работа нагрузки должна обеспечиваться практически при любых сбоях питания. Поэтому к надежности трехфазных ИБП предъявляются очень высокие требования. Вот некоторые приемы, с помощью которых производители трехфазных ИБП могут увеличивать надежность своей продукции. Применение разделительных трансформаторов на входе и/или выходе ИБП увеличивает устойчивость ИБП к скачкам напряжения и нагрузки. Входной дроссель не только обеспечивает "мягкий запуск", но и защищает ИБП (и, в конечном счете, нагрузку) от очень быстрых изменений (скачков) напряжения.

    Обычно фирма выпускает целый ряд ИБП разной мощности. В двух или трех "соседних по мощности" ИБП этого ряда часто используются одни и те же полупроводники. Если это так, то менее мощный из этих двух или трех ИБП имеет запас по предельному току, и поэтому несколько более надежен. Некоторые трехфазные ИБП имеют повышенную надежность за счет резервирования каких-либо своих цепей. Так, например, могут резервироваться: схема управления (микропроцессор + платы "жесткой логики"), цепи управления силовыми полупроводниками и сами силовые полупроводники. Батарея, как часть ИБП тоже вносит свой вклад в надежность прибора. Если у ИБП имеется возможность гибкого выбора батареи, то можно выбрать более надежный вариант (батарея более известного производителя, с меньшим числом соединений).

    Преобразователи частоты

    Частота напряжения переменного тока в электрических сетях разных стран не обязательно одинакова. В большинстве стран (в том числе и в России) распространена частота 50 Гц. В некоторых странах (например в США) частота переменного напряжения равна 60 Гц. Если вы купили оборудование, рассчитанное на работу в американской электрической сети (110 В, 60 Гц), то вы должны каким-то образом приспособить к нему нашу электрическую сеть. Преобразование напряжения не является проблемой, для этого есть трансформаторы. Если оборудование оснащено импульсным блоком питания, то оно не чувствительно к частоте и его можно использовать в сети с частотой 50 Гц. Если же в состав оборудования входят синхронные электродвигатели или иное чувствительное к частоте оборудование, вам нужен преобразователь частоты. ИБП с двойным преобразованием энергии представляет собой почти готовый преобразователь частоты.

    В самом деле, ведь выпрямитель этого ИБП может в принципе работать на одной частоте, а инвертор выдавать на своем выходе другую. Есть только одно принципиальное ограничение: невозможность синхронизации инвертора с линией статического байпаса из-за разных частот на входе и выходе. Это делает преобразователь частоты несколько менее надежным, чем сам по себе ИБП с двойным преобразованием. Другая особенность: преобразователь частоты должен иметь мощность, соответствующую максимальному возможному току нагрузки, включая все стартовые и аварийные забросы, ведь у преобразователя частоты нет статического байпаса, на который система могла бы переключиться при перегрузке.

    Для изготовления преобразователя частоты из трехфазного ИБП нужно разорвать цепь синхронизации, убрать статический байпас (или, вернее, не заказывать его при поставке) и настроить инвертор ИБП на работу на частоте 60 Гц. Для большинства трехфазных ИБП это не представляет проблемы, и преобразователь частоты может быть заказан просто при поставке.

    ИБП с горячим резервированием

    В некоторых случаях надежности даже самых лучших ИБП недостаточно. Так бывает, когда сбои питания просто недопустимы из-за необратимых последствий или очень больших потерь. Обычно в таких случаях в технике применяют дублирование или многократное резервирование блоков, от которых зависит надежность системы. Есть такая возможность и для трехфазных источников бесперебойного питания. Даже если в конструкцию ИБП стандартно не заложено резервирование узлов, большинство трехфазных ИБП допускают резервирование на более высоком уровне. Резервируется целиком ИБП. Простейшим случаем резервирования ИБП является использование двух обычных серийных ИБП в схеме, в которой один ИБП подключен к входу байпаса другого ИБП.

    4930

    Рис. 19а. Последовательное соединение двух трехфазных ИБП

    На рисунке 19а приведена схема двух последовательно соединенным трехфазных ИБП. Для упрощения на рисунке приведена, так называемая, однолинейная схема, на которой трем проводам трехфазной системы переменного тока соответствует одна линия. Однолинейные схемы часто применяются в случаях, когда особенности трехфазной сети не накладывают отпечаток на свойства рассматриваемого прибора. Оба ИБП постоянно работают. Основной ИБП питает нагрузку, а вспомогательный ИБП работает на холостом ходу. В случае выхода из строя основного ИБП, нагрузка питается не от статического байпаса, как в обычном ИБП, а от вспомогательного ИБП. Только при выходе из строя второго ИБП, нагрузка переключается на работу от статического байпаса.

    Система из двух последовательно соединенных ИБП может работать на шести основных режимах.

    А. Нормальная работа. Выпрямители 1 и 2 питают инверторы 1 и 2 и, при необходимости заряжают батареи 1 и 2. Инвертор 1 подключен к нагрузке (статический выключатель инвертора 1 замкнут) и питает ее стабилизированным и защищенным от сбоев напряжением. Инвертор 2 работает на холостом ходу и готов "подхватить" нагрузку, если инвертор 1 выйдет из строя. Оба статических выключателя байпаса разомкнуты.

    Для обычного ИБП с двойным преобразованием на режиме работы от сети допустим (при сохранении гарантированного питания) только один сбой в системе. Этим сбоем может быть либо выход из строя элемента ИБП (например инвертора) или сбой электрической сети.

    Для двух последовательно соединенных ИБП с на этом режиме работы допустимы два сбоя в системе: выход из строя какого-либо элемента основного ИБП и сбой электрической сети. Даже при последовательном или одновременном возникновении двух сбоев питание нагрузки будет продолжаться от источника гарантированного питания.

    Б. Работа от батареи 1. Выпрямитель 1 не может питать инвертор и батарею. Чаще всего это происходит из-за отключения напряжения в электрической сети, но причиной может быть и выход из строя выпрямителя. Состояние инвертора 2 в этом случае зависит от работы выпрямителя 2. Если выпрямитель 2 работает (например он подключен к другой электрической сети или он исправен, в отличие от выпрямителя 1), то инвертор 2 также может работать, но работать на холостом ходу, т.к. он "не знает", что с первым ИБП системы что-то случилось. После исчерпания заряда батареи 1, инвертор 1 отключится и система постарается найти другой источник электроснабжения нагрузки. Им, вероятно, окажется инвертор2. Тогда система перейдет к другому режиму работы.

    Если в основном ИБП возникает еще одна неисправность, или батарея 1 полностью разряжается, то система переключается на работу от вспомогательного ИБП.

    Таким образом даже при двух сбоях: неисправности основного ИБП и сбое сети нагрузка продолжает питаться от источника гарантированного питания.

    В. Работа от инвертора 2. В этом случае инвертор 1 не работает (из-за выхода из строя или полного разряда батареи1). СВИ1 разомкнут, СВБ1 замкнут, СВИ2 замкнут и инвертор 2 питает нагрузку. Выпрямитель 2, если в сети есть напряжение, а сам выпрямитель исправен, питает инвертор и батарею.

    На этом режиме работы допустим один сбой в системе: сбой электрической сети. При возникновении второго сбоя в системе (выходе из строя какого-либо элемента вспомогательного ИБП) электропитание нагрузки не прерывается, но нагрузка питается уже не от источника гарантированного питания, а через статический байпас, т.е. попросту от сети.

    Г. Работа от батареи 2. Наиболее часто такая ситуация может возникнуть после отключения напряжения в сети и полного разряда батареи 1. Можно придумать и более экзотическую последовательность событий. Но в любом случае, инвертор 2 питает нагругку, питаясь, в свою очередь, от батареи. Инвертор 1 в этом случае отключен. Выпрямитель 1, скорее всего, тоже не работает (хотя он может работать, если он исправен и в сети есть напряжение).

    После разряда батареи 2 система переключится на работу от статического байпаса (если в сети есть нормальное напряжение) или обесточит нагрузку.

    Д. Работа через статический байпас. В случае выхода из строя обоих инверторов, статические переключатели СВИ1 и СВИ2 размыкаются, а статические переключатели СВБ1 и СВБ2 замыкаются. Нагрузка начинает питаться от электрической сети.

    Переход системы к работе через статический байпас происходит при перегрузке системы, полном разряде всех батарей или в случае выхода из строя двух инверторов.

    На этом режиме работы выпрямители, если они исправны, подзаряжают батареи. Инверторы не работают. Нагрузка питается через статический байпас.

    Переключение системы на работу через статический байпас происходит без прерывания питания нагрузки: при необходимости переключения сначала замыкается тиристорный переключатель статического байпаса, и только затем размыкается тиристорный переключатель на выходе того инвертора, от которого нагрузка питалась перед переключением.

    Е. Ручной (сервисный) байпас. Если ИБП вышел из строя, а ответственную нагрузку нельзя обесточить, то оба ИБП системы с соблюдением специальной процедуры (которая обеспечивает безразрыное переключение) переключают на ручной байпас. после этого можно производить ремонт ИБП.

    Преимуществом рассмотренной системы с последовательным соединением двух ИБП является простота. Не нужны никакие дополнительные элементы, каждый из ИБП работает в своем штатном режиме. С точки зрения надежности, эта схема совсем не плоха:- в ней нет никакой лишней, (связанной с резервированием) электроники, соответственно и меньше узлов, которые могут выйти из строя.

    Однако у такого соединения ИБП есть и недостатки. Вот некоторые из них.
     

    1. Покупая такую систему, вы покупаете второй байпас (на нашей схеме – он первый – СВБ1), который, вообще говоря, не нужен – ведь все необходимые переключения могут быть произведены и без него.
    2. Весь второй ИБП выполняет только одну функцию – резервирование. Он потребляет электроэнергию, работая на холостом ходу и вообще не делает ничего полезного (разумеется за исключением того времени, когда первый ИБП отказывается питать нагрузку). Некоторые производители предлагают "готовые" системы ИБП с горячим резервированием. Это значит, что вы покупаете систему, специально (еще на заводе) испытанную в режиме с горячим резервированием. Схема такой системы приведена на рис. 19б.

    4931

    Рис.19б. Трехфазный ИБП с горячим резервированием

    Принципиальных отличий от схемы с последовательным соединением ИБП немного.

    1. У второго ИБП отсутствует байпас.
    2. Для синхронизации между инвертором 2 и байпасом появляется специальный информационный кабель между ИБП (на рисунке не показан). Поэтому такой ИБП с горячим резервированием может работать на тех же шести режимах работы, что и система с последовательным подключением двух ИБП. Преимущество "готового" ИБП с резервированием, пожалуй только одно – он испытан на заводе-производителе в той же комплектации, в которой будет эксплуатироваться.

    Для расмотренных схем с резервированием иногда применяют одно важное упрощение системы. Ведь можно отказаться от резервирования аккумуляторной батареи, сохранив резервирование всей силовой электроники. В этом случае оба ИБП будут работать от одной батареи (оба выпрямителя будут ее заряжать, а оба инвертора питаться от нее в случае сбоя электрической сети). Применение схемы с общей бетареей позволяет сэкономить значительную сумму – стоимость батареи.

    Недостатков у схемы с общей батареей много:

    1. Не все ИБП могут работать с общей батареей.
    2. Батарея, как и другие элементы ИБП обладает конечной надежностью. Выход из строя одного аккумулятора или потеря контакта в одном соединении могут сделать всю системы ИБП с горячим резервирование бесполезной.
    3. В случае выхода из строя одного выпрямителя, общая батарея может быть выведена из строя. Этот последний недостаток, на мой взгляд, является решающим для общей рекомендации – не применять схемы с общей батареей.


    Параллельная работа нескольких ИБП

    Как вы могли заметить, в случае горячего резервирования, ИБП резервируется не целиком. Байпас остается общим для обоих ИБП. Существует другая возможность резервирования на уровне ИБП – параллельная работа нескольких ИБП. Входы и выходы нескольких ИБП подключаются к общим входным и выходным шинам. Каждый ИБП сохраняет все свои элементы (иногда кроме сервисного байпаса). Поэтому выход из строя статического байпаса для такой системы просто мелкая неприятность.

    На рисунке 20 приведена схема параллельной работы нескольких ИБП.

    4932

    Рис.20. Параллельная работа ИБП

    На рисунке приведена схема параллельной системы с раздельными сервисными байпасами. Схема система с общим байпасом вполне ясна и без чертежа. Ее особенностью является то, что для переключения системы в целом на сервисный байпас нужно управлять одним переключателем вместо нескольких. На рисунке предполагается, что между ИБП 1 и ИБП N Могут располагаться другие ИБП. Разные производителю (и для разных моделей) устанавливают свои максимальные количества параллеьно работающих ИБП. Насколько мне известно, эта величина изменяется от 2 до 8. Все ИБП параллельной системы работают на общую нагрузку. Суммарная мощность параллельной системы равна произведению мощности одного ИБП на количество ИБП в системе. Таким образом параллельная работа нескольких ИБП может применяться (и в основном применяется) не столько для увеличения надежности системы бесперебойного питания, но для увеличения ее мощности.

    Рассмотрим режимы работы параллельной системы

    Нормальная работа (работа от сети). Надежность

    Когда в сети есть напряжение, достаточное для нормальной работы, выпрямители всех ИБП преобразуют переменное напряжение сети в постоянное, заряжая батареи и питая инверторы.

    Инверторы, в свою очередь, преобразуют постоянное напряжение в переменное и питают нагрузку. Специальная управляющая электроника параллельной системы следит за равномерным распределением нагрузки между ИБП. В некоторых ИБП распределение нагрузки между ИБП производится без использования специальной параллельной электроники. Такие приборы выпускаются "готовыми к параллельной работе", и для использования их в параллельной системе достаточно установить плату синхронизации. Есть и ИБП, работающие параллельго без специальной электроники. В таком случае количество параллельно работающих ИБП – не более двух. В рассматриваемом режиме работы в системе допустимо несколько сбоев. Их количество зависит от числа ИБП в системе и действующей нагрузки.

    Пусть в системе 3 ИБП мощностью по 100 кВА, а нагрузка равна 90 кВА. При таком соотношении числа ИБП и их мощностей в системе допустимы следующие сбои.

    Сбой питания (исчезновение напряжения в сети)

    Выход из строя любого из инверторов, скажем для определенности, инвертора 1. Нагрузка распределяется между двумя другими ИБП. Если в сети есть напряжение, все выпрямители системы работают.

    Выход из строя инвертора 2. Нагрузка питается от инвертора 3, поскольку мощность, потребляемая нагрузкой меньше мощности одного ИБП. Если в сети есть напряжение, все выпрямители системы продолжают работать.

    Выход из строя инвертора 3. Система переключается на работу через статический байпас. Нагрузка питается напрямую от сети. При наличии в сети нормального напряжения, все выпрямители работают и продолжают заряжать батареи. При любом последующем сбое (поломке статического байпаса или сбое сети) питание нагрузки прекращается. Для того, чтобы параллельная система допускала большое число сбоев, система должна быть сильно недогружена и должна включать большое число ИБП. Например, если нагрузка в приведенном выше примере будет составлять 250 кВА, то система допускает только один сбой: сбой сети или поломку инвертора. В отношении количества допустимых сбоев такая система эквивалентна одиночному ИБП. Это, кстати, не значит, что надежность такой параллельной системы будет такая же, как у одиночного ИБП. Она будет ниже, поскольку параллельная система намного сложнее одиночного ИБП и (при почти предельной нагрузке) не имеет дополнительного резервирования, компенсирующего эту сложность.

    Вопрос надежности параллельной системы ИБП не может быть решен однозначно. Надежность зависит от большого числа параметров: количества ИБП в системе (причем увеличение количества ИБП до бесконечности снижает надежность – система становится слишком сложной и сложно управляемой – впрочем максимальное количество параллельно работающих модулей для известных мне ИБП не превышает 8), нагрузки системы (т.е. соотношения номинальной суммарной мощности системы и действующей нагрузки), примененной схемы параллельной работы (т.е. есть ли в системе специальная электроника для обеспечения распределения нагрузки по ИБП), технологии работы предприятия. Таким образом, если единственной целью является увеличение надежности системы, то следует серьезно рассмотреть возможность использование ИБП с горячим резервированием – его надежность не зависит от обстоятельств и в силу относительной простоты схемы практически всегда выше надежности параллельной системы.

    Недогруженная система из нескольких параллельно работающих ИБП, которая способна реализвать описанную выше логику управления, часто также называется параллельной системой с резервированием.

    Работа с частичной нагрузкой

    Если нагрузка параллельной системы такова, что с ней может справиться меньшее, чем есть в системе количество ИБП, то инверторы "лишних" ИБП могут быть отключены. В некоторых ИБП такая логика управления подразумевается по умолчанию, а другие модели вообще лишены возможности работы в таком режиме. Инверторы, оставшиеся включенными, питают нагрузку. Коэффициент полезного действия системы при этом несколько возрастает. Обычно в этом режиме работы предусматривается некоторая избыточность, т.е. количестов работающих инверторов больше, чем необходимо для питания нагрузки. Тем самым обеспечивается резервирование. Все выпрямители системы продолжают работать, включая выпрямители тех ИБП, инверторы которых отключены.

    Работа от батареи

    В случае исчезновения напряжения в электрической сети, параллельная система переходит на работу от батареи. Все выпрямители системы не работают, инверторы питают нагрузку, получая энергию от батареи. В этом режиме работы (естественно) отсутствует напряжение в электрической сети, которое при нормальной работе было для ИБП не только источником энергии, но и источником сигнала синхронизации выходного напряжения. Поэтому функцию синхронизации берет на себя специальная параллельная электроника или выходная цепь ИБП, специально ориентированная на поддержание выходной частоты и фазы в соответствии с частотой и фазой выходного напряжения параллельно работающего ИБП.

    Выход из строя выпрямителя

    Это режим, при котором вышли из строя один или несколько выпрямителей. ИБП, выпрямители которых вышли из строя, продолжают питать нагрузку, расходуя заряд своей батареи. Они выдает сигнал "неисправность выпрямителя". Остальные ИБП продолжают работать нормально. После того, как заряд разряжающихся батарей будет полностью исчерпан, все зависит от соотношения мощности нагрузки и суммарной мощности ИБП с исправными выпрямителями. Если нагрузка не превышает перегрузочной способности этих ИБП, то питание нагрузки продолжится (если у системы остался значительный запас мощности, то в этом режиме работы допустимо еще несколько сбоев системы). В случае, если нагрузка ИБП превышает перегрузочную способность оставшихся ИБП, то система переходит к режиму работы через статический байпас.

    Выход из строя инвертора

    Если оставшиеся в работоспособном состоянии инверторы могут питать нагрузку, то нагрузка продолжает работать, питаясь от них. Если мощности работоспособных инверторов недостаточно, система переходит в режим работы от статического байпаса. Выпрямители всех ИБП могут заряжать батареи, или ИБП с неисправными инверторами могут быть полностью отключены для выполнения ремонта.

    Работа от статического байпаса

    Если суммарной мощности всех исправных инверторов параллельной системы не достаточно для поддержания работы нагрузки, система переходит к работе через статический байпас. Статические переключатели всех инверторов разомкнуты (исправные инверторы могут продолжать работать). Если нагрузка уменьшается, например в результате отключения части оборудования, параллельная система автоматически переключается на нормальный режим работы.

    В случае одиночного ИБП с двойным преобразованием работа через статический байпас является практически последней возможностью поддержания работы нагрузки. В самом деле, ведь достаточно выхода из строя статического переключателя, и нагрузка будет обесточена. При работе параллельной системы через статический байпас допустимо некоторое количество сбоев системы. Статический байпас способен выдерживать намного больший ток, чем инвертор. Поэтому даже в случае выхода из строя одного или нескольких статических переключателей, нагрузка возможно не будет обесточена, если суммарный допустимый ток оставшихся работоспособными статических переключателей окажется достаточен для работы. Конкретное количество допустимых сбоев системы в этом режиме работы зависит от числа ИБП в системе, допустимого тока статического переключателя и величины нагрузки.

    Сервисный байпас

    Если нужно провести с параллельной системой ремонтные или регламентные работы, то система может быть отключена от нагрузки с помощью ручного переключателя сервисного байпаса. Нагрузка питается от сети, все элементы параллельной системы ИБП, кроме батарей, обесточены. Как и в случае системы с горячим резервированием, возможен вариант одного общего внешнего сервисного байпаса или нескольких сервисных байпасов, встроенных в отдельные ИБП. В последнем случае при использовании сервисного байпаса нужно иметь в виду соотношение номинального тока сервисного байпаса и действующей мощности нагрузки. Другими словами, нужно включить столько сервисных байпасов, чтобы нагрузка не превышала их суммарный номинальных ток.
    [ http://www.ask-r.ru/info/library/ups_without_secret_7.htm]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > трехфазный источник бесперебойного питания (ИБП)

  • 57 управление электропитанием

    1. power management

     

    управление электропитанием
    -
    [Интент]


    Управление электропитанием ЦОД

    Автор: Жилкина Наталья
    Опубликовано 23 апреля 2009 года


    Источники бесперебойного питания, функционирующие в ЦОД, составляют важный элемент общей системы его энергообеспечения. Вписываясь в контур управления ЦОД, система мониторинга и управления ИБП становится ядром для реализации эксплуатационных функций.

    Три задачи

    Системы мониторинга, диагностики и управления питанием нагрузки решают три основные задачи: позволяют ИБП выполнять свои функции, оповещать персонал о происходящих с ними событиях и посылать команды для автоматического завершения работы защищаемого устройства.

    Мониторинг параметров ИБП предполагает отображение и протоколирование состояния устройства и всех событий, связанных с его изменением. Диагностика реализуется функциями самотестирования системы. Управляющие же функции предполагают активное вмешательство в логику работы устройства.

    Многие специалисты этого рынка, отмечая важность процедуры мониторинга, считают, что управление должно быть сведено к минимуму. «Функция управления ИБП тоже нужна, но скорее факультативно, — говорит Сергей Ермаков, технический директор компании Inelt и эксперт в области систем Chloride. — Я глубоко убежден, что решения об активном управляющем вмешательстве в работу систем защиты электропитания ответственной нагрузки должен принимать человек, а не автоматизированная система. Завершение работы современных мощных серверов, на которых функционируют ответственные приложения, — это, как правило, весьма длительный процесс. ИБП зачастую не способны обеспечивать необходимое для него время, не говоря уж о времени запуска какого-то сервиса». Функция же мониторинга позволяет предотвратить наступление нежелательного события — либо, если таковое произошло, проанализировать его причины, опираясь не на слова, а на запротоколированные данные, хранящиеся в памяти адаптера или файлах на рабочей станции мониторинга.

    Эту точку зрения поддерживает и Алексей Сарыгин, технический директор компании Radius Group: «Дистанционное управление мощных ИБП — это вопрос, к которому надо подходить чрезвычайно аккуратно. Если функции дистанционного мониторинга и диспетчеризации необходимы, то практика предоставления доступа персоналу к функциям дистанционного управления представляется радикально неверной. Доступность модулей управления извне потенциально несет в себе риск нарушения безопасности и категорически снижает надежность системы. Если существует физическая возможность дистанционно воздействовать на ИБП, на его параметры, отключение, снятие нагрузки, закрытие выходных тиристорных ключей или блокирование цепи байпаса, то это чревато потерей питания всего ЦОД».

    Практически на всех трехфазных ИБП предусмотрена кнопка E.P.O. (Emergency Power Off), дублер которой может быть выведен на пульт управления диспетчерской. Она обеспечивает аварийное дистанционное отключение блоков ИБП при наступлении аварийных событий. Это, пожалуй, единственная возможность обесточить нагрузку, питаемую от трехфазного аппарата, но реализуется она в исключительных случаях.

    Что же касается диагностики электропитания, то, как отмечает Юрий Копылов, технический директор московского офиса корпорации Eaton, в последнее время характерной тенденцией в управляющем программном обеспечении стал отказ от предоставления функций удаленного тестирования батарей даже системному администратору.

    — Адекватно сравнивать состояние батарей необходимо под нагрузкой, — говорит он, — сам тест запускать не чаще чем раз в два дня, а разряжать батареи надо при одном и том же токе и уровне нагрузки. К тому же процесс заряда — довольно долгий. Все это не идет батареям на пользу.

    Средства мониторинга

    Производители ИБП предоставляют, как правило, сразу несколько средств мониторинга и в некоторых случаях даже управления ИБП — все они основаны на трех основных методах.

    В первом случае устройство подключается напрямую через интерфейс RS-232 (Com-порт) к консоли администратора. Дальность такого подключения не превышает 15 метров, но может быть увеличена с помощью конверторов RS-232/485 и RS-485/232 на концах провода, связывающего ИБП с консолью администратора. Такой способ обеспечивает низкую скорость обмена информацией и пригоден лишь для топологии «точка — точка».

    Второй способ предполагает использование SNMP-адаптера — встроенной или внешней интерфейсной карты, позволяющей из любой точки локальной сети получить информацию об основных параметрах ИБП. В принципе, для доступа к ИБП через SNMP достаточно веб-браузера. Однако для большего комфорта производители оснащают свои системы более развитым графическим интерфейсом, обеспечивающим функции мониторинга и корректного завершения работы. На базе SNMP-протокола функционируют все основные системы мониторинга и управления ИБП, поставляемые штатно или опционально вместе с ИБП.

    Стандартные SNMP-адаптеры поддерживают подключение нескольких аналоговых или пороговых устройств — датчик температуры, движения, открытия двери и проч. Интеграция таких устройств в общую систему мониторинга крупного объекта (например, дата-центра) позволяет охватить огромное количество точек наблюдения и отразить эту информацию на экране диспетчера.

    Большое удобство предоставляет метод эксплуатационного удаленного контроля T.SERVICE, позволяющий отследить работу оборудования посредством телефонной линии (через модем GSM) или через Интернет (с помощью интерфейса Net Vision путем рассылки e-mail на электронный адрес потребителя). T.SERVICE обеспечивает диагностирование оборудования в режиме реального времени в течение 24 часов в сутки 365 дней в году. ИБП автоматически отправляет в центр технического обслуживания регулярные отчеты или отчеты при обнаружении неисправности. В зависимости от контролируемых параметров могут отправляться уведомления о неправильной эксплуатации (с пользователем связывается опытный специалист и рекомендует выполнить простые операции для предотвращения ухудшения рабочих характеристик оборудования) или о наличии отказа (пользователь информируется о состоянии устройства, а на место установки немедленно отправляется технический специалист).

    Профессиональное мнение

    Наталья Маркина, коммерческий директор представительства компании SOCOMEC

    Управляющее ПО фирмы SOCOMEC легко интегрируется в общий контур управления инженерной инфраструктурой ЦОД посредством разнообразных интерфейсов передачи данных ИБП. Установленное в аппаратной или ЦОД оборудование SOCOMEC может дистанционно обмениваться информацией о своих рабочих параметрах с системами централизованного управления и компьютерными сетями посредством сухих контактов, последовательных портов RS232, RS422, RS485, а также через интерфейс MODBUS TCP и GSS.

    Интерфейс GSS предназначен для коммуникации с генераторными установками и включает в себя 4 входа (внешние контакты) и 1 выход (60 В). Это позволяет программировать особые процедуры управления, Global Supply System, которые обеспечивают полную совместимость ИБП с генераторными установками.

    У компании Socomec имеется широкий выбор интерфейсов и коммуникационного программного обеспечения для установки диалога между ИБП и удаленными системами мониторинга промышленного и компьютерного оборудования. Такие опции связи, как панель дистанционного управления, интерфейс ADC (реконфигурируемые сухие контакты), обеспечивающий ввод и вывод данных при помощи сигналов сухих контактов, интерфейсы последовательной передачи данных RS232, RS422, RS485 по протоколам JBUS/MODBUS, PROFIBUS или DEVICENET, MODBUS TCP (JBUS/MODBUS-туннелирование), интерфейс NET VISION для локальной сети Ethernet, программное обеспечение TOP VISION для выполнения мониторинга с помощью рабочей станции Windows XP PRO — все это позволяет контролировать работу ИБП удобным для пользователя способом.

    Весь контроль управления ИБП, ДГУ, контроль окружающей среды сводится в единый диспетчерский пункт посредством протоколов JBUS/MODBUS.
     

    Индустриальный подход

    Третий метод основан на использовании высокоскоростной индустриальной интерфейсной шины: CANBus, JBus, MODBus, PROFIBus и проч. Некоторые модели ИБП поддерживают разновидность универсального smart-слота для установки как карточек SNMP, так и интерфейсной шины. Система мониторинга на базе индустриальной шины может быть интегрирована в уже существующую промышленную SCADA-систему контроля и получения данных либо создана как заказное решение на базе многофункциональных стандартных контроллеров с выходом на шину. Промышленная шина через шлюзы передает информацию на удаленный диспетчерский пункт или в систему управления зданием (Building Management System, BMS). В эту систему могут быть интегрированы и контроллеры, управляющие ИБП.

    Универсальные SCADA-системы поддерживают датчики и контроллеры широкого перечня производителей, но они недешевы и к тому же неудобны для внесения изменений. Но если подобная система уже функционирует на объекте, то интеграция в нее дополнительных ИБП не представляет труда.

    Сергей Ермаков, технический директор компании Inelt, считает, что применение универсальных систем управления на базе промышленных контроллеров нецелесообразно, если используется для мониторинга только ИБП и ДГУ. Один из практичных подходов — создание заказной системы, с удобной для заказчика графической оболочкой и необходимым уровнем детализации — от карты местности до поэтажного плана и погружения в мнемосхему компонентов ИБП.

    — ИБП может передавать одинаковое количество информации о своем состоянии и по прямому соединению, и по SNMP, и по Bus-шине, — говорит Сергей Ермаков. — Применение того или иного метода зависит от конкретной задачи и бюджета. Создав первоначально систему UPS Look для мониторинга ИБП, мы интегрировали в нее систему мониторинга ДГУ на основе SNMP-протокола, после чего по желанию одного из заказчиков конвертировали эту систему на промышленную шину Jbus. Новое ПО JSLook для мониторинга неограниченного количества ИБП и ДГУ по протоколу JBus является полнофункциональным средством мониторинга всей системы электроснабжения объекта.

    Профессиональное мение

    Денис Андреев, руководитель департамента ИБП компании Landata

    Практически все ИБП Eaton позволяют использовать коммуникационную Web-SNMP плату Connect UPS и датчик EMP (Environmental Monitoring Probe). Такой комплект позволяет в числе прочего осуществлять мониторинг температуры, влажности и состояния пары «сухих» контактов, к которым можно подключить внешние датчики.

    Решение Eaton Environmental Rack Monitor представляет собой аналог такой связки, но с существенно более широким функционалом. Внешне эта система мониторинга температуры, влажности и состояния «сухих» контактов выполнена в виде компактного устройства, которое занимает минимум места в шкафу или в помещении.

    Благодаря наличию у Eaton Environmental Rack Monitor (ERM) двух выходов датчики температуры или влажности можно разместить в разных точках стойки или помещения. Поскольку каждый из двух датчиков имеет еще по два сухих контакта, с них дополнительно можно принимать сигналы от датчиков задымления, утечки и проч. В центре обработки данных такая недорогая система ERM, состоящая из неограниченного количества датчиков, может транслировать информацию по протоколу SNMP в HTML-страницу и позволяет, не приобретая специального ПО, получить сводную таблицу измеряемых величин через веб-браузер.

    Проблему дефицита пространства и высокой плотности размещения оборудования в серверных и ЦОД решают системы распределения питания линейки Eaton eDPU, которые можно установить как внутри стойки, так и на группу стоек.

    Все модели этой линейки представляют четыре семейства: системы базового исполнения, системы с индикацией потребляемого тока, с мониторингом (локальным и удаленным, по сети) и управляемые, с возможностью мониторинга и управления электропитанием вплоть до каждой розетки. С помощью этих устройств можно компактным способом увеличить количество розеток в одной стойке, обеспечить контроль уровня тока и напряжения критичной нагрузки.

    Контроль уровня потребляемой мощности может осуществляться с высокой степенью детализации, вплоть до сервера, подключенного к конкретной розетке. Это позволяет выяснить, какой сервер перегревается, где вышел из строя вентилятор, блок питания и т. д. Программным образом можно запустить сервер, подключенный к розетке ePDU. Интеграция системы контроля ePDU в платформу управления Eaton находится в процессе реализации.

    Требование объекта

    Как поясняет Олег Письменский, в критичных объектах, таких как ЦОД, можно условно выделить две области контроля и управления. Первая, Grey Space, — это собственно здание и соответствующая система его энергообеспечения и энергораспределения. Вторая, White Space, — непосредственно машинный зал с его системами.

    Выбор системы управления энергообеспечением ЦОД определяется типом объекта, требуемым функционалом системы управления и отведенным на эти цели бюджетом. В большинстве случаев кратковременная задержка между наступлением события и получением информации о нем системой мониторинга по SNMP-протоколу допустима. Тем не менее в целом ряде случаев, если характеристики объекта подразумевают непрерывность его функционирования, объект является комплексным и содержит большое количество элементов, требующих контроля и управления в реальном времени, ни одна стандартная система SNMP-мониторинга не обеспечит требуемого функционала. Для таких объектов применяют системы управления real-time, построенные на базе программно-аппаратных комплексов сбора данных, в том числе c функциями Softlogic.

    Системы диспетчеризации и управления крупными объектами реализуются SCADA-системами, широкий перечень которых сегодня присутствует на рынке; представлены они и в портфеле решений Schneider Electric. Тип SCADA-системы зависит от класса и размера объекта, от количества его элементов, требующих контроля и управления, от уровня надежности. Частный вид реализации SCADA — это BMS-система(Building Management System).

    «Дата-центры с объемом потребляемой мощности до 1,5 МВт и уровнем надежности Tier I, II и, с оговорками, даже Tier III, могут обслуживаться без дополнительной SCADA-системы, — говорит Олег Письменский. — На таких объектах целесообразно применять ISX Central — программно-аппаратный комплекс, использующий SNMP. Если же категория и мощность однозначно предполагают непрерывность управления, в таких случаях оправданна комбинация SNMP- и SCADA-системы. Например, для машинного зала (White Space) применяется ISX Central с возможными расширениями как Change & Capacity Manager, в комбинации со SCADA-системой, управляющей непосредственно объектом (Grey Space)».

    Профессиональное мнение

    Олег Письменский, директор департамента консалтинга APC by Schneider Electric в России и СНГ

    Подход APC by Schneider Electric к реализации полномасштабного полноуправляемого и надежного ЦОД изначально был основан на базисных принципах управления ИТ-инфраструктурой в рамках концепции ITIL/ITSM. И история развития системы управления инфраструктурой ЦОД ISX Manager, которая затем интегрировалась с программно-аппаратным комплексом NetBotz и трансформировалась в портал диспетчеризации ISX Central, — лучшее тому доказательство.

    Первым итогом поэтапного приближения к намеченной цели стало наращивание функций контроля параметров энергообеспечения. Затем в этот контур подключилась система управления кондиционированием, система контроля параметров окружающей среды. Очередным шагом стало измерение скорости воздуха, влажности, пыли, радиации, интеграция сигналов от камер аудио- и видеонаблюдения, системы управления блоками розеток, завершения работы сервера и т. д.

    Эта система не может и не должна отвечать абсолютно всем принципам ITSM, потому что не все они касаются существа поставленной задачи. Но как только в отношении политик и некоторых тактик управления емкостью и изменениями в ЦОД потребовался соответствующий инструментарий — это нашло отражение в расширении функционала ISX Central, который в настоящее время реализуют ПО APC by Schneider Electric Capacity Manager и APC by Schneider Electric Change Manager. С появлением этих двух решений, интегрированных в систему управления реальным объектом, АРС предоставляет возможность службе эксплуатации оптимально планировать изменения количественного и качественного состава оборудования машинного зала — как на ежедневном оперативном уровне, так и на уровне стратегических задач массовых будущих изменений.

    Решение APC by Schneider Electric Capacity обеспечивает автоматизированную обработку информации о свободных ресурсах инженерной инфраструктуры, реальном потреблении мощности и пространстве в стойках. Обращаясь к серверу ISX Central, системы APC by Schneider Electric Capacity Manager и APC by Schneider Electric Change Manager оценивают степень загрузки ИБП и систем охлаждения InRow, прогнозируют воздействие предполагаемых изменений и предлагают оптимальное место для установки нового или перестановки имеющегося оборудования. Новые решения позволяют, выявив последствия от предполагаемых изменений, правильно спланировать замену оборудования в ЦОД.

    Переход от частного к общему может потребовать интеграции ISX Central в такие, например, порталы управления, как Tivoli или Open View. Возможны и другие сценарии, когда ISX Central вписывается и в SCADA–систему. В этом случае ISX Central выполняет роль диспетчерской настройки, функционал которой распространяется на серверную комнату, но не охватывает целиком периметр объекта.

    Случай из практики

    Решение задачи управления энергообеспечением ЦОД иногда вступает в противоречие с правилами устройств электроустановок (ПУЭ). Может оказаться, что в соответствии с ПУЭ в ряде случаев (например, при компоновке щитов ВРУ) необходимо обеспечить механические блокировки. Однако далеко не всегда это удается сделать. Поэтому такая задача часто требует нетривиального решения.

    — В одном из проектов, — вспоминает Алексей Сарыгин, — где система управления включала большое количество точек со взаимными пересечениями блокировок, требовалось не допустить снижения общей надежности системы. В этом случае мы пришли к осознанному компромиссу, сделали систему полуавтоматической. Там, где это было возможно, присутствовали механические блокировки, за пультом дежурной смены были оставлены функции мониторинга и анализа, куда сводились все данные о положении всех автоматов. Но исполнительную часть вывели на отдельную панель управления уже внутри ВРУ, где были расположены подробные пользовательские инструкции по оперативному переключению. Таким образом мы избавились от излишней автоматизации, но постарались минимизировать потери в надежности и защититься от ошибок персонала.

    [ http://www.computerra.ru/cio/old/products/infrastructure/421312/]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > управление электропитанием

  • 58 портативная рация на базе сотового телефона

    1. Push-to-Talk
    2. Push to Talk
    3. PTT

     

    портативная рация на базе сотового телефона
    «нажми-чтобы-сказать»
    "нажми и говори"

    Это технология, основанная на базе технологии IP Multimedia Subsystem (IMS). Технология Push To Talk позволяет пользователю использовать свой мобильный телефон как рацию. Начиная с 2005 года все больше и больше мобильных телефонов, поддерживают технологию Push To Talk.
    Принцип общения такой же, как и у рации, пользователь нажимает на кнопку и говорит, а второй пользователь, с которым говорит первый, слушает.
    Однако технология Push To Talk не ограничивается общением только двух пользователей между собой. Технология Push To Talk позволяет общаться сразу с целой группой людей. Пользователь может создать список друзей (список контактов) и в реальном времени видеть, кто сейчас в on-line и выбрать с кем он будет говорить.
    Пожалуй, единственное отличие технологии Push To Talk от рации, это то, что ее должен поддерживать оператор мобильной связи. Иными словами без поддержки этой технологии оператором мобильной связи использовать ее будет невозможно.
    [ http://www.morepc.ru/dict/]

    Тематики

    Синонимы

    • "нажми и говори"
    • «нажми-чтобы-сказать»

    EN

    Русско-английский словарь нормативно-технической терминологии > портативная рация на базе сотового телефона

  • 59 технология коммутации

    1. switching technology

     

    технология коммутации
    -
    [Интент]

    Современные технологии коммутации
    [ http://www.xnets.ru/plugins/content/content.php?content.84]

    Статья подготовлена на основании материалов опубликованных в журналах "LAN", "Сети и системы связи", в книге В.Олифер и Н.Олифер "Новые технологии и оборудование IP-сетей", на сайтах www.citforum.ru и опубликована в журнале "Компьютерные решения" NN4-6 за 2000 год.

    Введение

    На сегодня практически все организации, имеющие локальные сети, остановили свой выбор на сетях типа Ethernet. Данный выбор оправдан тем, что начало внедрения такой сети сопряжено с низкой стоимостью и простотой реализации, а развитие - с хорошей масштабируемостью и экономичностью.

    Бросив взгляд назад - увидим, что развитие активного оборудования сетей шло в соответствии с требованиями к полосе пропускания и надежности. Требования, предъявляемые к большей надежности, привели к отказу от применения в качестве среды передачи коаксиального кабеля и перевода сетей на витую пару. В результате такого перехода отказ работы соединения между одной из рабочих станций и концентратором перестал сказываться на работе других рабочих станций сети. Но увеличения производительности данный переход не принес, так как концентраторы используют разделяемую (на всех пользователей в сегменте) полосу пропускания. По сути, изменилась только физическая топология сети - с общей шины на звезду, а логическая топология по-прежнему осталась - общей шиной.

    Дальнейшее развитие сетей шло по нескольким путям:

    • увеличение скорости,
    • внедрение сегментирования на основе коммутации,
    • объединение сетей при помощи маршрутизации.

    Увеличение скорости при прежней логической топологии - общая шина, привело к незначительному росту производительности в случае большого числа портов.

    Большую эффективность в работе сети принесло сегментирование сетей с использованием технология коммутации пакетов. Коммутация наиболее действенна в следующих вариантах:

    Вариант 1, именуемый связью "многие со многими" – это одноранговые сети, когда одновременно существуют потоки данных между парами рабочих станций. При этом предпочтительнее иметь коммутатор, у которого все порты имеют одинаковую скорость, (см. Рисунок 1).

    5001

    Вариант 2, именуемый связью "один со многими" – это сети клиент-сервер, когда все рабочие станции работают с файлами или базой данных сервера. В данном случае предпочтительнее иметь коммутатор, у которого порты для подключения рабочих станций имеют одинаковую небольшую скорость, а порт, к которому подключается сервер, имеет большую скорость,(см. Рисунок 2).

    5002

    Когда компании начали связывать разрозненные системы друг с другом, маршрутизация обеспечивала максимально возможную целостность и надежность передачи трафика из одной сети в другую. Но с ростом размера и сложности сети, а также в связи со все более широким применением коммутаторов в локальных сетях, базовые маршрутизаторы (зачастую они получали все данные, посылаемые коммутаторами) стали с трудом справляться со своими задачами.

    Проблемы с трафиком, связанные с маршрутизацией, проявляются наиболее остро в средних и крупных компаниях, а также в деятельности операторов Internet, так как они вынуждены иметь дело с большими объемами IP-трафика, причем этот трафик должен передаваться своевременно и эффективно.

    С подключением настольных систем непосредственно к коммутаторам на 10/100 Мбит/с между ними и магистралью оказывается все меньше промежуточных устройств. Чем выше скорость подключения настольных систем, тем более скоростной должна быть магистраль. Кроме того, на каждом уровне устройства должны справляться с приходящим трафиком, иначе возникновения заторов не избежать.

    Рассмотрению технологий коммутации и посвящена данная статья.

    Коммутация первого уровня

    Термин "коммутация первого уровня" в современной технической литературе практически не описывается. Для начала дадим определение, с какими характеристиками имеет дело физический или первый уровень модели OSI:

    физический уровень определяет электротехнические, механические, процедурные и функциональные характеристики активации, поддержания и дезактивации физического канала между конечными системами. Спецификации физического уровня определяют такие характеристики, как уровни напряжений, синхронизацию изменения напряжений, скорость передачи физической информации, максимальные расстояния передачи информации, физические соединители и другие аналогичные характеристики.

    Смысл коммутации на первом уровне модели OSI означает физическое (по названию уровня) соединение. Из примеров коммутации первого уровня можно привести релейные коммутаторы некоторых старых телефонных и селекторных систем. В более новых телефонных системах коммутация первого уровня применяется совместно с различными способами сигнализации вызовов и усиления сигналов. В сетях передачи данных данная технология применяется в полностью оптических коммутаторах.

    Коммутация второго уровня

    Рассматривая свойства второго уровня модели OSI и его классическое определение, увидим, что данному уровню принадлежит основная доля коммутирующих свойств.

    Определение. Канальный уровень (формально называемый информационно-канальным уровнем) обеспечивает надежный транзит данных через физический канал. Канальный уровень решает вопросы физической адресации (в противоположность сетевой или логической адресации), топологии сети, линейной дисциплины (каким образом конечной системе использовать сетевой канал), уведомления о неисправностях, упорядоченной доставки блоков данных и управления потоком информации.

    На самом деле, определяемая канальным уровнем модели OSI функциональность служит платформой для некоторых из сегодняшних наиболее эффективных технологий. Большое значение функциональности второго уровня подчеркивает тот факт, что производители оборудования продолжают вкладывать значительные средства в разработку устройств с такими функциями.

    С технологической точки зрения, коммутатор локальных сетей представляет собой устройство, основное назначение которого - максимальное ускорение передачи данных за счет параллельно существующих потоков между узлами сети. В этом - его главное отличие от других традиционных устройств локальных сетей – концентраторов (Hub), предоставляющих всем потокам данных сети всего один канал передачи данных.

    Коммутатор позволяет передавать параллельно несколько потоков данных c максимально возможной для каждого потока скоростью. Эта скорость ограничена физической спецификацией протокола, которую также часто называют "скоростью провода". Это возможно благодаря наличию в коммутаторе большого числа центров обработки и продвижения кадров и шин передачи данных.

    Коммутаторы локальных сетей в своем основном варианте, ставшем классическим уже с начала 90-х годов, работают на втором уровне модели OSI, применяя свою высокопроизводительную параллельную архитектуру для продвижения кадров канальных протоколов. Другими словами, ими выполняются алгоритмы работы моста, описанные в стандартах IEEE 802.1D и 802.1H. Также они имеют и много других дополнительных функций, часть которых вошла в новую редакцию стандарта 802.1D-1998, а часть остается пока не стандартизованной.

    Коммутаторы ЛВС отличаются большим разнообразием возможностей и, следовательно, цен - стоимость 1 порта колеблется в диапазоне от 50 до 1000 долларов. Одной из причин столь больших различий является то, что они предназначены для решения различных классов задач. Коммутаторы высокого класса должны обеспечивать высокую производительность и плотность портов, а также поддерживать широкий спектр функций управления. Простые и дешевые коммутаторы имеют обычно небольшое число портов и не способны поддерживать функции управления. Одним из основных различий является используемая в коммутаторе архитектура. Поскольку большинство современных коммутаторов работают на основе патентованных контроллеров ASIC, устройство этих микросхем и их интеграция с остальными модулями коммутатора (включая буферы ввода-вывода) играет важнейшую роль. Контроллеры ASIC для коммутаторов ЛВС делятся на 2 класса - большие ASIC, способные обслуживать множество коммутируемых портов (один контроллер на устройство) и небольшие ASIC, обслуживающие по несколько портов и объединяемые в матрицы коммутации.

    Существует 3 варианта архитектуры коммутаторов:
     

    На рисунке 3 показана блок-схема коммутатора с архитектурой, используемой для поочередного соединения пар портов. В любой момент такой коммутатор может обеспечить организацию только одного соединения (пара портов). При невысоком уровне трафика не требуется хранение данных в памяти перед отправкой в порт назначения - такой вариант называется коммутацией на лету cut-through. Однако, коммутаторы cross-bar требуют буферизации на входе от каждого порта, поскольку в случае использования единственно возможного соединения коммутатор блокируется (рисунок 4). Несмотря на малую стоимость и высокую скорость продвижения на рынок, коммутаторы класса cross-bar слишком примитивны для эффективной трансляции между низкоскоростными интерфейсами Ethernet или token ring и высокоскоростными портами ATM и FDDI.

    5003

    5004

    Коммутаторы с разделяемой памятью имеют общий входной буфер для всех портов, используемый как внутренняя магистраль устройства (backplane). Буферизагия данных перед их рассылкой (store-and-forward - сохранить и переслать) приводит к возникновению задержки. Однако, коммутаторы с разделяемой памятью, как показано на рисунке 5 не требуют организации специальной внутренней магистрали для передачи данных между портами, что обеспечивает им более низкую цену по сравнению с коммутаторами на базе высокоскоростной внутренней шины.

    5005

    На рисунке 6 показана блок-схема коммутатора с высокоскоростной шиной, связывающей контроллеры ASIC. После того, как данные преобразуются в приемлемый для передачи по шине формат, они помещаются на шину и далее передаются в порт назначения. Поскольку шина может обеспечивать одновременную (паралельную) передачу потока данных от всех портов, такие коммутаторы часто называют "неблокируемыми" (non-blocking) - они не создают пробок на пути передачи данных.

    5006

    Применение аналогичной параллельной архитектуры для продвижения пакетов сетевых протоколов привело к появлению коммутаторов третьего уровня модели OSI.

    Коммутация третьего уровня

    В продолжении темы о технологиях коммутации рассмотренных в предыдущем номера повторим, что применение параллельной архитектуры для продвижения пакетов сетевых протоколов привело к появлению коммутаторов третьего уровня. Это позволило существенно, в 10-100 раз повысить скорость маршрутизации по сравнению с традиционными маршрутизаторами, в которых один центральный универсальный процессор выполняет программное обеспечение маршрутизации.

    По определению Сетевой уровень (третий) - это комплексный уровень, который обеспечивает возможность соединения и выбор маршрута между двумя конечными системами, подключенными к разным "подсетям", которые могут находиться в разных географических пунктах. В данном случае "подсеть" это, по сути, независимый сетевой кабель (иногда называемый сегментом).

    Коммутация на третьем уровне - это аппаратная маршрутизация. Традиционные маршрутизаторы реализуют свои функции с помощью программно-управляемых процессоров, что будем называть программной маршрутизацией. Традиционные маршрутизаторы обычно продвигают пакеты со скоростью около 500000 пакетов в секунду. Коммутаторы третьего уровня сегодня работают со скоростью до 50 миллионов пакетов в секунду. Возможно и дальнейшее ее повышение, так как каждый интерфейсный модуль, как и в коммутаторе второго уровня, оснащен собственным процессором продвижения пакетов на основе ASIC. Так что наращивание количества модулей ведет к наращиванию производительности маршрутизации. Использование высокоскоростной технологии больших заказных интегральных схем (ASIC) является главной характеристикой, отличающей коммутаторы третьего уровня от традиционных маршрутизаторов. Коммутаторы 3-го уровня делятся на две категории: пакетные (Packet-by-Packet Layer 3 Switches, PPL3) и сквозные (Cut-Through Layer 3 Switches, CTL3). PPL3 - означает просто быструю маршрутизацию (Рисунок_7). CTL3 – маршрутизацию первого пакета и коммутацию всех остальных (Рисунок 8).

    5007

    5008

    У коммутатора третьего уровня, кроме реализации функций маршрутизации в специализированных интегральных схемах, имеется несколько особенностей, отличающих их от традиционных маршрутизаторов. Эти особенности отражают ориентацию коммутаторов 3-го уровня на работу, в основном, в локальных сетях, а также последствия совмещения в одном устройстве коммутации на 2-м и 3-м уровнях:
     

    • поддержка интерфейсов и протоколов, применяемых в локальных сетях,
    • усеченные функции маршрутизации,
    • обязательная поддержка механизма виртуальных сетей,
    • тесная интеграция функций коммутации и маршрутизации, наличие удобных для администратора операций по заданию маршрутизации между виртуальными сетями.

    Наиболее "коммутаторная" версия высокоскоростной маршрутизации выглядит следующим образом (рисунок 9). Пусть коммутатор третьего уровня построен так, что в нем имеется информация о соответствии сетевых адресов (например, IP-адресов) адресам физического уровня (например, MAC-адресам) Все эти МАС-адреса обычным образом отображены в коммутационной таблице, независимо от того, принадлежат ли они данной сети или другим сетям.

    5009

    Первый коммутатор, на который поступает пакет, частично выполняет функции маршрутизатора, а именно, функции фильтрации, обеспечивающие безопасность. Он решает, пропускать или нет данный пакет в другую сеть Если пакет пропускать нужно, то коммутатор по IP-адресу назначения определяет МАС-адрес узла назначения и формирует новый заголовок второго уровня с найденным МАС-адресом. Затем выполняется обычная процедура коммутации по данному МАС-адресу с просмотром адресной таблицы коммутатора. Все последующие коммутаторы, построенные по этому же принципу, обрабатывают данный кадр как обычные коммутаторы второго уровня, не привлекая функций маршрутизации, что значительно ускоряет его обработку. Однако функции маршрутизации не являются для них избыточными, поскольку и на эти коммутаторы могут поступать первичные пакеты (непосредственно от рабочих станций), для которых необходимо выполнять фильтрацию и подстановку МАС-адресов.

    Это описание носит схематический характер и не раскрывает способов решения возникающих при этом многочисленных проблем, например, проблемы построения таблицы соответствия IP-адресов и МАС-адресов

    Примерами коммутаторов третьего уровня, работающих по этой схеме, являются коммутаторы SmartSwitch компании Cabletron. Компания Cabletron реализовала в них свой протокол ускоренной маршрутизации SecureFast Virtual Network, SFVN.

    Для организации непосредственного взаимодействия рабочих станций без промежуточного маршрутизатора необходимо сконфигурировать каждую из них так, чтобы она считала собственный интерфейс маршрутизатором по умолчанию. При такой конфигурации станция пытается самостоятельно отправить любой пакет конечному узлу, даже если этот узел находится в другой сети. Так как в общем случае (см. рисунок 10) станции неизвестен МАС-адрес узла назначения, то она генерирует соответствующий ARP-запрос, который перехватывает коммутатор, поддерживающий протокол SFVN. В сети предполагается наличие сервера SFVN Server, являющегося полноценным маршрутизатором и поддерживающего общую ARP-таблицу всех узлов SFVN-сети. Сервер возвращает коммутатору МАС-адрес узла назначения, а коммутатор, в свою очередь, передает его исходной станции. Одновременно сервер SFVN передает коммутаторам сети инструкции о разрешении прохождения пакета с МАС-адресом узла назначения через границы виртуальных сетей. Затем исходная станция передает пакет в кадре, содержащем МАС-адрес узла назначения. Этот кадр проходит через коммутаторы, не вызывая обращения к их блокам маршрутизации. Отличие протокола SFVN компании Cabletron от - описанной выше общей схемы в том, что для нахождения МАС-адреса по IP-адресу в сети используется выделенный сервер.

    5010

    Протокол Fast IP компании 3Com является еще одним примером реализации подхода с отображением IP-адреса на МАС-адрес. В этом протоколе основными действующими лицами являются сетевые адаптеры (что не удивительно, так как компания 3Com является признанным лидером в производстве сетевых адаптеров Ethernet) С одной стороны, такой подход требует изменения программного обеспечения драйверов сетевых адаптеров, и это минус Но зато не требуется изменять все остальное сетевое оборудование.

    При необходимости передать пакет узлу назначения другой сети, исходный узел в соответствии с технологией Fast IP должен передать запрос по протоколу NHRP (Next Hop Routing Protocol) маршрутизатору сети. Маршрутизатор переправляет этот запрос узлу назначения, как обычный пакет Узел назначения, который также поддерживает Fast IP и NHRP, получив запрос, отвечает кадром, отсылаемым уже не маршрутизатору, а непосредственно узлу-источнику (по его МАС-адресу, содержащемуся в NHRP-запросе). После этого обмен идет на канальном уровне на основе известных МАС-адресов. Таким образом, снова маршрутизировался только первый пакет потока (как на рисунке 9 кратковременный поток), а все остальные коммутировались (как на рисунке 9 долговременный поток).

    Еще один тип коммутаторов третьего уровня — это коммутаторы, работающие с протоколами локальных сетей типа Ethernet и FDDI. Эти коммутаторы выполняют функции маршрутизации не так, как классические маршрутизаторы. Они маршрутизируют не отдельные пакеты, а потоки пакетов.

    Поток — это последовательность пакетов, имеющих некоторые общие свойства. По меньшей мере, у них должны совпадать адрес отправителя и адрес получателя, и тогда их можно отправлять по одному и тому же маршруту. Если классический способ маршрутизации использовать только для первого пакета потока, а все остальные обрабатывать на основании опыта первого (или нескольких первых) пакетов, то можно значительно ускорить маршрутизацию всего потока.

    Рассмотрим этот подход на примере технологии NetFlow компании Cisco, реализованной в ее маршрутизаторах и коммутаторах. Для каждого пакета, поступающего на порт маршрутизатора, вычисляется хэш-функция от IP-адресов источника, назначения, портов UDP или TCP и поля TOS, характеризующего требуемое качество обслуживания. Во всех маршрутизаторах, поддерживающих данную технологию, через которые проходит данный пакет, в кэш-памяти портов запоминается соответствие значения хэш-функции и адресной информации, необходимой для быстрой передачи пакета следующему маршрутизатору. Таким образом, образуется квазивиртуальный канал (см. Рисунок 11), который позволяет быстро передавать по сети маршрутизаторов все последующие пакеты этого потока. При этом ускорение достигается за счет упрощения процедуры обработки пакета маршрутизатором - не просматриваются таблицы маршрутизации, не выполняются ARP-запросы.

    5011

    Этот прием может использоваться в маршрутизаторах, вообще не поддерживающих коммутацию, а может быть перенесен в коммутаторы. В этом случае такие коммутаторы тоже называют коммутаторами третьего уровня. Примеров маршрутизаторов, использующих данный подход, являются маршрутизаторы Cisco 7500, а коммутаторов третьего уровня — коммутаторы Catalyst 5000 и 5500. Коммутаторы Catalyst выполняют усеченные функции описанной схемы, они не могут обрабатывать первые пакеты потоков и создавать новые записи о хэш-функциях и адресной информации потоков. Они просто получают данную информацию от маршрутизаторов 7500 и обрабатывают пакеты уже распознанных маршрутизаторами потоков.

    Выше был рассмотрен способ ускоренной маршрутизации, основанный на концепции потока. Его сущность заключается в создании квазивиртуальных каналов в сетях, которые не поддерживают виртуальные каналы в обычном понимании этого термина, то есть сетях Ethernet, FDDI, Token Ring и т п. Следует отличать этот способ от способа ускоренной работы маршрутизаторов в сетях, поддерживающих технологию виртуальных каналов — АТМ, frame relay, X 25. В таких сетях создание виртуального канала является штатным режимом работы сетевых устройств. Виртуальные каналы создаются между двумя конечными точками, причем для потоков данных, требующих разного качества обслуживания (например, для данных разных приложений) может создаваться отдельный виртуальный канал. Хотя время создания виртуального канала существенно превышает время маршрутизации одного пакета, выигрыш достигается за счет последующей быстрой передачи потока данных по виртуальному каналу. Но в таких сетях возникает другая проблема — неэффективная передача коротких потоков, то есть потоков, состоящих из небольшого количества пакетов (классический пример — пакеты протокола DNS).

    Накладные расходы, связанные с созданием виртуального канала, приходящиеся на один пакет, снижаются при передаче объемных потоков данных. Однако они становятся неприемлемо высокими при передаче коротких потоков. Для того чтобы эффективно передавать короткие потоки, предлагается следующий вариант, при передаче нескольких первых пакетов выполняется обычная маршрутизация. Затем, после того как распознается устойчивый поток, для него строится виртуальный канал, и дальнейшая передача данных происходит с высокой скоростью по этому виртуальному каналу. Таким образом, для коротких потоков виртуальный канал вообще не создается, что и повышает эффективность передачи.

    По такой схеме работает ставшая уже классической технология IP Switching компании Ipsilon. Для того чтобы сети коммутаторов АТМ передавали бы пакеты коротких потоков без установления виртуального канала, компания Ipsilon предложила встроить во все коммутаторы АТМ блоки IP-маршрутизации (рисунок 12), строящие обычные таблицы маршрутизации по обычным протоколам RIP и OSPF.

    5012

    Компания Cisco Systems выдвинула в качестве альтернативы технологии IP Switching свою собственную технологию Tag Switching, но она не стала стандартной. В настоящее время IETF работает над стандартным протоколом обмена метками MPLS (Multi-Protocol Label Switching), который обобщает предложение компаний Ipsilon и Cisco, а также вносит некоторые новые детали и механизмы. Этот протокол ориентирован на поддержку качества обслуживания для виртуальных каналов, образованных метками.

    Коммутация четвертого уровня

    Свойства четвертого или транспортного уровня модели OSI следующие: транспортный уровень обеспечивает услуги по транспортировке данных. В частности, заботой транспортного уровня является решение таких вопросов, как выполнение надежной транспортировки данных через объединенную сеть. Предоставляя надежные услуги, транспортный уровень обеспечивает механизмы для установки, поддержания и упорядоченного завершения действия виртуальных каналов, систем обнаружения и устранения неисправностей транспортировки и управления информационным потоком (с целью предотвращения переполнения данными из другой системы).

    Некоторые производители заявляют, что их системы могут работать на втором, третьем и даже четвертом уровнях. Однако рассмотрение описания стека TCP/IP (рисунок 1), а также структуры пакетов IP и TCP (рисунки 2, 3), показывает, что коммутация четвертого уровня является фикцией, так как все относящиеся к коммутации функции осуществляются на уровне не выше третьего. А именно, термин коммутация четвертого уровня с точки зрения описания стека TCP/IP противоречий не имеет, за исключением того, что при коммутации должны указываться адреса компьютера (маршрутизатора) источника и компьютера (маршрутизатора) получателя. Пакеты TCP имеют поля локальный порт отправителя и локальный порт получателя (рисунок 3), несущие смысл точек входа в приложение (в программу), например Telnet с одной стороны, и точки входа (в данном контексте инкапсуляции) в уровень IP. Кроме того, в стеке TCP/IP именно уровень TCP занимается формированием пакетов из потока данных идущих от приложения. Пакеты IP (рисунок 2) имеют поля адреса компьютера (маршрутизатора) источника и компьютера (маршрутизатора) получателя и следовательно могут наряду с MAC адресами использоваться для коммутации. Тем не менее, название прижилось, к тому же практика показывает, что способность системы анализировать информацию прикладного уровня может оказаться полезной — в частности для управления трафиком. Таким образом, термин "зависимый от приложения" более точно отражает функции так называемых коммутаторов четвертого уровня.

    5013

    5014

    5015

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > технология коммутации

  • 60 определение вывода из эксплуатации

    1. decommission definition

    3.11 определение вывода из эксплуатации (decommission definition): Фаза модели предприятия, в течение которой определяется конечное состояние выведенной из эксплуатации рабочей системы, всех ее компонентов в рамках конкретной области деятельности предприятия (домена) и процессов, необходимых для вывода из эксплуатации, что позволяет повторно использовать или распорядиться этими компонентами.

    Источник: ГОСТ Р ИСО 19439-2008: Интеграция предприятия. Основа моделирования предприятия оригинал документа

    3.79 определение вывода из эксплуатации (decommission definition): Фаза модели предприятия, в течение которой определяется конечное состояние выведенной из эксплуатации рабочей системы, всех ее компонентов в рамках конкретной области деятельности предприятия (домена) и процессов, необходимых для вывода из эксплуатации, что позволяет повторно использовать или распорядиться этими компонентами.

    Источник: ГОСТ Р 54136-2010: Системы промышленной автоматизации и интеграция. Руководство по применению стандартов, структура и словарь оригинал документа

    Русско-английский словарь нормативно-технической терминологии > определение вывода из эксплуатации

См. также в других словарях:

  • Теория волн Эллиотта — (Elliott Wave Theory) Теория волн Эллиотта это математическая теория об изменении поведения общества или финансовых рынков Все о волновой теории Эллиотта: видео, книги, статьи о теории волн, информация о советниках и индикаторах волн Эллиотта… …   Энциклопедия инвестора

  • Дзюцу (Наруто) — Термином дзюцу (яп. 術?, досл. «техника», «приём») в манге и аниме «Наруто» обозначают каждое из специфических фантастических действий ниндзя, которое не в состоянии повторить либо имитировать обычный человек. Концепция дзюцу была разработана… …   Википедия

  • Электронные деньги — (Electronic money) Электронные деньги это денежные обязательства эмитента в электронном виде Все, что нужно знать об электронных деньгах история и развитие электронных денег, перевод, обмен и вывод электронных денег в различных платежных системах …   Энциклопедия инвестора

  • C++11 — C++11[1][2] или ISO/IEC 14882:2011[3] (в процессе работы над стандартом носил условное наименование C++0x[4][5])  новая версия стандарта языка C++, вместо ранее действовавшего ISO/IEC 14882:2003. Новый стандарт включает дополнения в ядре… …   Википедия

  • Python — У этого термина существуют и другие значения, см. Python (значения). Python Класс языка: му …   Википедия

  • BioShock — Разработчик 2K Boston/2K Australia (Windows), 2K Marin (PS3), Feral Interactive (версия для Mac OS X) Издатели 2K Games …   Википедия

  • Пайтон — Python Класс языка: функциональный, объектно ориентированный, императивный, аспектно ориентированный Тип исполнения: интерпретация байт кода, компиляция в MSIL, компиляция в байт код Java Появился в: 1990 г …   Википедия

  • C++ — У этого термина существуют и другие значения, см. C. См. также: Си (язык программирования) C++ Семантика: мультипарадигмальный: объектно ориентированное, обобщённое, процедурное, метапрограммирование Тип исполнения: компилируемый Появился в …   Википедия

  • Operation Flashpoint: Cold War Crisis — Operation Flashpoint Разработчик Bohemia Interactive Studio Издатели …   Википедия

  • Лицензии и инструменты Creative Commons — …   Википедия

  • Нанотехнология — (Nanotechnology) Содержание Содержание 1. Определения и терминология 2. : история возникновения и развития 3. Фундаментальные положения Сканирующая зондовая микроскопия Наноматериалы Наночастицы Самоорганизация наночастиц Проблема образования… …   Энциклопедия инвестора

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»