Перевод: со всех языков на английский

с английского на все языки

оптимальный+вариант

  • 21 оптимальное планирование

    1. optimal planning

     

    оптимальное планирование
    Комплекс методов, позволяющих выбрать из многих возможных (альтернативных) вариантов плана или программы один оптимальный вариант. О.п. основано на решении задач математического программирования, экономико-математическом моделировании (причем используются два вида моделей: модели объектов планирования и процессов планирования — информационные). Оно тесно связано с оптимальным ценообразованием. На начальном этапе развития экономико-математических методов в бывш. СССР основное внимание было обращено именно на проблемы О.п.: казалось, что разработка оптимального плана — гарантия успешного роста экономики. Это вполне укладывалось в рамки господствовавшей тогда идеологии централизованного планирования экономики. Отсюда применявшийся В.С.Немчиновым термин «планометрия«. Впоследствии исследования охватили также проблему оптимизации экономического механизма в целом — это означало, что вместо теории О.п. была выдвинута идея разработки системы оптимального функционирования социалистической экономики (СОФЭ), в которую вопросы О.п. вошли как важная составная часть; однако начали расшатываться представления о «неоспоримых», как тогда говорили, «преимуществах централизованного планирования». В условиях перехода к рыночной экономике существенно изменяются сами задачи О.п.Оно может и должно широко применяться в рамках отдельных компаний (предприятий), а в общегосударственных масштабах должно приобретать не директивно-детализированный, а более укрупненный и индикативный характер См. Программирование(экономическое).
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > оптимальное планирование

  • 22 линейное программирование

    1. linear programming

     

    линейное программирование

    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    линейное программирование
    Область математического программирования, посвященная теории и методам решения экстремальных задач, характеризующихся линейной зависимостью между переменными. В самом общем виде задачу Л.п. можно записать так. Даны ограничения типа или в так называемой канонической форме, к которой можно привести все три указанных случая Требуется найти неотрицательные числа xj (j = 1, 2, …, n), которые минимизируют (или максимизируют) линейную форму Неотрицательность искомых чисел записывается так: Таким образом, здесь представлена общая задача математического программирования с теми оговорками, что как ограничения, так и целевая функция — линейные, а искомые переменные — неотрицательны. Обозначения можно трактовать следующим образом: bi — количество ресурса вида i; m — количество видов этих ресурсов; aij — норма расхода ресурса вида i на единицу продукции вида j; xj — количество продукции вида j, причем таких видов — n; cj — доход (или другой выигрыш) от единицы этой продукции, а в случае задачи на минимум — затраты на единицу продукции; нумерация ресурсов разделена на три части: от 1 до m1, от m1 + 1 до m2 и от m2 + 1 до m в зависимости от того, какие ставятся ограничения на расходование этих ресурсов; в первом случае — «не больше», во втором — «столько же», в третьем — «не меньше»; Z — в случае максимизации, например, объем продукции или дохода, в случае же минимизации — себестоимость, расход сырья и т.п. Добавим еще одно обозначение, оно появится несколько ниже; vi — оптимальная оценка i-го ресурса. Слово «программирование» объясняется здесь тем, что неизвестные переменные, которые отыскиваются в процессе решения задачи, обычно в совокупности определяют программу (план) работы некоторого экономического объекта. Слово, «линейное» отражает факт линейной зависимости между переменными. При этом, как указано, задача обязательно имеет экстремальный характер, т.е. состоит в отыскании экстремума (максимума или минимума) целевой функции. Следует с самого начала предупредить: предпосылка линейности, когда в реальной экономике подавляющее большинство зависимостей носит более сложный нелинейный характер, есть огрубление, упрощение действительности. В некоторых случаях оно достаточно реалистично, в других же выводы, получаемые с помощью решения задач Л.п. оказываются весьма несовершенными. Рассмотрим две задачи Л.п. — на максимум и на минимум — на упрощенных примерах. Предположим, требуется разработать план производства двух видов продукции (объем первого — x1; второго — x2) с наиболее выгодным использованием трех видов ресурсов (наилучшим в смысле максимума общей прибыли от реализации плана). Условия задачи можно записать в виде таблицы (матрицы). Исходя из норм, зафиксированных в таблице, запишем неравенства (ограничения): a11x1 + a12x2 ? bi a21x1 + a22x2 ? b2 a31x1 + a32x2 ? b3 Это означает, что общий расход каждого из трех видов ресурсов не может быть больше его наличия. Поскольку выпуск продукции не может быть отрицательным, добавим еще два ограничения: x1? 0, x2? 0. Требуется найти такие значения x1 и x2, при которых общая сумма прибыли, т.е. величина c1 x1 + c2 x2 будет наибольшей, или короче: Удобно показать условия задачи на графике (рис. Л.2). Рис. Л.2 Линейное программирование, I (штриховкой окантована область допустимых решений) Любая точка здесь, обозначаемая координатами x1 и x2, составляет вариант искомого плана. Очевидно, что, например, все точки, находящиеся в области, ограниченной осями координат и прямой AA, удовлетворяют тому условию, что не может быть израсходовано первого ресурса больше, чем его у нас имеется в наличии (в случае, если точка находится на самой прямой, ресурс используется полностью). Если то же рассуждение отнести к остальным ограничениям, то станет ясно, что всем условиям задачи удовлетворяет любая точка, находящаяся в пределах области, края которой заштрихованы, — она называется областью допустимых решений (или областью допустимых значений, допустимым множеством). Остается найти ту из них, которая даст наибольшую прибыль, т.е. максимум целевой функции. Выбрав произвольно прямую c1x1 + c2x2 = П и обозначив ее MM, находим на чертеже все точки (варианты планов), где прибыль одинакова при любом сочетании x1 и x2 (см. Линия уровня). Перемещая эту линию параллельно ее исходному положению, найдем точку, которая в наибольшей мере удалена от начала координат, однако не вышла за пределы области допустимых значений. (Перемещая линию уровня еще дальше, уже выходим из нее и, следовательно, нарушаем ограничения задачи). Точка M0 и будет искомым оптимальным планом. Она находится в одной из вершин многоугольника. Может быть и такой случай, когда линия уровня совпадает с одной из прямых, ограничивающих область допустимых значений, тогда оптимальным будет любой план, находящийся на соответствующем отрезке. Координаты точки M0 (т.е. оптимальный план) можно найти, решая совместно уравнения тех прямых, на пересечении которых она находится. Противоположна изложенной другая задача Л.п.: поиск минимума функции при заданных ограничениях. Такая задача возникает, например, когда требуется найти наиболее дешевую смесь некоторых продуктов, содержащих необходимые компоненты (см. Задача о диете). При этом известно содержание каждого компонента в единице исходного продукта — aij, ее себестоимость — cj ; задается потребность в искомых компонентах — bi. Эти данные можно записать в таблице (матрице), сходной с той, которая приведена выше, а затем построить уравнения как ограничений, так и целевой функции. Предыдущая задача решалась графически. Рассуждая аналогично, можно построить график (рис. Л.3), каждая точка которого — вариант искомого плана: сочетания разных количеств продуктов x1 и x2. Рис.Л.3 Линейное программирование, II Область допустимых решений здесь ничем сверху не ограничена: нужное количество заданных компонентов тем легче получить, чем больше исходных продуктов. Но требуется найти наиболее выгодное их сочетание. Пунктирные линии, как и в предыдущем примере, — линии уровня. Здесь они соединяют планы, при которых себестоимость смесей исходных продуктов одинакова. Линия, соответствующая наименьшему ее значению при заданных требованиях, — линия MM. Искомый оптимальный план — в точке M0. Приведенные крайне упрощенные примеры демонстрируют основные особенности задачи Л.п. Реальные задачи, насчитывающие много переменных, нельзя изобразить на плоскости — для их геометрической интерпретации используются абстрактные многомерные пространства. При этом допустимое решение задачи — точка в n-мерном пространстве, множество всех допустимых решений — выпуклое множество в этом пространстве (выпуклый многогранник). Задачи Л.п., в которых нормативы (или коэффициенты), объемы ресурсов («константы ограничений«) или коэффициенты целевой функции содержат случайные элементы, называются задачами линейного стохастического программирования; когда же одна или несколько независимых переменных могут принимать только целочисленные значения, то перед нами задача линейного целочисленного программирования. В экономике широко применяются линейно-программные методы решения задач размещения производства (см. Транспортная задача), расчета рационов для скота (см. Задача диеты), наилучшего использования материалов (см. Задача о раскрое), распределения ресурсов по работам, которые надо выполнять (см. Распределительная задача) и т.д. Разработан целый ряд вычислительных приемов, позволяющих решать на ЭВМ задачи линейного программирования, насчитывающие сотни и тысячи переменных, неравенств и уравнений. Среди них наибольшее распространение приобрели методы последовательного улучшения допустимого решения (см. Симплексный метод, Базисное решение), а также декомпозиционные методы решения крупноразмерных задач, методы динамического программирования и др. Сама разработка и исследование таких методов — развитая область вычислительной математики. Один из видов решения имеет особое значение для экономической интерпретации задачи Л.п. Он связан с тем, что каждой прямой задаче Л.п. соответствует другая, симметричная ей двойственная задача (подробнее см. также Двойственность в линейном программировании). Если в качестве прямой принять задачу максимизации выпуска продукции (или объема реализации, прибыли и т.д.), то двойственная задача заключается, наоборот, в нахождении таких оценок ресурсов, которые минимизируют затраты. В случае оптимального решения ее целевая функция — сумма произведений оценки (цены) vi каждого ресурса на его количество bi— то есть равна целевой функции прямой задачи. Эта цена называется объективно обусловленной, или оптимальной оценкой, или разрешающим множителем. Основополагающий принцип Л.п. состоит в том, что в оптимальном плане и при оптимальных оценках всех ресурсов затраты и результаты равны. Оценки двойственной задачи обладают замечательными свойствами: они показывают, насколько возрастет (или уменьшится) целевая функция прямой задачи при увеличении (или уменьшении) запаса соответствующего вида ресурсов на единицу. В частности, чем больше в нашем распоряжении данного ресурса по сравнению с потребностью в нем, тем ниже будет оценка, и наоборот. Не решая прямую задачу, по оценкам ресурсов, полученных в двойственной задаче, можно найти оптимальный план: в него войдут все технологические способы, которые оправдывают затраты, исчисленные в этих оценках (см. Объективно обусловленные (оптимальные) оценки). Первооткрыватель Л.п. — советский ученый, академик, лауреат Ленинской, Государственной и Нобелевской премий Л.В.Канторович. В 1939 г. он решил математически несколько задач: о наилучшей загрузке машин, о раскрое материалов с наименьшими расходами, о распределении грузов по нескольким видам транспорта и др., при этом разработав универсальный метод решения этих задач, а также различные алгоритмы, реализующие его. Л.В.Канторович впервые точно сформулировал такие важные и теперь широко принятые экономико-математические понятия, как оптимальность плана, оптимальное распределение ресурсов, объективно обусловленные (оптимальные) оценки, указав многочисленные области экономики, где могут быть применены экономико-математические методы принятия оптимальных решений. Позднее, в 40—50-х годах, многое сделали в этой области американские ученые — экономист Т.Купманс и математик Дж. Данциг. Последнему принадлежит термин «линейное программирование». См. также: Ассортиментные задачи, Базисное решение, Блочное программирование, Булево линейное программирование, Ведущий столбец, Ведущая строка, Вершина допустимого многогранника, Вырожденная задача, Гомори способ, Граничная точка, Двойственная задача, Двойственность в линейном программировании, Дифференциальные ренты, Дополняющая нежесткость, Жесткость и нежесткость ограничений ЛП, Задача диеты, Задача о назначениях, Задача о раскрое, Задачи размещения, Исходные уравнения, Куна — Таккера условия, Множители Лагранжа, Область допустимых решений, Опорная прямая, Распределительные задачи, Седловая точка, Симплексная таблица, Симплексный метод, Транспортная задача.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > линейное программирование

  • 23 оптимум

    1. optimum, optimality

     

    оптимум
    оптимальность

    С точки зрения математики, оптимум функции есть такое ее экстремальное значение (см. Экстремум функции), которое больше других значений той же функции — тогда это глобальный или, лучше, абсолютный максимум, или меньше других значений — тогда это глобальный (абсолютный) минимум. Если трактовать наибольшее или наименьшее значение каких-то экономических характеристик как наилучшее (в том или ином смысле), то мы придем к фундаментальным понятиям экономико-математических методов — понятиям оптимума и оптимальности. Термин «оптимум» употребляется по меньшей мере в трех значениях: 1) наилучший вариант из возможных состояний системы — его ищут, «решая задачи на О.»; 2) наилучшее направление изменений (поведения) системы («выйти на О.»); 3) цель развития, когда говорят о «достижении О.». Термин «оптимальность», «оптимальный» означает характеристику качества принимаемых решений (оптимальное решение задачи, оптимальный план, оптимальное управление), характеристику состояния системы или ее поведения (оптимальная траектория, оптимальное распределение ресурсов, оптимальное функционирование системы) и т.п. Это не абсолютные понятия: нельзя говорить об оптимальности вообще, вне условий и без точно определенных критериев оптимальности. Решение, наилучшее в одних условиях и с точки зрения одного критерия, может оказаться далеко не лучшим в других условиях и по другому критерию. К тому же следует оговориться, что в реальной экономике, поскольку она носит вероятностный характер, оптимальное решение на самом деле не обязательно наилучшее. Приходится учитывать также фактор устойчивости решения. Может оказаться так, что оптимальный расчетный план неустойчив: любые, даже незначительные отклонения от него могут привести к резко отрицательным последствиям. И целесообразно будет принять не оптимальный, но зато устойчивый план, отклонения от которого окажутся не столь опасными. (Нетрудно увидеть, что здесь происходит некоторая замена критериев: вместо критерия максимума рассматриваемого показателя вводится критерий надежности плана). · В общей задаче математического программирования вектор инструментальных переменных является точкой глобального О. (решением задачи), если он принадлежит допустимому множеству и целевая функция принимает на этом множестве значение не меньшее (при задаче на максимум) или не большее (при задаче на минимум), чем в любой другой допустимой точке (см. Экстремум функции). Соответственно точкой локального О. является вектор инструментальных переменных, принадлежащий допустимому множеству, на котором значение функции больше (меньше) или равно значениям функции в некоторой малой окрестности этого вектора. Очевидно, что глобальный О. является и локальным, обратное же утверждение было бы неверным. Для функции одной переменной это можно показать на рис. 0.9, где F (x) = y — целевая функция, x — инструментальная переменная. Проверка оптимальности, вытекающая из сказанного: если небольшое передвижение от проверяемой точки сокращает (для задачи максимизации) целевую функцию (функционал), то это — О. Такое правило, однако, относится лишь к выпуклой области допустимых решений. Если она невыпуклая, то данная точка может оказаться лишь локальным О. (см. Градиентные методы). Выделяется два типа оптимальных точек: внутренний и граничный О. (на рис. 0.9 точка x3 — локальный граничный О., точки x1, x2 — внутренние локальные, а x* — внутренний глобальный О.). В первом случае возможно нахождение О. путем дифференцирования функции и приравнивания нулю производной (или частных производных для функции многих переменных). Во втором случае этот метод неприменим (он не применим также в случае, если функция негладкая (см. Гладкая функция). Если оптимальная точка — единственная, то имеем сильный О., в противоположном случае — слабый О. Соответствующие термины применяются как к глобальному (абсолютному), так и к локальному О. См. Глобальный критерий, Народнохозяйственный критерий оптимальности, Оптимальное функционирование экономической системы, Оптимальность по Парето, Принцип оптимальности, Социально-экономический критерий оптимальности. Рис. О.9 Глобальный и локальные оптимумы
    [ http://slovar-lopatnikov.ru/]

    Тематики

    Синонимы

    EN

    • optimum, optimality

    Русско-английский словарь нормативно-технической терминологии > оптимум

  • 24 допустимый план

    1. feasible plan

     

    допустимый план
    допустимое решение

    Такой вариант плана, который удовлетворяет всем заданным ограничениям задачи, но не обязательно оптимальный. Например, на рис.Л.1 (к статье Линейное программирование) - это любая точка в пределах области допустимых решений. Поскольку план выражается в виде вектора (совокупности значений переменных модели), то часто вместо термина «Д.п.» говорят «допустимый вектор». Совокупность всех допустимых векторов образует множество возможностей, или допустимое множество, или область допустимых решений.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    Синонимы

    EN

    Русско-английский словарь нормативно-технической терминологии > допустимый план

  • 25 критерий оптимальности

    1. optimum criterion
    2. optimality criterion
    3. criterion of optimality

     

    критерий оптимальности
    Наиболее существенный признак оценок, определяющих условия достижения цели какой-либо деятельности; К.о. стремится к экстремальному значению
    [Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)]

    критерий оптимальности
    Фундаментальное понятие современной экономики (которая переняла его из математического программирования и математической теории управления); применительно к той или иной экономической системе это один из возможных критериев (признаков) ее качества, а именно — тот признак, по которому функционирование системы признается наилучшим из возможных (в данных объективных условиях) вариантов ее функционирования. Применительно к конкретным экономическим решениям К.о. — показатель, выражающий предельную меру экономического эффекта от принимаемого решения для сравнительной оценки возможных решений (альтернатив) и выбора наилучшего из них. Это может быть, например, максимум прибыли, минимум затрат, кратчайшее время достижения цели и т.д. К.о. — важнейший компонент любой оптимальной экономико-математической модели. Чем больше (если нас интересует максимум) или чем меньше (если нужен минимум) показатель критерия, тем больше удовлетворяет нас решение задачи. Если решается задача составления хозяйственного плана, то это означает, что выбран наилучший, оптимальный план: все остальные варианты н е м о г у т дать столь же удовлетворительного результата. Если решается, например, задача исследования операций по организации строительства завода, то это означает, что выбраны наилучшая очередность работ, наиболее рациональное распределение сил и ресурсов и т.д., а все другие варианты приведут к более поздним срокам пуска завода. К.о. носит обычно количественный характер, т.е. он применяется для того, чтобы качественный признак плана, выражаемый соотношением «лучше — хуже», переводить в количественно определенное «больше — меньше». Но применяются и порядковые критерии. В последнем случае определяется лишь то, что один вариант лучше или хуже других, но не выясняется, насколько именно. В экономико-математических задачах критерию оптимальности соответствует математическая форма — целевая функция, экстремальное значение которой (см. Экстремум), характеризует предельно достижимую эффективность моделируемого объекта (т.е. наилучшие в заданном отношении структуру, состояние, траекторию развития). Другим возможным выражением К.о. является шкала (оценок полезности, ранжирования предпочтений и т.д.). В реальной практике планирования К.о. не может и не должен носить жесткого однозначного характера. Оперируя с ним, следует иметь в виду такие факторы, как вероятное изменение условий, возникновение новых возможностей реализации плана, а также новых задач. Приходится поэтому поступаться величиной критериального показателя ради гибкости плана и его надежности. Это достигается как формальными, так и неформальными методами. На схеме к статье «Экономическая система» (рис. Э.2) стрелка W имеет направление, соответствующее движению в сторону лучшего качества результатов функционирования экономической системы, т.е. в сторону лучшего удовлетворения общества в материальных благах. Упорядоченность точек шкалы W (и соответственно шкал V1, …, Vn) принято формализовать с помощью целевой функции F(w), которая отождествляется с К.о. Упорядочение точек шкалы W, как и точек шкал V есть субъективный акт. Оно может строиться в зависимости от того, что понимается под целью данной экономической системы, но с учетом ее реальных возможностей (объективная основа) и качества управления системой (субъективная основа). Способы упорядочения различны: а) установление цели внешним по отношению к данной экономической системе или иным обладающим соответствующими правами субъектом управления; б) согласование тем или иным способом шкал предпочтения самостоятельных субъектов управления (социальных групп, организаций и т.д.), принимающих решения исходя из своих интересов: компромисс, правило большинства и другие понятия группового (социального) выбора. Возможна классификация критериев оптимальности: а) по уровню общности: глобальный критерий оптимального развития в масштабе Земли, социально-экономический критерий, народнохозяйственный критерий, а также «глобальный» и локальные критерии оптимальности в частных системах моделей; б) по временному аспекту: статические и динамические (среди последних — оценивающие развитие от неоптимального к оптимальному состоянию и развитие как смену оптимальных состояний), текущие и финишные; критерии быстродействия (т.е. времени достижения цели); в) по способам формирования критериев — нормативные, социолого-статистические, компромиссные, унитарные и т.д.; г) по типу применяемых измерителей — полезностные, стоимостные, натуральные и др.; д) по способам использования критериев — практические, теоретические, политико-пропагандистские; е) по математической формализации — скалярные и векторные критерии, аддитивные и мультипликативные, интегральные критерии — во временном аспекте и интегральные — в пространственном аспекте и др. Таковы лишь наметки классификации К.о., однако предстоит еще немало сделать для ее отработки, унификации и стандартизации.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

    DE

    FR

    Русско-английский словарь нормативно-технической терминологии > критерий оптимальности

  • 26 эффективный портфель

    1. efficient portfolio

     

    эффективный портфель
    Портфель, лежащий на кривой эффективного множества, обеспечивающий достижение наивысшей доходности при заданном уровне риска или наименьшего уровня риска при заданной доходности. Путем изменения структуры портфеля, можно его оптимизировать, т.е. найти наилучший с точки зрения инвестора (в зависимости от его склонности к риску, заинтересованности в быстром получении дохода и других особенностей его инвестиционной стратегии) вариант соотношения риск – доходность (См. Оптимальный инвестиционный портфель). То же: Сбалансированный инвестиционный портфель.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > эффективный портфель

См. также в других словарях:

  • Оптимальный вариант — Основная информация …   Википедия

  • оптимальный вариант — оптимальное условие оптимум оптимальный — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в целом Синонимы оптимальное условиеоптимумоптимальный EN optimum …   Справочник технического переводчика

  • ОПТИМАЛЬНЫЙ ВАРИАНТ — Группу основали выпускники московской математической школы №625 Олег Чилап (О! Чилап), Пётр (Пит) Аникин и Саша Липницкий. В основу репертуара легли песни собственного сочинения и классика мирового рока. Некоторое время барабанщиком коллектива… …   Русский рок. Малая энциклопедия

  • Оптимальный вариант (рок-группа) — Оптимальный Вариант Жанр рок н ролл Годы с 1981 по наши дни Страны …   Википедия

  • Потенциально-оптимальный вариант (план) — [potentially optimal plan] вариант плана, который является оптимальным при некотором возможном сочетании внешних условий. Отбор таких вариантов этап нахождения оптимального плана. Например, отобраны все варианты, которые лучше других по уровню… …   Экономико-математический словарь

  • потенциально-оптимальный вариант (план) — Вариант плана, который является оптимальным при некотором возможном сочетании внешних условий. Отбор таких вариантов этап нахождения оптимального плана. Например, отобраны все варианты, которые лучше других по уровню себестоимости, по объему… …   Справочник технического переводчика

  • вариант — отличается • субъект, Neg, оценка, соответствие вариант предполагает • необходимость, субъект, модальность вариант предусматривает • необходимость, субъект, модальность искать варианты • продолжение, модальность, стремление исключить вариант •… …   Глагольной сочетаемости непредметных имён

  • Оптимальный — Оптимальное (от лат. optimus  наилучшее)  решение, которое по тем или другим признакам предпочтительнее других.[1] В технике оптимальный (вариант, решение, выбор и т. д.)  наилучший (вариант, решение, выбор, …) среди …   Википедия

  • вариант — сущ., м., употр. сравн. часто Морфология: (нет) чего? варианта, чему? варианту, (вижу) что? вариант, чем? вариантом, о чём? о варианте; мн. что? варианты, (нет) чего? вариантов, чему? вариантам, (вижу) что? варианты, чем? вариантами, о чём? о… …   Толковый словарь Дмитриева

  • оптимальный — найти оптимальное решение • существование / создание найти оптимальный вариант • существование / создание создать оптимальные условия • существование / создание …   Глагольной сочетаемости непредметных имён

  • Оптимальный план — [optimal plan]. 1. Наилучший с точки зрения выбранного критерия вариант развития экономики в целом или отдельного хозяйственного объекта. На уровне народного хозяйства разработку О.п. можно представить себе двояко: с одной стороны, как выбор… …   Экономико-математический словарь

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»