Перевод: со всех языков на все языки

со всех языков на все языки

область+интеграции

  • 21 катексис

    Термин греческого происхождения, изобретенный и введенный в употребление английскими переводчиками Standard Edition для передачи смысла обиходного немецкого слова "Besetzung", не имеющего удовлетворительного английского эквивалента (наиболее близким является понятие "occupation"). Хотя Фрейд никогда не давал определения понятию "Besetzung", он часто использовал его при формулировке представлений о психической энергии, способной к возрастанию и уменьшению, смещению и разрядке, распространяющейся на хранящиеся в памяти следы идей подобно тому, как электрический заряд распространяется по поверхности тела.
    Катексис — метафорическое количественное понятие, не относящееся к какой-либо реально измеряемой силе; оно отражает скорее относительную интенсивность бессознательных психических процессов. Катексис, таким образом, обозначает интерес, внимание или эмоциональный вклад. Либидинозный катексис означает эротический интерес к определенному лицу или проблеме.
    В различных контекстах Фрейд по-разному использовал описательные образы, и хотя фигуры его речи живы и ясны, английские издатели его трудов, очевидно, сочли, что непоследовательность его терминологии не соответствует требованиям научности. Они явно считали, что научные термины должны быть стандартизованы и отличны от обыденного языка. Английские издатели Фрейда стремились к согласованию и интеграции различных терминов. Они объединили катексис, катектическую энергию и психическую энергию в синонимический ряд при помощи понятия антикатексис, или контркатексис, сочли возможным выразить психический конфликт в количественной метафоре, определили изъятие катексиса или декатексис как отвлечение интереса, внимания, эмоциональной направленности или энергии от какого-либо человека или проблемы, из-за чего происходит реинвестиция в самого себя или другую область.
    Свободный катексис представляет собой относительно "сырую" энергию или нарождающиеся способности, что соответствует фрейдовским парциальным влечениям, включенным в первичные процессы. В ходе развития многие желания фрустрируются, и человек вынужден создавать все более дифференцированные компромиссы. В приспособлении такого рода рождаются фантазия, язык, мышление.
    Некоторые аналитики описывают специфические области интересов и внимание к определенной деятельности как связанные, а не свободные. Так, устойчивое чувство любви по отношению к постоянному партнеру будет "связанным" в сравнении с интенсивными, но кратковременными чувствами любви, обращенными в прошлом к новорожденному.
    Если несколько различных побуждений или потребностей способствуют развитию одного общего интереса (например, комбинация эротической любви, ревнивой ненависти, страха вины, гордости за свое умение и настойчивого любопытства мотивируют контроль над безопасностью начинающего ходить), то некоторые аналитики приписывают подобное гиперкатексису (Überbesetzung). Активность, проистекающая из различных источников, служит сверхдетерминированной психической организации, интегрирующей и даже сублимирующей отдельные элементы.
    В современных исследованиях уточняются различия между гибкими представлениями Фрейда и более поздними попытками строгих метапсихологических рассуждений, часто основывающихся на работах Фрейда в издательском варианте Стрейчи. Правомерность экономического подхода все более подвергалась сомнению, особенно после того, как было описано множество видов катексиса или энергии. Те, кто до сих пор используют эти термины, часто имеют в виду, что осуществляют относительное описание или грубое сравнение тех или иных интересов или "вкладов". Таким образом, современное применение термина катексис стало напоминать простую метафору Фрейда.
    \
    Лит.: [284, 531, 847, 832]

    Словарь психоаналитических терминов и понятий > катексис

  • 22 память

    Функция психического аппарата, посредством которой хранятся и воспроизводятся воспринятые или приобретенные в процессе научения впечатления. Память включает процессы восприятия, апперцепции, распознавания, а также кодирования, извлечения и активации информации. Описаны различные формы памяти: кратковременная и долговременная, эмоциональная, подкрепляющая процессы внимания и др. Каждый из типов связан с определенными ощущениями и вербальными ассоциациями.
    Память и ее нарушения занимали центральное место в психоаналитической теории начиная с первых наблюдений Фрейда. Исследования истерии привели Фрейда к выводу, что его больные страдали "реминисценциями" и что их симптомы можно было понимать как символическое выражение травматических воспоминаний, недоступных воспроизведению из-за связанных с травмой негативных эмоций. Когда эти замаскированные воспоминания заменялись непосредственными воспоминаниями, сопровождавшимися соответствующими эмоциями, симптомы исчезали. Лечение, по сути, заключалось в попытках восстановить травматические воспоминания и разрядить с помощью речи связанный с ними аффект (отреагирование). По мнению Фрейда, исключение воспоминаний из сознания обусловливалось вытеснением (этот термин использовался для обозначения того, что теперь называется защитой).
    В "Проекте научной психологии" (1895) восприятие и память причислялись Фрейдом к различным системам психики. Воспоминания рассматривалась им как связанные эмоциональными ассоциациями, как цепочки ассоциаций и как процессы символизации. В топографической модели, впервые описанной в 1900 году, Фрейд постулировал трехкомпонентную модель психики, состоящую из сознательного, предсознательного и бессознательного. Сознание представляло в этой модели лишь небольшую область психики. Мысли и воспоминания в системе предсознательного становятся сознательными при наличии достаточного катексиса внимания, тогда как бессознательные содержания, по мнению Фрейда, катектированы интенсивной сексуальной энергией и насильно удалены из сознания. Но именно из-за своей интенсивности они ищут выражения, чему препятствует гипотетический "цензор", защитная инстанция, искажающая и маскирующая воспоминания, чтобы они могли быть приемлемыми для осознания. Фрейд также предполагал, что ранние впечатления регистрируются перцептивным аппаратом в виде структурных изменений в системе, которые он называл следами памяти. Эта идея совпадает с современными нейрофизиологическими представлениями, согласно которым воспоминания откладываются в результате стойких изменений в структуре ДНК кортикальных нейронов. Фрейд полагал, что эти примитивные следы памяти ассоциациативно связываются в мнемической системе, репрезентирующей предсознательные элементы, которые восстанавливаются в результате ассоциативной активации их схемы или сетей в процессе воспроизведения. В этой предсознательной форме следы памяти уже связаны с символами.
    После того как были представлены структурная модель психики (Freud, 1923) с ее разделением на Оно, Я и Сверх-Я и вторая теория тревоги (1926), вытеснение стало пониматься как одно из средств защиты от тревоги, вызванной появлением в сознании угрожающих побуждений Оно в форме воспоминаний или фантазий, вступающих в конфликт с нормами системы Сверх-Я. Память рассматривалась как функция Я, служащая воспроизведению, интеграции и синтезу психических содержаний. В теоретическом отношении на самых ранних стадиях развития Я следы памяти о переживании удовольствия являются причиной антиципации новых переживаний удовольствия, когда вновь проявляется инстинктивная потребность. Если удовлетворения не происходит, младенец достигает галлюцинаторного удовлетворения желаний благодаря катексису следов памяти. Неспособность такого галлюцинаторного удовлетворения утолить потребность является основой для развития чувства реальности. Таким образом, процесс воспоминания и его трансформации обладают адаптивным потенциалом для развития Я, а также могут быть причиной психопатологии.
    По-прежнему не утратило своего значения фундаментальное положение психоанализа, что вытесненные или забытые воспоминания являются принципиальным источником интрапсихического конфликта. Разрешение такого конфликта с помощью компромиссного образования проявляется в симптомах или проблемах характера, из-за которых пациент приходит к врачу. Восстановление этих вытесненных воспоминаний достигается с помощью свободных ассоциаций, с помощью ассоциаций с латентными представлениями в материале сновидения, а также с помощью интерпретации переноса, когда забытые чувства к фигурам из прошлого проявляются по отношению к аналитику. Восстановление вытесненных воспоминаний ослабляет конфликт и помогает человеку создать более целостный образ себя.
    \
    Лит.: [72, 208, 213, 243, 249, 303, 312, 470, 500, 708, 720]

    Словарь психоаналитических терминов и понятий > память

  • 23 Самость

    1. self
    1. Термин, обозначающий: а) целостную личность во всех ее реальных проявлениях, включая телесную и психическую организацию индивида; б) "мою", "собственную" личность, противостоящую другим лицам или объектам вне "меня". Термин Самость заимствован из обыденной речи, где его употребление может заменять и перекрывать многие технические аспекты, относящиеся к концепции себя, образа себя, схем себя и тождественности самому себе. Схемы Самости представляют собой устойчивые структуры, принимающие активное участие в организации психических процессов и кодировании того, как человек сознательно и бессознательно воспринимает самого себя. Такие схемы ранжируются от реалистичного взгляда на себя до полностью искаженного, наблюдающегося в отдельные периоды у каждого индивида. Их основой являются репрезентации Самости — психические содержания в системе Я, бессознательно, предсознательно или сознательно отражающие аспекты телесной или психической Самости, включая влечения и аффекты, возникающие в реакции индивида на себя и внешний мир. Совместно со схемами объекта схемы Самости обеспечивают организацию базисного и актуального материала для формирования всех адаптивных и защитных функций. В процессе созревания различные схемы Самости выстраиваются в виде иерархической упорядоченной организованной структуры, составляющей Самость.
    Кодирование Самости в виде сенсорного способа представлений называется образом Самости, который может быть представлен зрительными, слуховыми или осязательными компонентами. Видение себя в конкретной ситуации и в определенное время обозначается термином концепция Самости. Последняя слагается из комплексных представлений о собственном внутреннем состоянии, сочетающихся с концепцией собственного тела. Идеационные компоненты концепции Самости кодируются на основе непосредственного опыта (ощущений, эмоций, мыслей) и косвенного восприятия телесной и психической Самости, выступающей уже в качестве объекта. Концепция Самости может быть сознательной или бессознательной, реалистичной или нереалистичной. Она может относительно правильно (то есть в соответствии с реальным положением вещей) отражать совокупность физических, эмоциональных и психических свойств индивида; однако при определенных условиях концепция Самости может быть нереалистичной, искаженной вытеснением или смещением неприемлемых для индивида собственных качеств либо их "заместителей" (например, фантазий), сопряженных с отдельными желаниями и потребностями в защите.
    Самооценка представляет собой конечный результат сопоставления себя с идеальной концепцией Самости, притязаниями, а также оценками со стороны значимых для индивида лиц или социальных групп. Как правило, самооценка осознается лишь отчасти и становится заметной только при ее утрате. Если оценочные суждения положительны, аффективный ответ на них будет характеризоваться приподнятым настроением и экспансивностью. Снижение самооценки, наоборот, сопровождается обостренными переживаниями неполноценности и нерешительностью.
    В психоаналитической литературе термин "Самость" используется в различных контекстах. Фрейд, особенно до построения структурной теории, часто использовал понятие Я, подразумевая Самость. В таких концепциях, как обращение на себя влечений, Самость (или Я) рассматривается как противоположность объекта. Гартманн рассматривал эту проблему, отделив Я, как группу функций, от Самости. С этих позиций нарциссизм может рассматриваться как катексис либидо, направленный не столько на Я, сколько на Самость. Якобсон использовала термин Самость для обозначения личности в ее целостном выражении. Шафером выделены три разновидности понятия Самость: в качестве действующего начала, в качестве места или поля действия и в качестве объекта. Кохут определял Самость как независимый инициативный центр. Другие авторы — Мейснер, Лихтенберг, Штерн — использовали термин Самость для обозначения опыта, приобретаемого либо в виде чувства себя, либо при развитии Самости в мире субъективности и взаимоотношений с другими. Независимо от того, в рамках какой понятийной системы осмысляется этот термин, в любом случае Самость более тесно связана с опытом, чем Оно, Я и Сверх-Я.
    \
    Лит.: [439, 476, 558, 705, 807]
    2. Термин, употребляемый в аналитической психологии с 1916 года в нескольких различных значениях: 1) души в целом; 2) тенденции души функционировать упорядоченно и структурированно, сообразно цели и плану; 3) тенденции души продуцировать образы и символы, стоящие "по ту сторону" Я (образ Бога или героических персонажей, выполняющих эту роль, которые обращают людей к необходимости и возможности роста и развития); 4) психологического единства человека с момента рождения. Это единство при накоплении жизненного опыта постепенно разрушается, но остается неким шаблоном или эскизом для последующих переживаний целостности и интеграции. Иногда мать рассматривается в качестве "носителя" детской Самости. Имеется в виду нечто сходное с процессом, называемым в психоанализе "отзеркаливание".
    Термин, относящийся к аппарату глубинной психологии и обозначающий сердцевину, ядро личности. Самость понимается как сложное образование, формирующееся в виде устойчивой конфигурации взаимодействующих врожденных качеств личности и влияний окружения. В результате такого взаимодействия индивид получает возможность переживать самообъекты уже на ранних стадиях развития. В дальнейшем происходит образование устойчивой целостной психологической структуры. Самость представляет собой центр инициативности, хранилище впечатлений, область пересечения идеалов, эталонов поведения, притязаний и способностей индивида. Перечисленные свойства являются основой развертывания Самости в качестве самостимулирующейся, самонаправляющейся, самоосознаваемой и самоподдерживающейся целостности, обеспечивающей личность основными целями и смыслом жизни. Особенности притязаний, способностей, норм (стандартов) и возникающие между ними виды напряжения, программы деятельности и активности, структурирующие жизненный путь индивида, сочетаясь в различных пропорциях, переживаются как некая непрерывность во времени и пространстве и придают личности смысл и сущность Самости, отдельного и осмысленного бытия, средоточия инициативности и накапливающихся впечатлений.
    Составляющими или секторами Самости являются: 1) полюс базальных стремлений обладать силой и знаниями (полюс целей и притязаний); 2) полюс руководящих идеалов (полюс идеалов и норм); 3) дуга напряжения между обоими крайними полюсами, активизирующая основные способности индивида. Здоровая Самость может быть представлена в виде функционального континуума секторов, расположенных между полюсами. Для отграничения двухполюсной структуры Самости от рассматриваемых в литературе Кохут вводит в рамках собственной концепции специальный термин биполярная Самость.
    В зависимости от уровня развития и/или особенностей проявления составных частей описаны следующие типы Самости.
    Виртуальная Самость, то есть образ зарождающейся Самости в представлениях родителей. Именно родители придают форму бытию Самости ребенка; соответственно, виртуальная Самость определяет способ, с помощью которого конкретные родители "закладывают" в новорожденного потенциальные качества личности.
    Ядерная Самость рассматривается как впервые проявляющаяся (на втором году жизни) связная организация структур психики.
    Связная Самость представляет собой относительно взаимосвязанные структуры нормально функционирующей Самости.
    Термином грандиозная Самость принято описывать нормальную эксгибиционистскую Самость младенца, в структуре которой преобладают переживания беззаботности и средоточия всего бытия.
    Кроме того, были описаны патологические состояния Самости.
    Архаическая Самость представляет собой патологические проявления ядерных сочетаний Самости (нормальных для раннего периода развития) у зрелого индивида.
    Фрагментированная Самость отражает хронические либо повторяющиеся состояния, которые характеризуются снижением степени связности отдельных частей Самости. Фрагментирование является результатом повреждения либо дефекта объектных ответов либо следствием других вызывающих регрессию факторов. Фрагментирующая тревога может проявляться в различной степени — от легкой нервозности (сигнальная тревога) до полной паники, возвещающей о наступлении распада Самости.
    Опустошенная Самость отражает утрату жизненных сил с картиной опустошающей депрессии. Она возникает вследствие неспособности самообъекта радоваться существованию и утверждению Самости.
    Перегруженная Самость представляет собой состояние дефицита, при котором Самость не способна успокоить себя или облегчить себя при страдании, то есть не умеет найти подходящие условия для воссоединения с успокоительным всемогущим самообъектом.
    Перевозбужденная Самость рассматривается как состояние повторяющихся проявлений повышенной эмоциональности или возбужденности, возникающих в результате чрезмерных либо неприемлемых для данной фазы развития неэмпатических ответов со стороны самообъектов.
    Несбалансированная Самость описывается как состояние непрочности составных частей Самости. При этом одна из частей, как правило, доминирует над остальными. Если слабый оценочный полюс не может обеспечить достаточного "руководства", Самость страдает от чрезмерной амбициозности, достигающей уровня психопатии. При чрезмерно развитом оценочном полюсе Самость оказывается "скованной" чувством вины и в результате "стесненной" в своих проявлениях. Третий тип несбалансированности Самости характеризуется выраженной дугой напряжения между двумя относительно слабыми полюсами. Такой тип Самости является, так сказать, отстраненным от ограничивающих идеалов и личностных целей, в результате чего индивид отличается повышенной чувствительностью к давлению со стороны внешнего окружения. В качестве примера можно привести образ специалиста в технической области знаний, полностью посвятившего себя самосовершенствованию в профессиональной деятельности, но в то же время лишенного сбалансированной позиции в сфере личностных притязаний или этических оценок. Выраженность несбалансированности варьирует в широких пределах — от относительно нормальных личностных проявлений до предпсихотической личности.
    Как нормальная, так и патологическая структура Самости в равной степени связаны с процессами интернализации связей между Самостью и его объектами. При этом самообъект рассматривается как субъективное переживание индивидом поддержки, создаваемой другими людьми (объектами). Хотя термин самообъект вполне применим по отношению к поддерживающим лицам, его нужно использовать прежде всего для описания интрапсихических переживаний, отражающих различные типы взаимоотношений Самости с другими объектами. Поэтому отношения, характеризующие самообъекты, следует выражать в терминах поддерживающей Самость функции, преобразования которой зависят либо от влияния других людей, либо от временного параметра — периода, наиболее значимого для проявления данной функции.
    Инфантильные самообъекты отражают переживания нормальной поддержки Самости в раннем детском возрасте. Этот тип переживаний представляет собой слияние опыта, проистекающего из пока еще недостаточно разграниченных на когнитивном уровне Самости и самообъекта. На этой стадии развития самообъекты еще не могут переживаться ребенком как "вместилище" отдельных центров инициативности и интенциональности.
    Архаические самообъекты предполагает патологическую потребность в функциях, обычно присущих детскому самообъекту. При этом патологические черты архаический самообъект может приобрести только в зрелом возрасте.
    Отражающие самообъекты, "притягивая" и укрепляя ощущения значимости, целостности и положительной самооценки, поддерживают наиболее важные для индивида фантазии и представления.
    Идеализируемые (или идеализированные) самообъекты обеспечивают "слияние" с образом бесстрашной, мудрой, сильной и доброй идеализируемой личности.
    Самообъекты "второго Я" отражают переживания поддержки со стороны других людей, представляемых индивидом в виде какой-либо части самого себя.
    Соперничающие самообъекты обеспечивают переживания, связанные с центром инициативности, действующим в направлении оппозиционного самоутверждения.

    Словарь психоаналитических терминов и понятий > Самость

  • 24 нанотехнология

     Нанотехнология
      Совокупность методов и приемов, применяемых при изучении, проектировании, производстве и использовании структур, устройств и систем, включающих целенаправленный контроль и модификацию формы, размера, интеграции и взаимодействия составляющих их наномасштабных элементов (1-100 нм) для получения объектов с новыми химическими, физическими, биологическими свойствами. Нанотехнология все более проявляет себя как область исследований, критически важная для обеспечения серьезных научных прорывов, которые могут иметь огромное значение для развития биомедицины, робототехники, электроники, машиностроения, систем диагностики. Следует отметить, что в популярной прессе термин «нанотехнологии» иногда употребляется в отношении любых субмикронных процессов, включая литографию. Поэтому, говоря о реальной нанотехнологии, процессы которой осуществляются на молекулярном уровне, многие ученые начинают использовать термин «молекулярная нанотехнология».

    Англо-русский словарь по нанотехнологиям > нанотехнология

  • 25 nanotechnology

     Нанотехнология
      Совокупность методов и приемов, применяемых при изучении, проектировании, производстве и использовании структур, устройств и систем, включающих целенаправленный контроль и модификацию формы, размера, интеграции и взаимодействия составляющих их наномасштабных элементов (1-100 нм) для получения объектов с новыми химическими, физическими, биологическими свойствами. Нанотехнология все более проявляет себя как область исследований, критически важная для обеспечения серьезных научных прорывов, которые могут иметь огромное значение для развития биомедицины, робототехники, электроники, машиностроения, систем диагностики. Следует отметить, что в популярной прессе термин «нанотехнологии» иногда употребляется в отношении любых субмикронных процессов, включая литографию. Поэтому, говоря о реальной нанотехнологии, процессы которой осуществляются на молекулярном уровне, многие ученые начинают использовать термин «молекулярная нанотехнология».

    Англо-русский словарь по нанотехнологиям > nanotechnology

  • 26 нанотехнология

     Нанотехнология
      Совокупность методов и приемов, применяемых при изучении, проектировании, производстве и использовании структур, устройств и систем, включающих целенаправленный контроль и модификацию формы, размера, интеграции и взаимодействия составляющих их наномасштабных элементов (1-100 нм) для получения объектов с новыми химическими, физическими, биологическими свойствами. Нанотехнология все более проявляет себя как область исследований, критически важная для обеспечения серьезных научных прорывов, которые могут иметь огромное значение для развития биомедицины, робототехники, электроники, машиностроения, систем диагностики. Следует отметить, что в популярной прессе термин «нанотехнологии» иногда употребляется в отношении любых субмикронных процессов, включая литографию. Поэтому, говоря о реальной нанотехнологии, процессы которой осуществляются на молекулярном уровне, многие ученые начинают использовать термин «молекулярная нанотехнология».

    Russian-English dictionary of Nanotechnology > нанотехнология

  • 27 nanotechnology

     Нанотехнология
      Совокупность методов и приемов, применяемых при изучении, проектировании, производстве и использовании структур, устройств и систем, включающих целенаправленный контроль и модификацию формы, размера, интеграции и взаимодействия составляющих их наномасштабных элементов (1-100 нм) для получения объектов с новыми химическими, физическими, биологическими свойствами. Нанотехнология все более проявляет себя как область исследований, критически важная для обеспечения серьезных научных прорывов, которые могут иметь огромное значение для развития биомедицины, робототехники, электроники, машиностроения, систем диагностики. Следует отметить, что в популярной прессе термин «нанотехнологии» иногда употребляется в отношении любых субмикронных процессов, включая литографию. Поэтому, говоря о реальной нанотехнологии, процессы которой осуществляются на молекулярном уровне, многие ученые начинают использовать термин «молекулярная нанотехнология».

    Russian-English dictionary of Nanotechnology > nanotechnology

  • 28 интеллектуальный учет электроэнергии

    1. smart metering

     

    интеллектуальный учет электроэнергии
    -
    [Интент]

    Учет электроэнергии

    Понятия «интеллектуальные измерения» (Smart Metering), «интеллектуальный учет», «интеллектуальный счетчик», «интеллектуальная сеть» (Smart Grid), как все нетехнические, нефизические понятия, не имеют строгой дефиниции и допускают произвольные толкования. Столь же нечетко определены и задачи Smart Metering в современных электрических сетях.
    Нужно ли использовать эти термины в такой довольно консервативной области, как электроэнергетика? Что отличает новые системы учета электроэнергии и какие функции они должны выполнять? Об этом рассуждает Лев Константинович Осика.

    SMART METERING – «ИНТЕЛЛЕКТУАЛЬНЫЙ УЧЕТ» ЭЛЕКТРОЭНЕРГИИ

    Определения и задачи
    По многочисленным публикациям в СМИ, выступлениям на конференциях и совещаниях, сложившемуся обычаю делового оборота можно сделать следующие заключения:
    • «интеллектуальные измерения» производятся у потребителей – физических лиц, проживающих в многоквартирных домах или частных домовладениях;
    • основная цель «интеллектуальных измерений» и реализующих их «интеллектуальных приборов учета» в России – повышение платежной дисциплины, борьба с неплатежами, воровством электроэнергии;
    • эти цели достигаются путем так называемого «управления электропотреблением», под которым подразумеваются ограничения и отключения неплательщиков;
    • средства «управления электропотреблением» – коммутационные аппараты, получающие команды на включение/отключение, как правило, размещаются в одном корпусе со счетчиком и представляют собой его неотъемлемую часть.
    Главным преимуществом «интеллектуального счетчика» в глазах сбытовых компаний является простота осуществления отключения (ограничения) потребителя за неплатежи (или невнесенную предоплату за потребляемую электроэнергию) без применения физического воздействия на существующие вводные выключатели в квартиры (коттеджи).
    В качестве дополнительных возможностей, стимулирующих установку «интеллектуальных приборов учета», называются:
    • различного рода интеграция с измерительными приборами других энергоресурсов, с биллинговыми и информационными системами сбытовых и сетевых компаний, муниципальных администраций и т.п.;
    • расширенные возможности отображения на дисплее счетчика всей возможной (при первичных измерениях токов и напряжений) информации: от суточного графика активной мощности, напряжения, частоты до показателей надежности (времени перерывов в питании) и денежных показателей – стоимости потребления, оставшейся «кредитной линии» и пр.;
    • двухсторонняя информационная (и управляющая) связь сбытовой компании и потребителя, т.е. передача потребителю различных сообщений, дистанционная смена тарифа, отключение или ограничение потребления и т.п.

    ЧТО ТАКОЕ «ИНТЕЛЛЕКТУАЛЬНЫЕ ИЗМЕРЕНИЯ»?

    Приведем определение, данное в тематическом докладе комитета ЭРРА «Нормативные аспекты СМАРТ ИЗМЕРЕНИЙ», подготовленном известной международной компанией КЕМА:
    «…Для ясности необходимо дать правильное определение смарт измерениям и описать организацию инфраструктуры смарт измерений. Необходимо отметить, что между смарт счетчиком и смарт измерением существует большая разница. Смарт счетчик – это отдельный прибор, который установлен в доме потребителя и в основном измеряет потребление энергии потребителем. Смарт измерения – это фактическое применение смарт счетчиков в большем масштабе, то есть применение общего принципа вместо отдельного прибора. Однако, если рассматривать пилотные проекты смарт измерений или национальные программы смарт измерений, то иногда можно найти разницу в определении смарт измерений. Кроме того, также часто появляются такие термины, как автоматическое считывание счетчика (AMR) и передовая инфраструктура измерений (AMI), особенно в США, в то время как в ЕС часто используется достаточно туманный термин «интеллектуальные системы измерений …».
    Представляют интерес и высказывания В.В. Новикова, начальника лаборатории ФГУП ВНИИМС [1]: «…Это автоматизированные системы, которые обеспечивают и по-требителям, и сбытовым компаниям контроль и управление потреблением энергоресурсов согласно установленным критериям оптимизации энергосбережения. Такие измерения называют «интеллектуальными измерениями», или Smart Metering, как принято за рубежом …
    …Основные признаки Smart Metering у счетчиков электрической энергии. Их шесть:
    1. Новшества касаются в меньшей степени принципа измерений электрической энергии, а в большей – функциональных возможностей приборов.
    2. Дополнительными функциями выступают, как правило, измерение мощности за короткие периоды, коэффициента мощности, измерение времени, даты и длительности провалов и отсутствия питающего напряжения.
    3. Счетчики имеют самодиагностику и защиту от распространенных методов хищения электроэнергии, фиксируют в журнале событий моменты вскрытия кожуха, крышки клеммной колодки, воздействий сильного магнитного поля и других воздействий как на счетчик, его информационные входы и выходы, так и на саму электрическую сеть.
    4. Наличие функций для управления нагрузкой и подачи команд на включение и отключение электрических приборов.
    5. Более удобные и прозрачные функции для потребителей и энергоснабжающих организаций, позволяющие выбирать вид тарифа и энергосбытовую компанию в зависимости от потребностей в энергии и возможности ее своевременно оплачивать.
    6. Интеграция измерений и учета всех энергоресурсов в доме для выработки решений, минимизирующих расходы на оплату энергоресурсов. В эту стратегию вовлекаются как отдельные потребители, так и управляющие компании домами, энергоснабжающие и сетевые компании …».
    Из этих цитат нетрудно заметить, что первые 3 из 6 функций полностью повторяют требования к счетчикам АИИС КУЭ на оптовом рынке электроэнергии и мощности (ОРЭМ), которые не менялись с 2003 г. Функция № 5 является очевидной функцией счетчика при работе потребителя на розничных рынках электроэнергии (РРЭ) в условиях либеральной (рыночной) энергетики. Функция № 6 практически повторяет многочисленные определения понятия «умный дом», а функция № 4, провозглашенная в нашей стране, полностью соответствует желаниям сбытовых компаний найти наконец действенное средство воздействия на неплательщиков. При этом ясно, что неплатежи – не следствие отсутствия «умных счетчиков», а результат популистской политики правительства. Отключить физических (да и юридических) лиц невозможно, и эта функция счетчика, безусловно, останется невостребованной до внесения соответствующих изменений в нормативно-правовые акты.
    На функции № 4 следует остановиться особо. Она превращает измерительный прибор в управляющую систему, в АСУ, так как содержит все признаки такой системы: наличие измерительного компонента, решающего компонента (выдающего управляющие сигналы) и, в случае размещения коммутационных аппаратов внутри счетчика, органов управления. Причем явно или неявно, как и в любой системе управления, подразумевается обратная связь: заплатил – включат опять.
    Обоснованное мнение по поводу Smart Grid и Smart Metering высказал В.И. Гуревич в [2]. Приведем здесь цитаты из этой статьи с локальными ссылками на используемую литературу: «…Обратимся к истории. Впервые этот термин встретился в тексте статьи одного из западных специалистов в 1998 г. [1]. В названии статьи этот термин был впервые использован Массудом Амином и Брюсом Волленбергом в их публикации «К интеллектуальной сети» [2]. Первые применения этого термина на Западе были связаны с чисто рекламными названиями специальных контроллеров, предназначенных для управления режимом работы и синхронизации автономных ветрогенераторов (отличающихся нестабильным напряжением и частотой) с электрической сетью. Потом этот термин стал применяться, опять-таки как чисто рекламный ход, для обозначения микропроцессорных счетчиков электроэнергии, способных самостоятельно накапливать, обрабатывать, оценивать информацию и передавать ее по специальным каналам связи и даже через Интернет. Причем сами по себе контроллеры синхронизации ветрогенераторов и микропроцессорные счетчики электроэнергии были разработаны и выпускались различными фирмами еще до появления термина Smart Grid. Это название возникло намного позже как чисто рекламный трюк для привлечения покупателей и вначале использовалось лишь в этих областях техники. В последние годы его использование расширилось на системы сбора и обработки информации, мониторинга оборудования в электроэнергетике [3] …
    1. Janssen M. C. The Smart Grid Drivers. – PAC, June 2010, p. 77.
    2. Amin S. M., Wollenberg B. F. Toward a Smart Grid. – IEEE P&E Magazine, September/October, 2005.
    3. Gellings C. W. The Smart Grid. Enabling Energy Efficiency and Demand Response. – CRC Press, 2010. …».
    Таким образом, принимая во внимание столь различные мнения о предмете Smart Grid и Smart Metering, сетевая компания должна прежде всего определить понятие «интеллектуальная система измерения» для объекта измерений – электрической сети (как актива и технологической основы ОРЭМ и РРЭ) и представить ее предметную область именно для своего бизнеса.

    БИЗНЕС И «ИНТЕЛЛЕКТУАЛЬНЫЙ УЧЕТ»

    В результате изучения бизнес-процессов деятельности ряда сетевых компаний и взаимодействия на РРЭ сетевых, энергосбытовых компаний и исполнителей коммунальных услуг были сформулированы следующие исходные условия.
    1. В качестве главного признака новой интеллектуальной системы учета электроэнергии (ИСУЭ), отличающей ее от существующей системы коммерческого и технического учета электроэнергии, взято расширение функций, причем в систему вовлекаются принципиально новые функции: определение технических потерь, сведение балансов в режиме, близком к on-line, определение показателей надежности. Это позволит, среди прочего, получить необходимую информацию для решения режимных задач Smart Grid – оптимизации по реактивной мощности, управления качеством электроснабжения.
    2. Во многих случаях (помимо решения задач, традиционных для сетевой компании) рассматриваются устройства и системы управления потреблением у физических лиц, осуществляющие их ограничения и отключения за неплатежи (традиционные задачи так называемых систем AMI – Advanced Metering Infrastructure).
    Учитывая вышеизложенное, для электросетевой компании предлагается принимать следующее двойственное (по признаку предметной области) определение ИСУЭ:
    в отношении потребителей – физических лиц: «Интеллектуальная система измерений – это совокупность устройств управления нагрузкой, приборов учета, коммуникационного оборудования, каналов передачи данных, программного обеспечения, серверного оборудования, алгоритмов, квалифицированного персонала, которые обеспечивают достаточный объем информации и инструментов для управления потреблением электроэнергии согласно договорным обязательствам сторон с учетом установленных критериев энергоэффективности и надежности»;
    в отношении системы в целом: «Интеллектуальная система измерений – это автоматизированная комплексная система измерений электроэнергии (с возможностью измерений других энергоресурсов), определения учетных показателей и решения на их основе технологических и бизнес-задач, которая позволяет интегрировать различные информационные системы субъектов рынка и развиваться без ограничений в обозримом будущем».

    ЗАДАЧИ «ИНТЕЛЛЕКТУАЛЬНОГО УЧЕТА»

    Далее мы будем основываться на том, что ИСУЭ позволит осуществить следующие функции в бытовом секторе:
    • дистанционное получение от каждой точки измерения (узла учета) у бытового потребителя сведений об отпущенной или потребленной электроэнергии;
    • расчет внутриобъектового (многоквартирный жилой дом, поселок) баланса поступления и потребления энергоресурсов с целью выявления технических и коммерческих потерь и принятия мер по эффективному энергосбережению;
    • контроль параметров поставляемых энергоресурсов с целью обнаружения и регистрации их отклонений от договорных значений;
    • обнаружение фактов несанкционированного вмешательства в работу приборов учета или изменения схем подключения электроснабжения;
    • применение санкций против злостных неплательщиков методом ограничения потребляемой мощности или полного отключения энергоснабжения;
    • анализ технического состояния и отказов приборов учета;
    • подготовка отчетных документов об электропотреблении;
    • интеграция с биллинговыми системами.

    «ИНТЕЛЛЕКТУАЛЬНЫЙ КОММЕРЧЕСКИЙ УЧЕТ»

    Остановимся подробно на одном из атрибутов ИСУЭ, который считаю ключевым для основного электросетевого бизнеса.
    Особенностью коммерческого учета электроэнергии (КУЭ) распределительных сетевых компаний является наличие двух сфер коммерческого оборота электроэнергии – ОРЭМ и РРЭ, которые хотя и сближаются в нормативном и организационном плане, но остаются пока существенно различными с точки зрения требований к КУЭ.
    Большинство сетевых компаний является субъектом как ОРЭМ, так и РРЭ. Соответственно и сам коммерческий учет в отношении требований к нему разделен на два вида:
    • коммерческий учет на ОРЭМ (технические средства – АИИС КУЭ);
    • коммерческий учет на РРЭ (технические средства – АСКУЭ).
    Кроме того, к коммерческому учету, т.е. к определению тех показателей, которые служат для начисления обязательств и требований сетевой компании (оплата услуг по транспорту электроэнергии, купля-продажа технологических потерь), следует отнести и измерения величин, необходимых для определения показателей надежности сети в отношении оказания услуг по передаче электроэнергии.
    Отметим, что сложившиеся технологии АИИС КУЭ и АСКУЭ по своей функциональной полноте (за исключением функции коммутации нагрузки внутри систем) – это технологии Smart Metering в том понимании, которое мы обсуждали выше. Поэтому далее будем считать эти понятия полностью совпадающими.
    Подсистема ИСУЭ на РРЭ, безусловно, самая сложная и трудоемкая часть всей интеллектуальной системы как с точки зрения организации сбора информации (включая измерительные системы (ИС) и средства связи в автоматизированных системах), так и с точки зрения объема точек поставки и соответственно средств измерений. Последние отличаются большим многообразием и сложностью контроля их и метрологических характеристик (МХ).
    Если технические требования к ИС на ОРЭМ и к ИС крупных потребителей (по крайней мере потребителей с присоединенной мощностью свыше 750 кВА) принципиально близки, то в отношении нормативного и организационного компонентов имеются сильные различия. Гармоничная их интеграция в среде разных компонентов – основная задача создания современной системы ИСУЭ любой сетевой компании.
    Особенностью коммерческого учета для нужд сетевого комплекса – основного бизнеса компании в отличие от учета электроэнергии потребителей, генерирующих источников и сбытовых компаний – является сам характер учетных показателей, вернее, одного из них – технологических потерь электроэнергии. Здесь трудность состоит в том, что границы балансовой принадлежности компании должны оснащаться средствами учета в интересах субъектов рынка – участников обращения электроэнергии, и по правилам, установленным для них, будь то ОРЭМ или РРЭ. А к измерению и учету важнейшего собственного учетного показателя, потерь, отдельные нормативные требования не предъявляются, хотя указанные показатели должны определяться по своим технологиям.
    При этом сегодня для эффективного ведения бизнеса перед сетевыми компаниями, по мнению автора, стоит задача корректного определения часовых балансов в режиме, близком к on-line, в условиях, когда часть счетчиков (со стороны ОРЭМ) имеют автоматические часовые измерения электроэнергии, а подавляющее большинство (по количеству) счетчиков на РРЭ (за счет физических лиц и мелкомоторных потребителей) не позволяют получать такие измерения. Актуальность корректного определения фактических потерь следует из необходимости покупки их объема, не учтенного при установлении тарифов на услуги по передаче электроэнергии, а также предоставления информации для решения задач Smart Grid.
    В то же время специалистами-практиками часто ставится под сомнение практическая востребованность определения технологических потерь и их составляющих в режиме on-line. Учитывая это мнение, которое не согласуется с разрабатываемыми стратегиями Smart Grid, целесообразно оставить окончательное решение при разработке ИСУЭ за самой компанией.
    Cистемы АИИС КУЭ сетевых компаний никогда не создавались целенаправленно для решения самых насущных для них задач, таких как:
    1. Коммерческая задача купли-продажи потерь – качественного (прозрачного и корректного в смысле метрологии и требований действующих нормативных документов) инструментального или расчетно-инструментального определения технологических потерь электроэнергии вместе с их составляющими – техническими потерями и потреблением на собственные и хозяйственные нужды сети.
    2. Коммерческая задача по определению показателей надежности электроснабжения потребителей.
    3. Управленческая задача – получение всех установленных учетной политикой компании балансов электроэнергии и мощности по уровням напряжения, по филиалам, по от-дельным подстанциям и группам сетевых элементов, а также КПЭ, связанных с оборотом электроэнергии и оказанием услуг в натуральном выражении.
    Не ставилась и задача технологического обеспечения возможного в перспективе бизнеса сетевых компаний – предоставления услуг оператора коммерческого учета (ОКУ) субъектам ОРЭМ и РРЭ на территории обслуживания компании.
    Кроме того, необходимо упорядочить систему учета для определения коммерческих показателей в отношении определения обязательств и требований оплаты услуг по транспорту электроэнергии и гармонизировать собственные интересы и интересы смежных субъектов ОРЭМ и РРЭ в рамках существующей системы взаимодействий и возможной системы взаимодействий с введением института ОКУ.
    Именно исходя из этих целей (не забывая при этом про коммерческие учетные показатели смежных субъектов рынка в той мере, какая требуется по обязательствам компании), и нужно строить подлинно интеллектуальную измерительную систему. Иными словами, интеллект измерений – это главным образом интеллект решения технологических задач, необходимых компании.
    По сути, при решении нового круга задач в целевой модели интеллектуального учета будет реализован принцип придания сетевой компании статуса (функций) ОКУ в зоне обслуживания. Этот статус формально прописан в действующей редакции Правил розничных рынков (Постановление Правительства РФ № 530 от 31.08.2006), однако на практике не осуществляется в полном объеме как из-за отсутствия необходимой технологической базы, так и из-за организационных трудностей.
    Таким образом, сетевая компания должна сводить баланс по своей территории на новой качественной ступени – оперативно, прозрачно и полно. А это означает сбор информации от всех присоединенных к сети субъектов рынка, формирование учетных показателей и передачу их тем же субъектам для определения взаимных обязательств и требований.
    Такой подход предполагает не только новую схему расстановки приборов в соответствии с комплексным решением всех поставленных технологами задач, но и новые функциональные и метрологические требования к измерительным приборам.

    ПРЕИМУЩЕСТВА ИСУЭ

    Внедрение ИСУЭ даст новые широкие возможности для всех участников ОРЭМ и РРЭ в зоне обслуживания электросетевой компании.
    Для самой компании:
    1. Повышение эффективности существующего бизнеса.
    2. Возможности новых видов бизнеса – ОКУ, регистратор единой группы точек поставки (ГТП), оператор заправки электрического транспорта и т.п.
    3. Обеспечение внедрения технологий Smart grid.
    4. Создание и развитие программно-аппаратного комплекса (с сервисно-ориентированной архитектурой) и ИС, снимающих ограничения на развитие технологий и бизнеса в долгосрочной перспективе.
    Для энергосбытовой деятельности:
    1. Автоматический мониторинг потребления.
    2. Легкое определение превышения фактических показателей над планируемыми.
    3. Определение неэффективных производств и процессов.
    4. Биллинг.
    5. Мониторинг коэффициента мощности.
    6. Мониторинг показателей качества (напряжение и частота).
    Для обеспечения бизнеса – услуги для генерирующих, сетевых, сбытовых компаний и потребителей:
    1. Готовый вариант на все случаи жизни.
    2. Надежность.
    3. Гарантия качества услуг.
    4. Оптимальная и прозрачная стоимость услуг сетевой компании.
    5. Постоянное внедрение инноваций.
    6. Повышение «интеллекта» при работе на ОРЭМ и РРЭ.
    7. Облегчение технологического присоединения энергопринимающих устройств субъектов ОРЭМ и РРЭ.
    8. Качественный консалтинг по всем вопросам электроснабжения и энергосбережения.
    Успешная реализации перечисленных задач возможна только на базе информационно-технологической системы (программно-аппаратного комплекса) наивысшего достигнутого на сегодняшний день уровня интеграции со всеми возможными информационными системами субъектов рынка – измерительно-учетными как в отношении электроэнергии, так и (в перспективе) в отношении других энергоресурсов.

    ЛИТЕРАТУРА

    1. Новиков В.В. Интеллектуальные измерения на службе энергосбережения // Энергоэксперт. 2011. № 3.
    2. Гуревич В.И. Интеллектуальные сети: новые перспективы или новые проблемы? // Электротехнический рынок. 2010. № 6.

    [ http://www.news.elteh.ru/arh/2011/71/14.php]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > интеллектуальный учет электроэнергии

  • 29 технологии для автоматизации

    1. automation technologies

     

    технологии для автоматизации
    -
    [Интент]

    Параллельные тексты EN-RU

    Automation technologies: a strong focal point for our R&D

    Технологии для автоматизации - одна из главных тем наших научно исследовательских разработок

    Automation is an area of ABB’s business with an extremely high level of technological innovation.

    Автоматика относится к одной из областей деятельности компании АББ, для которой характерен исключительно высокий уровень технических инноваций.

    In fact, it may be seen as a showcase for exhibiting the frontiers of development in several of today’s emerging technologies, like short-range wireless communication and microelectromechanical systems (MEMS).

    В определенном смысле ее можно уподобить витрине, в которой выставлены передовые разработки из области только еще зарождающихся технологий, примерами которых являются ближняя беспроводная связь и микроэлектромеханические системы (micro electromechanical systems MEMS).

    Mechatronics – the synthesis of mechanics and electronics – is another very exciting and rapidly developing area, and the foundation on which ABB has built its highly successful, fast-growing robotics business.

    Еще одной исключительно интересной быстро развивающейся областью и в то же время фундаментом, на котором АББ в последнее время строит свой исключительно успешный и быстро расширяющийся бизнес в области робототехники, является мехатроника - синтез механики с электроникой.

    Robotic precision has now reached the levels we have come to expect of the watch-making industry, while robots’ mechanical capabilities continue to improve significantly.

    Точность работы робототехнических устройств достигла сегодня уровней, которые мы привыкли ожидать только на предприятиях часовой промышленности. Большими темпами продолжают расти и механические возможности роботов.

    Behind the scenes, highly sophisticated electronics and software control every move these robots make.

    А за кулисами всеми перемещениями робота управляют сложные электронные устройства и компьютерные программы.

    Throughout industry today we see a major shift of ‘intelligence’ to lower levels in the automation system hierarchy, leading to a demand for more communication within the system.

    Во всех отраслях промышленности сегодня наблюдается интенсивный перенос "интеллекта" на нижние уровни иерархии автоматизированных систем, что требует дальнейшего развития внутрисистемных средств обмена.

    ‘Smart’ transmitters, with powerful microprocessors, memory chips and special software, carry out vital operations close to the processes they are monitoring.

    "Интеллектуальные" датчики, снабженные высокопроизводительными микропроцессорами, мощными чипами памяти и специальным программно-математическим обеспечением, выполняют особо ответственные операции в непосредственной близости от контролируемых процессов.

    And they capture and store data crucial for remote diagnostics and maintenance.

    Они же обеспечивают возможность измерения и регистрации информации, крайне необходимой для дистанционной диагностики и дистанционного обслуживания техники.

    The communication highway linking such systems is provided by fieldbuses.

    В качестве коммуникационных магистралей, связывающих такого рода системы, служат промышленные шины fieldbus.

    In an ideal world there would be no more than a few, preferably just one, fieldbus standard.

    В идеале на промышленные шины должно было бы существовать небольшое количество, а лучше всего вообще только один стандарт.

    However, there are still too many of them, so ABB has developed ‘fieldbus plugs’ that, with the help of translation, enable devices to communicate across different standards.

    К сожалению, на деле количество их типов продолжает оставаться слишком разнообразным. Ввиду этой особенности рынка промышленных шин компанией АББ разработаны "штепсельные разъемы", которые с помощью средств преобразования обеспечивают общение различных устройств вопреки границам, возникшим из-за различий в стандартах.

    This makes life easier as well as less costly for our customers. Every automation system is dependent on an electrical network for distributing – and interrupting, when necessary – the power needed to carry out its various functions.

    Это, безусловно, не только облегчает, но и удешевляет жизнь нашим заказчикам. Ни одна система автоматики не может работать без сети, обеспечивающей подачу, а при необходимости и отключение напряжения, необходимого для выполнения автоматикой своих задач.

    Here, too, we see a clear trend toward more intelligence and communication, for example in traditional electromechanical devices such as contactors and switches.

    И здесь наблюдаются отчетливо выраженные тенденции к повышению уровня интеллектуальности и расширению возможностей связи, например, в таких традиционных электромеханических устройствах, как контакторы и выключатели.

    We are pleased to see that our R&D efforts in these areas over the past few years are bearing fruit.

    Мы с удовлетворением отмечаем, что научно-исследовательские разработки, выполненные нами за последние годы в названных областях, начинают приносить свои плоды.

    Recently, we have seen a strong increase in the use of wireless technology in industry.

    В последнее время на промышленных предприятиях наблюдается резкое расширение применения техники беспроводной связи.

    This is a key R&D area at ABB, and several prototype applications have already been developed.

    В компании АББ эта область также относится к числу одной из ключевых тем научно-исследовательских разработок, результатом которых стало создание ряда опытных образцов изделий практического направления.

    At the international Bluetooth Conference in Amsterdam in June 2002, we presented a truly ‘wire-less’ proximity sensor – with even a wireless power supply.

    На международной конференции по системам Bluetooth, состоявшейся в Амстердаме в июне 2002 г., наши специалисты выступили с докладом о поистине "беспроводном" датчике ближней локации, снабженном опять-таки "беспроводным" источником питания.

    This was its second major showing after the launch at the Hanover Fair.

    На столь крупном мероприятии это устройство демонстрировалось во второй раз после своего первого показа на Ганноверской торгово-промышленной ярмарке.

    Advances in microelectronic device technology are also having a profound impact on the power electronics systems around which modern drive systems are built.

    Достижения в области микроэлектроники оказывают также глубокое влияние на системы силовой электроники, лежащие в основе современных приводных устройств.

    The ABB drive family ACS 800 is visible proof of this.

    Наглядным тому доказательством может служить линейка блоков регулирования частоты вращения электродвигателей ACS-800, производство которой начато компанией АББ.

    Combining advanced trench gate IGBT technology with efficient cooling and innovative design, this drive – for motors rated from 1.1 to 500 kW – has a footprint for some power ranges which is six times smaller than competing systems.

    Предназначены они для двигателей мощностью от 1,1 до 500 кВт. В блоках применена новейшая разновидность приборов - биполярные транзисторы с изолированным желобковым затвором (trench gate IGBT) в сочетании с новыми конструктивными решениями, благодаря чему в отдельных диапазонах мощностей габариты блоков удалось снизить по сравнению с конкурирующими изделиями в шесть раз.

    To get the maximum benefit out of this innovative drive solution we have also developed a new permanent magnet motor.

    Стремясь с максимальной пользой использовать новые блоки регулирования, мы параллельно с ними разработали новый двигатель с постоянными магнитами.

    It uses neodymium iron boron, a magnetic material which is more powerful at room temperature than any other known today.

    В нем применен новый магнитный материал на основе неодима, железа и бора, характеристики которого при комнатной температуре на сегодняшний день не имеют себе равных.

    The combination of new drive and new motor reduces losses by as much as 30%, lowering energy costs and improving sustainability – both urgently necessary – at the same time.

    Совместное использование нового блока регулирования частоты вращения с новым двигателем снижает потери мощности до 30 %, что позволяет решить сразу две исключительно актуальные задачи:
    сократить затраты на электроэнергию и повысить уровень безотказности.

    These innovations are utilized most fully, and yield the maximum benefit, when integrated by means of our Industrial IT architecture.

    Потенциал перечисленных выше новых разработок используется в наиболее полной степени, а сами они приносят максимальную выгоду, если их интеграция осуществлена на основе нашей архитектуры IndustrialIT.

    Industrial IT is a unique platform for exploiting the full potential of information technology in industrial applications.

    IndustrialIT представляет собой уникальную платформу, позволяющую в максимальной степени использовать возможности информационных технологий применительно к задачам промышленности.

    Consequently, our new products and technologies are Industrial IT Enabled, meaning that they can be integrated in the Industrial IT architecture in a ‘plug and produce’ manner.

    Именно поэтому все наши новые изделия и технологии выпускаются в варианте, совместимом с архитектурой IndustrialIT, что означает их способность к интеграции с этой архитектурой по принципу "подключи и производи".

    We are excited to present in this issue of ABB Review some of our R&D work and a selection of achievements in such a vital area of our business as Automation.

    Мы рады представить в настоящем номере "АББ ревю" некоторые из наших научно-исследовательских разработок и достижений в такой жизненно важной для нашего бизнеса области, как автоматика.

    R&D investment in our corporate technology programs is the foundation on which our product and system innovation is built.

    Вклад наших разработок в общекорпоративные технологические программы группы АББ служит основой для реализации новых технических решений в создаваемых нами устройствах и системах.

    Examples abound in the areas of control engineering, MEMS, wireless communication, materials – and, last but not least, software technologies. Enjoy reading about them.
    [ABB Review]

    Это подтверждается многочисленными примерами из области техники управления, микроэлектромеханических систем, ближней радиосвязи, материаловедения и не в последнюю очередь программотехники. Хотелось бы пожелать читателю получить удовольствие от чтения этих материалов.
    [Перевод Интент]


    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > технологии для автоматизации

  • 30 smart metering

    1. интеллектуальный учет электроэнергии

     

    интеллектуальный учет электроэнергии
    -
    [Интент]

    Учет электроэнергии

    Понятия «интеллектуальные измерения» (Smart Metering), «интеллектуальный учет», «интеллектуальный счетчик», «интеллектуальная сеть» (Smart Grid), как все нетехнические, нефизические понятия, не имеют строгой дефиниции и допускают произвольные толкования. Столь же нечетко определены и задачи Smart Metering в современных электрических сетях.
    Нужно ли использовать эти термины в такой довольно консервативной области, как электроэнергетика? Что отличает новые системы учета электроэнергии и какие функции они должны выполнять? Об этом рассуждает Лев Константинович Осика.

    SMART METERING – «ИНТЕЛЛЕКТУАЛЬНЫЙ УЧЕТ» ЭЛЕКТРОЭНЕРГИИ

    Определения и задачи
    По многочисленным публикациям в СМИ, выступлениям на конференциях и совещаниях, сложившемуся обычаю делового оборота можно сделать следующие заключения:
    • «интеллектуальные измерения» производятся у потребителей – физических лиц, проживающих в многоквартирных домах или частных домовладениях;
    • основная цель «интеллектуальных измерений» и реализующих их «интеллектуальных приборов учета» в России – повышение платежной дисциплины, борьба с неплатежами, воровством электроэнергии;
    • эти цели достигаются путем так называемого «управления электропотреблением», под которым подразумеваются ограничения и отключения неплательщиков;
    • средства «управления электропотреблением» – коммутационные аппараты, получающие команды на включение/отключение, как правило, размещаются в одном корпусе со счетчиком и представляют собой его неотъемлемую часть.
    Главным преимуществом «интеллектуального счетчика» в глазах сбытовых компаний является простота осуществления отключения (ограничения) потребителя за неплатежи (или невнесенную предоплату за потребляемую электроэнергию) без применения физического воздействия на существующие вводные выключатели в квартиры (коттеджи).
    В качестве дополнительных возможностей, стимулирующих установку «интеллектуальных приборов учета», называются:
    • различного рода интеграция с измерительными приборами других энергоресурсов, с биллинговыми и информационными системами сбытовых и сетевых компаний, муниципальных администраций и т.п.;
    • расширенные возможности отображения на дисплее счетчика всей возможной (при первичных измерениях токов и напряжений) информации: от суточного графика активной мощности, напряжения, частоты до показателей надежности (времени перерывов в питании) и денежных показателей – стоимости потребления, оставшейся «кредитной линии» и пр.;
    • двухсторонняя информационная (и управляющая) связь сбытовой компании и потребителя, т.е. передача потребителю различных сообщений, дистанционная смена тарифа, отключение или ограничение потребления и т.п.

    ЧТО ТАКОЕ «ИНТЕЛЛЕКТУАЛЬНЫЕ ИЗМЕРЕНИЯ»?

    Приведем определение, данное в тематическом докладе комитета ЭРРА «Нормативные аспекты СМАРТ ИЗМЕРЕНИЙ», подготовленном известной международной компанией КЕМА:
    «…Для ясности необходимо дать правильное определение смарт измерениям и описать организацию инфраструктуры смарт измерений. Необходимо отметить, что между смарт счетчиком и смарт измерением существует большая разница. Смарт счетчик – это отдельный прибор, который установлен в доме потребителя и в основном измеряет потребление энергии потребителем. Смарт измерения – это фактическое применение смарт счетчиков в большем масштабе, то есть применение общего принципа вместо отдельного прибора. Однако, если рассматривать пилотные проекты смарт измерений или национальные программы смарт измерений, то иногда можно найти разницу в определении смарт измерений. Кроме того, также часто появляются такие термины, как автоматическое считывание счетчика (AMR) и передовая инфраструктура измерений (AMI), особенно в США, в то время как в ЕС часто используется достаточно туманный термин «интеллектуальные системы измерений …».
    Представляют интерес и высказывания В.В. Новикова, начальника лаборатории ФГУП ВНИИМС [1]: «…Это автоматизированные системы, которые обеспечивают и по-требителям, и сбытовым компаниям контроль и управление потреблением энергоресурсов согласно установленным критериям оптимизации энергосбережения. Такие измерения называют «интеллектуальными измерениями», или Smart Metering, как принято за рубежом …
    …Основные признаки Smart Metering у счетчиков электрической энергии. Их шесть:
    1. Новшества касаются в меньшей степени принципа измерений электрической энергии, а в большей – функциональных возможностей приборов.
    2. Дополнительными функциями выступают, как правило, измерение мощности за короткие периоды, коэффициента мощности, измерение времени, даты и длительности провалов и отсутствия питающего напряжения.
    3. Счетчики имеют самодиагностику и защиту от распространенных методов хищения электроэнергии, фиксируют в журнале событий моменты вскрытия кожуха, крышки клеммной колодки, воздействий сильного магнитного поля и других воздействий как на счетчик, его информационные входы и выходы, так и на саму электрическую сеть.
    4. Наличие функций для управления нагрузкой и подачи команд на включение и отключение электрических приборов.
    5. Более удобные и прозрачные функции для потребителей и энергоснабжающих организаций, позволяющие выбирать вид тарифа и энергосбытовую компанию в зависимости от потребностей в энергии и возможности ее своевременно оплачивать.
    6. Интеграция измерений и учета всех энергоресурсов в доме для выработки решений, минимизирующих расходы на оплату энергоресурсов. В эту стратегию вовлекаются как отдельные потребители, так и управляющие компании домами, энергоснабжающие и сетевые компании …».
    Из этих цитат нетрудно заметить, что первые 3 из 6 функций полностью повторяют требования к счетчикам АИИС КУЭ на оптовом рынке электроэнергии и мощности (ОРЭМ), которые не менялись с 2003 г. Функция № 5 является очевидной функцией счетчика при работе потребителя на розничных рынках электроэнергии (РРЭ) в условиях либеральной (рыночной) энергетики. Функция № 6 практически повторяет многочисленные определения понятия «умный дом», а функция № 4, провозглашенная в нашей стране, полностью соответствует желаниям сбытовых компаний найти наконец действенное средство воздействия на неплательщиков. При этом ясно, что неплатежи – не следствие отсутствия «умных счетчиков», а результат популистской политики правительства. Отключить физических (да и юридических) лиц невозможно, и эта функция счетчика, безусловно, останется невостребованной до внесения соответствующих изменений в нормативно-правовые акты.
    На функции № 4 следует остановиться особо. Она превращает измерительный прибор в управляющую систему, в АСУ, так как содержит все признаки такой системы: наличие измерительного компонента, решающего компонента (выдающего управляющие сигналы) и, в случае размещения коммутационных аппаратов внутри счетчика, органов управления. Причем явно или неявно, как и в любой системе управления, подразумевается обратная связь: заплатил – включат опять.
    Обоснованное мнение по поводу Smart Grid и Smart Metering высказал В.И. Гуревич в [2]. Приведем здесь цитаты из этой статьи с локальными ссылками на используемую литературу: «…Обратимся к истории. Впервые этот термин встретился в тексте статьи одного из западных специалистов в 1998 г. [1]. В названии статьи этот термин был впервые использован Массудом Амином и Брюсом Волленбергом в их публикации «К интеллектуальной сети» [2]. Первые применения этого термина на Западе были связаны с чисто рекламными названиями специальных контроллеров, предназначенных для управления режимом работы и синхронизации автономных ветрогенераторов (отличающихся нестабильным напряжением и частотой) с электрической сетью. Потом этот термин стал применяться, опять-таки как чисто рекламный ход, для обозначения микропроцессорных счетчиков электроэнергии, способных самостоятельно накапливать, обрабатывать, оценивать информацию и передавать ее по специальным каналам связи и даже через Интернет. Причем сами по себе контроллеры синхронизации ветрогенераторов и микропроцессорные счетчики электроэнергии были разработаны и выпускались различными фирмами еще до появления термина Smart Grid. Это название возникло намного позже как чисто рекламный трюк для привлечения покупателей и вначале использовалось лишь в этих областях техники. В последние годы его использование расширилось на системы сбора и обработки информации, мониторинга оборудования в электроэнергетике [3] …
    1. Janssen M. C. The Smart Grid Drivers. – PAC, June 2010, p. 77.
    2. Amin S. M., Wollenberg B. F. Toward a Smart Grid. – IEEE P&E Magazine, September/October, 2005.
    3. Gellings C. W. The Smart Grid. Enabling Energy Efficiency and Demand Response. – CRC Press, 2010. …».
    Таким образом, принимая во внимание столь различные мнения о предмете Smart Grid и Smart Metering, сетевая компания должна прежде всего определить понятие «интеллектуальная система измерения» для объекта измерений – электрической сети (как актива и технологической основы ОРЭМ и РРЭ) и представить ее предметную область именно для своего бизнеса.

    БИЗНЕС И «ИНТЕЛЛЕКТУАЛЬНЫЙ УЧЕТ»

    В результате изучения бизнес-процессов деятельности ряда сетевых компаний и взаимодействия на РРЭ сетевых, энергосбытовых компаний и исполнителей коммунальных услуг были сформулированы следующие исходные условия.
    1. В качестве главного признака новой интеллектуальной системы учета электроэнергии (ИСУЭ), отличающей ее от существующей системы коммерческого и технического учета электроэнергии, взято расширение функций, причем в систему вовлекаются принципиально новые функции: определение технических потерь, сведение балансов в режиме, близком к on-line, определение показателей надежности. Это позволит, среди прочего, получить необходимую информацию для решения режимных задач Smart Grid – оптимизации по реактивной мощности, управления качеством электроснабжения.
    2. Во многих случаях (помимо решения задач, традиционных для сетевой компании) рассматриваются устройства и системы управления потреблением у физических лиц, осуществляющие их ограничения и отключения за неплатежи (традиционные задачи так называемых систем AMI – Advanced Metering Infrastructure).
    Учитывая вышеизложенное, для электросетевой компании предлагается принимать следующее двойственное (по признаку предметной области) определение ИСУЭ:
    в отношении потребителей – физических лиц: «Интеллектуальная система измерений – это совокупность устройств управления нагрузкой, приборов учета, коммуникационного оборудования, каналов передачи данных, программного обеспечения, серверного оборудования, алгоритмов, квалифицированного персонала, которые обеспечивают достаточный объем информации и инструментов для управления потреблением электроэнергии согласно договорным обязательствам сторон с учетом установленных критериев энергоэффективности и надежности»;
    в отношении системы в целом: «Интеллектуальная система измерений – это автоматизированная комплексная система измерений электроэнергии (с возможностью измерений других энергоресурсов), определения учетных показателей и решения на их основе технологических и бизнес-задач, которая позволяет интегрировать различные информационные системы субъектов рынка и развиваться без ограничений в обозримом будущем».

    ЗАДАЧИ «ИНТЕЛЛЕКТУАЛЬНОГО УЧЕТА»

    Далее мы будем основываться на том, что ИСУЭ позволит осуществить следующие функции в бытовом секторе:
    • дистанционное получение от каждой точки измерения (узла учета) у бытового потребителя сведений об отпущенной или потребленной электроэнергии;
    • расчет внутриобъектового (многоквартирный жилой дом, поселок) баланса поступления и потребления энергоресурсов с целью выявления технических и коммерческих потерь и принятия мер по эффективному энергосбережению;
    • контроль параметров поставляемых энергоресурсов с целью обнаружения и регистрации их отклонений от договорных значений;
    • обнаружение фактов несанкционированного вмешательства в работу приборов учета или изменения схем подключения электроснабжения;
    • применение санкций против злостных неплательщиков методом ограничения потребляемой мощности или полного отключения энергоснабжения;
    • анализ технического состояния и отказов приборов учета;
    • подготовка отчетных документов об электропотреблении;
    • интеграция с биллинговыми системами.

    «ИНТЕЛЛЕКТУАЛЬНЫЙ КОММЕРЧЕСКИЙ УЧЕТ»

    Остановимся подробно на одном из атрибутов ИСУЭ, который считаю ключевым для основного электросетевого бизнеса.
    Особенностью коммерческого учета электроэнергии (КУЭ) распределительных сетевых компаний является наличие двух сфер коммерческого оборота электроэнергии – ОРЭМ и РРЭ, которые хотя и сближаются в нормативном и организационном плане, но остаются пока существенно различными с точки зрения требований к КУЭ.
    Большинство сетевых компаний является субъектом как ОРЭМ, так и РРЭ. Соответственно и сам коммерческий учет в отношении требований к нему разделен на два вида:
    • коммерческий учет на ОРЭМ (технические средства – АИИС КУЭ);
    • коммерческий учет на РРЭ (технические средства – АСКУЭ).
    Кроме того, к коммерческому учету, т.е. к определению тех показателей, которые служат для начисления обязательств и требований сетевой компании (оплата услуг по транспорту электроэнергии, купля-продажа технологических потерь), следует отнести и измерения величин, необходимых для определения показателей надежности сети в отношении оказания услуг по передаче электроэнергии.
    Отметим, что сложившиеся технологии АИИС КУЭ и АСКУЭ по своей функциональной полноте (за исключением функции коммутации нагрузки внутри систем) – это технологии Smart Metering в том понимании, которое мы обсуждали выше. Поэтому далее будем считать эти понятия полностью совпадающими.
    Подсистема ИСУЭ на РРЭ, безусловно, самая сложная и трудоемкая часть всей интеллектуальной системы как с точки зрения организации сбора информации (включая измерительные системы (ИС) и средства связи в автоматизированных системах), так и с точки зрения объема точек поставки и соответственно средств измерений. Последние отличаются большим многообразием и сложностью контроля их и метрологических характеристик (МХ).
    Если технические требования к ИС на ОРЭМ и к ИС крупных потребителей (по крайней мере потребителей с присоединенной мощностью свыше 750 кВА) принципиально близки, то в отношении нормативного и организационного компонентов имеются сильные различия. Гармоничная их интеграция в среде разных компонентов – основная задача создания современной системы ИСУЭ любой сетевой компании.
    Особенностью коммерческого учета для нужд сетевого комплекса – основного бизнеса компании в отличие от учета электроэнергии потребителей, генерирующих источников и сбытовых компаний – является сам характер учетных показателей, вернее, одного из них – технологических потерь электроэнергии. Здесь трудность состоит в том, что границы балансовой принадлежности компании должны оснащаться средствами учета в интересах субъектов рынка – участников обращения электроэнергии, и по правилам, установленным для них, будь то ОРЭМ или РРЭ. А к измерению и учету важнейшего собственного учетного показателя, потерь, отдельные нормативные требования не предъявляются, хотя указанные показатели должны определяться по своим технологиям.
    При этом сегодня для эффективного ведения бизнеса перед сетевыми компаниями, по мнению автора, стоит задача корректного определения часовых балансов в режиме, близком к on-line, в условиях, когда часть счетчиков (со стороны ОРЭМ) имеют автоматические часовые измерения электроэнергии, а подавляющее большинство (по количеству) счетчиков на РРЭ (за счет физических лиц и мелкомоторных потребителей) не позволяют получать такие измерения. Актуальность корректного определения фактических потерь следует из необходимости покупки их объема, не учтенного при установлении тарифов на услуги по передаче электроэнергии, а также предоставления информации для решения задач Smart Grid.
    В то же время специалистами-практиками часто ставится под сомнение практическая востребованность определения технологических потерь и их составляющих в режиме on-line. Учитывая это мнение, которое не согласуется с разрабатываемыми стратегиями Smart Grid, целесообразно оставить окончательное решение при разработке ИСУЭ за самой компанией.
    Cистемы АИИС КУЭ сетевых компаний никогда не создавались целенаправленно для решения самых насущных для них задач, таких как:
    1. Коммерческая задача купли-продажи потерь – качественного (прозрачного и корректного в смысле метрологии и требований действующих нормативных документов) инструментального или расчетно-инструментального определения технологических потерь электроэнергии вместе с их составляющими – техническими потерями и потреблением на собственные и хозяйственные нужды сети.
    2. Коммерческая задача по определению показателей надежности электроснабжения потребителей.
    3. Управленческая задача – получение всех установленных учетной политикой компании балансов электроэнергии и мощности по уровням напряжения, по филиалам, по от-дельным подстанциям и группам сетевых элементов, а также КПЭ, связанных с оборотом электроэнергии и оказанием услуг в натуральном выражении.
    Не ставилась и задача технологического обеспечения возможного в перспективе бизнеса сетевых компаний – предоставления услуг оператора коммерческого учета (ОКУ) субъектам ОРЭМ и РРЭ на территории обслуживания компании.
    Кроме того, необходимо упорядочить систему учета для определения коммерческих показателей в отношении определения обязательств и требований оплаты услуг по транспорту электроэнергии и гармонизировать собственные интересы и интересы смежных субъектов ОРЭМ и РРЭ в рамках существующей системы взаимодействий и возможной системы взаимодействий с введением института ОКУ.
    Именно исходя из этих целей (не забывая при этом про коммерческие учетные показатели смежных субъектов рынка в той мере, какая требуется по обязательствам компании), и нужно строить подлинно интеллектуальную измерительную систему. Иными словами, интеллект измерений – это главным образом интеллект решения технологических задач, необходимых компании.
    По сути, при решении нового круга задач в целевой модели интеллектуального учета будет реализован принцип придания сетевой компании статуса (функций) ОКУ в зоне обслуживания. Этот статус формально прописан в действующей редакции Правил розничных рынков (Постановление Правительства РФ № 530 от 31.08.2006), однако на практике не осуществляется в полном объеме как из-за отсутствия необходимой технологической базы, так и из-за организационных трудностей.
    Таким образом, сетевая компания должна сводить баланс по своей территории на новой качественной ступени – оперативно, прозрачно и полно. А это означает сбор информации от всех присоединенных к сети субъектов рынка, формирование учетных показателей и передачу их тем же субъектам для определения взаимных обязательств и требований.
    Такой подход предполагает не только новую схему расстановки приборов в соответствии с комплексным решением всех поставленных технологами задач, но и новые функциональные и метрологические требования к измерительным приборам.

    ПРЕИМУЩЕСТВА ИСУЭ

    Внедрение ИСУЭ даст новые широкие возможности для всех участников ОРЭМ и РРЭ в зоне обслуживания электросетевой компании.
    Для самой компании:
    1. Повышение эффективности существующего бизнеса.
    2. Возможности новых видов бизнеса – ОКУ, регистратор единой группы точек поставки (ГТП), оператор заправки электрического транспорта и т.п.
    3. Обеспечение внедрения технологий Smart grid.
    4. Создание и развитие программно-аппаратного комплекса (с сервисно-ориентированной архитектурой) и ИС, снимающих ограничения на развитие технологий и бизнеса в долгосрочной перспективе.
    Для энергосбытовой деятельности:
    1. Автоматический мониторинг потребления.
    2. Легкое определение превышения фактических показателей над планируемыми.
    3. Определение неэффективных производств и процессов.
    4. Биллинг.
    5. Мониторинг коэффициента мощности.
    6. Мониторинг показателей качества (напряжение и частота).
    Для обеспечения бизнеса – услуги для генерирующих, сетевых, сбытовых компаний и потребителей:
    1. Готовый вариант на все случаи жизни.
    2. Надежность.
    3. Гарантия качества услуг.
    4. Оптимальная и прозрачная стоимость услуг сетевой компании.
    5. Постоянное внедрение инноваций.
    6. Повышение «интеллекта» при работе на ОРЭМ и РРЭ.
    7. Облегчение технологического присоединения энергопринимающих устройств субъектов ОРЭМ и РРЭ.
    8. Качественный консалтинг по всем вопросам электроснабжения и энергосбережения.
    Успешная реализации перечисленных задач возможна только на базе информационно-технологической системы (программно-аппаратного комплекса) наивысшего достигнутого на сегодняшний день уровня интеграции со всеми возможными информационными системами субъектов рынка – измерительно-учетными как в отношении электроэнергии, так и (в перспективе) в отношении других энергоресурсов.

    ЛИТЕРАТУРА

    1. Новиков В.В. Интеллектуальные измерения на службе энергосбережения // Энергоэксперт. 2011. № 3.
    2. Гуревич В.И. Интеллектуальные сети: новые перспективы или новые проблемы? // Электротехнический рынок. 2010. № 6.

    [ http://www.news.elteh.ru/arh/2011/71/14.php]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > smart metering

  • 31 automation technologies

    1. технологии для автоматизации

     

    технологии для автоматизации
    -
    [Интент]

    Параллельные тексты EN-RU

    Automation technologies: a strong focal point for our R&D

    Технологии для автоматизации - одна из главных тем наших научно исследовательских разработок

    Automation is an area of ABB’s business with an extremely high level of technological innovation.

    Автоматика относится к одной из областей деятельности компании АББ, для которой характерен исключительно высокий уровень технических инноваций.

    In fact, it may be seen as a showcase for exhibiting the frontiers of development in several of today’s emerging technologies, like short-range wireless communication and microelectromechanical systems (MEMS).

    В определенном смысле ее можно уподобить витрине, в которой выставлены передовые разработки из области только еще зарождающихся технологий, примерами которых являются ближняя беспроводная связь и микроэлектромеханические системы (micro electromechanical systems MEMS).

    Mechatronics – the synthesis of mechanics and electronics – is another very exciting and rapidly developing area, and the foundation on which ABB has built its highly successful, fast-growing robotics business.

    Еще одной исключительно интересной быстро развивающейся областью и в то же время фундаментом, на котором АББ в последнее время строит свой исключительно успешный и быстро расширяющийся бизнес в области робототехники, является мехатроника - синтез механики с электроникой.

    Robotic precision has now reached the levels we have come to expect of the watch-making industry, while robots’ mechanical capabilities continue to improve significantly.

    Точность работы робототехнических устройств достигла сегодня уровней, которые мы привыкли ожидать только на предприятиях часовой промышленности. Большими темпами продолжают расти и механические возможности роботов.

    Behind the scenes, highly sophisticated electronics and software control every move these robots make.

    А за кулисами всеми перемещениями робота управляют сложные электронные устройства и компьютерные программы.

    Throughout industry today we see a major shift of ‘intelligence’ to lower levels in the automation system hierarchy, leading to a demand for more communication within the system.

    Во всех отраслях промышленности сегодня наблюдается интенсивный перенос "интеллекта" на нижние уровни иерархии автоматизированных систем, что требует дальнейшего развития внутрисистемных средств обмена.

    ‘Smart’ transmitters, with powerful microprocessors, memory chips and special software, carry out vital operations close to the processes they are monitoring.

    "Интеллектуальные" датчики, снабженные высокопроизводительными микропроцессорами, мощными чипами памяти и специальным программно-математическим обеспечением, выполняют особо ответственные операции в непосредственной близости от контролируемых процессов.

    And they capture and store data crucial for remote diagnostics and maintenance.

    Они же обеспечивают возможность измерения и регистрации информации, крайне необходимой для дистанционной диагностики и дистанционного обслуживания техники.

    The communication highway linking such systems is provided by fieldbuses.

    В качестве коммуникационных магистралей, связывающих такого рода системы, служат промышленные шины fieldbus.

    In an ideal world there would be no more than a few, preferably just one, fieldbus standard.

    В идеале на промышленные шины должно было бы существовать небольшое количество, а лучше всего вообще только один стандарт.

    However, there are still too many of them, so ABB has developed ‘fieldbus plugs’ that, with the help of translation, enable devices to communicate across different standards.

    К сожалению, на деле количество их типов продолжает оставаться слишком разнообразным. Ввиду этой особенности рынка промышленных шин компанией АББ разработаны "штепсельные разъемы", которые с помощью средств преобразования обеспечивают общение различных устройств вопреки границам, возникшим из-за различий в стандартах.

    This makes life easier as well as less costly for our customers. Every automation system is dependent on an electrical network for distributing – and interrupting, when necessary – the power needed to carry out its various functions.

    Это, безусловно, не только облегчает, но и удешевляет жизнь нашим заказчикам. Ни одна система автоматики не может работать без сети, обеспечивающей подачу, а при необходимости и отключение напряжения, необходимого для выполнения автоматикой своих задач.

    Here, too, we see a clear trend toward more intelligence and communication, for example in traditional electromechanical devices such as contactors and switches.

    И здесь наблюдаются отчетливо выраженные тенденции к повышению уровня интеллектуальности и расширению возможностей связи, например, в таких традиционных электромеханических устройствах, как контакторы и выключатели.

    We are pleased to see that our R&D efforts in these areas over the past few years are bearing fruit.

    Мы с удовлетворением отмечаем, что научно-исследовательские разработки, выполненные нами за последние годы в названных областях, начинают приносить свои плоды.

    Recently, we have seen a strong increase in the use of wireless technology in industry.

    В последнее время на промышленных предприятиях наблюдается резкое расширение применения техники беспроводной связи.

    This is a key R&D area at ABB, and several prototype applications have already been developed.

    В компании АББ эта область также относится к числу одной из ключевых тем научно-исследовательских разработок, результатом которых стало создание ряда опытных образцов изделий практического направления.

    At the international Bluetooth Conference in Amsterdam in June 2002, we presented a truly ‘wire-less’ proximity sensor – with even a wireless power supply.

    На международной конференции по системам Bluetooth, состоявшейся в Амстердаме в июне 2002 г., наши специалисты выступили с докладом о поистине "беспроводном" датчике ближней локации, снабженном опять-таки "беспроводным" источником питания.

    This was its second major showing after the launch at the Hanover Fair.

    На столь крупном мероприятии это устройство демонстрировалось во второй раз после своего первого показа на Ганноверской торгово-промышленной ярмарке.

    Advances in microelectronic device technology are also having a profound impact on the power electronics systems around which modern drive systems are built.

    Достижения в области микроэлектроники оказывают также глубокое влияние на системы силовой электроники, лежащие в основе современных приводных устройств.

    The ABB drive family ACS 800 is visible proof of this.

    Наглядным тому доказательством может служить линейка блоков регулирования частоты вращения электродвигателей ACS-800, производство которой начато компанией АББ.

    Combining advanced trench gate IGBT technology with efficient cooling and innovative design, this drive – for motors rated from 1.1 to 500 kW – has a footprint for some power ranges which is six times smaller than competing systems.

    Предназначены они для двигателей мощностью от 1,1 до 500 кВт. В блоках применена новейшая разновидность приборов - биполярные транзисторы с изолированным желобковым затвором (trench gate IGBT) в сочетании с новыми конструктивными решениями, благодаря чему в отдельных диапазонах мощностей габариты блоков удалось снизить по сравнению с конкурирующими изделиями в шесть раз.

    To get the maximum benefit out of this innovative drive solution we have also developed a new permanent magnet motor.

    Стремясь с максимальной пользой использовать новые блоки регулирования, мы параллельно с ними разработали новый двигатель с постоянными магнитами.

    It uses neodymium iron boron, a magnetic material which is more powerful at room temperature than any other known today.

    В нем применен новый магнитный материал на основе неодима, железа и бора, характеристики которого при комнатной температуре на сегодняшний день не имеют себе равных.

    The combination of new drive and new motor reduces losses by as much as 30%, lowering energy costs and improving sustainability – both urgently necessary – at the same time.

    Совместное использование нового блока регулирования частоты вращения с новым двигателем снижает потери мощности до 30 %, что позволяет решить сразу две исключительно актуальные задачи:
    сократить затраты на электроэнергию и повысить уровень безотказности.

    These innovations are utilized most fully, and yield the maximum benefit, when integrated by means of our Industrial IT architecture.

    Потенциал перечисленных выше новых разработок используется в наиболее полной степени, а сами они приносят максимальную выгоду, если их интеграция осуществлена на основе нашей архитектуры IndustrialIT.

    Industrial IT is a unique platform for exploiting the full potential of information technology in industrial applications.

    IndustrialIT представляет собой уникальную платформу, позволяющую в максимальной степени использовать возможности информационных технологий применительно к задачам промышленности.

    Consequently, our new products and technologies are Industrial IT Enabled, meaning that they can be integrated in the Industrial IT architecture in a ‘plug and produce’ manner.

    Именно поэтому все наши новые изделия и технологии выпускаются в варианте, совместимом с архитектурой IndustrialIT, что означает их способность к интеграции с этой архитектурой по принципу "подключи и производи".

    We are excited to present in this issue of ABB Review some of our R&D work and a selection of achievements in such a vital area of our business as Automation.

    Мы рады представить в настоящем номере "АББ ревю" некоторые из наших научно-исследовательских разработок и достижений в такой жизненно важной для нашего бизнеса области, как автоматика.

    R&D investment in our corporate technology programs is the foundation on which our product and system innovation is built.

    Вклад наших разработок в общекорпоративные технологические программы группы АББ служит основой для реализации новых технических решений в создаваемых нами устройствах и системах.

    Examples abound in the areas of control engineering, MEMS, wireless communication, materials – and, last but not least, software technologies. Enjoy reading about them.
    [ABB Review]

    Это подтверждается многочисленными примерами из области техники управления, микроэлектромеханических систем, ближней радиосвязи, материаловедения и не в последнюю очередь программотехники. Хотелось бы пожелать читателю получить удовольствие от чтения этих материалов.
    [Перевод Интент]


    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > automation technologies

См. также в других словарях:

  • Беловский район (Кемеровская область) — У этого термина существуют и другие значения, см. Беловский район. Беловский район Страна …   Википедия

  • Метод, специфичный для трансформационного события — Метод, специфичный для трансформационного события: метод, позволяющий обнаружить уникальную специфическую последовательность, которая присутствует только в том или ином конкретном трансформационном событии. Примечание Он обычно направлен на… …   Официальная терминология

  • Микроэлектроника —         область электроники (См. Электроника), занимающаяся созданием электронных функциональных узлов, блоков и устройств в микроминиатюрном интегральном исполнении. Возникновение М. в начале 60 х гг. 20 в. было вызвано непрерывным усложнением… …   Большая советская энциклопедия

  • Развивающаяся психотерапия (emerging psychotherapies) — Область психотер. за долгие годы претерпела много изменений, большинство из к рых было бы трудно предсказать. Начиная с относительно медленного развития на рубеже XIX XX вв., прогресс резко ускорился после Второй мировой войны. Из малозаметной и… …   Психологическая энциклопедия

  • НАЦИОНАЛЬНАЯ ПСИХОЛОГИЯ — область науки, возникшая на стыке этнопсихологии, социальной психологии, социологии больших групп, изучающая особенности национального и этнического самосознания, проблемы НАЦИОНАЛЬНОГО ХАРАКТЕРА, протекание и закономерности межнациональных… …   Политическая психология. Словарь-справочник

  • Социальное познание (social cognition) — Область С. п. имеет дело с познавательной деятельностью, опосредующей и сопровождающей соц. поведение. Она предусматривает анализ того, как стимульная информ. сначала кодируется, организуется (и преобразуется) в памяти, а затем используется чел.… …   Психологическая энциклопедия

  • ПСИХОЛОГИЯ ПЕДАГОГИЧЕСКАЯ — область психологии, занимающаяся разработкой психологических основ обучения и воспитания. Подобно психологии труда, инженерной, военной или клинической психологии, эту область иногда относят к прикладным отраслям психологии, целью которых… …   Энциклопедия Кольера

  • Специальная психология —     область психологии развития, которая изучает проблемы развития людей с физическими и психическими недостатками, определяющими их потребность в особых условиях обучения и воспитания. Становление С.п. происходило в рамках дефектологии.… …   Педагогический терминологический словарь

  • Социология села — область социологии, изучающая происхождение, сущность, общие за­кономерности развития и функционирования села, разрабатывающая основные методологиче­ские принципы его исследования. В круг проблем социологии села входят: определение места села в… …   Экология человека

  • Психофизика — – область психологии, занимающаяся, прежде всего, количественным отношением между физическими стимулами и их психологическим коррелятами. Истоки психофизики восходят к деятельности Г.Т.Фехнера, открывшего закон, определяющий эти отношения (1860) …   Энциклопедический словарь по психологии и педагогике

  • НАУКА — особый вид познавательной деятельности, направленный на выработку объективных, системно организованных и обоснованных знаний о мире. Взаимодействует с др. видами познавательной деятельности: обыденным, художественным, религиозным, мифологическим …   Философская энциклопедия

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»