Перевод: с английского на все языки

со всех языков на английский

некоторым+образом

  • 81 sort

    [sɔ:t]
    after (или in) a sort в некоторой степени after (или in) a sort некоторым образом all sorts and conditions of men, people of every sort and kind всевозможные люди ascending sort сортировка по возрастанию balanced merge sort вчт. сбалансиррованная сортировка слиянием to be out of sorts быть не в духе to be out of sorts плохо себя чувствовать sort качество, характер; a good sort разг. славный малый; he's not a bad sort он парень неплохой; the better sort разг. выдающиеся люди block sort блочная сортировка bubble sort пузырьковая сортировка bucket sort блочная сортировка comparison counting sort вчт. сортировка сравнением и подсчетом descending sort сортировка по убыванию distribution counting sort сортировка с подсчетом и распределением sort качество, характер; a good sort разг. славный малый; he's not a bad sort он парень неплохой; the better sort разг. выдающиеся люди sort of разг. как бы, вроде; he sort of hinted разг. он вроде бы намекнул; a sort of что-то вроде; that sort of thing тому подобное sort качество, характер; a good sort разг. славный малый; he's not a bad sort он парень неплохой; the better sort разг. выдающиеся люди he's not my sort разг. он не в моем духе; what sort of man is he? что он за человек? to sort well (ill) with соответствовать (не соответствовать) (чему-л.); his actions sort ill with his professions его действия плохо вяжутся с его словами sort род, сорт, вид, разряд; of sorts разных сортов, смешанный; I need all sorts of things мне нужно много разных вещей sort of разг. отчасти; I'm sort of glad things happened the way they did я отчасти рад, что так вышло internal sort внутренняя сортировка key sort сортировка по ключу merge sort сортировка слиянием nothing of the sort ничего подобного sort род, сорт, вид, разряд; of sorts разных сортов, смешанный; I need all sorts of things мне нужно много разных вещей all sorts and conditions of men, people of every sort and kind всевозможные люди quick sort быстрая сортировка sort вид sort качество, характер; a good sort разг. славный малый; he's not a bad sort он парень неплохой; the better sort разг. выдающиеся люди sort класс sort pl полигр. литеры sort образ, манера sort разновидность sort разряд sort род, сорт, вид, разряд; of sorts разных сортов, смешанный; I need all sorts of things мне нужно много разных вещей sort род, сорт sort род sort сорт sort сортировать; разбирать; классифицировать; sort out, sort over распределять по сортам, рассортировывать sort сортировать sort by вчт. сортировать по sort of разг. как бы, вроде; he sort of hinted разг. он вроде бы намекнул; a sort of что-то вроде; that sort of thing тому подобное sort of разг. как бы, вроде; he sort of hinted разг. он вроде бы намекнул; a sort of что-то вроде; that sort of thing тому подобное sort of разг. отчасти; I'm sort of glad things happened the way they did я отчасти рад, что так вышло sort сортировать; разбирать; классифицировать; sort out, sort over распределять по сортам, рассортировывать sort out классифицировать sort out сортировать sort сортировать; разбирать; классифицировать; sort out, sort over распределять по сортам, рассортировывать to sort well (ill) with соответствовать (не соответствовать) (чему-л.); his actions sort ill with his professions его действия плохо вяжутся с его словами sort of разг. как бы, вроде; he sort of hinted разг. он вроде бы намекнул; a sort of что-то вроде; that sort of thing тому подобное he's not my sort разг. он не в моем духе; what sort of man is he? что он за человек?

    English-Russian short dictionary > sort

  • 82 timevariant code

    1. изменяющийся во времени код

     

    изменяющийся во времени код
    Код, слова которого некоторым образом изменяются в процессе работы. См. также случайный код.
    [Домарев В.В. Безопасность информационных технологий. Системный подход.]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > timevariant code

  • 83 multichannel multipoint distribution system

    1. система эфирно-кабельного телевидения
    2. система многоканального и многоадресного распределения
    3. многоканальная многоточечная распределительная система
    4. многоканальная многоадресная распределительная система

     

    многоканальная многоточечная распределительная система
    Система наземного телевещания, аналог кабельного телевидения, но без кабеля, некоторым образом сходная со спутниковой телевещательной системой – только спутник-ретранслятор в этом случае как бы находится на земле.
    Во многих случаях этот способ распространения теле- и радиопрограмм имеет неоспоримые преимущества перед давно известными и широко используемыми – по кабельным сетям и посредством спутников – ретрансляторов. Так, в частности, приёмные антенны могут быть значительно меньше спутниковых, ведь мощность MMDS- сигнала гораздо больше, чем сигнал от спутника.
    [ http://www.morepc.ru/dict/]

    Тематики

    EN

     

    система многоканального и многоадресного распределения

    [Л.Г.Суменко. Англо-русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.]

    Тематики

    EN

     

    система эфирно-кабельного телевидения

    [Л.Г.Суменко. Англо-русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > multichannel multipoint distribution system

  • 84 MMDS

    1. службы многоканального многоточечного распределения (программ)
    2. система эфирно-кабельного телевидения
    3. система многоканального и многоадресного распределения
    4. многоканальные многоадресные распределительные системы
    5. многоканальная радиорелейная распределительная система
    6. многоканальная многоточечная распределительная система
    7. многоканальная многоадресная распределительная система

     

    многоканальная многоточечная распределительная система
    Система наземного телевещания, аналог кабельного телевидения, но без кабеля, некоторым образом сходная со спутниковой телевещательной системой – только спутник-ретранслятор в этом случае как бы находится на земле.
    Во многих случаях этот способ распространения теле- и радиопрограмм имеет неоспоримые преимущества перед давно известными и широко используемыми – по кабельным сетям и посредством спутников – ретрансляторов. Так, в частности, приёмные антенны могут быть значительно меньше спутниковых, ведь мощность MMDS- сигнала гораздо больше, чем сигнал от спутника.
    [ http://www.morepc.ru/dict/]

    Тематики

    EN

     

    многоканальная радиорелейная распределительная система

    [Л.Г.Суменко. Англо-русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.]

    Тематики

    EN

     

    система многоканального и многоадресного распределения

    [Л.Г.Суменко. Англо-русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.]

    Тематики

    EN

     

    система эфирно-кабельного телевидения

    [Л.Г.Суменко. Англо-русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.]

    Тематики

    EN

     

    службы многоканального многоточечного распределения (программ)
    Технология наземного телевещания в диапазоне частот 2,5-2,7 ГГц, которую в США называют беспроводной кабельной сетью (см. wireless cable).
    Первая многоканальная система распределения программ MMDS (в расшифровке аббревиатуры термин Services заменен на System) была внедрена в США в начале 70-х годов. Переход к системе MMDS позволяет снизить мощность передатчиков с 10/50 кВт (дециметровый/метровый диапазон) до 10-50 Вт (S-диапазон). Пропускная способность такой системы при аналоговом телевещание составляет: 24 канала стандарта PAL и SECAM (полоса канала 8 МГц) и 31 канал стандарта NTSC (6 МГц).
    Организация вещания в системе MMDS осуществляется по традиционной схеме, т.е. в ней не предоставляются интерактивные услуги (рис. М-9). Зона обслуживания MMDS - 50-60 км при использовании приемных антенн диаметром 61 см.
    Основы технологии MMDS определены в рекомендации J.150 ITU-T.
    Ср. LMDS, MVDS.
    [Л.М. Невдяев. Телекоммуникационные технологии. Англо-русский толковый словарь-справочник. Под редакцией Ю.М. Горностаева. Москва, 2002]

    Тематики

    • электросвязь, основные понятия

    EN

    Англо-русский словарь нормативно-технической терминологии > MMDS

  • 85 handover

    1. хэндовер
    2. переключение абонента на канал более высокого качества
    3. передача управления разговором
    4. передача (документации)

     

    передача (документации)

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    передача управления разговором
    эстафетная передача абонентов подвижных служб

    1. Переключение абонента на канал более высокого качества.
    2. Передача соединения от одной базовой станции до другой (в сотовой сети для связи подвижных средств).
    3. Автоматическое переключение мобильной станции или частотного канала без нарушения соединения.
    [Л.Г.Суменко. Англо-русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.]

    Тематики

    Синонимы

    EN

     

    переключение абонента на канал более высокого качества
    передача обслуживания

    Автоматическое переключение мобильной станции или частотного канала без нарушения соединения.
    [Л.Г.Суменко. Англо-русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.]

    Тематики

    Синонимы

    EN

     

    хэндовер
    Процесс, в котором сеть радиодоступа изменяет радиопередатчики, или режим радиодоступа, или радиосистему, используемую для передачи информации, при сохранении заданного качества обслуживания (QoS).
    Возможность предоставлять услуги движущемуся объекту во время и после передвижения, которая некоторым образом влияет на соглашения об уровне обслуживания (МСЭ-Т Q.1741).
    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    Тематики

    • электросвязь, основные понятия

    EN

    Англо-русский словарь нормативно-технической терминологии > handover

  • 86 distributed function

    1. распределенная функция (сети и системы связи)

     

    распределенная функция (сети и системы связи)
    Функция, выполняемая совместно двумя или более логическими узлами, расположенными в различных физических устройствах.
    Примечание. Так как все функции некоторым образом взаимосвязаны, определение локальной или распределенной функции не является однозначным, а зависит от определения функциональных шагов, из которых состоит выполнение функции. В случае потери одного логического узла или одного канала связи функция может блокироваться полностью или, в зависимости от ситуации, деградировать частично.
    [ ГОСТ Р 54325-2011 (IEC/TS 61850-2:2003)]

    EN

    distributed function
    when two, or more, logical nodes, that are located in different physical devices, together perform a function. Since all functions communicate in some way, the definition of a local or distributed function is not unique but depends on the definition of the functional steps to be performed until the function is completed. In the case of loss of one LN or one included communication link, the function may be blocked completely or show a graceful degradation, as applicable
    [IEC 61850-2, ed. 1.0 (2003-08)]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > distributed function

  • 87 isolation

    n
    1. изоляция; отделение, обособление;
    2. социальное дистанцирование;
    3. в психоанализе - один из защитных механизмов, позволяющий разъединить психологические связи между некоторым импульсом и его первоначальным образом в памяти индивида;
    4. по К. Юнгу - чувство психологического отчуждения от других людей.
    * * *
    сущ.
    1) изоляция; отделение, обособление;
    2) социальное дистанцирование;
    3) в психоанализе - один из защитных механизмов, позволяющий разъединить психологические связи между некоторым импульсом и его первоначальным образом в памяти индивида;
    4) по К. Юнгу - чувство психологического отчуждения от других людей.

    Англо-русский словарь по социологии > isolation

  • 88 S

    1. юг
    2. шиллинг
    3. среднеквадратическое отклонение воспроизводимости результатов испытаний
    4. сименс
    5. с шунтовой обмоткой
    6. режим работы электродвигателя в режиме
    7. расчетное напряжение
    8. прочность при растяжении перпендикулярно к лицевым поверхностям
    9. прочность при растяжении параллельно лицевым поверхностям
    10. прочность при изгибе
    11. приведенное напряжение в штанге
    12. предел прочности при сжатии
    13. Пороговое напряжение при КР
    14. подпись, сигнатура (порядковый номер печатного листа)
    15. площадь или общая площадь оребрённой поверхности
    16. плотность мощности
    17. план статистического приемочного контроля
    18. отношение скорости пара к скорости жидкости в двухфазном потоке
    19. отношение скоростей потока пара и воды в поперечном сечении потока
    20. Остаточное напряжение после релаксации
    21. общая площадь оребрённой поверхности
    22. нижний доверительный предел
    23. Начальное напряжение при испытании на релаксацию
    24. напряжение сжатия
    25. надбавка (классификационный показатель ставок)
    26. максимальное стандартное отклонение процесса
    27. Ллойдз
    28. газовое отношение
    29. вторичная обмотка
    30. В третьей области
    31. акустическая эффективность

     

    вторичная обмотка
    измерительный элемент

    Обмотка и (или) устройство, измеряющее напряженность магнитного поля, через которые проходит результирующее магнитное поле.
    [Система неразрушающего контроля. Виды (методы) и технология неразрушающего контроля. Термины и определения (справочное пособие). Москва 2003 г.]

    вторичная обмотка
    -
    [Лугинский Я. Н. и др. Англо-русский словарь по электротехнике и электроэнергетике. 2-е издание - М.: РУССО, 1995 - 616 с.]

    Тематики

    • виды (методы) и технология неразр. контроля

    Синонимы

    EN

     

    Ллойдз
    Корпорация поручителей-гарантов/страховщиков (андеррайтеры Ллойдз (Lloyds underwriters)) и страховых брокеров (брокеры Ллойдз (Lloyds brokers)), которая зародилась в кофейне на улице Таверни в Лондонском Сити в 1689 г. Она носит имя владельца этой кофейни Эдварда Ллойда. К 1774 г. она уже завоевала прочные позиции на Королевской бирже, а в 1871 г. была оформлена парламентским актом. Сейчас корпорация занимает новое здание на Лайм-стрит, построенное в 1986 г. по проекту архитектора Ричарда Роджерса. Ллойдз как корпорация сама непосредственно страхованием не занимается; вся ее деятельность обеспечивается примерно 260 брокерами Ллойдз, которые работают с публикой, и примерно 350 андеррайтерами/поручителями - гарантами синдикатов Ллойдз (syndicates of Lloyds underwriters), которые получают контракты через брокеров, а сами непосредственно с юридическими и физическими лицами не работают. Каждый из примерно 30 000 андеррайтеров Ллойдз, прежде чем стать членом корпорации, должен внести в корпорацию значительную сумму денег и принять на себя неограниченную ответственность. Они сгруппированы в синдикаты, которыми управляет руководитель синдиката или агент, но большая часть членов синдикатов - это самостоятельные имена (names) (члены Ллойдз, осуществляющие и подписывающие операции гарантии-поручительства, но не организующие их, которые делят и прибыли, и убытки синдиката и предоставляют рисковый капитал). Ллойдз давно и традиционно специализировалась в морском страховании, но сейчас она покрывает практически все страховые риски.
    [ http://www.vocable.ru/dictionary/533/symbol/97]

    Тематики

    EN

    • Lloyd&acut
    • s

     

    надбавка (классификационный показатель ставок)

    [[Англо-русский словарь сокращений транспортно-экспедиторских и коммерческих терминов и выражений ФИАТА]]

    Тематики

    EN

     

    общая площадь оребрённой поверхности

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    отношение скоростей потока пара и воды в поперечном сечении потока
    проскальзывание


    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    Синонимы

    EN

     

    отношение скорости пара к скорости жидкости в двухфазном потоке

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    плотность мощности
    Плотность мощности это мощность в расчете на единицу площади, перпендикулярной к направлению распространения электромагнитной волны; обычно она выражается в ваттах в квадратный метр (МСЭ-Т K.52).
    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    Тематики

    • электросвязь, основные понятия

    EN

     

    площадь или общая площадь оребрённой поверхности

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    подпись, сигнатура (порядковый номер печатного листа)
    тетрадь (книжного блока)
    сфальцованный печатный лист


    [Е.С.Алексеев, А.А.Мячев. Англо-русский толковый словарь по системотехнике ЭВМ. Москва 1993]

    Тематики

    Синонимы

    EN

     

    с шунтовой обмоткой
    с параллельной обмоткой


    [Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.]

    Тематики

    • электротехника, основные понятия

    Синонимы

    EN

     

    сименс
    См
    (единица электрической проводимости)


    [Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.]

    Тематики

    • электротехника, основные понятия

    Синонимы

    • См

    EN

     

    шиллинг
    Стандартная денежная единица Австрии, равная 100 грошам.
    [ http://www.vocable.ru/dictionary/533/symbol/97]

    Тематики

    EN

     

    юг

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

    3.6 режим работы электродвигателя в режиме S2: Номинальный кратковременный режим работы с длительностью периода неизменной номинальной нагрузки, равной 60 мин.

    Источник: ГОСТ Р 50703-2002: Комбайны проходческие со стреловидным исполнительным органом. Общие технические требования и методы испытаний оригинал документа

    3.5 расчетное напряжение (design stress) sS: Допускаемое напряжение для данного применения, полученное делением MRS на коэффициент С и округленное до ближайшего нижнего значения ряда R20, т.е.

    x004.gif                                                           (1)

    Источник: ГОСТ ИСО 12162-2006: Материалы термопластичные для напорных труб и соединительных деталей. Классификация и обозначение. Коэффициент запаса прочности оригинал документа

    3.4 нижний доверительный предел (lower confidence limit) sLCL, МПа: Величина, определяющая свойство рассматриваемого материала, представляющая собой 97,5 % нижнего доверительного предела предсказанной длительной гидростатической прочности при 20 °С на 50 лет при внутреннем давлении воды.

    Источник: ГОСТ ИСО 161-1-2004: Трубы из термопластов для транспортирования жидких и газообразных сред. Номинальные наружные диаметры и номинальные давления. Метрическая серия оригинал документа

    3.7 расчетное напряжение (design stress) ss: Допускаемое напряжение для данного применения,

    полученное делением MRS на коэффициент запаса прочности С и округленное до ближайшего нижнего значения ряда R20 по ИСО 3, т. е.

    x002.gif                                                                                      (1)

    Выражают в мегапаскалях.

    Источник: ГОСТ ИСО 161-1-2004: Трубы из термопластов для транспортирования жидких и газообразных сред. Номинальные наружные диаметры и номинальные давления. Метрическая серия оригинал документа

    3.3 приведенное напряжение в штанге sпр: Напряжение, включающее значения напряжений, характеризующих цикл нагружения в верхней штанге каждой ступени колонны и определяемое по формуле

    x006.gif

    где smax - максимальное напряжение в теле штанги за цикл нагружения;

    sа - амплитудное напряжение, равное (smax - smin)/2 (smin - минимальное напряжение в теле штанги за цикл нагружения).

    Источник: ГОСТ Р 51161-2002: Штанги насосные, устьевые штоки и муфты к ним. Технические условия оригинал документа

    3.2 предел прочности при сжатии (compressive strength) sт: Отношение максимального значения сжимающей силы Fmк первоначальной площади поперечного сечения образца, когда относительная деформация e образца в состоянии текучести (см. рисунок 1b) или при его разрушении (см. рисунок 1а) составляет менее 10 %.

    Источник: ГОСТ Р ЕН 826-2008: Изделия теплоизоляционные, применяемые в строительстве. Методы определения характеристик сжатия

    3.1 прочность при растяжении перпендикулярно к лицевым поверхностям (tensile strength perpendicular to faces) smt: Отношение максимального значения силы растяжения, действующей перпендикулярно к лицевым поверхностям образца, к площади поперечного сечения образца.

    Источник: ГОСТ Р ЕН 1607-2008: Изделия теплоизоляционные, применяемые в строительстве. Метод определения прочности при растяжении перпендикулярно к лицевым поверхностям

    3.1 прочность при растяжении параллельно лицевым поверхностям (tensile strength parallel to faces) st: Отношение максимального значения силы, действующей при растяжении образца параллельно лицевым поверхностям, к площади поперечного сечения рабочего участка образца.

    Источник: ГОСТ Р ЕН 1608-2008: Изделия теплоизоляционные, применяемые в строительстве. Метод определения прочности при растяжении параллельно лицевым поверхностям

    В третьей области показатель степени равен 8 - 10, а влажность отпускаемого пара более 0,2 %. В этой области процесс носит кризисный характер и действительный уровень воды в барабане приближается к пароотборным трубам.

    Точка перехода из 2-й области в 3-ю называется критической и работа сепарационных устройств в этой области недопустима. Работа котла в 3-й области сильно зависит от нагрузки, при этом влажность отпускаемого пара составляет 0,2 - 1,0 % и более. Ленточные солемеры показывают резкое увеличение солесодержания пара (броски).

    С паровой нагрузкой котла D связаны следующие характеристики сепарационных устройств:

    массовая нагрузка зеркала испарения

    x014.gif

    осевая подъемная скорость пара

    x016.gif

    удельная паровая безразмерная нагрузка k [9[

    x018.gif

    где Fз.и. - площадь зеркала испарения (или площадь пароприемного потолка).

    Следующий параметр, который существенно влияет на величину влажности пара, а значит и на величину критических нагрузок, это высота активного сепарационного объема. Связь между влажностью пара, паропроизводительностью и высотой парового объема hп можно представить следующей формулой [5]

    x020.gif (4)

    где М- размерный коэффициент, определяемый физическими свойствами воды и пара.

    Как видно из этой формулы, существует обратно пропорциональная зависимость между влажностью пара и высотой парового объема. Экспериментально было показано, что при увеличении высоты парового объема более 1000 мм, влажность пара уже практически мало зависит от дальнейшего ее увеличения [4] - [7].

    На работу сепарационных устройств котлов существенное влияние оказывает солесодержание котловой воды (SKB). Проявляется это следующим образом. При работе котла при постоянной паропроизводительности при увеличении солесодержания котловой воды происходит очень плавное увеличение солесодержания пара, при достижении определенного значения солесодержания котловой воды происходит резкое увеличение влажности пара котла (солесодержания), регистрирующие солемеры отмечают резкое увеличение солесодержания пара (бросок). Объяснить это можно следующим образом: по мере увеличения концентрации веществ в котловой воде и прежде всего коллоидных частиц оксидов железа, шлама и др. веществ, поверхностный слой приобретает структурную вязкость. Длительность существования паровых пузырей до их разрушения увеличивается (набухание), пленки паровых пузырей успевают утониться и при разрыве их образуется большое количество мелких капель (трудно сепарируемых), вода приобретает способность к вспениванию. Значение солесодержания котловой воды, при котором происходит резкое увеличение влажности пара, называется критическим (x022.gif). Величина критического солесодержания зависит от давления пара в котле, конструкции сепарационных устройств, солевого состава воды («букета»), паровой нагрузки сепарационных устройств и т.д. Наиболее точно критическое солесодержание котловой воды можно определить только на основании теплохимических испытаний конкретного котла. Ориентировочно для котлов низкого давления величина критического солесодержания составляет около 3000 мг/кг, для котлов среднего давления - 1300 - 1500 мг/кг, а для котлов высокого давления - 300 - 500 мг/кг.

    Одним из вариантов приспособления работы котлов на воде закритического солесодержания при умеренных значениях непрерывной продувки является применение ступенчатого испарения котловой воды. Его сущность состоит в том, что водяной объем барабана и парообразующие циркуляционные контуры разбиваются на два или три независимых отсека с подачей всей питательной воды только в 1-й отсек и отводом воды в продувку из последнего отсека. При такой схеме питания резко возрастает «внутренняя» продувка первого (чистого) отсека, которая будет равна (nп + Р) % (при выполнении котла, например по двухступенчатой схеме испарения), а увеличение продувки будет составлять в x024.gif раза, по сравнению с котлом без ступенчатого испарения. В связи с этим концентрация солей в котловой воде 1-й ступени резко уменьшается и соответственно улучшается качество пара. Для 2-й ступени испарения концентрация солей продувочной воды будет практически такой же, как и у котла без ступенчатого испарения (при одинаковых значениях непрерывных продувок Р = const для обеих схем). Если принять, что коэффициенты выноса (или влажность пара) до и после перевода котла на ступенчатое испарение были одинаковыми, то качество пара (солесодержание) котла при переводе на ступенчатое испарение будет выше, чем у котла с одноступенчатой схемой испарения. Если же качество пара (солесодержание) котла со ступенчатым испарением принять одинаковым, как и у котла без ступеней испарения, то тогда котел со ступенчатым испарением будет работать с меньшей величиной непрерывной продувки (чем котел без ступеней испарения). В отечественном котлостроении в качестве сепараторов пара последних ступеней испарения применяют, как правило, выносные циклоны. Выносные циклоны - это устройства, которые лучше всего приспособлены для работы на воде повышенного солесодержания. (За счет развития соответствующей паровой высоты и использования центробежных сил для подавления вспенивания).

    В котлах высокого давления наряду с капельным уносом имеет место значительный избирательный унос различных солей и прежде всего кремнекислоты (SiO2), за счет непосредственного физико-химического растворения солей в паре. Избирательный вынос кремнекислоты (при рН = 9,0 - 12,0) для котлов с давлением 115 кгс/см2 составляет 2,0 - 1,0 %, а для котлов с давлением 155 кгс/см2 - 4,0 - 2,5 % [9].

    Для снижения кремнесодержания в паре котлов высокого давления в сепарационной схеме предусматривается паропромывочное устройство. Наличие этого устройства приводит к некоторым особенностям работы всей сепарационной схемы котлов высокого давления, по сравнению с котлами среднего давления.

    В котлах высокого давления эффективность паропромывочного устройства характеризуется коэффициентом промывки

    x026.gif                                                          (5)

    где SiO2н.п. - кремнесодержание пара на выходе из барабана;

    SiO2н.п. - кремнесодержание питательной воды.

    Коэффициент уноса с паропромывочного устройства Кпромопределяется по формуле

    x028.gif                                                          (6)

    где SiO2пром - кремнесодержание воды на паропромывочном устройстве.

    Для котлов высокого давления по данным испытаний Кпром составляет 8 - 10 %.

    Кремнесодержание промывочной воды определяется по формуле

    x030.gif                                                (7)

    где SiO2сл - кремнесодержание воды на сливе с паропромывочного устройства.

    Степень очистки пара на паропромывочном устройстве определяется по формуле

    x032.gif                                                            (8)

    где SiO2н.п.(до) - кремнесодержание насыщенного пара до паропромывочного устройства.

    Кремнесодержание пара до паропромывочного устройства определяется из следующей формулы

    SiO2н.п.(до) = К · SiO2к.в,                                                    (9)

    где SiO2к.в. - кремнесодержание котловой воды;

    К - коэффициент уноса кремниевой кислоты из котловой воды в пар до промывки.

    Из приведенных формул следует, что кремнесодержание пара после промывки (пар котла SiO2н.п.) зависит как от кремнесодержания питательной воды, так и от кремнесодержания пара до промывки.

    В конечном итоге чем ниже будет кремнесодержание промывочной воды (SiO2пром), тем чище будет пар котла. Концентрация кремнекислоты в промывочном слое зависит, как от качества питательной воды, так и от количества кремнекислоты, поступающей из парового объема до промывки. При неналаженной работе сепарационных устройств до промывки, наряду с избирательным уносом [формула (9)] возможен вынос значительного количества капель котловой воды, где кремнесодержание в 5 - 8 раз выше, чем в питательной воде. Попадание капель котловой воды на промывку (капельный унос) приводит к увеличению кремнесодержания промывочной воды и, как следует из формулы (6), приводит к увеличению кремнесодержания пара котла.

    Качество пара котла зависит от следующих основных факторов:

    Источник: СО 34.26.729: Рекомендации по наладке внутрикотловых сепарационных устройств барабанных котлов

    3.1 прочность при изгибе (bending strength) sb: Максимальное напряжение, возникающее в образце под действием максимальной силы Fm, зарегистрированной при изгибе.

    Источник: ГОСТ EN 12089-2011: Изделия теплоизоляционные, применяемые в строительстве. Метод определения характеристик изгиба

    3.2 напряжение сжатия (compressive stress) sс: Отношение сжимающей нагрузки к первоначальной площади поперечного сечения образца данной толщины.

    Источник: ГОСТ EN 1606-2011: Изделия теплоизоляционные, применяемые в строительстве. Метод определения ползучести при сжатии

    3.1 прочность при растяжении перпендикулярно к лицевым поверхностям (tensile strength perpendicular to faces) smt: Отношение максимального значения силы растяжения, действующей перпендикулярно к лицевым поверхностям образца, к площади поперечного сечения образца.

    Источник: ГОСТ EN 1607-2011: Изделия теплоизоляционные, применяемые в строительстве. Метод определения прочности при растяжении перпендикулярно к лицевым поверхностям

    3.10 план статистического приемочного контроля sметода, s метод (s method acceptance sampling plan): План статистического приемочного контроля по количественному признаку, использующий известное значение стандартного отклонения процесса.

    Примечание - Адаптированное определение по ИСО 3534-2.

    Источник: ГОСТ Р ИСО 3951-5-2009: Статистические методы. Процедуры выборочного контроля по количественному признаку. Часть 5. Последовательные планы на основе AQL для известного стандартного отклонения оригинал документа

    3.16 максимальное стандартное отклонение процесса (maximum process standard deviation); MPSD, smax: Наибольшее значение стандартного отклонения процесса для данного кода объема выборки и предельно допустимого уровня несоответствий (3.6), при котором возможно выполнение критерия приемки объединенного контроля с двумя границами поля допуска при любой жесткости контроля (нормальном, усиленном послабленном контроле), когда дисперсия процесса известна.

    [ИСО 3534-2]

    Примечание 1 - MPSD зависит от того, какой тип контроля применяют (объединенный, индивидуальный или сложный), но не зависит от жесткости контроля.

    Примечание 2 - Адаптированное определение по ИСО 3534-2.

    Источник: ГОСТ Р ИСО 3951-5-2009: Статистические методы. Процедуры выборочного контроля по количественному признаку. Часть 5. Последовательные планы на основе AQL для известного стандартного отклонения оригинал документа

    4. Остаточное напряжение после релаксации sо - действительное напряжение образца по истечении определенного промежутка времени, прошедшего с начала испытания, при условии, что общая длина образца не изменялась в течении испытания. Остаточное напряжение рассчитывается для действительной площади поперечного сечения образца, измеренного перед началом испытания.

    Источник: ГОСТ 28334-89: Проволока и канаты стальные для армирования предварительно-напряженных железобетонных конструкций. Метод испытания на релаксацию при постоянной деформации оригинал документа

    3.2 напряжение сжатия (compressive stress) sс: Отношение сжимающей нагрузки к первоначальной площади поперечного сечения образца данной толщины.

    Источник: ГОСТ Р ЕН 1606-2010: Изделия теплоизоляционные, применяемые в строительстве. Метод определения ползучести при сжатии

    Англо-русский словарь нормативно-технической терминологии > S

  • 89 modular data center

    1. модульный центр обработки данных (ЦОД)

     

    модульный центр обработки данных (ЦОД)
    -
    [Интент]

    Параллельные тексты EN-RU

    [ http://loosebolts.wordpress.com/2008/12/02/our-vision-for-generation-4-modular-data-centers-one-way-of-getting-it-just-right/]

    [ http://dcnt.ru/?p=9299#more-9299]

    Data Centers are a hot topic these days. No matter where you look, this once obscure aspect of infrastructure is getting a lot of attention. For years, there have been cost pressures on IT operations and this, when the need for modern capacity is greater than ever, has thrust data centers into the spotlight. Server and rack density continues to rise, placing DC professionals and businesses in tighter and tougher situations while they struggle to manage their IT environments. And now hyper-scale cloud infrastructure is taking traditional technologies to limits never explored before and focusing the imagination of the IT industry on new possibilities.

    В настоящее время центры обработки данных являются широко обсуждаемой темой. Куда ни посмотришь, этот некогда малоизвестный аспект инфраструктуры привлекает все больше внимания. Годами ИТ-отделы испытывали нехватку средств и это выдвинуло ЦОДы в центр внимания, в то время, когда необходимость в современных ЦОДах стала как никогда высокой. Плотность серверов и стоек продолжают расти, все больше усложняя ситуацию для специалистов в области охлаждения и организаций в их попытках управлять своими ИТ-средами. И теперь гипермасштабируемая облачная инфраструктура подвергает традиционные технологии невиданным ранее нагрузкам, и заставляет ИТ-индустрию искать новые возможности.

    At Microsoft, we have focused a lot of thought and research around how to best operate and maintain our global infrastructure and we want to share those learnings. While obviously there are some aspects that we keep to ourselves, we have shared how we operate facilities daily, our technologies and methodologies, and, most importantly, how we monitor and manage our facilities. Whether it’s speaking at industry events, inviting customers to our “Microsoft data center conferences” held in our data centers, or through other media like blogging and white papers, we believe sharing best practices is paramount and will drive the industry forward. So in that vein, we have some interesting news to share.

    В компании MicroSoft уделяют большое внимание изучению наилучших методов эксплуатации и технического обслуживания своей глобальной инфраструктуры и делятся результатами своих исследований. И хотя мы, конечно, не раскрываем некоторые аспекты своих исследований, мы делимся повседневным опытом эксплуатации дата-центров, своими технологиями и методологиями и, что важнее всего, методами контроля и управления своими объектами. Будь то доклады на отраслевых событиях, приглашение клиентов на наши конференции, которые посвящены центрам обработки данных MicroSoft, и проводятся в этих самых дата-центрах, или использование других средств, например, блоги и спецификации, мы уверены, что обмен передовым опытом имеет первостепенное значение и будет продвигать отрасль вперед.

    Today we are sharing our Generation 4 Modular Data Center plan. This is our vision and will be the foundation of our cloud data center infrastructure in the next five years. We believe it is one of the most revolutionary changes to happen to data centers in the last 30 years. Joining me, in writing this blog are Daniel Costello, my director of Data Center Research and Engineering and Christian Belady, principal power and cooling architect. I feel their voices will add significant value to driving understanding around the many benefits included in this new design paradigm.

    Сейчас мы хотим поделиться своим планом модульного дата-центра четвертого поколения. Это наше видение и оно будет основанием для инфраструктуры наших облачных дата-центров в ближайшие пять лет. Мы считаем, что это одно из самых революционных изменений в дата-центрах за последние 30 лет. Вместе со мной в написании этого блога участвовали Дэниел Костелло, директор по исследованиям и инжинирингу дата-центров, и Кристиан Белади, главный архитектор систем энергоснабжения и охлаждения. Мне кажется, что их авторитет придаст больше веса большому количеству преимуществ, включенных в эту новую парадигму проектирования.

    Our “Gen 4” modular data centers will take the flexibility of containerized servers—like those in our Chicago data center—and apply it across the entire facility. So what do we mean by modular? Think of it like “building blocks”, where the data center will be composed of modular units of prefabricated mechanical, electrical, security components, etc., in addition to containerized servers.

    Was there a key driver for the Generation 4 Data Center?

    Наши модульные дата-центры “Gen 4” будут гибкими с контейнерами серверов – как серверы в нашем чикагском дата-центре. И гибкость будет применяться ко всему ЦОД. Итак, что мы подразумеваем под модульностью? Мы думаем о ней как о “строительных блоках”, где дата-центр будет состоять из модульных блоков изготовленных в заводских условиях электрических систем и систем охлаждения, а также систем безопасности и т.п., в дополнение к контейнеризованным серверам.
    Был ли ключевой стимул для разработки дата-центра четвертого поколения?


    If we were to summarize the promise of our Gen 4 design into a single sentence it would be something like this: “A highly modular, scalable, efficient, just-in-time data center capacity program that can be delivered anywhere in the world very quickly and cheaply, while allowing for continued growth as required.” Sounds too good to be true, doesn’t it? Well, keep in mind that these concepts have been in initial development and prototyping for over a year and are based on cumulative knowledge of previous facility generations and the advances we have made since we began our investments in earnest on this new design.

    Если бы нам нужно было обобщить достоинства нашего проекта Gen 4 в одном предложении, это выглядело бы следующим образом: “Центр обработки данных с высоким уровнем модульности, расширяемости, и энергетической эффективности, а также возможностью постоянного расширения, в случае необходимости, который можно очень быстро и дешево развертывать в любом месте мира”. Звучит слишком хорошо для того чтобы быть правдой, не так ли? Ну, не забывайте, что эти концепции находились в процессе начальной разработки и создания опытного образца в течение более одного года и основываются на опыте, накопленном в ходе развития предыдущих поколений ЦОД, а также успехах, сделанных нами со времени, когда мы начали вкладывать серьезные средства в этот новый проект.

    One of the biggest challenges we’ve had at Microsoft is something Mike likes to call the ‘Goldilock’s Problem’. In a nutshell, the problem can be stated as:

    The worst thing we can do in delivering facilities for the business is not have enough capacity online, thus limiting the growth of our products and services.

    Одну из самых больших проблем, с которыми приходилось сталкиваться Майкрософт, Майк любит называть ‘Проблемой Лютика’. Вкратце, эту проблему можно выразить следующим образом:

    Самое худшее, что может быть при строительстве ЦОД для бизнеса, это не располагать достаточными производственными мощностями, и тем самым ограничивать рост наших продуктов и сервисов.

    The second worst thing we can do in delivering facilities for the business is to have too much capacity online.

    А вторым самым худшим моментом в этой сфере может слишком большое количество производственных мощностей.

    This has led to a focus on smart, intelligent growth for the business — refining our overall demand picture. It can’t be too hot. It can’t be too cold. It has to be ‘Just Right!’ The capital dollars of investment are too large to make without long term planning. As we struggled to master these interesting challenges, we had to ensure that our technological plan also included solutions for the business and operational challenges we faced as well.
    So let’s take a high level look at our Generation 4 design

    Это заставило нас сосредоточиваться на интеллектуальном росте для бизнеса — refining our overall demand picture. Это не должно быть слишком горячим. И это не должно быть слишком холодным. Это должно быть ‘как раз, таким как надо!’ Нельзя делать такие большие капиталовложения без долгосрочного планирования. Пока мы старались решить эти интересные проблемы, мы должны были гарантировать, что наш технологический план будет также включать решения для коммерческих и эксплуатационных проблем, с которыми нам также приходилось сталкиваться.
    Давайте рассмотрим наш проект дата-центра четвертого поколения

    Are you ready for some great visuals? Check out this video at Soapbox. Click here for the Microsoft 4th Gen Video.

    It’s a concept video that came out of my Data Center Research and Engineering team, under Daniel Costello, that will give you a view into what we think is the future.

    From a configuration, construct-ability and time to market perspective, our primary goals and objectives are to modularize the whole data center. Not just the server side (like the Chicago facility), but the mechanical and electrical space as well. This means using the same kind of parts in pre-manufactured modules, the ability to use containers, skids, or rack-based deployments and the ability to tailor the Redundancy and Reliability requirements to the application at a very specific level.


    Посмотрите это видео, перейдите по ссылке для просмотра видео о Microsoft 4th Gen:

    Это концептуальное видео, созданное командой отдела Data Center Research and Engineering, возглавляемого Дэниелом Костелло, которое даст вам наше представление о будущем.

    С точки зрения конфигурации, строительной технологичности и времени вывода на рынок, нашими главными целями и задачами агрегатирование всего дата-центра. Не только серверную часть, как дата-центр в Чикаго, но также системы охлаждения и электрические системы. Это означает применение деталей одного типа в сборных модулях, возможность использования контейнеров, салазок, или стоечных систем, а также возможность подстраивать требования избыточности и надежности для данного приложения на очень специфичном уровне.

    Our goals from a cost perspective were simple in concept but tough to deliver. First and foremost, we had to reduce the capital cost per critical Mega Watt by the class of use. Some applications can run with N-level redundancy in the infrastructure, others require a little more infrastructure for support. These different classes of infrastructure requirements meant that optimizing for all cost classes was paramount. At Microsoft, we are not a one trick pony and have many Online products and services (240+) that require different levels of operational support. We understand that and ensured that we addressed it in our design which will allow us to reduce capital costs by 20%-40% or greater depending upon class.


    Нашими целями в области затрат были концептуально простыми, но трудно реализуемыми. В первую очередь мы должны были снизить капитальные затраты в пересчете на один мегаватт, в зависимости от класса резервирования. Некоторые приложения могут вполне работать на базе инфраструктуры с резервированием на уровне N, то есть без резервирования, а для работы других приложений требуется больше инфраструктуры. Эти разные классы требований инфраструктуры подразумевали, что оптимизация всех классов затрат имеет преобладающее значение. В Майкрософт мы не ограничиваемся одним решением и располагаем большим количеством интерактивных продуктов и сервисов (240+), которым требуются разные уровни эксплуатационной поддержки. Мы понимаем это, и учитываем это в своем проекте, который позволит нам сокращать капитальные затраты на 20%-40% или более в зависимости от класса.

    For example, non-critical or geo redundant applications have low hardware reliability requirements on a location basis. As a result, Gen 4 can be configured to provide stripped down, low-cost infrastructure with little or no redundancy and/or temperature control. Let’s say an Online service team decides that due to the dramatically lower cost, they will simply use uncontrolled outside air with temperatures ranging 10-35 C and 20-80% RH. The reality is we are already spec-ing this for all of our servers today and working with server vendors to broaden that range even further as Gen 4 becomes a reality. For this class of infrastructure, we eliminate generators, chillers, UPSs, and possibly lower costs relative to traditional infrastructure.

    Например, некритичные или гео-избыточные системы имеют низкие требования к аппаратной надежности на основе местоположения. В результате этого, Gen 4 можно конфигурировать для упрощенной, недорогой инфраструктуры с низким уровнем (или вообще без резервирования) резервирования и / или температурного контроля. Скажем, команда интерактивного сервиса решает, что, в связи с намного меньшими затратами, они будут просто использовать некондиционированный наружный воздух с температурой 10-35°C и влажностью 20-80% RH. В реальности мы уже сегодня предъявляем эти требования к своим серверам и работаем с поставщиками серверов над еще большим расширением диапазона температур, так как наш модуль и подход Gen 4 становится реальностью. Для подобного класса инфраструктуры мы удаляем генераторы, чиллеры, ИБП, и, возможно, будем предлагать более низкие затраты, по сравнению с традиционной инфраструктурой.

    Applications that demand higher level of redundancy or temperature control will use configurations of Gen 4 to meet those needs, however, they will also cost more (but still less than traditional data centers). We see this cost difference driving engineering behavioral change in that we predict more applications will drive towards Geo redundancy to lower costs.

    Системы, которым требуется более высокий уровень резервирования или температурного контроля, будут использовать конфигурации Gen 4, отвечающие этим требованиям, однако, они будут также стоить больше. Но все равно они будут стоить меньше, чем традиционные дата-центры. Мы предвидим, что эти различия в затратах будут вызывать изменения в методах инжиниринга, и по нашим прогнозам, это будет выражаться в переходе все большего числа систем на гео-избыточность и меньшие затраты.

    Another cool thing about Gen 4 is that it allows us to deploy capacity when our demand dictates it. Once finalized, we will no longer need to make large upfront investments. Imagine driving capital costs more closely in-line with actual demand, thus greatly reducing time-to-market and adding the capacity Online inherent in the design. Also reduced is the amount of construction labor required to put these “building blocks” together. Since the entire platform requires pre-manufacture of its core components, on-site construction costs are lowered. This allows us to maximize our return on invested capital.

    Еще одно достоинство Gen 4 состоит в том, что он позволяет нам разворачивать дополнительные мощности, когда нам это необходимо. Как только мы закончим проект, нам больше не нужно будет делать большие начальные капиталовложения. Представьте себе возможность более точного согласования капитальных затрат с реальными требованиями, и тем самым значительного снижения времени вывода на рынок и интерактивного добавления мощностей, предусматриваемого проектом. Также снижен объем строительных работ, требуемых для сборки этих “строительных блоков”. Поскольку вся платформа требует предварительного изготовления ее базовых компонентов, затраты на сборку также снижены. Это позволит нам увеличить до максимума окупаемость своих капиталовложений.
    Мы все подвергаем сомнению

    In our design process, we questioned everything. You may notice there is no roof and some might be uncomfortable with this. We explored the need of one and throughout our research we got some surprising (positive) results that showed one wasn’t needed.

    В своем процессе проектирования мы все подвергаем сомнению. Вы, наверное, обратили внимание на отсутствие крыши, и некоторым специалистам это могло не понравиться. Мы изучили необходимость в крыше и в ходе своих исследований получили удивительные результаты, которые показали, что крыша не нужна.
    Серийное производство дата центров


    In short, we are striving to bring Henry Ford’s Model T factory to the data center. http://en.wikipedia.org/wiki/Henry_Ford#Model_T. Gen 4 will move data centers from a custom design and build model to a commoditized manufacturing approach. We intend to have our components built in factories and then assemble them in one location (the data center site) very quickly. Think about how a computer, car or plane is built today. Components are manufactured by different companies all over the world to a predefined spec and then integrated in one location based on demands and feature requirements. And just like Henry Ford’s assembly line drove the cost of building and the time-to-market down dramatically for the automobile industry, we expect Gen 4 to do the same for data centers. Everything will be pre-manufactured and assembled on the pad.

    Мы хотим применить модель автомобильной фабрики Генри Форда к дата-центру. Проект Gen 4 будет способствовать переходу от модели специализированного проектирования и строительства к товарно-производственному, серийному подходу. Мы намерены изготавливать свои компоненты на заводах, а затем очень быстро собирать их в одном месте, в месте строительства дата-центра. Подумайте о том, как сегодня изготавливается компьютер, автомобиль или самолет. Компоненты изготавливаются по заранее определенным спецификациям разными компаниями во всем мире, затем собираются в одном месте на основе спроса и требуемых характеристик. И точно так же как сборочный конвейер Генри Форда привел к значительному уменьшению затрат на производство и времени вывода на рынок в автомобильной промышленности, мы надеемся, что Gen 4 сделает то же самое для дата-центров. Все будет предварительно изготавливаться и собираться на месте.
    Невероятно энергоэффективный ЦОД


    And did we mention that this platform will be, overall, incredibly energy efficient? From a total energy perspective not only will we have remarkable PUE values, but the total cost of energy going into the facility will be greatly reduced as well. How much energy goes into making concrete? Will we need as much of it? How much energy goes into the fuel of the construction vehicles? This will also be greatly reduced! A key driver is our goal to achieve an average PUE at or below 1.125 by 2012 across our data centers. More than that, we are on a mission to reduce the overall amount of copper and water used in these facilities. We believe these will be the next areas of industry attention when and if the energy problem is solved. So we are asking today…“how can we build a data center with less building”?

    А мы упоминали, что эта платформа будет, в общем, невероятно энергоэффективной? С точки зрения общей энергии, мы получим не только поразительные значения PUE, но общая стоимость энергии, затраченной на объект будет также значительно снижена. Сколько энергии идет на производство бетона? Нам нужно будет столько энергии? Сколько энергии идет на питание инженерных строительных машин? Это тоже будет значительно снижено! Главным стимулом является достижение среднего PUE не больше 1.125 для всех наших дата-центров к 2012 году. Более того, у нас есть задача сокращения общего количества меди и воды в дата-центрах. Мы думаем, что эти задачи станут следующей заботой отрасли после того как будет решена энергетическая проблема. Итак, сегодня мы спрашиваем себя…“как можно построить дата-центр с меньшим объемом строительных работ”?
    Строительство дата центров без чиллеров

    We have talked openly and publicly about building chiller-less data centers and running our facilities using aggressive outside economization. Our sincerest hope is that Gen 4 will completely eliminate the use of water. Today’s data centers use massive amounts of water and we see water as the next scarce resource and have decided to take a proactive stance on making water conservation part of our plan.

    Мы открыто и публично говорили о строительстве дата-центров без чиллеров и активном использовании в наших центрах обработки данных технологий свободного охлаждения или фрикулинга. Мы искренне надеемся, что Gen 4 позволит полностью отказаться от использования воды. Современные дата-центры расходуют большие объемы воды и так как мы считаем воду следующим редким ресурсом, мы решили принять упреждающие меры и включить экономию воды в свой план.

    By sharing this with the industry, we believe everyone can benefit from our methodology. While this concept and approach may be intimidating (or downright frightening) to some in the industry, disclosure ultimately is better for all of us.

    Делясь этим опытом с отраслью, мы считаем, что каждый сможет извлечь выгоду из нашей методологией. Хотя эта концепция и подход могут показаться пугающими (или откровенно страшными) для некоторых отраслевых специалистов, раскрывая свои планы мы, в конечном счете, делаем лучше для всех нас.

    Gen 4 design (even more than just containers), could reduce the ‘religious’ debates in our industry. With the central spine infrastructure in place, containers or pre-manufactured server halls can be either AC or DC, air-side economized or water-side economized, or not economized at all (though the sanity of that might be questioned). Gen 4 will allow us to decommission, repair and upgrade quickly because everything is modular. No longer will we be governed by the initial decisions made when constructing the facility. We will have almost unlimited use and re-use of the facility and site. We will also be able to use power in an ultra-fluid fashion moving load from critical to non-critical as use and capacity requirements dictate.

    Проект Gen 4 позволит уменьшить ‘религиозные’ споры в нашей отрасли. Располагая базовой инфраструктурой, контейнеры или сборные серверные могут оборудоваться системами переменного или постоянного тока, воздушными или водяными экономайзерами, или вообще не использовать экономайзеры. Хотя можно подвергать сомнению разумность такого решения. Gen 4 позволит нам быстро выполнять работы по выводу из эксплуатации, ремонту и модернизации, поскольку все будет модульным. Мы больше не будем руководствоваться начальными решениями, принятыми во время строительства дата-центра. Мы сможем использовать этот дата-центр и инфраструктуру в течение почти неограниченного периода времени. Мы также сможем применять сверхгибкие методы использования электрической энергии, переводя оборудование в режимы критической или некритической нагрузки в соответствии с требуемой мощностью.
    Gen 4 – это стандартная платформа

    Finally, we believe this is a big game changer. Gen 4 will provide a standard platform that our industry can innovate around. For example, all modules in our Gen 4 will have common interfaces clearly defined by our specs and any vendor that meets these specifications will be able to plug into our infrastructure. Whether you are a computer vendor, UPS vendor, generator vendor, etc., you will be able to plug and play into our infrastructure. This means we can also source anyone, anywhere on the globe to minimize costs and maximize performance. We want to help motivate the industry to further innovate—with innovations from which everyone can reap the benefits.

    Наконец, мы уверены, что это будет фактором, который значительно изменит ситуацию. Gen 4 будет представлять собой стандартную платформу, которую отрасль сможет обновлять. Например, все модули в нашем Gen 4 будут иметь общепринятые интерфейсы, четко определяемые нашими спецификациями, и оборудование любого поставщика, которое отвечает этим спецификациям можно будет включать в нашу инфраструктуру. Независимо от того производите вы компьютеры, ИБП, генераторы и т.п., вы сможете включать свое оборудование нашу инфраструктуру. Это означает, что мы также сможем обеспечивать всех, в любом месте земного шара, тем самым сводя до минимума затраты и максимальной увеличивая производительность. Мы хотим создать в отрасли мотивацию для дальнейших инноваций – инноваций, от которых каждый сможет получать выгоду.
    Главные характеристики дата-центров четвертого поколения Gen4

    To summarize, the key characteristics of our Generation 4 data centers are:

    Scalable
    Plug-and-play spine infrastructure
    Factory pre-assembled: Pre-Assembled Containers (PACs) & Pre-Manufactured Buildings (PMBs)
    Rapid deployment
    De-mountable
    Reduce TTM
    Reduced construction
    Sustainable measures

    Ниже приведены главные характеристики дата-центров четвертого поколения Gen 4:

    Расширяемость;
    Готовая к использованию базовая инфраструктура;
    Изготовление в заводских условиях: сборные контейнеры (PAC) и сборные здания (PMB);
    Быстрота развертывания;
    Возможность демонтажа;
    Снижение времени вывода на рынок (TTM);
    Сокращение сроков строительства;
    Экологичность;

    Map applications to DC Class

    We hope you join us on this incredible journey of change and innovation!

    Long hours of research and engineering time are invested into this process. There are still some long days and nights ahead, but the vision is clear. Rest assured however, that we as refine Generation 4, the team will soon be looking to Generation 5 (even if it is a bit farther out). There is always room to get better.


    Использование систем электропитания постоянного тока.

    Мы надеемся, что вы присоединитесь к нам в этом невероятном путешествии по миру изменений и инноваций!

    На этот проект уже потрачены долгие часы исследований и проектирования. И еще предстоит потратить много дней и ночей, но мы имеем четкое представление о конечной цели. Однако будьте уверены, что как только мы доведем до конца проект модульного дата-центра четвертого поколения, мы вскоре начнем думать о проекте дата-центра пятого поколения. Всегда есть возможность для улучшений.

    So if you happen to come across Goldilocks in the forest, and you are curious as to why she is smiling you will know that she feels very good about getting very close to ‘JUST RIGHT’.

    Generations of Evolution – some background on our data center designs

    Так что, если вы встретите в лесу девочку по имени Лютик, и вам станет любопытно, почему она улыбается, вы будете знать, что она очень довольна тем, что очень близко подошла к ‘ОПИМАЛЬНОМУ РЕШЕНИЮ’.
    Поколения эволюции – история развития наших дата-центров

    We thought you might be interested in understanding what happened in the first three generations of our data center designs. When Ray Ozzie wrote his Software plus Services memo it posed a very interesting challenge to us. The winds of change were at ‘tornado’ proportions. That “plus Services” tag had some significant (and unstated) challenges inherent to it. The first was that Microsoft was going to evolve even further into an operations company. While we had been running large scale Internet services since 1995, this development lead us to an entirely new level. Additionally, these “services” would span across both Internet and Enterprise businesses. To those of you who have to operate “stuff”, you know that these are two very different worlds in operational models and challenges. It also meant that, to achieve the same level of reliability and performance required our infrastructure was going to have to scale globally and in a significant way.

    Мы подумали, что может быть вам будет интересно узнать историю первых трех поколений наших центров обработки данных. Когда Рэй Оззи написал свою памятную записку Software plus Services, он поставил перед нами очень интересную задачу. Ветра перемен двигались с ураганной скоростью. Это окончание “plus Services” скрывало в себе какие-то значительные и неопределенные задачи. Первая заключалась в том, что Майкрософт собиралась в еще большей степени стать операционной компанией. Несмотря на то, что мы управляли большими интернет-сервисами, начиная с 1995 г., эта разработка подняла нас на абсолютно новый уровень. Кроме того, эти “сервисы” охватывали интернет-компании и корпорации. Тем, кому приходится всем этим управлять, известно, что есть два очень разных мира в области операционных моделей и задач. Это также означало, что для достижения такого же уровня надежности и производительности требовалось, чтобы наша инфраструктура располагала значительными возможностями расширения в глобальных масштабах.

    It was that intense atmosphere of change that we first started re-evaluating data center technology and processes in general and our ideas began to reach farther than what was accepted by the industry at large. This was the era of Generation 1. As we look at where most of the world’s data centers are today (and where our facilities were), it represented all the known learning and design requirements that had been in place since IBM built the first purpose-built computer room. These facilities focused more around uptime, reliability and redundancy. Big infrastructure was held accountable to solve all potential environmental shortfalls. This is where the majority of infrastructure in the industry still is today.

    Именно в этой атмосфере серьезных изменений мы впервые начали переоценку ЦОД-технологий и технологий вообще, и наши идеи начали выходить за пределы общепринятых в отрасли представлений. Это была эпоха ЦОД первого поколения. Когда мы узнали, где сегодня располагается большинство мировых дата-центров и где находятся наши предприятия, это представляло весь опыт и навыки проектирования, накопленные со времени, когда IBM построила первую серверную. В этих ЦОД больше внимания уделялось бесперебойной работе, надежности и резервированию. Большая инфраструктура была призвана решать все потенциальные экологические проблемы. Сегодня большая часть инфраструктуры все еще находится на этом этапе своего развития.

    We soon realized that traditional data centers were quickly becoming outdated. They were not keeping up with the demands of what was happening technologically and environmentally. That’s when we kicked off our Generation 2 design. Gen 2 facilities started taking into account sustainability, energy efficiency, and really looking at the total cost of energy and operations.

    Очень быстро мы поняли, что стандартные дата-центры очень быстро становятся устаревшими. Они не поспевали за темпами изменений технологических и экологических требований. Именно тогда мы стали разрабатывать ЦОД второго поколения. В этих дата-центрах Gen 2 стали принимать во внимание такие факторы как устойчивое развитие, энергетическая эффективность, а также общие энергетические и эксплуатационные.

    No longer did we view data centers just for the upfront capital costs, but we took a hard look at the facility over the course of its life. Our Quincy, Washington and San Antonio, Texas facilities are examples of our Gen 2 data centers where we explored and implemented new ways to lessen the impact on the environment. These facilities are considered two leading industry examples, based on their energy efficiency and ability to run and operate at new levels of scale and performance by leveraging clean hydro power (Quincy) and recycled waste water (San Antonio) to cool the facility during peak cooling months.

    Мы больше не рассматривали дата-центры только с точки зрения начальных капитальных затрат, а внимательно следили за работой ЦОД на протяжении его срока службы. Наши объекты в Куинси, Вашингтоне, и Сан-Антонио, Техас, являются образцами наших ЦОД второго поколения, в которых мы изучали и применяли на практике новые способы снижения воздействия на окружающую среду. Эти объекты считаются двумя ведущими отраслевыми примерами, исходя из их энергетической эффективности и способности работать на новых уровнях производительности, основанных на использовании чистой энергии воды (Куинси) и рециклирования отработанной воды (Сан-Антонио) для охлаждения объекта в самых жарких месяцах.

    As we were delivering our Gen 2 facilities into steel and concrete, our Generation 3 facilities were rapidly driving the evolution of the program. The key concepts for our Gen 3 design are increased modularity and greater concentration around energy efficiency and scale. The Gen 3 facility will be best represented by the Chicago, Illinois facility currently under construction. This facility will seem very foreign compared to the traditional data center concepts most of the industry is comfortable with. In fact, if you ever sit around in our container hanger in Chicago it will look incredibly different from a traditional raised-floor data center. We anticipate this modularization will drive huge efficiencies in terms of cost and operations for our business. We will also introduce significant changes in the environmental systems used to run our facilities. These concepts and processes (where applicable) will help us gain even greater efficiencies in our existing footprint, allowing us to further maximize infrastructure investments.

    Так как наши ЦОД второго поколения строились из стали и бетона, наши центры обработки данных третьего поколения начали их быстро вытеснять. Главными концептуальными особенностями ЦОД третьего поколения Gen 3 являются повышенная модульность и большее внимание к энергетической эффективности и масштабированию. Дата-центры третьего поколения лучше всего представлены объектом, который в настоящее время строится в Чикаго, Иллинойс. Этот ЦОД будет выглядеть очень необычно, по сравнению с общепринятыми в отрасли представлениями о дата-центре. Действительно, если вам когда-либо удастся побывать в нашем контейнерном ангаре в Чикаго, он покажется вам совершенно непохожим на обычный дата-центр с фальшполом. Мы предполагаем, что этот модульный подход будет способствовать значительному повышению эффективности нашего бизнеса в отношении затрат и операций. Мы также внесем существенные изменения в климатические системы, используемые в наших ЦОД. Эти концепции и технологии, если применимо, позволят нам добиться еще большей эффективности наших существующих дата-центров, и тем самым еще больше увеличивать капиталовложения в инфраструктуру.

    This is definitely a journey, not a destination industry. In fact, our Generation 4 design has been under heavy engineering for viability and cost for over a year. While the demand of our commercial growth required us to make investments as we grew, we treated each step in the learning as a process for further innovation in data centers. The design for our future Gen 4 facilities enabled us to make visionary advances that addressed the challenges of building, running, and operating facilities all in one concerted effort.

    Это определенно путешествие, а не конечный пункт назначения. На самом деле, наш проект ЦОД четвертого поколения подвергался серьезным испытаниям на жизнеспособность и затраты на протяжении целого года. Хотя необходимость в коммерческом росте требовала от нас постоянных капиталовложений, мы рассматривали каждый этап своего развития как шаг к будущим инновациям в области дата-центров. Проект наших будущих ЦОД четвертого поколения Gen 4 позволил нам делать фантастические предположения, которые касались задач строительства, управления и эксплуатации объектов как единого упорядоченного процесса.


    Тематики

    Синонимы

    EN

    Англо-русский словарь нормативно-технической терминологии > modular data center

  • 90 disabled access credit

    гос. фин., амер. (налоговый) кредит на доступ для инвалидов* (позволяет некоторым предприятиям вычитать из обязательств по налогу на прибыль определенную долю от расходов, связанных с перестройкой здания и прилегающей территории таким образом, чтобы обеспечить свободный доступ внутрь помещения лиц с физическими расстройствами; данная льгота введена в результате принятия закона, устанавливающего технические требования к отсутствию препятствий для входа в здание инвалидов, и распространяется только на расходы по перестройке здания, т. е. не предоставляется при строительстве новых зданий)
    Syn:
    See:

    Англо-русский экономический словарь > disabled access credit

  • 91 processing


    * * *

    * * *
    обработка (химическая; термическая, а также компьютерная)

    * * *
    обработка (преобразование исходных данных; целью обработки обычно является увеличение отношения сигнал/помеха для улучшения качества интерпретации; обработка включает такие процедуры, как ввод поправок за различные искажения данных, сортировку данных, фильтрацию в соответствии с некоторым критерием и т.п.)

    * * *
    - array processing
    - asphalt processing
    - borehole data processing
    - complete processing of crude oil
    - cracking processing
    - crooked-line processing
    - delay-and-sum processing
    - dip moveout processing
    - dry processing
    - field processing
    - filter-and-sun processing
    - gas processing
    - gas-gasoline processing
    - land-based processing
    - log processing
    - magnetic data processing
    - multichannel processing
    - oil processing
    - petrochemical processing
    - prestack processing
    - record processing
    - refinery processing
    - search data processing
    - seismic processing
    - seismic data processing
    - skimming processing
    - straight-run processing
    - topping processing
    - travel time processing
    - wellsite computer processing
    - whole crude processing
    * * *

    Англо-русский словарь нефтегазовой промышленности > processing

  • 92 torque wrench

    [ˌtɔːk'rentʃ]
    1) Общая лексика: ключ-"трещотка" ((ratchet) приспособление для передачи вращения некоторым инструментам при установке винтовых имплантатов. Сконструирован таким образом, что для изменения направления вращения нет необходимости снимать его с инструмента), моментный ключ
    5) Автомобильный термин: динамометрический ключ, торцевой ключ
    6) Стоматология: ключ реверсивный
    9) Автоматика: (-controlled) (гаечный) ключ с ограничением по крутящему моменту, (-controlled) предельный ключ, (-controlled) тарированный ключ
    10) Инструменты: ключ моментный
    12) Электрические машины: гайковёрт
    13) Нефть и газ: ключ АКБ, ключ доворота

    Универсальный англо-русский словарь > torque wrench

  • 93 learn

    1. I
    I like to learn мне нравится учиться; it is never too late to learn учиться никогда не поздно; he is very ignorant, but he will learn он совершенно невежественен /ничего не знает/, но он научится /выучится /
    2. II
    learn in some manner learn rapidly (thoroughly, instinctively, etc.) быстро и т. д. выучиваться /усваивать, схватывать/; he learns easily ему легко дается учение, он учится без труда; some boys learn slowly некоторым ребятам учение дается с трудом; learn privately заниматься /учиться/ частным образом
    3. III
    learn smth.
    1) learn languages (Latin, one's lessons, the rules, etc.) учить языки и т. д.; I am learning history я занимаюсь истерией; where did you learn shorthand? где вы (на)учились стенографии?; how long have you been learning English? сколько времени вы занимаетесь английским языком?; to learn Russian is very difficult for me русский язык мне дается с трудом; learn the trade of a shoemaker /of shoemaking/ (of bookkeeping, etc.) овладеть ремеслом /выучиться ремеслу/ сапожника и т. д., learn the art of warfare (the art of administration, the art of wrestling, etc.) овладеть искусством ведения войны и т. д.; learn the piano (на) учиться играть на рояле; learn patience (self-contго1, resignation, etc.) (на)учиться терпению и т. д.
    2) learn a poem (this paragraph, etc.) запоминать /выучивать наизусть/ стихотворение и т. д.; she learned the part она выучила свою роль наизусть; he learned the speech so he could recite it at dinner он выучил речь наизусть, чтобы произнести ее за обедом
    3) learn the truth (the details of the train wreck, etc.) узнавать правду и т. д., I was sorry to learn the sad news of his death я с огорчением узнал о его смерти
    4. IV
    1) learn smth. at some time he is learning French now он сейчас учит французский язык /занимается французским языком/; he began learning the trade late он поздно начал учиться этому ремеслу
    2) learn smth. in some manner learn smth. by heart /by rote/ выучить что-л. наизусть; I've learnt my lines by heart я выучил свою роль /свои реплики/ наизусть
    3) learn smth. at some time learn smth. late (early, immediately, etc.) поздно и т. д. узнавать о чем-л.
    5. XIII
    learn to do smth. learn to read (to dance, to sing, to skate, to avoid smb., to estimate its value, to tell whether the thing is genuine, to esteem smb., etc.) (намучиться читать и т. д., learn to be more careful (to be more polite, to be more tolerant, etc.) стать /научиться быть/ белее осторожным и т. д., he's learning to swim он учится плавать; learn how to do smth. learn how to ride a bicycle (how to manage a horse, how to make a reed-pipe, how to be patient, etc.) научиться ездить на велосипеде и т. д., are you learning how to type? вы учитесь печатать на машинке?; we have learned to expect precision from them мы привыкли ожидать от них точности
    6. XVI
    1) learn at some place learn at school учиться в школе; learn about smth. learn about one's duties (about the duties of a weather observer, about the work of a schoolmaster, about their customs, etc.) (ознакомиться со своими обязанностями и т. д., learn from smb. learn from a master (from friends, etc.) (на)учиться у мастера и т. д., learn by /through, from/ smth. learn by experience (from the mistakes of others, through one's mistakes, etc.) учиться на опыте и т.д., learn by imitation (by sheer memory, etc.) (на)учиться при помощи подражания и т.д.; you'll learn from association with him (from her kindness, etc.) общение с ним и т. д. многому вас научит /много вам даст/
    2) learn of smth. learn of the results (of an accident, of their arrival, of some good restaurants here, etc.) узнавать о результатах и т. д., I am sorry to learn of his illness я с огорчением узнал /услыхал/ о его болезни; I hope he doesn't learn of my departure я надеюсь, он не узнает /не услышит/ о моем отъезде
    7. XXI1
    1) learn smth. from /with, under/ smb. learn English from an excellent teacher (languages with a foreign teacher, biology under a famous professor, etc.) заниматься английским с прекрасным преподавателем и т.д., учить английский у /под руководством/ прекрасного преподавателя и т. д.; he learned patience from his father он научился терпению у своего отца; learn smth. from smth. learn French from a self-instructor /from a home study course/ обучаться французскому языку по самоучителю; learn smth. with smth. learn the subject with ease (with zeal, with difficulty, etc.) изучать /учить/ этот предмет с легкостью и т. д.; learn smth. about smth. learn smth. about this subject узнавать кое-что об этом предмете; I want to learn all about the country я хочу как следует ознакомиться с этой страной; he has everything to learn about it он еще ничего об этом не знает
    2) learn smth. from smth., smb. learn the news from a letter (the events from a newspaper, these facts from a conversation, etc.) узнавать новость из письма и т. д., I've learnt it from her я об этом узнал от нее; learn smth. by smth. learn smth. by telegraph (by radio, etc.) узнавать о чем-л. по телеграфу и т. д.
    8. XXV
    learn that... (where..., when..., etc.) we have learned that he arrived safely мы узнали [о том], что он прибыл благополучно; you must learn where he lives ты должен узнать, где он живет; we have just learned when he is going to leave нам только что сообщили, когда он собирается уезжать

    English-Russian dictionary of verb phrases > learn

  • 94 NATIONAL  INCOME  ACCOUNTS. 

    Счета  национального  дохода
      Статистистические данные, отражающие состояние национальной экономики за определенный период времени (обычно за год).             Национальный доход является денежным показателем уровня экономической активности в стране, а в расчете на душу населения - индикатором уровня жизни. Существует три метода расчета национального дохода: 1) Расчет на основе добавленной стоимости (value-added or output approach):  суммирование  добавленной  стоимости  всего  количества произведенных в стране товаров и услуг. Сюда не включается стоимость импортных товаров и услуг. Чтобы избежать повторного счета, учитывается только добавленная стоимость, т.е. рыночная цена всего объема произведенной продукции за вычетом стоимости использованного сырья и материалов. Сумма добавленных стоимостей всех секторов экономики есть валовой внутренний продукт. Чтобы получить валовой национальный продукт, необходимо добавить чистый доход от собственности за границей (см. Value added). 2) Расчет на основе доходов (income approach): cовокупные доходы населения страны, полученные в результате текущего производства товаров и услуг. Такие доходы называются факторными доходами, поскольку они получены за счет факторных затрат. В них не включаются трансфертные платежи. Сумма всех этих доходов (заработная плата и жалование, прибыль, рента и т.д.) соответствует величине ВВП (см. Income, National income). 3) Расчет на основе расходов (expenditure approach): совокупные расходы граждан страны на потребительские и инвестиционные товары. Сюда включаются расходы только на конечные товары и услуги (а не на продукцию промежуточного производства), а также на товары, которые еще не реализованы  (инвестиции в материально-производственные запасы). Учитывается, что часть внутренних расходов направляется на приобретение импортных товаров, а часть продукции внутреннего производства потребляется за рубежом. Таким образом, чтобы получить величину внутренних национальных расходов, нужно вычесть расходы на импорт и добавить расходы на экспорт. Все три метода расчета национального дохода можно представить в виде схемы:   На практике проблемы сбора статистических данных приводят к некоторым расхождениям между результатами трех методов расчета национального дохода, что вызывает необходимость корректировки. Кроме того, для сравнения номинального и реального национального дохода необходимо учитывать влияние инфляции, используя индекс цен - так называемый дефлятор ВНП (см. GNP deflator).  

    Новый англо-русский словарь-справочник. Экономика. > NATIONAL  INCOME  ACCOUNTS. 

  • 95 RISK AND UNCERTAINTY

    Риск и неопределенность
    Потенциальная опасность потери имущества или вложенных средств в связи с объективно обусловленной экономической неопределенностью. Некоторые виды рисков можно застраховать (например риск кражи имущества или возникновения пожара). Однако невозможно обезопасить, например, предпринимательскую деятельность. Фирма должна осознавать риск выхода на рынок: если она не сможет продать свою продукцию, она разорится. Если фирма успешно справится со своей задачей, она получит хорошую прибыль. Таким образом, риск следует рассматривать как неотъемлемую часть процесса производства товаров и услуг или внедрения новых продуктов. Прибыль является вознаграждением за риск. Управляющие компаниями пытаются прогнозировать будущие события на основе имеющейся информации. Если есть достаточное количество данных, позволяющих составить довольно точный статистический прогноз, можно говорить скорее о риске, чем о неопределенности. Так, страховые компании могут довольно точно определить вероятность возникновения пожара на том или ином предприятии и застраховать этот риск. Неопределенность в отличие от риска возникает в результате изменений, которые очень трудно предсказать. Бульшая часть управленческих решений попадает именно в эту категорию, поскольку не существует достаточного количества данных из опыта прошлых лет, на основе которых можно строить прогнозы. Поэтому неопределенность, связанная, например, с реализацией проектов по разработке новых продуктов и созданию современных технологий, может оцениваться лишь на основе ограниченной информации, собственных суждений и опыте. Менеджеры могут улучшить результаты своих субъективных оценок за счет информации из таких источников, как научные прогнозы, исследования рынков и т.д., но при этом они должны сопоставлять затраты на сбор таких сведений с их ценностью. Если такие издержки не предусмотрены, можно обратиться к некоторым эмпирическим методам (см. Rule of thumb), таким как метод ценообразования на основе полных издержек (см. Full-cost pricing), которые дают возможность прийти к разумному (хотя и не оптимальному) решению. Традиционная теория фирмы анализирует деятельность компании, которая обладает абсолютными знаниями о том, какими будут ее издержки и какую прибыль она получит. На основе этой инфор мации она принимает решения о цене и объеме производства. С учетом вышеизложенного классическая теория выглядит спорной. См. Entrepreneur, Hedging, Risk premium, Schumpeter, J. Risk aversion. Стремление избежать риска. Выбор наименее рискованного способа вложения капитала при равнозначном ожидаемом доходе. Инвестор, как правило, предпочитает вкладывать средства в надежные активы, которые принесут гарантированный доход, например, в государственные облигации, или диверсифицировать свой инвестиционный портфель. Если инвестор решает вложить капитал в активы с повышенным риском, он требует увеличения вознаграждения за риск (см. Risk premium).

    Новый англо-русский словарь-справочник. Экономика. > RISK AND UNCERTAINTY

  • 96 TARIFF/IMPORT LEVY

    Тариф/импортная пошлина
    Налог на ввозимые в страну товары. Существует два основных вида тарифов: адвалорный налог (см. Ad valorem tax), взимаемый в процентном отношении к стоимости товара и специфический налог  (см. Specific tax), взимаемый в виде фиксированной суммы с единицы товара. Государство использует  тарифы  для  защиты  отечественных  производителей от внешней конкуренции и с целью увеличения своих доходов. Экономический  эффект  применения  тарифа  можно  представить графически: Линии DD и SS  - это кривые спроса и предложения товара Х. В условиях изолированной экономики и совершенной конкуренции цена на этот товар на внутреннем рынке равняется OP1. Предположим, что страна стала участником международной торговли, и цена на ее товар на внешнем рынке установилась на уровне OP2. Поскольку внутренний спрос на товар Х представляет собой лишь незначительную часть совокупного мирового спроса и не может оказать существенного влияния на условия торговли, внутренняя цена на него тоже будет соответствовать уровню OP2. При этой цене внутреннее потребление достигнет величины Ob, производство - уровня Oa, а импорт( разница между этими двумя величинами) составит ab. Введение специфического тарифа Т приведет к увеличению импортной цены на внутреннем рынке на величину налога до уровня OP3. При этой цене внутреннее потребление сократится с Ob до Od, производство увеличится с Oa до Oc, а импорт снизится с ab до cd. Область YZLM определяет величину государственных доходов от введения тарифа. Несмотря на то, что производители защищенного тарифом товара выигрывают в этой ситуации, т.к. могут увеличить свое производство с Oa до Oc, для экономики страны в целом введение тарифа имеет отрицательный эффект - оно приводит к снижению экономической эффективности производства и благосостояния потребителей. Треугольник XYZ показывает производственные потери экономики. В условиях полной занятости ресурсов объем производства в защищенной тарифом отрасли можно увеличить лишь за счет вывода ресурсов из других, незащищенных отраслей, которые при этом могут быть более эффективными. Таким образом, в результате применения тарифа часть ресурсов используется неэффективно. Треугольник LMN демонстрирует потери потребителей: некоторым потребителям приходится заменять товар Х на другие, более дешевые товары, а те потребители, которые продолжают его покупать, вынуждены платить цену, превышающую реальные экономические издержки его производства. Эффективность  введения  тарифа  как  средства  защиты  отечественной  промышленности  зависит  от  ценовой  эластичности спроса на ввозимый товар. Если спрос на импорт крайне неэластичен, существенного сокращения объемов импорта не произойдет. В этом случае более эффективным средством является квота (см. Quota), которая ограничивает количество импортируемых товаров. См. также Protectionism, Nominal rate of protection, Effective rate of protection.  

    Новый англо-русский словарь-справочник. Экономика. > TARIFF/IMPORT LEVY

  • 97 least squares, method of

    1. метод наименьших квадратов

     

    метод наименьших квадратов

    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    метод наименьших квадратов
    Математический (математико-статистический) прием, служащий для выравнивания динамических рядов, выявления формы корреляционной связи между случайными величинами и др. Состоит в том, что функция, описывающая данное явление, аппроксимируется более простой функцией (или линейной комбинацией таких функций). Причем последняя подбирается с таким расчетом, чтобы среднеквадратичное отклонение (см. Дисперсия) фактических уровней функции в наблюдаемых точках от выровненных было наименьшим. Например, по имеющимся данным (xi,yi) (i = 1, 2, …, n) строится такая кривая y = a + bx, на которой достигается минимум суммы квадратов отклонений то есть минимизируется функция, зависящая от двух параметров: a — (отрезок на оси ординат) и b (наклон прямой). Уравнения, дающие необходимые условия минимизации функции S(a,b), называются нормальными уравнениями. В качестве аппроксимирующих функций применяются не только линейная (выравнивание по прямой линии), но и квадратическая, параболическая, экспоненциальная и др. Пример выравнивания динамического ряда по прямой см. на рис. M.2, где сумма квадратов расстояний (y1 — y1)2 + (y2 — y2)2…. — наименьшая, и получившаяся прямая наилучшим образом отражает тенденцию динамического ряда наблюдений за некоторым показателем во времени. Рис. М.2 Метод наименьших квадратов
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > least squares, method of

  • 98 least — square technique

    1. метод наименьших квадратов

     

    метод наименьших квадратов

    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    метод наименьших квадратов
    Математический (математико-статистический) прием, служащий для выравнивания динамических рядов, выявления формы корреляционной связи между случайными величинами и др. Состоит в том, что функция, описывающая данное явление, аппроксимируется более простой функцией (или линейной комбинацией таких функций). Причем последняя подбирается с таким расчетом, чтобы среднеквадратичное отклонение (см. Дисперсия) фактических уровней функции в наблюдаемых точках от выровненных было наименьшим. Например, по имеющимся данным (xi,yi) (i = 1, 2, …, n) строится такая кривая y = a + bx, на которой достигается минимум суммы квадратов отклонений то есть минимизируется функция, зависящая от двух параметров: a — (отрезок на оси ординат) и b (наклон прямой). Уравнения, дающие необходимые условия минимизации функции S(a,b), называются нормальными уравнениями. В качестве аппроксимирующих функций применяются не только линейная (выравнивание по прямой линии), но и квадратическая, параболическая, экспоненциальная и др. Пример выравнивания динамического ряда по прямой см. на рис. M.2, где сумма квадратов расстояний (y1 — y1)2 + (y2 — y2)2…. — наименьшая, и получившаяся прямая наилучшим образом отражает тенденцию динамического ряда наблюдений за некоторым показателем во времени. Рис. М.2 Метод наименьших квадратов
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > least — square technique

  • 99 problems under uncertainty

    1. неопределенные задачи

     

    неопределенные задачи
    Точнее, задачи в условиях неопределенности - такие задачи исследования операций, когда принимающий решение не может сопоставить вероятности результатов, которые могут быть получены при выборе той или иной стратегии (т.е. не имеет основания полагать, что какой-либо результат более вероятен, чем любой другой, хотя сам возможный набор результатов известен). Это одна из трех типичных ситуаций, в которых происходит принятие решений (см. также Детерминированные задачи, Риск). Обычно для решения Н.з. предполагается, что сама неопределенность может быть описана некоторым конечным множеством возможных состояний внешних условий, «природы«, а также возможных действий — стратегий (альтернатив); выбор осуществляется между последними. Задача состоит в том, чтобы найти оптимальные (или хотя бы рациональные) стратегии, наилучшим образом приводящие систему к цели при заданных внешних условиях. Для выбора стратегий в Н.з. применяются критерии: максимин (и минимакс), обобщенный максимин, минимаксные потери, а также Бейеса (Лапласа) критерий. Однако выбор между самими критериями основывается обычно на интуиции, зависит от характера принимающего решение (в частности, его склонности или несклонности к риску).
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > problems under uncertainty

  • 100 pareto optimum

    1. оптимальность по парето

     

    оптимальность по парето
    Выдающийся итальянский экономист В.Парето в начале XX в. математически сформулировал один из самых распространенных критериев оптимальности, предназначенный для того, чтобы проверить, улучшает ли предложенное изменение в экономике общий уровень благосостояния. Критерий Парето формулируется им просто: «Следует считать, что любое изменение, которое никому не причиняет убытков и которое приносит некоторым людям пользу (по их собственной оценке), является улучшением». Этот критерий имеет весьма широкий смысл. Он применяется при решении таких задач, когда оптимизация означает улучшение одних показателей при условии, чтобы другие не ухудшались, а также таких, когда реализуется композиционный подход к построению плана развития экономической системы, учитывающий интересы составляющих ее подсистем (групп экономических объектов). Приведенное выше определение можно формализовать следующим утверждением: cостояние экономики S* считается лучшим по Парето, чем другое состояние S1, если хотя бы один экономический субъект предпочитает S*, а все остальные по меньшей мере не делают различий между этими состояниями, но в то же время нет таких, кто предпочитает S1; состояние S* безразлично по Парето состоянию S1, если все экономические субъекты не делают между ними различий; наконец, оно оптимально по Парето, если не существует такого допустимого состояния экономики, которое было бы лучше, чем это. Критерий Парето неприменим к весьма распространенным ситуациям, при которых экономическая мера, приносящая пользу одним, в то же время наносит ущерб другим. На рис. O.7а показано точкой А исходное состояние экономической системы, состоящей из двух подсистем (группы X и Y). Улучшают его лишь те решения, которые приводят систему в любую точку, лежащую в заштрихованной области и на ее границах (например, точки B, C, D). Решение, обозначенное точкой E, не удовлетворяет требованию Парето, несмотря на значительный рост удовлетворения потребностей членов группировки Y: он достигается за счет снижения уровня благосостояния группировки X. Если x1 и y1 соответственно отображают максимальные значения целевых функций подсистем X и Y при их независимом друг от друга функционировании, то участок FF1 множества Парето (недостижимый для каждой из них в отдельности) заинтересовывает их в совместной деятельности. Этот участок называется ядром экономической системы. Чем теснее взаимозависимы подсистемы, тем меньше различия между множеством Парето («оптимумом по Парето») и ядром системы. Выбор при планировании единственного наилучшего плана (например, точки g) - вопрос согласования или, как говорят, «устройства» экономического механизма. Например, такой точкой может быть точка равновесия по Нэшу. Таким образом, оптимумов по Парето может быть много, но существенно меньше, чем вообще вариантов развития системы; оптимумов по Парето, входящих в ядро, — еще меньше, и все это, в частности, позволяет сужать выбор вариантов, подлежащих рассмотрению в процессе оптимального композиционного планирования. (Те же рассуждения применимы и к анализу некооперативных игр.) Рис. О.7 Оптимальность по Парето
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > pareto optimum

См. также в других словарях:

  • некоторым образом — нареч, кол во синонимов: 10 • в известной мере (28) • в известной степени (28) • …   Словарь синонимов

  • некоторым образом — см. образ I; в зн. нареч. В некоторой степени. Я ведь тоже некоторым образом ваш соавтор. Он некоторым образом артист …   Словарь многих выражений

  • Некоторым образом — Устар. Отчасти, в определённом смысле. Тот мир, который находим в басне, есть некоторым образом чистое зеркало, в котором отражается мир человеческий (Жуковский. О басне и баснях Крылова) …   Фразеологический словарь русского литературного языка

  • некоторым образом — нареч. качеств. обстоят. В некоторой степени. Толковый словарь Ефремовой. Т. Ф. Ефремова. 2000 …   Современный толковый словарь русского языка Ефремовой

  • ДЖАЙНИЗМ — одно из древнейших религиозно философских учений, возникшее в VI в. до Р. Х. в Индии, фактическим основателем к рого был Джина Махавира Вардхамана. От религ. титула «джина» (санскр. победитель) пошло название приверженцев Д. «джайны» (букв.… …   Православная энциклопедия

  • Пушкин, Александр Сергеевич — — родился 26 мая 1799 г. в Москве, на Немецкой улице в доме Скворцова; умер 29 января 1837 г. в Петербурге. Со стороны отца Пушкин принадлежал к старинному дворянскому роду, происходившему, по сказанию родословных, от выходца "из… …   Большая биографическая энциклопедия

  • КОГЕН — (Cohen) Герман (1842 1918) немецкий философ, основатель и виднейший представитель марбургской школы неокантианства. Основные работы: ‘Теория опыта Канта’ (1885), ‘Обоснование Кантом этики’ (1877), ‘Обоснование Кантом эстетики’ (1889), ‘Логика… …   История Философии: Энциклопедия

  • Кутузов, Михаил Илларионович — князь Михаил Илларионович Кутузов (Голенищев Кутузов Смоленский), 40 й генерал фельдмаршал. Князь Михаил Илларионович Голенищев Кутузов [Голенищевы Кутузовы произошли от выехавшего в Россию к великому князю Александру Невскому из Германии… …   Большая биографическая энциклопедия

  • Семейство мышиные —         (Muridae)**** * * * * Мышиные самое обширное семейство современных грызунов и вообще млекопитающих. Оно насчитывает около 120 родов и примерно 400 500 видов.         Никакое другое семейство не дает нам столь основательного понятия о том …   Жизнь животных

  • Семейство полорогие —         (Bovidae)** * * Семейство полорогих, или бычьих самая обширная и разнообразная группа парнокопытных, включает 45 50 современных родов и около 130 видов.         Полорогие животные составляют естественную, ясно очерченную группу. Как ни… …   Жизнь животных

  • Ростопчин, граф Феодор Васильевич — — обер камергер, Главнокомандующий Москвы в 1812—1814 гг., член Государственного Совета. Род Ростопчиных родоначальником своим считает прямого потомка великого монгольского завоевателя Чингисхана — Бориса Давидовича Ростопчу,… …   Большая биографическая энциклопедия

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»