-
1 не далее чем
[AdvP; these forms only; used as a restr marker; the resulting AdvP is adv; fixed WO]=====⇒ (of time) precisely at or not before (the indicated time in the past), precisely at or not later than (the indicated time in the future); (of place) precisely at (the place indicated):- [in refer, to the past]не далее чем вчера (неделю назад, пять минут назад и т. п.) ≈ only yesterday (a week ago, five minutes ago etc);- just yesterday (a week ago, five minutes ago etc);- not (no) more than a week (five minutes etc) ago;- [in limited contexts;- when used to point out that the event in question took place at the same time as some previously mentioned related event] that very (night <day etc>);|| [in refer, to the future] ≈ завтра( в будущем году и т. п.) - not (no) later than tomorrow <next year etc>;- tomorrow <next year etc>, and no later;|| [in refer, to a place] right in (at) this (that)...;- in (at) this (that) very...♦ "А ты знаешь, что этот депутат не далее как вчера политическое убежище попросил?" - "Не может, - режиссёр говорит, - быть!" (Войнович 1). "Are you aware that this deputy only yesterday requested political asylum in the West?" "That can't be!" says the director (1a)♦ Павел Петрович сказал нам: дорогой коллега, как славно, что имя, произнесенное вами не далее как минуту назад, растворилось, рассеялось в воздухе... (Соколов 1). Pavel Petrovich told us. dear colleague, how glorious it is that the name you uttered not more than a minute ago dissolved, dissipated in the air. (1a).♦ "Не далее как дней пять тому назад, в одном здешнем, по преимуществу дамском, обществе он торжественно заявил... что на всей земле нет решительно ничего такого, что бы заставляло людей любить себе подобных..." (Достоевский 1). "No more than five days ago, at a local gathering, predominantly of ladies, he solemnly announced...that there is decidedly nothing in the whole world that would make men love their fellow men " (1a).Большой русско-английский фразеологический словарь > не далее чем
-
2 не далее чем...
[AdvP; these forms only; used as a restr marker; the resulting AdvP is adv; fixed WO]=====⇒ (of time) precisely at or not before (the indicated time in the past), precisely at or not later than (the indicated time in the future); (of place) precisely at (the place indicated):- [in refer, to the past]не далее чем... вчера (неделю назад, пять минут назад и т. п.) ≈ only yesterday (a week ago, five minutes ago etc);- just yesterday (a week ago, five minutes ago etc);- not (no) more than a week (five minutes etc) ago;- [in limited contexts;- when used to point out that the event in question took place at the same time as some previously mentioned related event] that very (night <day etc>);|| [in refer, to the future] ≈ завтра( в будущем году и т. п.) - not (no) later than tomorrow <next year etc>;- tomorrow <next year etc>, and no later;|| [in refer, to a place] right in (at) this (that)...;- in (at) this (that) very...♦ "А ты знаешь, что этот депутат не далее как вчера политическое убежище попросил?" - "Не может, - режиссёр говорит, - быть!" (Войнович 1). "Are you aware that this deputy only yesterday requested political asylum in the West?" "That can't be!" says the director (1a)♦ Павел Петрович сказал нам: дорогой коллега, как славно, что имя, произнесенное вами не далее как минуту назад, растворилось, рассеялось в воздухе... (Соколов 1). Pavel Petrovich told us. dear colleague, how glorious it is that the name you uttered not more than a minute ago dissolved, dissipated in the air. (1a).♦ "Не далее как дней пять тому назад, в одном здешнем, по преимуществу дамском, обществе он торжественно заявил... что на всей земле нет решительно ничего такого, что бы заставляло людей любить себе подобных..." (Достоевский 1). "No more than five days ago, at a local gathering, predominantly of ladies, he solemnly announced...that there is decidedly nothing in the whole world that would make men love their fellow men " (1a).Большой русско-английский фразеологический словарь > не далее чем...
-
3 не далее чем
General subject: above -
4 ДАЛЕЕ
-
5 ЧЕМ
с чем вас и поздравляемс чем вас и поздравляю -
6 далее
-
7 далее
-
8 далее
нареч.1) ( о расстоянии) further2) ( о времени) later3) ( затем) further, thenда́лее имену́емый (в текстах договоров) — hereinafter referred to as
••и так да́лее — and so on, and so forth; etc. [ɪt'setrə]
не да́лее как / чем — no further / farther than; ( о времени) no later than
-
9 не дальше чем
[AdvP; these forms only; used as a restr marker; the resulting AdvP is adv; fixed WO]=====⇒ (of time) precisely at or not before (the indicated time in the past), precisely at or not later than (the indicated time in the future); (of place) precisely at (the place indicated):- [in refer, to the past]не дальше чем вчера (неделю назад, пять минут назад и т. п.) ≈ only yesterday (a week ago, five minutes ago etc);- just yesterday (a week ago, five minutes ago etc);- not (no) more than a week (five minutes etc) ago;- [in limited contexts;- when used to point out that the event in question took place at the same time as some previously mentioned related event] that very (night <day etc>);|| [in refer, to the future] ≈ завтра( в будущем году и т. п.) - not (no) later than tomorrow <next year etc>;- tomorrow <next year etc>, and no later;|| [in refer, to a place] right in (at) this (that)...;- in (at) this (that) very...♦ "А ты знаешь, что этот депутат не далее как вчера политическое убежище попросил?" - "Не может, - режиссёр говорит, - быть!" (Войнович 1). "Are you aware that this deputy only yesterday requested political asylum in the West?" "That can't be!" says the director (1a)♦ Павел Петрович сказал нам: дорогой коллега, как славно, что имя, произнесенное вами не далее как минуту назад, растворилось, рассеялось в воздухе... (Соколов 1). Pavel Petrovich told us. dear colleague, how glorious it is that the name you uttered not more than a minute ago dissolved, dissipated in the air. (1a).♦ "Не далее как дней пять тому назад, в одном здешнем, по преимуществу дамском, обществе он торжественно заявил... что на всей земле нет решительно ничего такого, что бы заставляло людей любить себе подобных..." (Достоевский 1). "No more than five days ago, at a local gathering, predominantly of ladies, he solemnly announced...that there is decidedly nothing in the whole world that would make men love their fellow men " (1a).Большой русско-английский фразеологический словарь > не дальше чем
-
10 не дальше чем...
[AdvP; these forms only; used as a restr marker; the resulting AdvP is adv; fixed WO]=====⇒ (of time) precisely at or not before (the indicated time in the past), precisely at or not later than (the indicated time in the future); (of place) precisely at (the place indicated):- [in refer, to the past]не дальше чем... вчера (неделю назад, пять минут назад и т. п.) ≈ only yesterday (a week ago, five minutes ago etc);- just yesterday (a week ago, five minutes ago etc);- not (no) more than a week (five minutes etc) ago;- [in limited contexts;- when used to point out that the event in question took place at the same time as some previously mentioned related event] that very (night <day etc>);|| [in refer, to the future] ≈ завтра( в будущем году и т. п.) - not (no) later than tomorrow <next year etc>;- tomorrow <next year etc>, and no later;|| [in refer, to a place] right in (at) this (that)...;- in (at) this (that) very...♦ "А ты знаешь, что этот депутат не далее как вчера политическое убежище попросил?" - "Не может, - режиссёр говорит, - быть!" (Войнович 1). "Are you aware that this deputy only yesterday requested political asylum in the West?" "That can't be!" says the director (1a)♦ Павел Петрович сказал нам: дорогой коллега, как славно, что имя, произнесенное вами не далее как минуту назад, растворилось, рассеялось в воздухе... (Соколов 1). Pavel Petrovich told us. dear colleague, how glorious it is that the name you uttered not more than a minute ago dissolved, dissipated in the air. (1a).♦ "Не далее как дней пять тому назад, в одном здешнем, по преимуществу дамском, обществе он торжественно заявил... что на всей земле нет решительно ничего такого, что бы заставляло людей любить себе подобных..." (Достоевский 1). "No more than five days ago, at a local gathering, predominantly of ladies, he solemnly announced...that there is decidedly nothing in the whole world that would make men love their fellow men " (1a).Большой русско-английский фразеологический словарь > не дальше чем...
-
11 не далее как
[AdvP; these forms only; used as a restr marker; the resulting AdvP is adv; fixed WO]=====⇒ (of time) precisely at or not before (the indicated time in the past), precisely at or not later than (the indicated time in the future); (of place) precisely at (the place indicated):- [in refer, to the past]не далее как вчера (неделю назад, пять минут назад и т. п.) ≈ only yesterday (a week ago, five minutes ago etc);- just yesterday (a week ago, five minutes ago etc);- not (no) more than a week (five minutes etc) ago;- [in limited contexts;- when used to point out that the event in question took place at the same time as some previously mentioned related event] that very (night <day etc>);|| [in refer, to the future] ≈ завтра( в будущем году и т. п.) - not (no) later than tomorrow <next year etc>;- tomorrow <next year etc>, and no later;|| [in refer, to a place] right in (at) this (that)...;- in (at) this (that) very...♦ "А ты знаешь, что этот депутат не далее как вчера политическое убежище попросил?" - "Не может, - режиссёр говорит, - быть!" (Войнович 1). "Are you aware that this deputy only yesterday requested political asylum in the West?" "That can't be!" says the director (1a)♦ Павел Петрович сказал нам: дорогой коллега, как славно, что имя, произнесенное вами не далее как минуту назад, растворилось, рассеялось в воздухе... (Соколов 1). Pavel Petrovich told us. dear colleague, how glorious it is that the name you uttered not more than a minute ago dissolved, dissipated in the air. (1a).♦ "Не далее как дней пять тому назад, в одном здешнем, по преимуществу дамском, обществе он торжественно заявил... что на всей земле нет решительно ничего такого, что бы заставляло людей любить себе подобных..." (Достоевский 1). "No more than five days ago, at a local gathering, predominantly of ladies, he solemnly announced...that there is decidedly nothing in the whole world that would make men love their fellow men " (1a).Большой русско-английский фразеологический словарь > не далее как
-
12 не далее как ...
[AdvP; these forms only; used as a restr marker; the resulting AdvP is adv; fixed WO]=====⇒ (of time) precisely at or not before (the indicated time in the past), precisely at or not later than (the indicated time in the future); (of place) precisely at (the place indicated):- [in refer, to the past]не далее как... вчера (неделю назад, пять минут назад и т. п.) ≈ only yesterday (a week ago, five minutes ago etc);- just yesterday (a week ago, five minutes ago etc);- not (no) more than a week (five minutes etc) ago;- [in limited contexts;- when used to point out that the event in question took place at the same time as some previously mentioned related event] that very (night <day etc>);|| [in refer, to the future] ≈ завтра( в будущем году и т. п.) - not (no) later than tomorrow <next year etc>;- tomorrow <next year etc>, and no later;|| [in refer, to a place] right in (at) this (that)...;- in (at) this (that) very...♦ "А ты знаешь, что этот депутат не далее как вчера политическое убежище попросил?" - "Не может, - режиссёр говорит, - быть!" (Войнович 1). "Are you aware that this deputy only yesterday requested political asylum in the West?" "That can't be!" says the director (1a)♦ Павел Петрович сказал нам: дорогой коллега, как славно, что имя, произнесенное вами не далее как минуту назад, растворилось, рассеялось в воздухе... (Соколов 1). Pavel Petrovich told us. dear colleague, how glorious it is that the name you uttered not more than a minute ago dissolved, dissipated in the air. (1a).♦ "Не далее как дней пять тому назад, в одном здешнем, по преимуществу дамском, обществе он торжественно заявил... что на всей земле нет решительно ничего такого, что бы заставляло людей любить себе подобных..." (Достоевский 1). "No more than five days ago, at a local gathering, predominantly of ladies, he solemnly announced...that there is decidedly nothing in the whole world that would make men love their fellow men " (1a).Большой русско-английский фразеологический словарь > не далее как ...
-
13 не далее как/чем вчера
-
14 ЧЁМ
с чем вас и поздравляемс чем вас и поздравляю -
15 КАК
-
16 колокейшн
колокейшн
размещение сервера
Услуга по размещению вашего серверного оборудования на телекоммуникационном узле, имеющем высокоскростное подключение к сети Интернет, обеспечению технических условий функционирования оборудования, таких как стабильное электропитание, оптимальная температура и влажность, круглосуточный мониторинг состояния.
[ http://your-hosting.ru/terms/c/colloc/]
размещение физических серверов
со-размещение
Размещение оборудования Заказчика на площадях Провайдера, а также предоставление последним сервисных услуг по инсталляции, настройке, управлению и обеспечению безопасности установленного оборудования на базе фиксированной арендной платы.
[ http://www.outsourcing.ru/content/glossary/A/page-1.asp]
совместное размещение
Размещение оборудования электросвязи принадлежащего разным компаниям-операторам в одном помещении или здании (МСЭ-Т K.58).
[ http://www.iks-media.ru/glossary/index.html?glossid=2400324]Что такое "колокейшн"? И чем отличаются друг от друга colocation, co-location и collocation?
Вообще, все эти слова означают одно — размещение сервера клиента на технической площадке провайдера. Техническая площадка — это специализированное помещение с гарантированным электропитанием, поддержанием достаточно низкого уровня температуры, с охраной, системой пожаротушения и так далее. По сути, это узел связи. Разница в написании слова «colocation» возникла очень давно, причем по вполне естественным причинам. В оригинале, по-английски, верны все три написания этого слова. Поэтому все пишут его так, как привыкли. Вот и все.
Чем же отличается колокейшн от хостинга?
Colocation — это размещение своего оборудования (сервера) на технической площадке провайдера. Это действительно похоже на хостинг, когда вы размещаете свой веб-ресурс у провайдера. Однако виртуальный хостинг — это когда на провайдерской машине находятся сотни сайтов его клиентов, а colocation — когда клиент устанавливает своей сервер у провайдера и использует все его ресурсы только для размещения своего собственного сайта.
Как правило, для colocation применяются специализированные серверы, которые собираются в промышленных корпусах шириной 19 дюймов, предназначенных для монтажа в специальную стойку. Еще одна характеристика габаритов корпуса — высота. Она измеряется в юнитах (unit). Это порядка 45 миллиметров. Сервера бывают размером в 1 юнит (1U), 2 юнита (2U), 4 юнита (4U) и так далее. Как правило, сейчас клиенты размещают серверы в 1U-корпусах, так как с пользователей взимается плата за размер сервера пропорционально количеству юнитов. Например, 1U стоит одно количество денег, а 2U — в два раза большее. На деле, в 1U корпусе можно собрать как очень мощный двухпроцессорный сервер с двумя-тремя дисками, так и "слабенький" недорогой сервер, которого, тем не менее, хватит для размещения большинства проектов.
Серверы для colocation отличаются от обычных компьютеров, кроме необычного корпуса, материнской платой. Существуют специальные серверные материнские платы, которые содержат прямо на себе весь необходимый набор комплектующих — сетевые карты, видеокарты, контроллеры жестких дисков SCSI/ATA/SATA и так далее. Кроме того, к производству таких материнских плат предъявляются повышенные требования по качеству.
Вообще, сервер можно как собрать "руками" самостоятельно, так и купить готовый. Однако нужно помнить о том, что сервер отличается от обычного компьютера тем, что он постоянно работает, причем с серьезной нагрузкой. Работает без перерывов годами. Соответственно, нужно думать о необходимом количестве специальных вентиляторов, продумать прохождение воздушных потоков внутри сервера и так далее. Все эти моменты уже учтены в готовых серверах. Это очень важно.
Как правило, для colocation применяются специализированные серверы, которые собираются в специальных промышленных корпусах шириной 19 дюймов, и предназначены такие корпуса для монтажа в специальную стойку
В какой ситуации для клиента имеет смысл переходить на колокейшн?
Основных причин для перехода с виртуального хостинга на colocation две:
1. Ваш веб-проект настолько вырос, что потребляет столько ресурсов, сколько ему не могут предоставить на хостинговой машине провайдера. Мы помним, что на каждой хостинговой машине, кроме вас, "живет" еще несколько сотен серверов. Если проект большой, посещаемый, требует много вычислительных ресурсов, рано или поздно он начинает "тормозить" на "общем" хостинге. Да, возможно, что хостинг-провайдер просто поместил на физический сервер слишком много виртуальных веб-серверов, но зачастую это все же не так. Как только сервер начинает "тормозить" на хостинге, нужно заняться оптимизацией скриптов и запросов к базе данных. Если это не помогает, то нужно задумываться о colocation, изучать эту возможность, не пора ли действительно брать отдельный сервер.
2. Проекту нужно много дискового пространства. Сейчас на хостинге предлагают 500 мегабайт места или даже 1 Гб. Есть провайдеры, которые предлагают и больше. Однако разместить хотя бы 5 Гб на виртуальном хостинге уже просто нереально. Кстати, как правило, проекты, которым нужно много места, сталкиваются и с проблемами производительности, ведь эти данные не просто лежат на диске — с ними работают посетители. Много данных, надо полагать, предполагает наличие большого количества посещений. Ведь эти данные размещаются, чтобы люди их смотрели, а не просто так. На colocation же в вашем распоряжении окажется весь жесткий диск сервера или даже несколько дисков — сколько пожелаете и купите. Диски емкостью 100-150 Гб, выполненные по технологии SATA, стоят чуть более ста долларов. Более быстрые SCSI-диски подороже. Все это делает colocation очевидной возможностью для развития проектов, которые требуют много места. В конце концов, аренда многих гигабайт места на сервере у хостинг-провайдера по затратам делает услугу виртуального хостинга очень похожей на colocation или хотя бы сравнимой.
Насколько колокейшн дороже обычного хостинга?
Как правило, за пользование виртуальным хостингом взимается некая фиксированная плата, которая составляет несколько долларов в месяц. Кроме того, пользователь может приобрести дополнительные услуги. Например, больше дискового пространства, больше почтовых ящиков и так далее. Структура платежей в пользу хостинг-провайдера проста и понятна.
В случае с colocation все несколько сложнее. Пользователи colocation, во-первых, должны приобрести сервер. Как уже говорилось, цены на серверы начинаются от $800-1000. То есть цена "входного билета" значительно выше, чем в случае с виртуальным хостингом. Однако есть варианты — можно не покупать сервер, а недорого взять его в аренду у провайдера — об этом ниже.
Также пользователи colocation платят за размещение сервера. Как правило, цена этой услуги должна составлять порядка $50 — такова рыночная цена на сегодняшний день, середину лета 2004 года. Стоимость размещения сервера плавно снижалась с годами. Так, пять лет назад размещение colocation сервера стоило не менее $200-300 в месяц. Тогда такая цена обуславливалась крайне скудным предложением и эксклюзивностью услуг, так как клиентов были единицы. Сейчас цены находятся на уровне себестоимости, и снижение цены до $20, скажем, маловероятно. Впрочем, возможны варианты, и время все расставит по местам.
Пользователь colocation платит за трафик, который генерируется его сервером
Также пользователь colocation платит за трафик, который генерируется его сервером. В данный момент ситуация на рынке такова, что многие провайдеры предлагают неограниченный трафик за фиксированную сумму, которая, как правило, включена в стоимость размещения оборудования, о которой писалось выше. Однако есть один момент — провайдерам выгодно, чтобы трафик, генерируемый клиентом, был российским. То есть предназначался для пользователей, которые находятся в России. Провайдеры просят, чтобы трафик, создаваемый сервером, был как минимум наполовину российским. Таково предложение компании.masterhost, например. На практике практически все пользователи легко укладываются в такое ограничение, и проблем тут нет.
Если сравнивать стоимость размещения сайта на виртуальном хостинге и на colocation в цифрах, то хостинг для серьезного сайта в виртуальной среде стоит от $20 в месяц, а размещение собственного сервера — от $50 в месяц. Вполне сравнимые цифры, тем более что во втором случае ваш веб-сервер получает в десятки раз больше ресурсов. То есть colocation — это естественный путь развития для серьезных проектов.
Какие особые возможности колокейшн предоставляет по сравнению с хостингом?
Две главные возможности colocation — это несравнимо большее количество ресурсов (диска, памяти, процессорного времени) и гибкость настройки и конфигурации. На виртуальном хостинге ваш сайт находится на одной машине с еще несколькими сотнями похожих сайтов. Конечно, ресурсов вы получаете немного, но вполне достаточно для работы даже довольно серьезного ресурса. Однако, как только на сервер возникает повышенная нагрузка — например в часы пик или при резком увеличении количества посетителей по какой-то причине, — у пользователя возникают риски. Например, риск нехватки каких-то ресурсов. Риски, в общем, небольшие, но если ваш сайт — это, например, интернет-магазин, то каждая ошибка на сайте — это несделанный посетителем заказ. Стоит подумать, нужно ли рисковать в том случае, если за сравнимые деньги можно получить в пользование целый отдельный сервер.
Гибкость. Очень часто программистам, которые работают над сайтом, нужно поставить какие-нибудь дополнительные модули или использовать нестандартное программное обеспечение. Не всегда есть возможность установить на сервер нужное ПО и настроить его так, как нужно. В случае же с colocation этой проблемы не существует в принципе, так как администратор сервера может устанавливать что угодно и настраивать ПО любым образом.
Можно сказать, что виртуальный хостинг — это "детство" серьезных проектов, а colocation — их "зрелость". Переход на colocation — это естественный путь развития любого большого проекта, и таким веб-ресурсам однозначно нечего делать на виртуальном хостинге.
Бывает ли колокейшн на собственных компьютерах клиентов, и есть ли в этом смысл? Как в этом случае эти компьютеры обслуживаются?
Как правило, colocation — это именно установка собственного компьютера-сервера пользователя на площадку хостинг-провайдера. В этом случае клиент сам занимается администрированием сервера, его настройкой, а также принимает на себя риски, связанные с поломкой комплектующих. Это классический вариант. Однако в последнее время активно развивается направление аренды сервера у провайдера. Клиенту не нужно платить тысячу-полторы-две долларов за сервер. Можно его за небольшую плату арендовать у провайдера. Это интересный вариант для только запускающихся проектов, когда денег на покупку сервера еще нет. Впоследствии, как правило, можно выкупить сервер у провайдера или приобрести свой сервер независимо. Да, при аренде риски, связанные с поломкой сервера, берет на себя провайдер. То есть если провайдер сдает вам в аренду сервер, он отвечает за его работоспособность и за оперативную замену вышедших из строя комплектующих, если, не дай Бог, такое случится. Это интересный вариант, так как ехать в три ночи на другой конец города, чтобы поменять "полетевшую" память — не очень интересное занятие. А если пользователь живет в другом городе...
Насколько часто сейчас используется колокейшн?
Услуга многие годы развивалась. Пять лет назад клиентов colocation у провайдеров были единицы. Года три назад — десятки. Сейчас у серьезных провайдеров, занимающихся размещением серверов как отдельным бизнесом, уже сотни клиентов. Colocation используют интернет-магазины, сетевые СМИ, игровые порталы, баннерные сети, различные контент-проекты. Также многие компании выносят на colocation из своих офисов почтовые сервера и другие службы. Есть много вариантов использования colocation, и их становится все больше. Наблюдается четкая тенденция к "переезду" на colocation "выросших" из виртуального хостинга проектов, так как провайдеры предлагают не просто взять и поставить машину, а предоставляют полный комплекс услуг с администрированием клиентского сервера.
Какие сложности возникают перед клиентом при использовании колокейшн?
Главная проблема — необходимость наличия системного администратора, который установит и настроит операционную и хостинговую среду, а также будет потом заниматься поддержкой и администрированием системы. С одной стороны — да, это проблема. Но с другой — найти администратора несложно, и стоит это недорого. Нет необходимости, например, брать на работу "выделенного" человека. Вполне можно пользоваться и разовыми услугами по необходимости.
Однако хостинг-провайдеры предлагают и свои собственные услуги по администрированию. Те же специалисты, которые занимаются администрированием хостинговых серверов провайдера, вполне могут заниматься и сервером клиента. Стоить это будет значительно дешевле, чем привлечение клиентом стороннего специалиста.
Также есть проблема с "железом", которое потенциально может ломаться. Нужно брать сервер с серьезной гарантией или не покупать его, а брать в аренду у провайдера.
Какие существуют виды оплаты при колокейшн?
.masterhost предлагает клиентам colocation платить им за генерируемый исходящий трафик
Те же самые, как и в случае с оплатой хостинга. По сути, система приема платежей одна и та же — как для клиентов хостинга, так и для colocation. Кстати, тут есть одна интересная возможность. Наша компания, например, предлагает клиентам colocation платить им за генерируемый исходящий трафик. То есть если у проекта много исходящего трафика, мы вполне готовы даже заплатить за него клиенту. Возможно, что и не очень много, однако это вполне позволяет снизить плату за colocation или же вообще избавиться от нее. Проекты с довольно большим трафиком могут даже заработать.
В заключение хочу добавить несколько слов о неочевидных выгодах использования именно colocation, а не виртуального хостинга. Переходя на использование выделенного сервера для хостинга своих ресурсов, владелец сайта автоматически увеличивает посещаемость своего ресурса — просто потому что его сервер может просто физически принять и обслужить больше посетителей. Больше посетителей — это возможность показать больше рекламы, к примеру.
Используя colocation, можно значительно наращивать ресурсы сервера. Например, если понадобилось дополнительное дисковое пространство, покупаете за $100 диск на 120 Гб, и проблема решена. Стало больше посетителей, и сервер не справляется с работой скриптов — меняем процессор на более мощный, и проблем тоже нет.[ http://hostinfo.ru/articles/358]
Тематики
Синонимы
EN
Русско-английский словарь нормативно-технической терминологии > колокейшн
-
17 теплоснабжение
теплоснабжение
Обеспечение потребителей теплом.
[ ГОСТ 19431-84]
теплоснабжение
Процесс подвода тепла к зданию с целью обеспечения тепловых потребностей на отопление, вентиляцию и горячее водоснабжение.
[ ГОСТ Р 54860-2011]
теплоснабжение
Совокупность мероприятий по обеспечению систем отопления, вентиляции и горячего водоснабжения теплом с помощью теплоносителя
[Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)]Федеральный закон РФ N 190-ФЗ
от 27 июля 2010 года
О ТЕПЛОСНАБЖЕНИИ
(в ред. Федеральных законов от 04.06.2011 N 123-ФЗ, от 18.07.2011 N 242-ФЗ, от 07.12.2011 N 417-ФЗ (ред. 30.12.2012), от 25.06.2012 N 93-ФЗ, от 30.12.2012 N 291-ФЗ, от 30.12.2012 N 318-ФЗ)
Принят Государственной Думой 9 июля 2010 года
Одобрен Советом Федерации 14 июля 2010 года
Глава 1. ОБЩИЕ ПОЛОЖЕНИЯ
Статья 1. Предмет регулирования настоящего Федерального закона
1. Настоящий Федеральный закон устанавливает правовые основы экономических отношений, возникающих в связи с производством, передачей, потреблением тепловой энергии, тепловой мощности, теплоносителя с использованием систем теплоснабжения, созданием, функционированием и развитием таких систем, а также определяет полномочия органов государственной власти, органов местного самоуправления поселений, городских округов по регулированию и контролю в сфере теплоснабжения, права и обязанности потребителей тепловой энергии, теплоснабжающих организаций, теплосетевых организаций.
2. Отношения, связанные с горячим водоснабжением, осуществляемым с использованием открытых систем теплоснабжения (горячего водоснабжения), регулируются настоящим Федеральным законом, за исключением отношений, связанных с обеспечением качества и безопасности горячей воды.
3. К отношениям, связанным с производством, передачей, потреблением горячей воды при осуществлении горячего водоснабжения с использованием открытых систем теплоснабжения (горячего водоснабжения), применяются положения настоящего Федерального закона, регулирующие производство, передачу, потребление теплоносителя, если иное не предусмотрено настоящим Федеральным законом.
Статья 2. Основные понятия, используемые в настоящем Федеральном законе
Для целей настоящего Федерального закона используются следующие основные понятия:
1) тепловая энергия - энергетический ресурс, при потреблении которого изменяются термодинамические параметры теплоносителей (температура, давление);
2) качество теплоснабжения - совокупность установленных нормативными правовыми актами Российской Федерации и (или) договором теплоснабжения характеристик теплоснабжения, в том числе термодинамических параметров теплоносителя;
3) источник тепловой энергии - устройство, предназначенное для производства тепловой энергии;
4) теплопотребляющая установка - устройство, предназначенное для использования тепловой энергии, теплоносителя для нужд потребителя тепловой энергии;
4.1) теплоноситель - пар, вода, которые используются для передачи тепловой энергии. Теплоноситель в виде воды в открытых системах теплоснабжения (горячего водоснабжения) может использоваться для теплоснабжения и для горячего водоснабжения;
5) тепловая сеть - совокупность устройств (включая центральные тепловые пункты, насосные станции), предназначенных для передачи тепловой энергии, теплоносителя от источников тепловой энергии до теплопотребляющих установок;
6) тепловая мощность (далее - мощность) - количество тепловой энергии, которое может быть произведено и (или) передано по тепловым сетям за единицу времени;
7) тепловая нагрузка - количество тепловой энергии, которое может быть принято потребителем тепловой энергии за единицу времени;
8) теплоснабжение - обеспечение потребителей тепловой энергии тепловой энергией, теплоносителем, в том числе поддержание мощности;
9) потребитель тепловой энергии (далее также - потребитель) - лицо, приобретающее тепловую энергию (мощность), теплоноситель для использования на принадлежащих ему на праве собственности или ином законном основании теплопотребляющих установках либо для оказания коммунальных услуг в части горячего водоснабжения и отопления;
10) инвестиционная программа организации, осуществляющей регулируемые виды деятельности в сфере теплоснабжения, - программа мероприятий организации, осуществляющей регулируемые виды деятельности в сфере теплоснабжения, по строительству, реконструкции и (или) модернизации источников тепловой энергии и (или) тепловых сетей в целях развития, повышения надежности и энергетической эффективности системы теплоснабжения, подключения (технологического присоединения) теплопотребляющих установок потребителей тепловой энергии к системе теплоснабжения;
11) теплоснабжающая организация - организация, осуществляющая продажу потребителям и (или) теплоснабжающим организациям произведенных или приобретенных тепловой энергии (мощности), теплоносителя и владеющая на праве собственности или ином законном основании источниками тепловой энергии и (или) тепловыми сетями в системе теплоснабжения, посредством которой осуществляется теплоснабжение потребителей тепловой энергии (данное положение применяется к регулированию сходных отношений с участием индивидуальных предпринимателей);
12) передача тепловой энергии, теплоносителя - совокупность организационно и технологически связанных действий, обеспечивающих поддержание тепловых сетей в состоянии, соответствующем установленным техническими регламентами требованиям, прием, преобразование и доставку тепловой энергии, теплоносителя;
13) коммерческий учет тепловой энергии, теплоносителя (далее также - коммерческий учет) - установление количества и качества тепловой энергии, теплоносителя, производимых, передаваемых или потребляемых за определенный период, с помощью приборов учета тепловой энергии, теплоносителя (далее - приборы учета) или расчетным путем в целях использования сторонами при расчетах в соответствии с договорами;
14) система теплоснабжения - совокупность источников тепловой энергии и теплопотребляющих установок, технологически соединенных тепловыми сетями;
15) режим потребления тепловой энергии - процесс потребления тепловой энергии, теплоносителя с соблюдением потребителем тепловой энергии обязательных характеристик этого процесса в соответствии с нормативными правовыми актами, в том числе техническими регламентами, и условиями договора теплоснабжения;
16) теплосетевая организация - организация, оказывающая услуги по передаче тепловой энергии (данное положение применяется к регулированию сходных отношений с участием индивидуальных предпринимателей);
17) надежность теплоснабжения - характеристика состояния системы теплоснабжения, при котором обеспечиваются качество и безопасность теплоснабжения;
18) регулируемый вид деятельности в сфере теплоснабжения - вид деятельности в сфере теплоснабжения, при осуществлении которого расчеты за товары, услуги в сфере теплоснабжения осуществляются по ценам (тарифам), подлежащим в соответствии с настоящим Федеральным законом государственному регулированию, а именно:
а) реализация тепловой энергии (мощности), теплоносителя, за исключением установленных настоящим Федеральным законом случаев, при которых допускается установление цены реализации по соглашению сторон договора;
б) оказание услуг по передаче тепловой энергии, теплоносителя;
в) оказание услуг по поддержанию резервной тепловой мощности, за исключением установленных настоящим Федеральным законом случаев, при которых допускается установление цены услуг по соглашению сторон договора;
19) орган регулирования тарифов в сфере теплоснабжения (далее также - орган регулирования) - уполномоченный Правительством Российской Федерации федеральный орган исполнительной власти в области государственного регулирования тарифов в сфере теплоснабжения (далее - федеральный орган исполнительной власти в области государственного регулирования тарифов в сфере теплоснабжения), уполномоченный орган исполнительной власти субъекта Российской Федерации в области государственного регулирования цен (тарифов) (далее - орган исполнительной власти субъекта Российской Федерации в области государственного регулирования цен (тарифов) либо орган местного самоуправления поселения или городского округа в случае наделения соответствующими полномочиями законом субъекта Российской Федерации, осуществляющие регулирование цен (тарифов) в сфере теплоснабжения;
19.1) открытая система теплоснабжения (горячего водоснабжения) - технологически связанный комплекс инженерных сооружений, предназначенный для теплоснабжения и горячего водоснабжения путем отбора горячей воды из тепловой сети;
20) схема теплоснабжения - документ, содержащий предпроектные материалы по обоснованию эффективного и безопасного функционирования системы теплоснабжения, ее развития с учетом правового регулирования в области энергосбережения и повышения энергетической эффективности;
21) резервная тепловая мощность - тепловая мощность источников тепловой энергии и тепловых сетей, необходимая для обеспечения тепловой нагрузки теплопотребляющих установок, входящих в систему теплоснабжения, но не потребляющих тепловой энергии, теплоносителя;
22) топливно-энергетический баланс - документ, содержащий взаимосвязанные показатели количественного соответствия поставок энергетических ресурсов на территорию субъекта Российской Федерации или муниципального образования и их потребления, устанавливающий распределение энергетических ресурсов между системами теплоснабжения, потребителями, группами потребителей и позволяющий определить эффективность использования энергетических ресурсов;
23) тарифы в сфере теплоснабжения - система ценовых ставок, по которым осуществляются расчеты за тепловую энергию (мощность), теплоноситель и за услуги по передаче тепловой энергии, теплоносителя;
24) точка учета тепловой энергии, теплоносителя (далее также - точка учета) - место в системе теплоснабжения, в котором с помощью приборов учета или расчетным путем устанавливаются количество и качество производимых, передаваемых или потребляемых тепловой энергии, теплоносителя для целей коммерческого учета;
25) комбинированная выработка электрической и тепловой энергии - режим работы теплоэлектростанций, при котором производство электрической энергии непосредственно связано с одновременным производством тепловой энергии;
26) б азовый режим работы источника тепловой энергии - режим работы источника тепловой энергии, который характеризуется стабильностью функционирования основного оборудования (котлов, турбин) и используется для обеспечения постоянного уровня потребления тепловой энергии, теплоносителя потребителями при максимальной энергетической эффективности функционирования такого источника;
27) "пиковый" режим работы источника тепловой энергии - режим работы источника тепловой энергии с переменной мощностью для обеспечения изменяющегося уровня потребления тепловой энергии, теплоносителя потребителями;
28) единая теплоснабжающая организация в системе теплоснабжения (далее - единая теплоснабжающая организация) - теплоснабжающая организация, которая определяется в схеме теплоснабжения федеральным органом исполнительной власти, уполномоченным Правительством Российской Федерации на реализацию государственной политики в сфере теплоснабжения (далее - федеральный орган исполнительной власти, уполномоченный на реализацию государственной политики в сфере теплоснабжения), или органом местного самоуправления на основании критериев и в порядке, которые установлены правилами организации теплоснабжения, утвержденными Правительством Российской Федерации;
29) бездоговорное потребление тепловой энергии - потребление тепловой энергии, теплоносителя без заключения в установленном порядке договора теплоснабжения, либо потребление тепловой энергии, теплоносителя с использованием теплопотребляющих установок, подключенных (технологически присоединенных) к системе теплоснабжения с нарушением установленного порядка подключения (технологического присоединения), либо потребление тепловой энергии, теплоносителя после введения ограничения подачи тепловой энергии в объеме, превышающем допустимый объем потребления, либо потребление тепловой энергии, теплоносителя после предъявления требования теплоснабжающей организации или теплосетевой организации о введении ограничения подачи тепловой энергии или прекращении потребления тепловой энергии, если введение такого ограничения или такое прекращение должно быть осуществлено потребителем;
30) радиус эффективного теплоснабжения - максимальное расстояние от теплопотребляющей установки до ближайшего источника тепловой энергии в системе теплоснабжения, при превышении которого подключение (технологическое присоединение) теплопотребляющей установки к данной системе теплоснабжения нецелесообразно по причине увеличения совокупных расходов в системе теплоснабжения;
31) плата за подключение (технологическое присоединение) к системе теплоснабжения - плата, которую вносят лица, осуществляющие строительство здания, строения, сооружения, подключаемых (технологически присоединяемых) к системе теплоснабжения, а также плата, которую вносят лица, осуществляющие реконструкцию здания, строения, сооружения в случае, если данная реконструкция влечет за собой увеличение тепловой нагрузки реконструируемых здания, строения, сооружения (далее также - плата за подключение (технологическое присоединение);
32) живучесть - способность источников тепловой энергии, тепловых сетей и системы теплоснабжения в целом сохранять свою работоспособность в аварийных ситуациях, а также после длительных (более пятидесяти четырех часов) остановок.
Статья 3. Общие принципы организации отношений и основы государственной политики в сфере теплоснабжения
1. Общими принципами организации отношений в сфере теплоснабжения являются:
1) обеспечение надежности теплоснабжения в соответствии с требованиями технических регламентов;
2) обеспечение энергетической эффективности теплоснабжения и потребления тепловой энергии с учетом требований, установленных федеральными законами;
3) обеспечение приоритетного использования комбинированной выработки электрической и тепловой энергии для организации теплоснабжения;
4) развитие систем централизованного теплоснабжения;
5) соблюдение баланса экономических интересов теплоснабжающих организаций и интересов потребителей;
6) обеспечение экономически обоснованной доходности текущей деятельности теплоснабжающих организаций и используемого при осуществлении регулируемых видов деятельности в сфере теплоснабжения инвестированного капитала;
7) обеспечение недискриминационных и стабильных условий осуществления предпринимательской деятельности в сфере теплоснабжения;
8) обеспечение экологической безопасности теплоснабжения.
2. Государственная политика в сфере теплоснабжения направлена на обеспечение соблюдения общих принципов организации отношений в сфере теплоснабжения, установленных настоящей статьей.
Глава 2. ПОЛНОМОЧИЯ ОРГАНОВ ГОСУДАРСТВЕННОЙ ВЛАСТИ, ОРГАНОВ МЕСТНОГО САМОУПРАВЛЕНИЯ ПОСЕЛЕНИЙ, ГОРОДСКИХ ОКРУГОВ В СФЕРЕ ТЕПЛОСНАБЖЕНИЯ
Статья 4. Полномочия Правительства Российской Федерации, федеральных органов исполнительной власти в сфере теплоснабжения
1. К полномочиям Правительства Российской Федерации в сфере теплоснабжения относятся:
1) разработка государственной политики в сфере теплоснабжения, являющейся частью энергетической стратегии России;
2) утверждение правил организации теплоснабжения;
3) утверждение правил подключения (технологического присоединения) к системам теплоснабжения;
3.1) утверждение правил коммерческого учета тепловой энергии, теплоносителя;
4) утверждение правил согласования и утверждения инвестиционных программ организаций, осуществляющих регулируемые виды деятельности в сфере теплоснабжения, а также требований к составу и содержанию таких программ (за исключением таких программ, утверждаемых в соответствии с законодательством Российской Федерации об электроэнергетике);
5) утверждение стандартов раскрытия информации теплоснабжающими организациями, теплосетевыми организациями, органами регулирования;
6) утверждение основ ценообразования в сфере теплоснабжения, правил регулирования цен (тарифов) в сфере теплоснабжения, которые должны включать в себя сроки рассмотрения дел об установлении таких тарифов, исчерпывающий перечень представляемых организациями, осуществляющими регулируемые виды деятельности в сфере теплоснабжения, документов, определение условий и порядка принятия решений об отмене регулирования таких тарифов;
7) утверждение порядка рассмотрения разногласий, возникающих между органами исполнительной власти субъектов Российской Федерации в области государственного регулирования цен (тарифов), органами местного самоуправления поселений, городских округов, организациями, осуществляющими регулируемые виды деятельности в сфере теплоснабжения, потребителями тепловой энергии при установлении цен (тарифов) в сфере теплоснабжения, при разработке, утверждении и актуализации схем теплоснабжения;
8) утверждение порядка определения системы мер по обеспечению надежности систем теплоснабжения;
8.1) утверждение порядка определения целевых и фактических показателей надежности и качества поставляемых товаров и оказываемых услуг организациями, осуществляющими регулируемые виды деятельности в сфере теплоснабжения;
9) утверждение порядка вывода в ремонт и из эксплуатации источников тепловой энергии, тепловых сетей;
10) утратил силу с 1 января 2013 года. - Федеральный закон от 07.12.2011 N 417-ФЗ;
11) утверждение требований к схемам теплоснабжения, порядку их разработки и утверждения;
12) утверждение порядка установления долгосрочных параметров регулирования деятельности организаций в отнесенной законодательством Российской Федерации к сферам деятельности субъектов естественных монополий сфере теплоснабжения и (или) цен (тарифов) в сфере теплоснабжения, которые подлежат регулированию в соответствии с перечнем, определенным в статье 8 настоящего Федерального закона;
13) утверждение порядка заключения долгосрочных договоров теплоснабжения по ценам, определенным соглашением сторон, в целях обеспечения потребления тепловой энергии (мощности), теплоносителя объектами, потребляющими тепловую энергию (мощность), теплоноситель и введенными в эксплуатацию после 1 января 2010 года;
14) утверждение для целей регулирования цен (тарифов) в сфере теплоснабжения правил определения стоимости активов и инвестированного капитала, правил ведения их раздельного учета, применяемых при осуществлении деятельности, регулируемой с использованием метода доходности инвестированного капитала;
15) утверждение для целей регулирования цен (тарифов) в сфере теплоснабжения правил распределения удельного расхода топлива при производстве электрической и тепловой энергии в режиме комбинированной выработки электрической и тепловой энергии;
15.1) установление порядка расчета размера возмещения организациям, осуществляющим регулируемые виды деятельности в сфере теплоснабжения, недополученных доходов от регулируемых видов деятельности в сфере теплоснабжения за счет средств бюджетов бюджетной системы Российской Федерации в связи с принятием уполномоченными органами решений об изменении установленных долгосрочных тарифов в сфере теплоснабжения, и (или) необходимой валовой выручки теплоснабжающих организаций, теплосетевых организаций, определенной в соответствии с основами ценообразования в сфере теплоснабжения на основе долгосрочных параметров государственного регулирования цен (тарифов) в сфере теплоснабжения, и (или) долгосрочных параметров государственного регулирования цен (тарифов) в сфере теплоснабжения, а также решений об установлении долгосрочных тарифов на основе долгосрочных параметров государственного регулирования цен (тарифов) в сфере теплоснабжения, отличных от долгосрочных параметров государственного регулирования цен (тарифов) в сфере теплоснабжения, установленных органом исполнительной власти субъекта Российской Федерации в области государственного регулирования тарифов или в пределах переданных полномочий органом местного самоуправления поселения или городского округа либо согласованных ими в соответствии с законодательством Российской Федерации о концессионных соглашениях, в установленных настоящим Федеральным законом случаях возмещения недополученных доходов;
16) иные полномочия, установленные настоящим Федеральным законом и другими федеральными законами.
2. К полномочиям федерального органа исполнительной власти, уполномоченного на реализацию государственной политики в сфере теплоснабжения, относятся:
1) утратил силу с 1 апреля 2014 года. - Федеральный закон от 30.12.2012 N 291-ФЗ;
2) утверждение правил оценки готовности к отопительному периоду;
3) установление порядка расследования причин аварийных ситуаций при теплоснабжении;
4) установление порядка определения нормативов технологических потерь при передаче тепловой энергии, теплоносителя, нормативов удельного расхода топлива при производстве тепловой энергии, нормативов запасов топлива на источниках тепловой энергии (за исключением источников тепловой энергии, функционирующих в режиме комбинированной выработки электрической и тепловой энергии), в том числе в целях государственного регулирования цен (тарифов) в сфере теплоснабжения;
5) утверждение нормативов удельного расхода топлива при производстве тепловой энергии источниками тепловой энергии в режиме комбинированной выработки электрической и тепловой энергии с установленной мощностью производства электрической энергии 25 мегаватт и более, а также нормативов запасов топлива на источниках тепловой энергии при производстве электрической и тепловой энергии в режиме комбинированной выработки электрической и тепловой энергии с установленной мощностью производства электрической энергии 25 мегаватт и более;
6) утверждение нормативов технологических потерь при передаче тепловой энергии, теплоносителя по тепловым сетям, расположенным в поселениях, городских округах с численностью населения пятьсот тысяч человек и более, а также в городах федерального значения Москве и Санкт-Петербурге;
7) ведение государственного реестра саморегулируемых организаций в сфере теплоснабжения;
8) осуществление государственного контроля и надзора за деятельностью саморегулируемых организаций в сфере теплоснабжения;
9) обращение в суд с требованием об исключении некоммерческой организации из государственного реестра саморегулируемых организаций в случаях, предусмотренных настоящим Федеральным законом;
10) утверждение порядка составления топливно-энергетических балансов субъектов Российской Федерации, муниципальных образований;
11) утверждение схем теплоснабжения поселений, городских округов с численностью населения пятьсот тысяч человек и более, а также городов федерального значения Москвы и Санкт-Петербурга, в том числе определение единой теплоснабжающей организации;
12) рассмотрение разногласий, возникающих между органами исполнительной власти субъектов Российской Федерации, органами местного самоуправления поселений, городских округов, организациями, осуществляющими регулируемые виды деятельности в сфере теплоснабжения, и потребителями при разработке, утверждении и актуализации схем теплоснабжения;
13) утверждение порядка осуществления мониторинга разработки и утверждения схем теплоснабжения поселений, городских округов с численностью населения менее чем пятьсот тысяч человек;
14) утверждение методики комплексного определения показателей технико-экономического состояния систем теплоснабжения (за исключением теплопотребляющих установок потребителей тепловой энергии, теплоносителя, а также источников тепловой энергии, функционирующих в режиме комбинированной выработки электрической и тепловой энергии), в том числе показателей физического износа и энергетической эффективности объектов теплоснабжения, и порядка осуществления мониторинга таких показателей;
15) утверждение порядка осуществления контроля за выполнением инвестиционных программ организаций, осуществляющих регулируемые виды деятельности в сфере теплоснабжения (за исключением таких программ, утверждаемых в соответствии с законодательством Российской Федерации об электроэнергетике).
3. Федеральный орган исполнительной власти в области государственного регулирования тарифов в сфере теплоснабжения реализует предусмотренные частью 2 статьи 7 настоящего Федерального закона полномочия в области государственного регулирования цен (тарифов) в сфере теплоснабжения.
4. К полномочиям федерального антимонопольного органа относятся:
1) антимонопольное регулирование и контроль в сфере теплоснабжения;
2) согласование решений органов исполнительной власти субъектов Российской Федерации об отмене регулирования тарифов в сфере теплоснабжения и о введении регулирования тарифов в сфере теплоснабжения после их отмены, выдача предписаний об отмене регулирования тарифов в сфере теплоснабжения.
5. Федеральные органы исполнительной власти, указанные в частях 2 - 4 настоящей статьи, осуществляют контроль (надзор) за соблюдением органами исполнительной власти субъектов Российской Федерации и органами местного самоуправления поселений, городских округов требований законодательства Российской Федерации в сфере теплоснабжения.
6. Правительство Российской Федерации или уполномоченный федеральный орган исполнительной власти в области государственного регулирования тарифов в сфере теплоснабжения устанавливает (в случаях и в порядке, которые определены основами ценообразования в сфере теплоснабжения) предельные (минимальные и (или) максимальные) индексы роста цен (тарифов), учитываемые при переходе к государственному регулированию цен (тарифов) на основе долгосрочных параметров государственного регулирования цен (тарифов) в сфере теплоснабжения (при переходе к новому долгосрочному периоду регулирования). Указанные предельные (минимальные и (или) максимальные) индексы применяются в отношении цен (тарифов), рассчитываемых на каждый год долгосрочного периода регулирования в порядке, установленном основами ценообразования в сфере теплоснабжения, при переходе к регулированию цен (тарифов) на основе долгосрочных параметров государственного регулирования цен (тарифов) в сфере теплоснабжения (при переходе к новому долгосрочному периоду регулирования). Указанные предельные (минимальные и (или) максимальные) индексы на второй долгосрочный период регулирования и последующие долгосрочные периоды регулирования определяются с учетом обеспечения возврата и доходности капитала, инвестированного в течение предыдущего долгосрочного периода регулирования или предыдущих долгосрочных периодов регулирования в соответствии с принятыми органом исполнительной власти субъекта Российской Федерации в области государственного регулирования тарифов либо в пределах переданных полномочий органом местного самоуправления поселения или городского округа решениями об установлении тарифов или долгосрочных параметров государственного регулирования цен (тарифов) в сфере теплоснабжения.
Статья 5. Полномочия органов государственной власти субъектов Российской Федерации в сфере теплоснабжения
1. Органы государственной власти субъектов Российской Федерации осуществляют полномочия по государственному регулированию и контролю в сфере теплоснабжения в соответствии с настоящим Федеральным законом и другими федеральными законами.
2. К полномочиям органов исполнительной власти субъектов Российской Федерации в сфере теплоснабжения относятся:
1) реализация предусмотренных частью 3 статьи 7 настоящего Федерального закона полномочий в области регулирования цен (тарифов) в сфере теплоснабжения;
2) утверждение нормативов технологических потерь при передаче тепловой энергии, теплоносителя по тепловым сетям, за исключением тепловых сетей, расположенных в поселениях, городских округах с численностью населения пятьсот тысяч человек и более, в городах федерального значения Москве и Санкт-Петербурге;
3) утверждение нормативов удельного расхода топлива при производстве тепловой энергии источниками тепловой энергии, за исключением источников тепловой энергии, функционирующих в режиме комбинированной выработки электрической и тепловой энергии с установленной мощностью производства электрической энергии 25 мегаватт и более;
4) утверждение нормативов запасов топлива на источниках тепловой энергии, за исключением источников тепловой энергии, функционирующих в режиме комбинированной выработки электрической и тепловой энергии с установленной мощностью производства электрической энергии 25 мегаватт и более;
5) утверждение инвестиционных программ организаций, осуществляющих регулируемые виды деятельности в сфере теплоснабжения, с применением установленных органами исполнительной власти субъекта Российской Федерации целевых показателей надежности и качества поставляемых товаров и оказываемых услуг такими организациями, по согласованию с органами местного самоуправления поселений, городских округов;
6) определение системы мер по обеспечению надежности систем теплоснабжения поселений, городских округов в соответствии с правилами организации теплоснабжения, утвержденными Правительством Российской Федерации;
7) составление топливно-энергетического баланса субъекта Российской Федерации;
7.1) осуществление мониторинга разработки и утверждения схем теплоснабжения поселений, городских округов с численностью населения менее чем пятьсот тысяч человек;
7.2) осуществление мониторинга показателей технико-экономического состояния систем теплоснабжения (за исключением теплопотребляющих установок потребителей тепловой энергии, теплоносителя, а также источников тепловой энергии, функционирующих в режиме комбинированной выработки электрической и тепловой энергии), в том числе показателей физического износа и энергетической эффективности объектов теплоснабжения;
7.3) осуществление контроля за выполнением инвестиционных программ организаций, осуществляющих регулируемые виды деятельности в сфере теплоснабжения (за исключением таких программ, которые утверждаются в соответствии с законодательством Российской Федерации об электроэнергетике), в том числе за достижением этими организациями целевых показателей надежности и качества поставляемых товаров и оказываемых услуг в результате реализации мероприятий таких программ;
7.4) определение целевых и фактических показателей надежности и качества поставляемых товаров и оказываемых услуг организациями, осуществляющими регулируемые виды деятельности в сфере теплоснабжения;
8) иные полномочия, предусмотренные другими федеральными законами.
Статья 6. Полномочия органов местного самоуправления поселений, городских округов в сфере теплоснабжения
1. К полномочиям органов местного самоуправления поселений, городских округов по организации теплоснабжения на соответствующих территориях относятся:
1) организация обеспечения надежного теплоснабжения потребителей на территориях поселений, городских округов, в том числе принятие мер по организации обеспечения теплоснабжения потребителей в случае неисполнения теплоснабжающими организациями или теплосетевыми организациями своих обязательств либо отказа указанных организаций от исполнения своих обязательств;
2) рассмотрение обращений потребителей по вопросам надежности теплоснабжения в порядке, установленном правилами организации теплоснабжения, утвержденными Правительством Российской Федерации;
3) реализация предусмотренных частями 5 - 7 статьи 7 настоящего Федерального закона полномочий в области регулирования цен (тарифов) в сфере теплоснабжения;
4) выполнение требований, установленных правилами оценки готовности поселений, городских округов к отопительному периоду, и контроль за готовностью теплоснабжающих организаций, теплосетевых организаций, отдельных категорий потребителей к отопительному периоду;
5) согласование вывода источников тепловой энергии, тепловых сетей в ремонт и из эксплуатации;
6) утверждение схем теплоснабжения поселений, городских округов с численностью населения менее пятисот тысяч человек, в том числе определение единой теплоснабжающей организации;
7) согласование инвестиционных программ организаций, осуществляющих регулируемые виды деятельности в сфере теплоснабжения, за исключением таких программ, которые согласовываются в соответствии с законодательством Российской Федерации об электроэнергетике.
2. Полномочия органов местного самоуправления городов федерального значения Москвы и Санкт-Петербурга по организации теплоснабжения на внутригородских территориях определяются законами указанных субъектов Российской Федерации исходя из необходимости сохранения единства городских хозяйств с учетом положений настоящего Федерального закона.
Глава 3. ГОСУДАРСТВЕННАЯ ПОЛИТИКА ПРИ УСТАНОВЛЕНИИ РЕГУЛИРУЕМЫХ ЦЕН (ТАРИФОВ) В СФЕРЕ ТЕПЛОСНАБЖЕНИЯ
Статья 7. Принципы регулирования цен (тарифов) в сфере теплоснабжения и полномочия органов исполнительной власти, органов местного самоуправления поселений, городских округов в области регулирования цен (тарифов) в сфере теплоснабжения
1. Регулирование цен (тарифов) в сфере теплоснабжения осуществляется в соответствии со следующими основными принципами:
1) обеспечение доступности тепловой энергии (мощности), теплоносителя для потребителей;
2) обеспечение экономической обоснованности расходов теплоснабжающих организаций, теплосетевых организаций на производство, передачу и сбыт тепловой энергии (мощности), теплоносителя;
3) обеспечение достаточности средств для финансирования мероприятий по надежному функционированию и развитию систем теплоснабжения;
Тематики
EN
DE
FR
3.1.42 теплоснабжение (space heating): Процесс подвода тепла к зданию с целью обеспечения тепловых потребностей на отопление, вентиляцию и горячее водоснабжение.
Источник: ГОСТ Р 54860-2011: Теплоснабжение зданий. Общие положения методики расчета энергопотребности и эффективности систем теплоснабжения оригинал документа
Русско-английский словарь нормативно-технической терминологии > теплоснабжение
-
18 максимальный уровень
3.28 максимальный уровень: Максимально допустимый уровень наполнения резервуара жидкостью при его эксплуатации, установленный технической документацией на резервуар».
Раздел 4. Наименование изложить в новой редакции: «4 Методы поверки».
Пункт 4.1 после слова «методом» изложить в новой редакции:
«Допускаются:
- комбинация геометрического и объемного методов поверки, например, определение вместимости «мертвой» полости или вместимости резервуара в пределах высоты неровностей днища объемным методом при применении геометрического метода поверки;
- комбинация динамического объемного и статического объемного методов поверки».
Пункты 5.1.1 (таблица 1, головка), 5.1.2. Заменить значение: 50000 на 100000.
Подраздел 5.2. Наименование. Заменить слово: «основных» на «рабочих эталонов».
Подпункты 5.2.1.1, 5.2.1.2, 5.2.1.10, 5.2.2.5 изложить в новой редакции:
«5.2.1.1 Рулетки измерительные 2-го класса точности с верхними пределами измерений 10, 20, 30 и 50 м по ГОСТ 7502.
5.2.1.2 Рулетки измерительные с грузом 2-го класса точности с верхними пределами измерений 10, 20 и 30 м по ГОСТ 7502.
5.2.1.10 Штангенциркуль с диапазонами измерений: от 0 до 125 мм; от 0 до 150 мм; от 150 до 500 мм; от 500 до 1600 мм (черт. 3) по ГОСТ 166.
5.2.2.5 Рулетки измерительные с грузом 2-го класса точности с пределами измерений 10, 20 и 30 м по ГОСТ 7502».
Подраздел 5.2 дополнить подпунктами - 5.2.1.19, 5.2.2.9:
«5.2.1.19 Анализатор течеискатель АНТ-3.
5.2.2.9 Анализатор течеискатель АНТ-3».
Пункт 5.2.4. Заменить слова: «Основные средства поверки резервуаров» на «Применяемые рабочие эталоны и средства поверки».
Пункт 5.2.5 дополнить словами: «по взрывозащищенности - ГОСТ 12.1.011».
Подпункт 5.3.1.4 изложить в новой редакции:
«5.3.1.4 Резервуар при первичной поверке должен быть порожним. При периодической и внеочередной поверках в резервуаре может находиться жидкость до произвольного уровня, а в резервуаре с плавающим покрытием - до минимально допустимого уровня, установленного в технологической карте резервуара.
Плавающая крыша должна быть освобождена от посторонних предметов (от воды и других предметов, не относящихся к плавающей крыше)».
Подпункт 5.3.1.5 до слов «В этом случае» изложить в новой редакции:
«При наличии жидкости в резервуаре для нефтепродукта при его поверке (периодической или внеочередной) допускается использовать результаты измерений вместимости «мертвой» полости, полученные ранее, и вносить их в таблицу Б.9 приложения Б, если изменение базовой высоты резервуара по сравнению с результатами ее измерений в предыдущей поверке составляет не более 0,1 %, а изменения степени наклона и угла направления наклона резервуара составляют не более 1 %»;
подпункт дополнить примечанием:
«Примечание - Вместимость «мертвой» полости резервуара для нефти и нефтепродуктов, образующих парафинистые отложения, при проведении периодической и внеочередной поверок допускается принимать равной ее вместимости, полученной при первичной поверке резервуара или полученной при периодической поверке резервуара после его зачистки».
Подпункт 5.3.2.1. Примечание после слов «до плюс 2 °С - при применении дизельного топлива» дополнить словами: «и воды;».
Пункт 5.3.3 исключить.
Пункт 6.1 после слов «(государственной) метрологической службы» дополнить знаком сноски:1); дополнить сноской:
«1) На территории Российской Федерации орган государственной метрологической службы проходит аккредитацию на право проведения поверки резервуаров».
Пункт 6.2 изложить в новой редакции:
«6.2 Поверки резервуара проводят:
- первичную - после завершения строительства резервуара или капитального ремонта и его гидравлических испытаний - перед вводом его в эксплуатацию;
- периодическую - по истечении срока межповерочного интервала;
- внеочередную - в случаях изменения базовой высоты резервуара более чем на 0,1 % по 9.1.10.3; при внесении в резервуар конструктивных изменений, влияющих на его вместимость, и после очередного полного технического диагностирования».
Пункт 7.1. Заменить слова: «в установленном порядке» на «и промышленной безопасности в установленном порядке2)».
Пункт 7.1, подпункт 7.1.1 дополнить сноской - 2):
«2) На территории Российской Федерации действует Постановление Росгортехнадзора № 21 от 30.04.2002».
Пункт 7.1 дополнить подпунктом - 7.1.1:
«7.1.1 Измерения величин при поверке резервуара проводит группа лиц, включающая поверителя организации, указанной в 6.1, и не менее двух специалистов, прошедших курсы повышения квалификации, и других лиц (при необходимости), аттестованных по промышленной безопасности в установленном порядке2)».
Пункт 7.3 дополнить подпунктом - 7.3.3:
«7.3.3 Лица, выполняющие измерения, должны быть в строительной каске по ГОСТ 12.4.087».
Пункт 7.6. Заменить слова: «или уровень» на «и уровень».
Пункт 7.8 дополнить словами: «и должен быть в строительной каске по ГОСТ 12.4.087».
Пункт 7.9 изложить в новой редакции:
«7.9 Средства поверки по 5.2.1.4, 5.2.1.17, 5.2.1.19 при поверке резервуара геометрическим методом, средства поверки по 5.2.2.1, 5.2.2.2, 5.2.2.8, 5.2.2.9, 5.2.5 при поверке объемным методом должны быть во взрывозащищенном исполнении для групп взрывоопасных смесей категории II В-ТЗ по ГОСТ 12.1.011 и предназначены для эксплуатации на открытом воздухе».
Пункт 7.10 после слова «резервуара» дополнить словами: «в рабочей зоне»;
заменить слова: «на высоте 2000 мм» на «(на высоте 2000 мм)».
Подпункт 8.2.8 исключить.
Подпункт 9.1.1.1 изложить в новой редакции:
«9.1.1.1 Длину окружности Lн измеряют на отметке высоты:
- равной 3/4 высоты первого пояса, если высота пояса находится в пределах от 1500 до 2250 мм;
- равной 8/15 высоты первого пояса, если высота пояса составляет 3000 мм.
При наличии деталей, мешающих измерениям, допускается уменьшать высоту на величину до 300 мм от отметки 3/4 или 8/15 высоты первого пояса».
Подпункт 9.1.1.7 после слов «динамометра усилием» изложить в новой редакции:
«(100 ± 10) Н - для рулеток длиной 10 м и более;
(10 ± 1) Н - для рулеток длиной 1 - 5 м.
Для рулеток с желобчатой лентой - без натяжения».
Подпункт 9.1.1.13. Формула (3). Знаменатель. Заменить знак: «-» на «+».
Подпункт 9.1.1.17. Последний абзац изложить в новой редакции:
«Значение поправок (суммарных при наличии двух и более) на обход в миллиметрах вносят в протокол, форма которого приведена в приложении Б».
Подпункт 9.1.2.2 изложить в новой редакции:
«9.1.2.2 Окружность первого пояса резервуара, измеренную по 9.1.1, разбивают на равные части (откладывают дугу постоянной длины и наносят вертикальные отметки на стенке первого пояса), начиная с образующей резервуара, находящейся в плоскости А (рисунок А.10а), проходящей через точку измерений уровня жидкости и базовой высоты резервуара на направляющей планке измерительного люка и продольную ось резервуара, с соблюдением следующих условий:
- число разбивок должно быть четным;
- число разбивок в зависимости от вместимости резервуара выбирают по таблице 3.
Таблица 3
Наименование показателя
Значение показателя для вместимости резервуара, м3, не менее
100
200
300
400
700
1000
2000
3000
5000
10000
20000
30000
50000
100000
Число разбивок
24
26
28
30
32
34
36
38
40
42
44
46
48
52
Все отметки разбивок пронумеровывают по часовой стрелке в соответствии с рисунком А.10».
Подпункт 9.1.2.5. Второй абзац. Заменить слова: «или ниже ребра» на «и ниже ребра».
Пункт 9.1.3 изложить в новой редакции:
«9.1.3 Определение степени наклона и угла направления наклона резервуара
9.1.3.1 Степень наклона h и угол направления наклона j резервуара определяют по результатам измерений угла и направления наклона контура днища резервуара снаружи (или изнутри) с применением нивелира с рейкой.
9.1.3.2 Степень наклона и угол направления наклона резервуара определяют в два этапа:
- на первом этапе устанавливают номера двух противоположных отметок разбивки (образующих резервуара), через которые проходит приближенное направление наклона резервуара;
- на втором этапе определяют степень наклона и угол уточненного направления наклона резервуара.
9.1.3.3 Приближенное направление наклона резервуара определяют в следующей последовательности:
а) проводят разбивку длины окружности первого пояса по 9.1.2.2;
б) освобождают утор окраек днища (далее - утор днища) резервуара от грунта;
в) устанавливают нивелир напротив первой отметки разбивки на расстоянии 5 - 10 м от резервуара и приводят его в горизонтальное положение;
г) устанавливают рейку вертикально в точке на уторе днища, находящейся напротив первой отметки разбивки, отсчитывают показание шкалы рейки l1 с погрешностью до 1 мм;
д) последовательно устанавливая рейку по часовой стрелке в точках на уторе днища, находящихся напротив отметок разбивки 2, 3,..., v, отсчитывают показания шкалы рейки l2, l3,..., lvс погрешностью до 1 мм;
е) для снятия показаний рейки в оставшихся точках отметок разбивки нивелир устанавливают на расстоянии 5 - 10 м от резервуара напротив отметки разбивки (v +1) и, устанавливая рейку вторично в точке отметки разбивки v, вторично снимают показание рейки l¢v. При этом показание рейки в точке, находящейся напротив отметки разбивки v (крайней) до перенесения нивелира на другое место lv, должно совпадать с показанием рейки в этой же точке разбивки v после перенесения нивелира на другое место, то есть l¢v с погрешностью до 1 мм. Выполнение этого условия обеспечивается регулированием высоты нивелира после перенесения его на другое место.
В случае невозможности выполнения вышеуказанного условия регулированием высоты нивелира на показание рейки в точках, находящихся напротив отметок разбивки (v + 1), (v + 2),..., s, вводят поправку, например на показание рейки в точке, находящейся напротив отметки разбивки (v + 1), l¢v+1 по формуле
lv+1 = l¢v+1 + Dl, (3a)
где l¢v+1 - показание рейки после перенесения нивелира на другое место, мм;
Dl - поправка, мм. Ее значение определяют по формуле
Dl = lv - l¢v, (3б)
где lv - показание рейки, находящейся напротив отметки v до перенесения нивелира на другое место, мм;
l¢v - показание рейки, находящейся напротив отметки v после перенесения нивелира на другое место, мм;
ж) выполняя аналогичные операции по перечислению е), отсчитывают показания рейки до отметки разбивки т (т - число отметок разбивки длины окружности первого пояса резервуара).
Показания шкалы рейки lk вносят в протокол, форма которого приведена в приложении Б (таблица Б.14).
Определяют значение разности показаний шкалы рейки в точках утора днища, находящихся напротив двух противоположных отметок разбивки Dlk, мм (см. таблицу Б.14):
- при числе отметок k от 1 до по формуле
Dl¢k = lk - l(m/2+k); (3в)
- при числе отметок от до т по формуле
Dl²k = lk - l(k-m/2), (3г)
где lk - показание шкалы рейки в точке, находящейся напротив k-й отметки, мм;
l(m/2+k), l(k-m/2) - показания шкалы рейки в точках, находящейся напротив отметок разбивки (т/2 + k) и (k - т/2), мм;
k - номер отметки разбивки. Его значения выбирают из ряда: 1, 2, 3, 4,..., т;
т - число отметок разбивки длины окружности первого пояса резервуара.
Строят график (рисунок А.10) функции Dlk, рассчитываемой по формулам (3в) и (3г). Если кривая, соединяющая точки графика Dlk относительно абсциссы, имеет вид синусоиды с периодом, равным отрезку 1 - т (кривая С на рисунке А.10), то резервуар стоит наклонно, если нет (кривая В) - резервуар стоит не наклонно.
По максимальному значению разности (Dlk)max, определенному по формуле (3в) или (3г), устанавливают приближенное направление наклона резервуара (рисунок А.10б).
Приближенное значение угла направления наклона резервуара jп определяют по формуле
(3д)
где N - число разбивок, отсчитываемое от первой отметки разбивки до приближенного направления наклона резервуара, равное k - 1.
9.1.3.4 Степень наклона и уточненный угол направления наклона резервуара определяют в следующей последовательности:
а) проводят дополнительное разбивание длины дуги противоположных разбивок (рисунок А.10б), например находящихся справа от отметок разбивки 6 и 18 (разбивки N5 и N17) и слева от отметок разбивки 6 и 18 (разбивки N6 и N18) от приближенного направления наклона контура днища, определенного по 9.1.3.3;
б) длину дуги дополнительного разбивания DL, мм, соответствующую 1°, вычисляют по формуле
где Lн - длина наружной окружности первого пояса резервуара, мм;
в) дугу длиной, вычисленной по формуле (3е), откладывают справа и слева (наносят вертикальные отметки на стенке первого пояса), начиная с образующих (отметок разбивки), по которым проходит приближенное направление наклона резервуара. Отметки отложенных дополнительных дуг (разбивок) нумеруют арабскими цифрами справа и слева от приближенного направления наклона резервуара;
г) выполняя операции, указанные в перечислениях в) и г) 9.1.3.3, отсчитывают показания шкалы рейки в точках дополнительного разбивания дуг основных разбивок, находящихся слева lл и справа lп от приближенного направления наклона резервуара, с погрешностью до 1 мм.
Результаты показаний шкалы lл, lп вносят в протокол, форма которого приведена в приложении Б».
Подпункт 9.1.6.1 изложить в новой редакции:
«9.1.6.1. Высоту поясов hн измеряют с наружной стороны резервуара вдоль образующей резервуара, находящейся в плоскости А (рисунок А.10а) по 9.1.2.2, при помощи измерительной рулетки с грузом и упорного угольника».
Подпункт 9.1.7.1 после слов «от днища резервуара» изложить в новой редакции: «и от стенки первого пояса резервуара lд угла j1 между плоскостью А и плоскостью С (рисунок А.10а). Значение угла j1 определяют методом разбивания длины окружности первого пояса с погрешностью ± 1° в следующей последовательности:
- длину окружности первого пояса изнутри резервуара разбивают на восемь частей, начиная с плоскости А (рисунок А.10а), по часовой стрелке;
- на днище резервуара через его центр и точки разбивки проводят восемь радиусов;
- устанавливают номер сектора, в пределах которого находится плоскость С (рисунок А.10а);
- в пределах вышеустановленного сектора на стенке резервуара до плоскости С откладывают (размечают) n0-ное число дополнительных хорд длиной S0, соответствующей 1°, вычисляемой по формуле
- значение угла j1 определяют по формуле
j1 = 45N0 + п0,
где N - число больших разбиваний;
п0 - число отложений хорды S0 до плоскости С.
Результаты измерений величин N0, n0, j1 вносят в протокол, форма которого приведена в приложении Б».
Подпункт 9.1.6.5 дополнить абзацем:
«Толщину слоя внутреннего антикоррозионного покрытия dс.п измеряют при помощи ультразвукового толщиномера с погрешностью до 0,1 мм».
Подпункт 9.1.6.6 перед словом «вносят» дополнить обозначением: dс.п.
Пункт 9.1.8. Наименование дополнить словами: «и параметров местных неровностей (хлопунов)».
Подпункт 9.1.8.1 изложить в новой редакции:
«9.1.8.1 Если резервуар имеет несколько приемно-раздаточных патрубков, то высоту «мертвой» полости, соответствующую j-му приемно-раздаточному патрубку (hм.п)j, измеряют рулеткой по стенке резервуара от днища резервуара до нижней точки j-го приемно-раздаточного патрубка. Нумерацию высот «мертвой» полости проводят, начиная с плоскости А (рисунок А.10а).
Если резервуар имеет приемно-раздаточные устройства, например, устройства ПРУ-Д, то измеряют рулеткой (рисунок А.17а):
- высоту по стенке резервуара от контура днища до места установки j-го приемно-раздаточного устройства hyj;
- расстояние от нижнего образующего j-го приемно-раздаточного устройства до его нижнего или верхнего среза hcj;
- длину j-го приемно-раздаточного устройства (расстояние от центра среза устройства до стенки резервуара) lcj.
Результаты измерений величин (hм.п)j, hyj, hcj, lcj в миллиметрах вносят в протокол, форма которого приведена в приложении Б».
Подпункт 9.1.8.2. Второй абзац. Заменить слова: «с восемью радиусами» на «с 24 радиусами», «восьми радиусов» на «24 радиусов», «8 равных частей» на «24 равных части»;
заменить значение: 0 - 8 на 0 - 24;
третий абзац изложить в новой редакции:
«- при отсутствии центральной трубы нивелир устанавливают в центре днища резервуара и измеряют расстояние по вертикали от неровностей днища до визирной линии (до центра окуляра) нивелира (b0) при помощи измерительной рулетки с грузом или рейкой. При наличии центральной трубы нивелир устанавливают последовательно в двух противоположных точках, не лежащих на отмеченных радиусах и отстоящих от стенки резервуара не более 1000 мм».
Пункт 9.1.8 дополнить подпунктами - 9.1.8.4 - 9.1.8.7:
«9.1.8.4 Угол j2 между плоскостью А (рисунок А.10а) и плоскостью В, проходящую через продольные оси приемно-раздаточного патрубка и резервуара, определяют с погрешностью не более ± 1°, используя данные разбивки длины окружности первого пояса по 9.1.2.2 в следующей последовательности:
- устанавливают число полных разбивок N¢0, находящихся до плоскости В (рисунок А.10а);
- по длине дуги разбивки, в пределах которой проходит плоскость В, размечают до образующей приемно-раздаточного патрубка n¢0-ное число дополнительных дуг длиной DL, соответствующей 1°. Длину дуги DL, мм, вычисляют по формуле
- значение угла j2 определяют по формуле
где m - число разбивок длины окружности первого пояса резервуара;
rп.р - радиус приемно-раздаточного патрубка, мм.
9.1.8.5 Результаты измерений величины j2 вносят в протокол, форма которого приведена в приложении Б.
9.1.8.6 В случае определения вместимости «мертвой» полости объемным статическим методом в соответствии с 9.2.2 результаты измерений оформляют протоколом поверки для «мертвой» полости по форме, приведенной в приложении В (заполняют таблицы В.4, В.6, В.8).
9.1.8.7 Площадь хлопуна sx, м2, определяют по результатам измерений длины и ширины хлопуна.
Длину lх и ширину bх хлопуна измеряют измерительной рулеткой. Показания рулетки отсчитывают с точностью до 1 мм.
Высоту хлопуна hx измеряют штангенциркулем или измерительной линейкой. Показания штангенциркуля или линейки отсчитывают с точностью до 1 мм.
Результаты измерений величин lx, bх, hx вносят в протокол, форма которого приведена в приложении Б».
Подпункт 9.1.9.1 изложить в новой редакции:
«9.1.9.1 Измеряют расстояние по горизонтали между линейкой, установленной вертикально по первой внешней образующей резервуара (рисунок А.10), и внешней образующей измерительного люка l1 (рисунок А.16) при помощи измерительной рулетки с погрешностью ± 5 мм».
Подпункт 9.1.10.1. Второй абзац изложить в новой редакции:
«При наличии жидкости в резервуарах с плавающим покрытием уровень ее должен быть не ниже уровня, установленного технологической картой на резервуар»;
дополнить абзацем:
«Базовую высоту резервуара с плавающей крышей измеряют через измерительный люк, установленный на направляющей стойке плавающей крыши или на трубе для радарного уровнемера (рисунок А.2а)».
Подпункт 9.1.10.3 изложить в новой редакции:
«9.1.10.3 Базовую высоту измеряют ежегодно. Ежегодные измерения базовой высоты резервуара проводит комиссия, назначенная приказом руководителя предприятия - владельца резервуара, в состав которой должен быть включен специалист, прошедший курсы повышения квалификации по поверке и калибровке резервуаров.
При ежегодных измерениях базовой высоты резервуара без плавающего покрытия резервуар может быть наполнен до произвольного уровня, резервуар с плавающим покрытием - до минимально допустимого уровня.
Результат измерений базовой высоты резервуара не должен отличаться от ее значения, указанного в протоколе поверки резервуара, более чем на 0,1 %.
Если это условие не выполняется, то проводят повторное измерение базовой высоты при уровне наполнения резервуара, отличающимся от его уровня наполнения, указанного в протоколе поверки резервуара, не более чем на 500 мм.
Результаты измерений базовой высоты оформляют актом, форма которого приведена в приложении Л.
При изменении базовой высоты по сравнению с ее значением, установленным при поверке резервуара, более чем на 0,1 % устанавливают причину и устраняют ее. При отсутствии возможности устранения причины проводят внеочередную поверку резервуара.
Примечание - В Российской Федерации специалисты проходят курсы повышения квалификации в соответствии с 7.1».
Подпункт 9.1.11.1 перед словом «берут» дополнить словами: «а также верхнее положение плавающего покрытия h¢п».
Подпункт 9.1.11.2 изложить в новой редакции:
«9.1.11.2 Высоту нижнего положения плавающего покрытия hп измеряют рулеткой от точки касания днища грузом рулетки до нижнего края образующей плавающего покрытия. Показания рулетки отсчитывают с точностью до 1 мм. Измерения проводят не менее двух раз. Расхождение между результатами двух измерений должно быть не более 2 мм».
Подпункт 9.1.11.3 после слов «и результаты измерений» дополнить обозначением: h¢п.
Подраздел 9.1 дополнить пунктами - 9.1.12, 9.1.13:
«9.1.12 Определение длины внутренней окружности вышестоящего пояса резервуара с плавающей крышей
9.1.12.1 При отсутствии возможности применения приспособления, показанного на рисунке А.6, длину внутренней окружности вышестоящего пояса определяют:
второго пояса (при высоте поясов от 2250 до 3000 мм) или третьего (при высоте поясов 1500 мм) - методом отложения хорд по внутренней стенке пояса;
вышестоящих поясов, начиная с третьего (при высоте поясов от 2250 до 3000 мм) или, начиная с четвертого (при высоте поясов от 1500 мм), - по результатам измерений радиальных отклонений образующих резервуара, проведенных изнутри резервуара.
9.1.12.2 Хорды откладывают на уровнях, отсчитываемых от верхней плоскости плавающей крыши:
1600 мм - при высоте поясов от 2250 до 3000 мм;
1200 мм - при высоте поясов 1500 мм.
9.1.12.3 Перед откладыванием хорд на уровне 1600 мм или на уровне 1200 мм, указанных в 9.1.12.2, при помощи рулетки с грузом через каждые 1000 мм наносят горизонтальные отметки длиной 10 - 20 мм по стенке поясов.
9.1.12.4 Отметки, нанесенные по стенкам поясов на уровнях, указанных в 9.1.12.2, соединяют между собой, применяя гибкую стальную ленту (рулетку). При этом линии горизонтальных окружностей проводят толщиной не более 5 мм.
9.1.12.5 Вычисляют длину хорды S1 по формуле
S1 = D1sin(a1/2), (3ж)
где D1 - внутренний диаметр первого пояса резервуара, вычисляемый по формуле
D1 = Lвн/p, (3и)
где Lвн - внутренняя длина окружности первого пояса, вычисляемая по формуле (Г.2);
a1 - центральный угол, соответствующий длине хорды S1 вычисляемый по формуле
a1 = 360/m1, (3к)
где т1 - число отложений хорд по линиям горизонтальных окружностей. Число т1 в зависимости от номинальной вместимости резервуара принимают по таблице 4.
Таблица 4
Номинальная вместимость резервуара, м3
Число отложений хорд т1
Номинальная вместимость резервуара, м3
Число отложений хорд т1
100
24
3000 (4000)
38
200
26
5000
40
300
28
10000
58
400
32
20000
76
700
34
30000
80
1000
34
50000
120
2000
36
100000
160
9.1.12.6 Хорду S1, длина которой вычислена по формуле (3ж), откладывают по линии горизонтальной окружности, проведенной на высоте 1600 мм и на высоте 1200 мм, указанных в 9.1.12.2, при помощи штангенциркуля (ГОСТ 166, черт. 3) с диапазоном измерений от 500 до 1600 мм.
9.1.12.7 После отложений хорд по 9.1.12.6 измеряют длину остаточной хорды Soп при помощи штангенциркуля с диапазоном измерений 0 - 150 мм с погрешностью не более 0,1 мм. Обозначение «п» соответствует термину: «покрытие».
9.1.12.8 Значения величин S1 и S0п вносят в протокол, форма которого приведена в приложении Б.
9.1.12.9 Длины внутренних окружностей поясов, находящихся выше поясов, указанных в 9.1.12.1, определяют по результатам измерений радиальных отклонений образующих резервуара от вертикали изнутри резервуара с применением измерительной каретки (далее - каретки) в следующей последовательности:
а) длину окружности первого пояса, измеренную по 9.1.1, разбивают на равные части по 9.1.2.2 (наносят вертикальные отметки на уровне 1600 мм или на уровне 1200 мм в соответствии с 9.1.12.3), начиная с плоскости А (рисунок А.10а);
б) штангу 12 с блоком 11 (рисунок А.2а), при помощи которого каретка перемещается по внутренней поверхности резервуара, устанавливают у края площадки обслуживания 13;
в) линейку 6 устанавливают на высоте 400 мм по перечислению а) 9.1.12.9 от верхней плоскости плавающей крыши при помощи магнитного держателя 7 перпендикулярно к стенке резервуара, поочередно для каждой отметки разбивки;
г) для перехода от одной отметки разбивки к другой каретку опускают, а штангу со всей оснасткой передвигают по кольцевой площадке обслуживания резервуара. Расстояние от стенки резервуара до нити отвеса а отсчитывают по линейке 6;
д) измерения вдоль каждой образующей резервуара начинают с отметки разбивки под номером один первого пояса. На каждом следующем поясе измерения проводят в трех сечениях: среднем, находящемся в середине пояса, нижнем и верхнем, расположенных на расстоянии 50 - 100 мм от горизонтального сварочного шва. На верхнем поясе - в двух сечениях: нижнем и среднем. Отсчеты по линейке снимают с погрешностью в пределах ± 1 мм в момент, когда каретка установлена в намеченной точке при неподвижном отвесе;
е) в начальный момент каретку для всех образующих резервуара останавливают на линии горизонтальной окружности на уровне 1600 мм или на уровне 1200 мм.
Результаты измерений расстояния а в миллиметрах вносят в протокол, форма которого приведена в приложении Б.
9.1.13 Высота газового пространства в плавающей крыше
9.1.13.1 Высоту газового пространства hгп (3.25) измеряют при помощи измерительной рулетки с грузом или линейкой не менее двух раз. Расхождение между результатами двух измерений не должно превышать 1 мм.
9.1.13.2 Результаты измерений hгп вносят в протокол, форма которого приведена в приложении Б».
Пункт 9.2.1 дополнить перечислением - е):
«е) угла j2 в соответствии с 9.1.8.4».
Подпункт 9.2.1.2. Заменить номер подпункта: 9.2.1.2 на 9.2.1.1;
перед словом «вносят» дополнить обозначением: j2.
Пункт 9.2.2. Наименование дополнить словами: «или в пределах высоты неровностей днища».
Подпункт 9.2.2.1 после слов «В пределах «мертвой» полости» дополнить словами: «(рисунок А.17) и в пределах неровностей днища (рисунок А.18), если неровности днища выходят за пределы «мертвой» полости;
заменить слова: «не более чем на 30 мм» на «в пределах от 10 до 100 мм».
Подпункт 9.2.2.2. Перечисление д). Заменить слова: «значения 30 мм» на «значения в пределах от 10 до 100 мм».
Пункт 9.2.3 после слов «выше «мертвой» полости» дополнить словами: «или выше высоты неровностей днища».
Подпункт 9.2.3.1 после слов «высоте «мертвой» полости» дополнить словами: «(высоте неровностей днища)».
Подпункт 9.2.3.2 после слов «в пределах «мертвой» полости» дополнить словами: «(до высоты неровностей днища)».
Подпункт 9.2.3.3. Исключить слова: «в соответствии с 9.2.2.2, 9.2.2.3».
Пункт 9.2.3 дополнить подпунктом - 9.2.3.6:
«9.2.3.6 При достижении уровня поверочной жидкости, соответствующего полной вместимости резервуара, измеряют базовую высоту резервуара Нб в соответствии с 9.1.10. Значение базовой высоты не должно отличаться от значения, измеренного по 9.2.1, более чем на 0,1 %».
Подпункт 9.2.5.1. Последний абзац. Заменить значение: ± 0,1 °С на ± 0,2 °С.
Пункт 9.2.6, подпункты 9.2.6.1, 9.2.6.2 исключить.
Подпункт 10.3.1.1. Заменить слова: «максимального уровня Hmax» на «предельного уровня Нпр»;
формулу (4) изложить в новой редакции:
(4)»;
экспликацию после абзаца «fл - высота точки касания днища грузом рулетки;» дополнить абзацем:
«Lвн - длина внутренней окружности 1-го пояса, вычисляемая по формуле (Г.2)».
Подпункт 10.3.1.2. Формулы (5) - (8) изложить в новой редакции:
(5)
(6)
на участке от Нм.п до Нп, (7)
где DV²в.д - объем внутренних деталей, включая объемы опор плавающего покрытия, на участке от Нм.п до Нп;
- на участке от Нм.п до Нп. (8)»;
последний абзац, формулы (9), (10) и экспликации исключить.
Подпункт 10.3.1.5 и формулы (11) - (15) исключить.
Подпункт 10.3.2.1 изложить в новой редакции:
«10.3.2.1 Градуировочную таблицу составляют, суммируя последовательно, начиная с исходного уровня (уровня, соответствующего высоте «мертвой» полости Нм.п), вместимости резервуара, приходящиеся на 1 см высоты наполнения, в соответствии с формулой
(16)
где Vм.п - вместимость «мертвой» полости, вычисляемая по формуле (Е.12) при изменении k от 0 до v, или по формуле, приведенной в Е.13;
Vk, Vk-1 - дозовые вместимости резервуара при наливе в него k и (k - 1) доз, соответствующие уровням Нk, H(k-1), вычисляемые по формуле (Е.12) при изменении k от v + 1 до значения k, соответствующего полной вместимости резервуара, или по формулам (Е.13), (Е.14) приложения Е и т.д.
Вместимость «мертвой» полости резервуара вычисляют по формуле
где V0 - объем жидкости до точки касания днища грузом рулетки».
Пункт 11.1. Второй абзац исключить.
Пункт 11.2. Перечисление д) дополнить словами: «(только в случае проведения расчетов вручную)».
Пункт 11.3. Первый абзац после слов «в приложении В» изложить в новой редакции: «Форма акта измерений базовой высоты резервуара, составленного при ежегодных ее измерениях, приведена в приложении Л»;
последний абзац изложить в новой редакции:
«Протокол поверки подписывают поверитель и лица, принявшие участие в проведении измерений параметров резервуара»;
дополнить абзацем:
«Титульный лист и последнюю страницу градуировочной таблицы подписывает поверитель. Подписи поверителя заверяют оттисками поверительного клейма, печати (штампа). Документы, указанные в 11.2, пронумеровывают сквозной нумерацией, прошнуровывают, концы шнурка приклеивают к последнему листу и на месте наклейки наносят оттиск поверительного клейма, печати (штампа)».
Пункт 11.4 изложить в новой редакции:
«11.4 Градуировочные таблицы на резервуары утверждает руководитель организации национальной (государственной) метрологической службы или руководитель метрологической службы юридического лица, аккредитованный на право проведения поверки».
Раздел 11 дополнить пунктом - 11.6 и сноской:
«11.6 Если при поверке резервуара получены отрицательные результаты даже по одному из приведенных ниже параметров:
- значение вместимости «мертвой» полости имеет знак минус;
- размеры хлопунов не соответствуют требованиям правил безопасности1);
- значение степени наклона резервуара более 0,02, если это значение подтверждено результатами измерений отклонения окраек контура днища резервуара от горизонтали, выполненных по методике диагностирования резервуара, то резервуар считается непригодным к эксплуатации и выдают «Извещение о непригодности»;
«1) На территории Российской Федерации действует Постановление Росгортехнадзора № 76 от 09.06.2003 об утверждении Правил устройства вертикальных цилиндрических стальных резервуаров для нефти и нефтепродуктов».
Приложение А дополнить рисунками - А.2а, А.10а (после рисунка А.10), А.10б, А.10в, А.11а, А.17а;
рисунки А.10, А.14, А.15, А.16 изложить в новой редакции:
1 - неровности днища; 2 - плавающая крыша; 3, 15 - измерительный люк; 4, 23 - опоры плавающей крыши; 5 - груз отвеса; 6 - линейка;
Рисунок А.2а - Схема измерений радиальных отклонений образующих резервуара с плавающей крышей
1 - контур днища резервуара; 2 - измерительный люк; Dlk - функция, вычисляемая по формулам (3в) и (3г);
Рисунок А.10 - График функции Dlk и схема направления наклона резервуара
1 - стенка резервуара; 2 - приемно-раздаточный патрубок; 3 - измерительный люк; 4 - внутренняя деталь;
Рисунок А.10а - Схема измерений координат внутренней детали
1 - дополнительные отметки справа; 2 - уточненное направление наклона контура днища;
j = jп - п2 = 255 - 3 = 252°
Рисунок А.10б - Схема определения угла направления наклона днища
l¢n, l²n - максимальное и минимальное показания рейки по уточненному направлению наклона контура днища;
Рисунок А.10в - Схема наклоненного резервуара
1 - плавающая крыша с опорами; 2 - груз отвеса; 3 - линейка; 4 - нить отвеса; 5 - верхняя площадка обслуживания;
Рисунок А.11а - Схема измерений степени и угла направления наклона резервуара с плавающей крышей
1 - 24 - радиусы; 25 - приемно-раздаточный патрубок; 26 - рейка; 27 - горизонт нивелира; 28 - нивелир;
Рисунок А.14 - Нивелирование днища резервуара при отсутствии центральной трубы
1 - 24 - радиусы; 25 - приемно-раздаточный патрубок; 26 - рейка; 27 - рейка в точке касания днища грузом рулетки;
Рисунок А.15 - Нивелирование днища резервуара при наличии центральной трубы
1 - кровля резервуара; 2 - измерительный люк; 3 - направляющая планка; 4 - точка измерений уровня жидкости или
Рисунок А.16 - Схема размещения измерительного люка
1, 3 - приемно-раздаточные устройства; 2 - стенка резервуара; 4 - неровности днища; 5 - контур днища;
Рисунок А.17а - Схема размещения приемно-раздаточных устройств
Приложение Б. Таблицу Б.1 изложить в новой редакции:
Таблица Б.1 - Общие данные
Код документа
Регистрационный номер
Дата
Основание для проведения поверки
Место проведения поверки
Средства измерений
Резервуар
Число
Месяц
Год
Тип
Номер
Назначение
Наличие угла наклона
Погрешность определения вместимости резервуара, %
1
2
3
4
5
6
7
8
9
10
11
12
13
Примечание - В графе 12 указывают знак «+» при наличии угла наклона, знак «-» - при его отсутствии.
таблицу Б.4 изложить в новой редакции:
Таблица Б.4 - Радиальные отклонения образующих резервуара от вертикали
Номер пояса
Точка измерения
Показание линейки а, мм
1
2
3
4
5
6
7
8
9
10
11
12
...
...
т
I
3/4h1
II
Н
С
В
III
Н
С
в
IV
н
с
в
V
н
с
в
VI
н
с
в
...
...
n
н
с
Примечание - При наличии ребра жесткости, например, в v-м поясе (9.1.2.5):
а) если ребро жесткости находится в середине пояса, то в строке «С» вносят показание линейки, определенное по формуле
где , - показания линейки в точках выше и ниже ребра жесткости;
б) если ребро жесткости находится ближе к верхнему или нижнему сварному шву, то среднее расстояние от стенки резервуара до нити отвеса вычисляют по формуле
где - показание линейки в точке выше нижнего (ниже верхнего) сварного шва.
дополнить таблицей - Б.4.1:
Таблица Б.4.1 - Длины хорд
В миллиметрах
Уровень отложений хорды
Хорда
основная S1п
остаточная S0п
1-е измерение
2-е измерение
1600
1200
Таблица Б.5. Наименование изложить в новой редакции:
«Таблица Б.5 - Параметры поверочной и хранимой жидкостей (нефти и нефтепродуктов)»;
дополнить таблицей - Б.5.1:
Таблица Б.5.1 - Радиальные отклонения образующих первого (второго или третьего для резервуаров с плавающей крышей) и последнего n-го поясов от вертикали
В миллиметрах
Номер пояса
Радиальные отклонения образующих поясов от вертикали
1
2
3
4
5
6
7
...
...
т
I (II или III)
n
таблицу Б.6 дополнить графой - 7:
Толщина слоя антикоррозионного покрытия dс.п, мм
7
таблицы Б.7, Б.8, Б.9 изложить в новой редакции:
Таблица Б.7 - Внутренние детали цилиндрической формы
Диаметр, мм
Высота от днища, мм
Расстояние от стенки первого пояса lд, мм
Число разбиваний
Угол j1,...°
Нижняя граница hвд
Верхняя граница hвд
N0
n0
Таблица Б.8 - Внутренние детали прочей формы
Объем, м3
Высота от днища, мм
Расстояние от стенки первого пояса lд, мм
Число разбиваний
Угол j1,...°
Нижняя граница hвд
Верхняя граница hвд
N0
n0
Таблица Б.9 - Параметры «мертвой» полости с приемно-раздаточным патрубком (ПРП)
Высота hм.п, мм, ПРП под номером
Угол j2,...°, ПРП под номером
Вместимость Vм.п, м3
1
2
3
4
1
2
3
4
1
2
3
4
5
6
7
8
9
Примечание - Графу 9 заполняют только при определении вместимости «мертвой» полости объемным методом и принятие вместимости «мертвой» полости по 5.3.1.5.
дополнить таблицами - Б.9.1, Б.9.2:
Таблица Б.9.1 - Параметры «мертвой» полости с приемно-раздаточным устройством (ПРУ)
Высота установки hу, мм, ПРУ под номером
Расстояние hc, мм, ПРУ под номером
Длина lс, мм, ПРУ под номером
Угол j2,...°, ПРУ под номером
Вместимость
1
2
1
2
1
2
1
2
1
2
3
4
5
6
7
8
9
Примечание - Число граф в зависимости от числа приемно-раздаточных устройств может быть увеличено.
Таблица Б.9.2 - Параметры местных неровностей (хлопунов)
Хлопун
Длина lх
Ширина bх
Высота hх
Таблица Б.10. Графа 1. Заменить значение: 8 на 24;
дополнить примечанием - 3:
«3 При отсутствии центральной трубы вносят (графа 3) значение b0»;
таблицы Б.13, Б.14 изложить в новой редакции:
Таблица Б.13 - Базовая высота резервуара
В миллиметрах
Точка измерения базовой высоты Нб
Номер измерения
1
2
Риска измерительного люка
Верхний срез измерительного люка
Таблица Б.14 - Степень наклона и угол приближенного направления наклона резервуара
Номер точки разбивки k от 1 до т/2
Отсчет по рейке lk, мм
Номер точки разбивки k от (m/2 + l) до т
Отсчет по рейке lk, мм
1
2
3
4
1
l1
m/2 + 1
l(m/2 + 1)
2
l2
m/2 + 2
l(m/2 + 2)
3
l3
m/2 + 3
l(m/2 + 3)
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
m/2
l(m/2)
т
lm
Примечания
1 k (графы 1, 3)- номер разбивки длины окружности первого пояса резервуара, выбирают из ряда: 1, 2, 3,..., т.
2 lk (графы 2, 4) - отсчеты по рейке в точках разбивки k.
дополнить таблицей - Б.14.1:
Таблица Б.14.1 - Степень наклона и угол уточненного направления наклона резервуара
Значение угла n2 при Nп =...
Показание рейки по правой разбивке lп, мм
Значение угла n2 при Nл =...
Показание рейки по правой разбивке lл, мм
l¢п
l²п
l¢л
l²л
1
2
3
4
5
6
-1°
+1°
-2°
+2°
-3°
+3°
-4°
+4°
-5°
+5°
-6°
+6°
-7°
+7°
-8°
+8°
-9°
+9°
-10°
+10°
-11°
+11°
-12°
+12°
-13°
+13°
-14°
+14°
Примечания
1 В графах 1, 4 вносят числа разбивок Nп, Nл (например Nп = 17).
2 l¢п, l²п (графы 2, 3) - показания рейки по правым противоположным разбивкам.
3 l¢л, l²л (графы 5, 6) - показания рейки по левым противоположным разбивкам.
таблицу Б.15 изложить в новой редакции:
Таблица Б.15 - Плавающее покрытие
Масса тп, кг
Диаметр Dп, мм
Расстояние от днища резервуара при крайнем положении, мм
Диаметр отверстия, мм
Параметры опоры
Уровень жидкости в момент всплытия Hвсп, мм
Объем жидкости в момент всплытия Vвсп, м3
нижнем hп
верхнем hп
D1
D2
D3
Диаметр, мм
Число, шт.
Высота, мм
1
2
3
4
5
6
7
8
9
10
11
12
Примечания
1 Если опоры плавающего покрытия приварены к днищу резервуара, то их относят к числу внутренних деталей.
2 Графы 11 и 12 заполняют только при применении объемного метода.
дополнить таблицей - Б.16:
Таблица Б.16 - Высота газового пространства в плавающей крыше
В миллиметрах
Точка измерения высоты газового пространства hгп
Номер измерения
1
2
Риска измерительного люка
Верхний срез измерительного люка
Приложение В. Таблицы В.3, В.5 изложить в новой редакции:
Таблица В.3 - Величины, измеряемые в «мертвой» полости
Высота hм.п, мм, ПРП под номером
Угол j2,...°, ПРП под номером
Отчет по рейке в точке, мм
1
2
3
4
1
2
3
4
касания днища грузом рулетки bл
пересечения 1-го радиуса и 8-й окружности b8.1
Таблица В.5 - Степень наклона и угол приближенного направления наклона резервуара
Номер точки разбивки k от 1 до m/2
Отсчет по рейке lk, мм
Номер точки разбивки k от (m/2 + 1) до т
Отсчет по рейке lk, мм
1
2
3
4
1
l1
m/2 + 1
l(m/2 + l)
2
l2
m/2 + 2
l(m/2 + 2)
3
l3
m/2 + 3
l(m/2 + 3)
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
m/2
l(m/2)
т
lm
Примечания
1 k (графы 1,3)- номер разбивки длины окружности первого пояса резервуара, выбирают из ряда: 1, 2, 3,..., т.
2 lk (графы 2, 4) - отсчеты по рейке в точках разбивки k.
дополнить таблицей - В.5.1
Таблица В.5.1 - Степень наклона и угол уточненного направления наклона резервуара
Значение угла n2 при Nп =...
Показание рейки по правой разбивке lп, мм
Значение угла n2 при Nл =...
Показание рейки по правой разбивке lл, мм
l¢п
l²п
l¢л
l²п
1
2
3
4
5
6
-1°
+1°
-2°
+2°
-3°
+3°
-4°
+4°
-5°
+5°
-6°
+6°
-7°
+7°
-8°
+8°
-9°
+9°
-10°
+10°
-11°
+11°
-12°
+12°
-13°
+13°
-14°
+14°
-15°
+15°
-16°
+16°
Примечания
1 В головках граф 1,4 вносят числа разбивок Nп, Nл (например Nп = 17).
2 l¢п, l"п (графы 2, 3) - показания рейки по правым противоположным разбивкам.
3 l¢л, l"л (графы 5, 6) - показания рейки по левым противоположным разбивкам.
таблицу В.6 изложить в новой редакции:
Таблица В.6 - Текущие значения параметров поверочной жидкости
Номер измерения
Объем дозы (DVc)j, дм3, или показание счетчика жидкости qj, дм3 (Nj, имп.)
Уровень Hj, мм
Температура жидкости, °С
Избыточное давление в счетчике жидкости pj, МПа
Расход Q, дм3/мин, (дм3/имп.)
в резервуаре (Tp)j
в счетчике жидкости (Tт)j
1
2
3
4
5
6
7
1
2
3*
4
5*
...
...
...
* Номера измерений, выделяемые только для счетчиков жидкости с проскоком и только при применении статического метода измерений объема дозы жидкости.
дополнить таблицей - В.9.1:
Таблица В.9.1 - Параметры счетчика жидкости со сдвигом дозирования и проскоком
Наименование параметра
Значение параметра при расходе Q, дм3/мин
100
150
200
250
Сдвиг дозирования С, дм3
Проскок Пр, дм3
Приложение Г. Пункт Г.1.2. Формулу (Г.2) изложить в новой редакции:
«Lвн = Lн - 2p(d1 + dс.к + dс.п), (Г.2)»;
экспликацию дополнить абзацем:
«dс.п - толщина слоя антикоррозийного покрытия».
Пункт Г.1.3 дополнить подпунктами - Г.1.3.1 - Г.1.3.4:
«Г.1.3.1 За значение длины внутренней окружности второго пояса
резервуара с плавающей крышей (L*вн.ц)2п при высоте поясов, равной 1500 мм, принимают значение длины внутренней окружности первого пояса (L*вн.ц)1п, определяемое по формуле
(Lвн.ц)1f = Lн - 2p(d1 + dс.к + dс.п). (Г.2а)
Г.1.3.2 Длину внутренней окружности второго пояса резервуара с плавающей крышей при высоте поясов от 2250 до 3000 мм (L**вн.ц)2п или длину внутренней окружности третьего пояса при высоте поясов 1500 мм (L*вн.ц)3п определяют методом последовательных приближений, используя результаты отложений хорды S1 на уровне 1600 мм или на уровне 1200 мм по 9.1.12.2 настоящего стандарта в следующей последовательности:
а) в качестве первого приближения внутреннего диаметра пояса принимают значение внутреннего диаметра первого пояса, определенного по формуле (3и);
б) вычисляют центральный угол aх1, соответствующий остаточной хорде S0п (например для второго пояса), по формуле
где S0п - длина остаточной хорды, измеренной по 9.1.12.7;
D21 - внутренний диаметр второго пояса в первом приближении, значение которого принимают равным значению внутреннего диаметра первого пояса, определенного по формуле (3и);
в) вычисляют разность углов bх1 по формуле
bх1 = a1т1 + aх1 - 360°,
где a1 - центральный угол, вычисленный по формуле (3к) при числе отложений хорды т1 и принимаемый за значение первого приближения центрального угла;
г) вычисляют центральный угол a2 во втором приближении по формуле
(Г.2б)
Если bх1 < 0, то в формуле (Г.2б) принимают знак «+», если bх1 > 0 - знак «-»;
д) вычисляют внутренний диаметр второго пояса D22 во втором приближении по формуле
где S1 - хорда, длину которой вычисляют по формуле (3ж);
е) проверяют выполнение условия
Если это условие не выполняется, то определяют значение внутреннего диаметра второго пояса D32 в третьем приближении, вычисляя последовательно параметры по формулам:
bх2 = a2т1 + aх2 - 360°,
Проверяют выполнение условия
Если это условие не выполняется, то делают следующие приближения до выполнения условия
Выполняя аналогичные операции, указанные в перечислениях а) - е), определяют внутренний диаметр третьего пояса резервуара.
Г.1.3.3 Длины внутренних окружностей второго (L*вн.ц)2п и третьего (L**вн.ц)3п поясов резервуара с плавающей крышей вычисляют по формулам:
где D2, D3 - внутренние диаметры второго и третьего поясов, определенные методом последовательного приближения по Г.1.3.2.
Г.1.3.4 Длины внутренних окружностей вышестоящих поясов резервуара с плавающей крышей вычисляют по формуле
(Г.10а)
где - длина внутренней окружности первого пояса, вычисляемая по формуле (Г.2а);
DRcpi - средние радиальные отклонения образующих резервуара, вычисляемые по формуле (Г.9);
i - номер пояса, выбираемый для резервуаров:
- при высоте поясов от 2250 до 3000 мм из ряда: 2, 3,..., n;
- при высоте поясов 1500 мм из ряда: 3, 4,..., n;
n - число поясов резервуара».
Подпункт Г.2.1.2, пункт Г.2.2. Формулу (Г.9) изложить в новой редакции:
«DRcpi = аср.i - аср1 (Г.9)»;
формула (Г.10). Заменить обозначение: DRc.pi на DRcpi.
Пункт Г.2.5. Формулу (Г.12) изложить в новой редакции:
«hi = hнi - Sihнхi + Si+1hнx(i+1), (Г.12)»;
экспликацию дополнить абзацами:
«Si, Si+1 - величины, имеющие абсолютное значение, равное 1, и в зависимости от схемы нахлеста поясов в соответствии с таблицей Б.6 (графа 6) принимают знак «+» или «-»;
hнx(i+1) - нахлеста (i + 1)-го вышестоящего пояса».
Пункт Г.3. Наименование изложить в новой редакции:
Источник: 1:
Русско-английский словарь нормативно-технической терминологии > максимальный уровень
-
19 устройство защиты от импульсных перенапряжений
- voltage surge protector
- surge protector
- surge protective device
- surge protection device
- surge offering
- SPD
устройство защиты от импульсных перенапряжений
УЗИП
Устройство, которое предназначено для ограничения переходных перенапряжений и отвода импульсных токов. Это устройство содержит по крайней мере один нелинейный элемент.
[ ГОСТ Р 51992-2011( МЭК 61643-1: 2005)]
устройство защиты от импульсных разрядов напряжения
Устройство, используемое для ослабления действия импульсных разрядов перенапряжений и сверхтоков ограниченной длительности. Оно может состоять из одного элемента или иметь более сложную конструкцию. Наиболее распространенный тип SPD - газонаполненные разрядники.
(МСЭ-Т K.44, МСЭ-Т K.46, МСЭ-Т K.57,, МСЭ-Т K.65, МСЭ-Т K.66)
[ http://www.iks-media.ru/glossary/index.html?glossid=2400324]См. также:
- импульсное перенапряжение
-
ГОСТ Р 51992-2011( МЭК 61643-1: 2005)
Устройства защиты от импульсных перенапряжений низковольтные.
Часть 1. Устройства защиты от импульсных перенапряжений в низковольтных силовых распределительных системах.
Технические требования и методы испытаний
КЛАССИФИКАЦИЯ (по ГОСТ Р 51992-2011( МЭК 61643-1: 2005))
-
По числу вводов:
-
По способу выполнения защиты от перенапряжения:
-
По испытаниям УЗИП
-
По местоположению:
- внутренней установки
-
наружной установки.
Примечание - Для УЗИП, изготовленных и классифицируемых исключительно для наружной установки и монтируемых недоступными, вообще не требуется соответствия требованиям относительно защиты от воздействующих факторов внешней среды
-
По доступности:
- доступное
-
недоступное
Примечание - Недоступное означает невозможность доступа без помощи специального инструмента к частям, находящимся под напряжением
-
По способу установки
-
По местоположению разъединителя УЗИП:
- внутренней установки
- наружной установки
- комбинированной (одна часть внутренней установки, другая - наружной установки)
-
По защитным функциям:
- с тепловой защитой
- с защитой от токов утечки
- с защитой от сверхтока.
-
По защите от сверхтока:
- По степени защиты, обеспечиваемой оболочками согласно кодам IP
-
По диапазону температур
-
По системе питания
- переменного тока частотой от 48 до 62 Гц
- постоянного тока
- переменного и постоянного тока;
ВОПРОС: ЧТО ТАКОЕ ТИПЫ И КЛАССЫ УЗИП ?
Согласно классификации ГОСТ, МЭК а также немецкого стандарта DIN, Устройства Защиты от Импульсных Перенапряжений УЗИП делятся на разные категории по методу испытаний и месту установки.
Класс 1 испытаний соответствует Типу 1 и Классу Требований B
Класс 2 испытаний соответствует Типу 2 и Классу Требований C
Класс 3 испытаний соответствует Типу 3 и Классу Требований D
ВОПРОС: ЧЕМ УЗИП ТИП 1 ОТЛИЧАЕТСЯ ОТ УЗИП ТИП 2?
УЗИП тип 1 устанавливаются на вводе в здание при воздушном вводе питания или при наличии системы внешней молниезащиты. УЗИП в схеме включения предназначен для отвода части прямого тока молнии. В соответствии с ГОСТ Р 51992-2002, УЗИП 1-го класса испытаний ( тип 1) испытываются импульсом тока с формой волны 10/350 мкс.
УЗИП тип 2 служат для защиты от наведённых импульсов тока и устанавливаются либо после УЗИП тип 1, либо на вводе в здание при отсутствии вероятности попадания части тока молнии. УЗИП 2 класса испытаний (тип 2) испытываются импульсом тока с формой 8/20 мкс.
ВОПРОС: ГДЕ ПРИМЕНЯЕТСЯ УЗИП ТИПА 3 ?
Устройства для Защиты от Импульсных Перенапряжений Типа 3 предназначены для "тонкой" защиты наиболее ответственного и чувствительного электрооборудования, например медицинской аппаратуры, систем хранения данных и пр. УЗИП Типа 3 необходимо устанавливать не далее 5 метров по кабелю от защищаемого оборудования. Модификации УЗИП Типа 3 могут быть выполнены в виде адаптера сетевой розетки или смонтированы непосредственно в корпусе или на шасси защищаемого прибора. Для бытового применения доступна версия MSB06 скрытого монтажа, за обычной сетевой розеткой.ВОПРОС: ЗАЧЕМ НУЖЕН СОГЛАСУЮЩИЙ ДРОССЕЛЬ?
Для правильного распределения мощности импульса между ступенями защиты ставят линию задержки в виде дросселя индуктивностью 15 мкГн или отрезок кабеля длиной не менее 15 м, имеющего аналогичную индуктивность. В этом случае сначала сработает УЗИП 1-го класса и возьмёт на себя основную энергию импульса, а затем устройство 2-го класса ограничит напряжение до безопасного уровня.ВОПРОС: ЗАЧЕМ СТАВИТЬ УЗИП, ЕСЛИ НА ВВОДЕ УЖЕ СТОИТ АВТОМАТ ЗАЩИТЫ И УЗО?
Вводной автомат (например на 25, 40, 63 А) защищает систему электроснабжения от перегрузки и коротких замыканий со стороны потребителя. Устройство защитного отключения УЗО (например, с током отсечки 30 или 100 мА) защищает человека от случайного поражения электрическим током.
Но ни одно из этих устройств не может защитить электрическую сеть и оборудование от микросекундных импульсов большой мощности. Такую защиту обеспечивает только Устройство Защиты от Импульсных Перенапряжений УЗИП со временем срабатывания в наносекундном диапазоне.ВОПРОС: КАКОЕ УСТРОЙСТВО ЛУЧШЕ ЗАЩИТИТ ОТ ГРОЗЫ: УЗИП ИЛИ ОПН ?
УЗИП - это официальное (ГОСТ) наименование всего класса устройств для защиты от последствий токов молний и импульсных перенапряжений в сетях до 1000 В. В литературе, в публикациях в интернете до сих пор встречаются названия - ОПН (Ограничитель перенапряжения), Разрядник, Молниеразрядник, Грозоразрядник - которые применительно к сетям до 1000 Вольт означают по сути одно устройство - это УЗИП. Для организации эффективной молниезащиты необходимо обращать внимание не на название устройства, а на его характеристики.ВОПРОС: КАК СРАВНИТЬ УЗИП РАЗНЫХ ПРОИЗВОДИТЕЛЕЙ?
Все УЗИП, продаваемые на территории России, должны производиться и испытываться в соответствии с ГОСТ Р 51992-2002( аналог международного стандарта МЭК 61643-1-98). ГОСТ Р 51992-2002 предусматривает наличие у каждого устройства ряда характеристик, которые производитель обязан указать в паспорте и на самом изделии.
Класс испытаний (Тип) 1, 2 или 3
Импульсный ток Iimp (10/350 мкс) для УЗИП 1 класса
Номинальный импульсный ток In (8/20 мкс)
Максимальный импульсный ток Imax (8/20 мкс)
Уровень напряжения защиты Up, измеренный при In
По этим характеристикам и происходит сравнение. Замечание: некоторые производители указывают значения импульсных токов на фазу (модуль), а другие - на устройство в целом. Для сравнения их надо приводить к одному виду.[ http://www.artterm-m.ru/index.php/zashitaseteji1/faquzip]
ОСОБЕННОСТИ ЭКСПЛУАТАЦИИ УСТРОЙСТВ ЗАЩИТЫ ОТИМПУЛЬСНЫХ ПЕРЕНАПРЯЖЕНИЙ В НИЗКОВОЛЬТНЫХ СИЛОВЫХ РАСПРЕДЕЛИТЕЛЬНЫХ СЕТЯХЗОРИЧЕВ А.Л.,
заместитель директора
ЗАО «Хакель Рос»
В предыдущих номерах журнала были изложены теоретические основы применения устройств защиты от импульсных перенапряжений (УЗИП) в низковольтных электрических сетях. При этом отмечалась необходимость отдельного более детального рассмотрения некоторых особенностей эксплуатации УЗИП, а также типовых аварийных ситуаций, которые могут возникнуть при этом.
1. Диагностика устройств защиты от перенапряженияКонструкция и параметры устройств защиты от импульсных перенапряжения постоянно совершенствуются, повышается их надежность, снижаются требования по техническому обслуживанию и контролю. Но, не смотря на это, нельзя оставлять без внимания вероятность их повреждения, особенно при интенсивных грозах, когда может произойти несколько ударов молнии непосредственно в защищаемый объект или вблизи от него во время одной грозы. Устройства защиты, применяемые в низковольтных электрических сетях и в сетях передачи информации подвержены так называемому старению (деградации), т.е. постепенной потере своих способностей ограничивать импульсные перенапряжения. Интенсивнее всего процесс старения протекает при повторяющихся грозовых ударах в течении короткого промежутка времени в несколько секунд или минут, когда амплитуды импульсных токов достигают предельных максимальных параметров I max (8/20 мкс) или I imp (10/350 мкс) для конкретных типов защитных устройств.Повреждение УЗИП происходит следующим образом. Разрядные токи, протекающие при срабатывании защитных устройств, нагревают корпуса их нелинейных элементов до такой температуры, что при повторных ударах с той же интенсивностью (в не успевшее остыть устройство) происходит:
− у варисторов - нарушение структуры кристалла (тепловой пробой) или его полное разрушение;
− у металлокерамических газонаполненных разрядников (грозозащитных разрядников) - изменение свойств в результате утечки газов и последующее разрушение керамического корпуса;− у разрядников на основе открытых искровых промежутков -за счет взрывного выброса ионизированных газов во внутреннее пространство распределительного щита могут возникать повреждения изоляции кабелей, клеммных колодок и других элементов электрического шкафа или его внутренней поверхности. На практике известны даже случаи значительной деформации металлических шкафов, сравнимые только с последствиями взрыва ручной гранаты. Важной особенностью при эксплуатации разрядников этого типа в распределительных щитах является также необходимость повышения мер противопожарной безопасности.
По указанным выше причинам все изготовители устройств защиты от перенапряжения рекомендуют осуществлять их регулярный контроль, особенно после каждой сильной грозы. Проверку необходимо осуществлять с помощью специальных тестеров, которые обычно можно заказать у фирм, занимающихся техникой защиты от перенапряжений. Контроль, осуществляемый другими способами, например, визуально или с помощью универсальных измерительных приборов, в этом случае является неэффективным по следующим причинам:
− Варисторное защитное устройство может быть повреждёно, хотя сигнализация о выходе варистора из строя не сработала. Варистор может обладать искажённой вольтамперной характеристикой (более высокая утечка) в области токов до 1 мA (область рабочих токов при рабочем напряжении сети; настоящую область не возможно проверить с помощью обычно применяемых приборов). Проверка осуществляется минимально в 2-х точках характеристики, напр. при 10 и 1000 мкА, с помощью специального источника тока с высоким подъёмом напряжения (1 до 1,5 кВ).
− Металлокерамический газонаполненный (грозовой) разрядник - с помощью визуального контроля можно заметить только поврежденный от взрыва внешний декоративный корпус устройства (или его выводы). Что бы выяснить состояние самого разрядника необходимо разобрать внешний корпус, но даже при таком контроле практически нельзя обнаружить утечку его газового заряда. Контроль напряжения зажигания грозового разрядника с помощью обыкновенных измерительных приборов выполнить очень трудно, он осуществляется при помощи специализированных тестеров.
− Разрядник с открытым искровым промежутком - проверку исправной работы можно осуществить только после его демонтажа и измерения с помощью генератора грозового тока с характеристикой 10/350 мкс по заказу у изготовителя устройств для защиты от импульсных перенапряжений.
2. Защита от токов утечки и короткого замыкания в устройствах защиты от импульсных перенапряжений
Основным принципом работы устройства защиты от импульсных перенапряжений является выравнивание потенциалов между двумя проводниками, одним из которых является фазный (L) проводник, а другим нулевой рабочий (N) или (РЕN) проводник, т.е. устройство включается параллельно нагрузке. При этом, в случае выхода из строя УЗИП (пробой изоляции, пробой или разрушение нелинейного элемента) или невозможности гашения сопровождающего тока (в случае применения искровых разрядников или разрядников скользящего разряда) возможно возникновение режима короткого замыкания между данными проводниками, что может привести к повреждению электроустановки и даже возникновению пожара. Стандартами МЭК предусматривается два обязательных способа защиты электроустановок потребителя 220/380 В от подобного рода ситуаций.
2.1. Устройство теплового отключения в варисторных устройствах защиты от импульсных перенапряжений
Имеющееся в варисторных ограничителях перенапряжений устройство отключения при перегреве (тепловая защита), как правило, срабатывает в результате процесса старения варистора. Суть явления заключается в том, что при длительной эксплуатации, а также в результате воздействий импульсов тока большой амплитуды происходит постепенное разрушение p-n переходов в структуре варистора, что приводит к снижению значения такого важного параметра, как наибольшее длительно допустимое рабочее напряжение защитного устройства (максимальное рабочее напряжение) Uc. Этот параметр определяется для действующего напряжения электрической сети и указывается производителями защитных устройств в паспортных данных и, как правило, непосредственно на корпусе защитного устройства. Для примера: если на корпусе защитного устройства указано значение Uc = 275 В, это обозначает, что устройство будет нормально функционировать в электропитающей сети номиналом 220 В при увеличении действующего напряжения на его клеммах до 275 В включительно (значение взято с достаточным запасом при условии выполнения электроснабжающей организацией требований ГОСТ 13109 «Нормы качества электрической энергии в системах электроснабжения общего назначения»).
В результате «старения» варистора значение Uc снижается и в определенный момент времени может оказаться меньше чем действующее напряжение в сети. Это приведет к возрастанию токов утечки через варистор и быстрому повышению его температуры, что может вызвать деформацию корпуса устройства, проплавление фазными клеммами пластмассы и, в конечном итоге, короткое замыкание на DIN-рейку и даже пожар.
В связи с этим, для применения в электроустановках рекомендуются только те варисторные ограничители перенапряжения, которые имеют в своем составе устройство теплового отключения (терморазмыкатель). Конструкция данного устройства, как правило, очень проста и состоит из подпружиненного контакта, припаянного легкоплавким припоем к одному из выводов варистора, и связанной с ним системы местной сигнализации. В некоторых устройствах дополнительно применяются «сухие» контакты для подключения дистанционной сигнализации о выходе ограничителя перенапряжений из строя, позволяющие с помощью физической линии передавать информацию об этом на пульт диспетчера или на вход какой-либо системы обработки и передачи телеметрических данных. (См. рис. 1).
2.2. Применение быстродействующих предохранителей для защиты от токов короткого замыкания
Несколько другая ситуация возникает в случае установившегося длительного превышения действующего напряжения в сети над наибольшим длительно допустимым рабочим напряжением защитного устройства (Uc), определенным ТУ для данного УЗИП. Примером такой ситуации может быть повышение напряжения по вине поставщика электроэнергии или обрыв (отгорание) нулевого проводника при вводе в электроустановку (в трехфазной сети с глухозаземленной нейтралью трансформатора). Как известно, в последнем случае к нагрузке может оказаться приложенным межфазное напряжение 380 В. При этом устройство защиты от импульсных перенапряжений сработает, и через него начнет протекать ток. Величина этого тока будет стремиться к величине тока короткого замыкания (рассчитывается по общеизвестным методикам для каждой точки электроустановки) и может достигать нескольких сотен ампер. Практика показывает, что устройство тепловой защиты не успевает отреагировать в подобных ситуациях из-за инерционности конструкции. Варистор, как правило, разрушается в течение нескольких секунд, после чего режим короткого замыкания также может сохраняться через дугу (по продуктам разрушения и горения варистора). Как же как и в предыдущем случае, возникает вероятность замыкания клемм устройства на корпус шкафа или DIN-рейку при расплавлении пластмассы корпуса и возможность повреждения изоляции проводников в цепях включения защитных устройств. Сказанное выше относится не только к варисторным ограничителям, но и к УЗИП на базе разрядников, которые не имеют в своем составе устройства теплового отключения. На фотографии (рис. 2) показаны последствия подобной ситуации, в результате которой произошел пожар в распределительном щите.
Рис.2 Выход из строя варисторного УЗИП привел к пожару в ГРЩ.
На рисунке 3 показано варисторное УЗИП, которое в результате аварийной ситуации стало источником пожара в щите.
Рис.3
Для того чтобы предотвратить подобные последствия рекомендуется устанавливать последовательно с устройствами защиты от импульсных перенапряжений предохранители с характеристиками срабатывания gG или gL (классификация согласно требованиям стандартов ГОСТ Р 50339. 0-92 ( МЭК 60269-1-86) или VDE 0636 (Германия) соответственно).
Практически все производители устройств защиты от импульсных перенапряжений в своих каталогах приводят требования по номинальному значению и типу характеристики срабатывания предохранителей дополнительной защиты от токов короткого замыкания. Как уже указывалось выше, для этих целей используются предохранители типа gG или gL, предназначенные для защиты проводок и распределительных устройств от перегрузок и коротких замыканий. Они обладают значительно меньшим (на 1-2 порядка) временем срабатывания по сравнению с автоматическими выключателями тех же номиналов. При этом предохранители имеют более высокую стойкость к импульсным токам значительных величин. Практический опыт и данные экспериментальных испытаний показывают, что автоматические выключатели очень часто повреждаются при воздействии импульсных перенапряжений. Известны случаи подгорания контактов или приваривания их друг к другу. И в том и в другом случае автоматический выключатель не сможет в дальнейшем выполнять свои функции.
Возможны различные варианты применения предохранителей и, соответственно, существует ряд особенностей, которые необходимо учитывать еще на этапе проектирования схемы электроснабжения или при изготовлении щитовой продукции. Одна из таких особенностей заключается в том, что в случае, если в качестве защиты от токов короткого замыкания будет использоваться только общая защита (вводные предохранители), то при коротком замыкании в любом УЗИП (первой, второй или третьей ступени) всегда будет обесточиваться вся электроустановка в целом или какая-то ее часть. Применение предохранителей, включенных последовательно с каждым защитным устройством, исключает такую ситуацию. Но при этом встает вопрос подбора предохранителей с точки зрения селективности (очередности) их срабатывания. Решение этого вопроса осуществляется путем применения предохранителей тех типов и номиналов, которые рекомендованы производителем конкретных моделей устройств защиты от перенапряжений.
Пример установки предохранителей F7-F12 приведен на рисунке 4.
Рис.4 Установка защитных устройств в TN-S сеть 220/380 В
ПРИМЕР: При использовании в схеме, приведенной на рисунке 4, разрядников HS55 в первой ступени защиты и варисторных УЗИП PIII280 во второй ступени применение предохранителей F5-F7 и F8-F10 будет обусловлено выбором номинального значения предохранителей F1-F3:
· При значении F1-F3 более 315 А gG, значения F7-F9 и F10-F12 выбираются 315 А gG и 160 А gG соответственно;
· При значении F1-F3 менее 315 А gG, но более 160 А gG, предохранители F7-F9 можно не устанавливать, F10-F12 выбираются - 160 А gG;
· При значении F1-F3 менее 160 А gG, предохранители F7-F12 можно не устанавливать.
Иногда может потребоваться, чтобы в случае возникновения короткого замыкания в защитных устройствах не срабатывал общий предохранитель на вводе электропитающей установки. Для этого необходимо устанавливать в цепи каждого УЗИП предохранители с учетом коэффициента (1,6). Т.е. если предохранитель на входе электроустановки имеет номинальное значение 160 А gG, то предохранитель включенный последовательно с УЗИП должен иметь номинал 100 А gG.
Применение для данных целей автоматических выключателей осложняется причинами, перечисленными выше, а также не соответствием их времятоковых характеристик характеристикам предохранителей.
3. Часто встречающиеся недостатки в конструктивном исполнении устройств защиты от импульсных перенапряжений
Многими фирмами-производителями предлагаются защитные устройства классов I и II, состоящие из базы, предназначенной для установки на DIN-рейку, и сменного модуля с нелинейным элементом (разрядником или варистором) с ножевыми вставными контактами. Такое конструктивное исполнение кажется на вид более выгодным и удобным для заказчика, чем монолитный корпус, в виду возможности более простого осуществления измерения сопротивления изоляции электропроводки (при измерениях повышенными напряжениями этот модуль можно просто изъять). Однако способность сконструированных таким способом контактов пропускать импульсные токи не превышает предел Imax = 25 kA для волны (8/20 мкс) и Iimp = 20 kA для волны (10/350 мкс).
Несмотря на это, некоторые изготовители показывают в рекламных каталогах для таких защитных устройств максимальные разрядные способности величинами до Imax = 100 kA (8/20 мкс) или Iimp = 25 kA (10/350 мкс). К сожалению, это не подтверждается практическими данными. Уже при первом ударе испытательного импульса тока с такой амплитудой произойдут пережоги и разрушение не только ножевых контактов сменного модуля, но также и повреждение контактов клемм в базе. Разрушительное воздействие испытательного импульса тока Imax = 50 kA (8/20 мкс) на механическую часть такой системы и ножевой контакт показано на следующих фотографиях (рис. 5). Очевидно, что после такого воздействия сложным становится, собственно, сам вопрос извлечения вставки из базы, так как их контакты могут привариться друг к другу. Даже если вставку удастся отсоединить от базы, последнюю будет нельзя использовать далее из-за подгоревших контактов, которые приведут к резкому возрастанию переходного сопротивления и, соответственно, уровня защиты данного УЗИП.
Для того чтобы избежать подобных последствий, защитные устройства модульной конструкции необходимо применять только тогда, когда существует гарантия, что ожидаемые импульсные воздействия не превысят указанных выше значений. Это может быть выполнено в случае правильного выбора типов и классов УЗИП для конкретной электроустановки и согласования их параметров между ступенями защиты.
4. Использование УЗИП для защиты вторичных источников питания
Одним из наиболее часто используемых вторичных источников питания является выпрямитель. Следует отметить, что практика установки элементов защиты от перенапряжений (разрядников, варисторов и т.п.) на платах или внутри блоков выпрямителя, является не правильной с нашей точки зрения. Существующий опыт показывает, что эти варисторы как правило рассчитаны на токи 7 – 10 кА (форма импульса 8/20 мкС) и по своим параметрам соответствуют третьему классу защиты согласно ГОСТ Р 51992-2002( МЭК 61643-1-98). Как правило, эксплуатирующие организации считают данный тип защиты достаточным и никаких дополнительных мер для повышения надежности работы оборудования не принимают. Однако, при отсутствии дополнительных внешних устройств защиты от импульсных перенапряжений более высокого класса, а так же при возникновении длительных превышений рабочего напряжения питающей сети в данной ситуации возможно возникновение двух типовых аварийных ситуаций:
a) Токи значительных величин, возникающие при срабатывании установленных внутри модуля варисторов, будут протекать по печатным проводникам плат или проводам внутри блоков выпрямителя по кратчайшему пути к заземляющей клемме стойки. Это может вызвать выгорание печатных проводников на платах и возникновению на параллельных незащищенных цепях наводок, которые в свою очередь приведут к выходу из строя электронных элементов блока выпрямителя. При превышении максимальных импульсных токов, определенных для данного варистора изготовителем, возможно, его возгорание и даже разрушение, что может привести к пожару и механическому повреждению самого выпрямителя (более подробно описано в п.п. 2.1).
b) Несколько другая ситуация возникает в случае длительного установившегося превышения действующего напряжения в сети над максимальным допустимым рабочим напряжением Uc, определенным ТУ для данного варистора (как правило используются варисторы с Uc = 275 В). Подробно данная ситуация была описана выше (см п.п. 2.2). В результате описанного воздействия появляется вероятность возгорания печатных плат и внутренней проводки, а так же возникновения механических повреждений (при взрыве варистора), что подтверждается статистикой организаций, осуществляющих ремонт выпрямителей.
Пример таких повреждений показан на рисунке 6.
Рис.6
С точки зрения решения проблем описанных в пункте (а), наиболее правильным является вариант установки защитных устройств, при котором они размещаются в отдельном защитном щитке или в штатных силовых и распределительных щитах электроустановки объекта. Применение внешних дополнительных устройств защиты позволяет защитить выпрямитель от импульсных перенапряжений величиной в сотни киловольт и соответственно снизить до допустимого (7 – 10 кА) значения величины импульсных токов, которые будут протекать через варисторы, встроенные в выпрямитель, или практически полностью исключить их.
Для защиты оборудования от длительного установившегося превышения действующего напряжения в сети (пункт b) можно использовать устройства контроля напряжения фазы или подобные им (см. рис. 7).
Рис. 7 Подключение устройства контроля фаз РКФ-3/1
[ http://www.energo-montage.ru/pages/top/articles/osobennosti_ekspluatacii_uzip/index_76.html]
Тематики
Синонимы
EN
3.1.45 устройство защиты от импульсных перенапряжений (surge protective device); SPD: Устройство, предназначенное для ограничения перенапряжения и скачков напряжения; устройство содержит, по крайней мере, один нелинейный компонент.
Источник: ГОСТ Р МЭК 62305-2-2010: Менеджмент риска. Защита от молнии. Часть 2. Оценка риска оригинал документа
3.53 устройство защиты от импульсных перенапряжений (surge protective device); SPD: Устройство, предназначенное для ограничения перенапряжения и скачков напряжения; устройство содержит по крайней мере один нелинейный компонент.
Источник: ГОСТ Р МЭК 62305-1-2010: Менеджмент риска. Защита от молнии. Часть 1. Общие принципы оригинал документа
3.33 устройство защиты от импульсных перенапряжений (surge protection device, SPD): Устройство, предназначенное для подавления кондуктивных перенапряжений и импульсных токов в линиях.
Источник: ГОСТ Р 51317.1.5-2009: Совместимость технических средств электромагнитная. Воздействия электромагнитные большой мощности на системы гражданского назначения. Основные положения оригинал документа
Русско-английский словарь нормативно-технической терминологии > устройство защиты от импульсных перенапряжений
20 система охлаждения ЦОДа
система охлаждения ЦОДа
-
[Интент]т
Система охлаждения для небольшого ЦОДаВымышленная компания (далее Заказчик) попросила предложить систему охлаждения для строящегося коммерческого ЦОДа. В основном зале планируется установить:
- 60 стоек с энергопотреблением по 5 кВт (всего 300 кВт) — все элементы, необходимые для обеспечения требуемой температуры и влажности, должны быть установлены сразу;
- 16 стоек с энергопотреблением по 20 кВт (всего 320 кВт) — это оборудование будет устанавливаться постепенно (по мере необходимости), и средства охлаждения планируется развертывать и задействовать по мере подключения и загрузки стоек.
Заказчик заявил, что предпочтение будет отдано энергоэффективным решениям, поэтому желательно задействовать «зеленые» технологии, в первую очередь фрикулинг (естественное охлаждение наружным воздухом — free cooling), и предоставить расчет окупаемости соответствующей опции (с учетом того, что объект находится в Московской области). Планируемый уровень резервирования — N+1, но возможны и другие варианты — при наличии должного обоснования. Кроме того, Заказчик попросил изначально предусмотреть средства мониторинга энергопотребления с целью оптимизации расхода электроэнергии.
ЧТО ПРОГЛЯДЕЛ ЗАКАЗЧИК
В сформулированной в столь общем виде задаче не учтен ряд существенных деталей, на которые не преминули указать эксперты. Так, Дмитрий Чагаров, руководитель направления вентиляции и кондиционирования компании «Утилекс», заметил, что в задании ничего не сказано о характере нагрузки. Он, как и остальные проектировщики, исходил из предположения, что воздушный поток направлен с фронтальной части стоек назад, но, как известно, некоторые коммутаторы спроектированы для охлаждения сбоку — для них придется использовать специальные боковые блоки распределения воздушного потока.
В задании сказано о размещении всех стоек (5 и 20 кВт) в основном зале, однако некоторые эксперты настоятельно рекомендуют выделить отдельную зону для высоконагруженных стоек. По словам Александра Мартынюка, генерального директора консалтинговой компании «Ди Си квадрат», «это будет правильнее и с точки зрения проектирования, и с позиций удобства эксплуатации». Такое выделение (изоляция осуществляется при помощи выгородок) предусмотрено, например, в проекте компании «Комплит»: Владислав Яковенко, начальник отдела инфраструктурных проектов, уверен, что подобное решение, во-первых, облегчит обслуживание оборудования, а во-вторых, позволит использовать различные технологии холодоснабжения в разных зонах. Впрочем, большинство проектировщиков не испытали особых проблем при решении задачи по отводу тепла от стоек 5 и 20 кВт, установленных в одном помещении.
Один из первых вопросов, с которым Заказчик обратился к будущему партнеру, был связан с фальшполом: «Необходим ли он вообще, и если нужен, то какой высоты?». Александр Мартынюк указал, что грамотный расчет высоты фальшпола возможен только при условии предоставления дополнительной информации: о типе стоек (как в них будет организована подача охлаждающего воздуха?); об организации кабельной проводки (под полом или потолком? сколько кабелей? какого диаметра?); об особенностях помещения (высота потолков, соотношение длин стен, наличие выступов и опорных колонн) и т. д. Он советует выполнить температурно-климатическое моделирование помещения с учетом вышеперечисленных параметров и, если потребуется, уточняющих данных. В результате можно будет подготовить рекомендации в отношении оптимальной высоты фальшпола, а также дать оценку целесообразности размещения в одном зале стоек с разной энергонагруженностью.
Что ж, мы действительно не предоставили всей информации, необходимой для подобного моделирования, и проектировщикам пришлось довольствоваться скудными исходными данными. И все же, надеемся, представленные решения окажутся интересными и полезными широкому кругу заказчиков. Им останется только «подогнать» решения «под себя».
«КЛАССИКА» ОХЛАЖДЕНИЯ
Для снятия тепла со стоек при нагрузке 5 кВт большинство проектировщиков предложили самый распространенный на сегодня вариант — установку шкафных прецизионных кондиционеров, подающих холодный воздух в пространство под фальшполом. Подвод воздуха к оборудованию осуществляется в зоне холодных коридоров через перфорированные плиты или воздухораспределительные решетки фальшпола, а отвод воздуха от кондиционеров — из зоны горячих коридоров через верхнюю часть зала или пространство навесного потолка (см. Рисунок 1). Такая схема может быть реализована только при наличии фальшпола достаточной высоты
В вопросе выбора места для установки шкафных кондиционеров единство мнений отсутствует, многие указали на возможность их размещения как в серверном зале, так и в соседнем помещении. Алексей Карпинский, директор департамента инженерных систем компании «Астерос», уверен, что для низконагруженных стоек лучшим решением будет вынос «тяжелой инженерии» за пределы серверного зала (см. Рисунок 2) — тогда для обслуживания кондиционеров внутрь зала входить не придется. «Это повышает надежность работы оборудования, ведь, как известно, наиболее часто оно выходит из строя вследствие человеческого фактора, — объясняет он. — Причем помещение с кондиционерами может быть совершенно не связанным с машинным залом и располагаться, например, через коридор или на другом этаже».
Если стойки мощностью 5 и 20 кВт устанавливаются в одном помещении, Александр Ласый, заместитель директора департамента интеллектуальных зданий компании «Крок», рекомендует организовать физическое разделение горячих и холодных коридоров. В ситуации, когда для высоконагруженных стоек выделяется отдельное помещение, подобного разделения для стоек на 5 кВт не требуется.
ФРЕОН ИЛИ ВОДА
Шкафные кондиционеры на рынке представлены как во фреоновом исполнении, так и в вариантах с водяным охлаждением. При использовании фреоновых кондиционеров на крыше или прилегающей территории необходимо предусмотреть место для установки конденсаторных блоков, а при водяном охлаждении потребуется место под насосную и водоохлаждающие машины (чиллеры).
Специалисты компании «АМДтехнологии» представили Заказчику сравнение различных вариантов фреоновых и водяных систем кондиционирования. Наиболее бюджетный вариант предусматривает установку обычных шкафных фреоновых кондиционеров HPM M50 UA с подачей холодного воздуха под фальшпол. Примерно на четверть дороже обойдутся модели кондиционеров с цифровым спиральным компрессором и электронным терморасширительным вентилем (HPM D50 UA, Digital). Мощность кондиционеров регулируется в зависимости от температуры в помещении, это позволяет добиться 12-процентной экономии электроэнергии, а также уменьшить количество пусков и останова компрессора, что повышает срок службы системы. В случае отсутствия на объекте фальшпола (или его недостаточной высоты) предложен более дорогой по начальным вложениям, но экономичный в эксплуатации вариант с внутрирядными фреоновыми кондиционерами.
Как показывает представленный анализ, фреоновые кондиционеры менее эффективны по сравнению с системой водяного охлаждения. При этом, о чем напоминает Виктор Гаврилов, технический директор «АМДтехнологий», фреоновая система имеет ограничение по длине трубопровода и перепаду высот между внутренними и наружными блоками (эквивалентная общая длина трассы фреонопровода не должна превышать 50 м, а рекомендуемый перепад по высоте — 30 м); у водяной системы таких ограничений нет, поэтому ее можно приспособить к любым особенностям здания и прилегающей территории. Важно также помнить, что при применении фреоновой системы перспективы развития (увеличение плотности энергопотребления) существенно ограничены, тогда как при закладке необходимой инфраструктуры подачи холодной воды к стойкам (трубопроводы, насосы, арматура) нагрузку на стойку можно впоследствии увеличивать до 30 кВт и выше, не прибегая к капитальной реконструкции серверного помещения.
К факторам, которые могут определить выбор в пользу фреоновых кондиционеров, можно отнести отсутствие места на улице (например из-за невозможности обеспечить пожарный проезд) или на кровле (вследствие особенностей конструкции или ее недостаточной несущей способности) для монтажа моноблочных чиллеров наружной установки. При этом большинство экспертов единодушно высказывают мнение, что при указанных мощностях решение на воде экономически целесообразнее и проще в реализации. Кроме того, при использовании воды и/или этиленгликолевой смеси в качестве холодоносителя можно задействовать типовые функции фрикулинга в чиллерах.
Впрочем, функции фрикулинга возможно задействовать и во фреоновых кондиционерах. Такие варианты указаны в предложениях компаний RC Group и «Инженерное бюро ’’Хоссер‘‘», где используются фреоновые кондиционеры со встроенными конденсаторами водяного охлаждения и внешними теплообменниками с функцией фрикулинга (сухие градирни). Специалисты RC Group сразу отказались от варианта с установкой кондиционеров с выносными конденсаторами воздушного охлаждения, поскольку он не соответствует требованию Заказчика задействовать режим фрикулинга. Помимо уже названного они предложили решение на основе кондиционеров, работающих на охлажденной воде. Интересно отметить, что и проектировшики «Инженерного бюро ’’Хоссер‘‘» разработали второй вариант на воде.
Если компания «АМДтехнологии» предложила для стоек на 5 кВт решение на базе внутрирядных кондиционеров только как один из возможных вариантов, то APC by Schneider Electric (см. Рисунок 3), а также один из партнеров этого производителя, компания «Утилекс», отдают предпочтение кондиционерам, устанавливаемым в ряды стоек. В обоих решениях предложено изолировать горячий коридор с помощью системы HACS (см. Рисунок 4). «Для эффективного охлаждения необходимо снизить потери при транспортировке холодного воздуха, поэтому системы кондиционирования лучше установить рядом с нагрузкой. Размещение кондиционеров в отдельном помещении — такая модель применялась в советских вычислительных центрах — в данном случае менее эффективно», — считает Дмитрий Чагаров. В случае использования внутрирядных кондиционеров фальшпол уже не является необходимостью, хотя в проекте «Утилекса» он предусмотрен — для прокладки трасс холодоснабжения, электропитания и СКС.
Михаил Балкаров, системный инженер компании APC by Schneider Electric, отмечает, что при отсутствии фальшпола трубы можно проложить либо в штробах, либо сверху, предусмотрев дополнительный уровень защиты в виде лотков или коробов для контролируемого слива возможных протечек. Если же фальшпол предусматривается, то его рекомендуемая высота составляет не менее 40 см — из соображений удобства прокладки труб.
ЧИЛЛЕР И ЕГО «ОБВЯЗКА»
В большинстве проектов предусматривается установка внешнего чиллера и организация двухконтурной системы холодоснабжения. Во внешнем контуре, связывающем чиллеры и промежуточные теплообменники, холодоносителем служит водный раствор этиленгликоля, а во внутреннем — между теплообменниками и кондиционерами (шкафными и/или внутрирядными) — циркулирует уже чистая вода. Необходимость использования этиленгликоля во внешнем контуре легко объяснима — это вещество зимой не замерзает. У Заказчика возник резонный вопрос: зачем нужен второй контур, и почему нельзя организовать всего один — ведь в этом случае КПД будет выше?
По словам Владислава Яковенко, двухконтурная схема позволяет снизить объем дорогого холодоносителя (этиленгликоля) и является более экологичной. Этиленгликоль — ядовитое, химически активное вещество, и если протечка случится внутри помещения ЦОД, ликвидация последствий такой аварии станет серьезной проблемой для службы эксплуатации. Следует также учитывать, что при содержании гликоля в растворе холодоносителя на уровне 40% потребуются более мощные насосы (из-за высокой вязкости раствора), поэтому потребление энергии и, соответственно, эксплуатационные расходы увеличатся. Наконец, требование к монтажу системы без гликоля гораздо ниже, а эксплуатировать ее проще.
При использовании чиллеров функцию «бесперебойного охлаждения» реализовать довольно просто: при возникновении перебоев с подачей электроэнергии система способна обеспечить охлаждение серверной до запуска дизеля или корректного выключения серверов за счет холодной воды, запасенной в баках-аккумуляторах. Как отмечает Виктор Гаврилов, реализация подобной схемы позволяет удержать изменение градиента температуры в допустимых пределах (ведущие производители серверов требуют, чтобы скорость изменения температуры составляла не более 50С/час, а увеличение этой скорости может привести к поломке серверного оборудования, что особенно часто происходит при возобновлении охлаждения в результате резкого снижения температуры). При пропадании электропитания для поддержания работы чиллерной системы кондиционирования необходимо только обеспечить функционирование перекачивающих насосов и вентиляторов кондиционеров — потребление от ИБП сводится к минимуму. Для классических фреоновых систем необходимо обеспечить питанием весь комплекс целиком (при этом все компрессоры должны быть оснащены функцией «мягкого запуска»), поэтому требуются кондиционеры и ИБП более дорогой комплектации.
КОГДА РАСТЕТ ПЛОТНОСТЬ
Большинство предложенных Заказчику решений для охлаждения высоконагруженных стоек (20 кВт) предусматривает использование внутрирядных кондиционеров. Как полагает Александр Ласый, основная сложность при отводе от стойки 20 кВт тепла с помощью классической схемы охлаждения, базирующейся на шкафных кондиционерах, связана с подачей охлажденного воздуха из-под фальшпольного пространства и доставкой его до тепловыделяющего оборудования. «Значительные перепады давления на перфорированных решетках фальшпола и высокие скорости движения воздуха создают неравномерный воздушный поток в зоне перед стойками даже при разделении горячих и холодных коридоров, — отмечает он. — Это приводит к неравномерному охлаждению стоек и их перегреву. В случае переменной загрузки стоек возникает необходимость перенастраивать систему воздухораспределения через фальшпол, что довольно затруднительно».
Впрочем, некоторые компании «рискнули» предложить для стоек на 20 кВт систему, основанную на тех же принципах, что применяются для стоек на 5кВт, — подачей холодного воздуха под фальшпол. По словам Сергея Бондарева, руководителя отдела продаж «Вайсс Климатехник», его опыт показывает, что установка дополнительных решеток вокруг стойки для увеличения площади сечения, через которое поступает холодный воздух (а значит и его объема), позволяет снимать тепловую нагрузку в 20 кВт. Решение этой компании отличается от других проектов реализацией фрикулинга: конструкция кондиционеров Deltaclima FC производства Weiss Klimatechnik позволяет подводить к ним холодный воздух прямо с улицы.
Интересное решение предложила компания «ЮниКонд», партнер итальянской Uniflair: классическая система охлаждения через фальшпол дополняется оборудованными вентиляторами модулями «активного пола», которые устанавливаются вместо обычных плиток фальшпола. По утверждению специалистов «ЮниКонд», такие модули позволяют существенно увеличить объемы регулируемых потоков воздуха: до 4500 м3/час вместо 800–1000 м3/час от обычной решетки 600х600 мм. Они также отмечают, что просто установить вентилятор в подпольном пространстве недостаточно для обеспечения гарантированного охлаждения серверных стоек. Важно правильно организовать воздушный поток как по давлению, так и по направлению воздуха, чтобы обеспечить подачу воздуха не только в верхнюю часть стойки, но и, в случае необходимости, в ее нижнюю часть. Для этого панель «активного пола» помимо вентилятора комплектуется процессором, датчиками температуры и поворотными ламелями (см. Рисунок 5). Применение модулей «активного пола» без дополнительной изоляции потоков воздуха позволяет увеличить мощность стойки до 15 кВт, а при герметизации холодного коридора (в «ЮниКонд» это решение называют «холодным бассейном») — до 25 кВт.
Как уже говорилось, большинство проектировщиков рекомендовали для стоек на 20 кВт системы с внутрирядным охлаждением и изоляцию потоков горячего и холодного воздуха. Как отмечает Александр Ласый, использование высоконагруженных стоек в сочетании с внутрирядными кондиционерами позволяет увеличить плотность размещения серверного оборудования и сократить пространство (коридоры, проходы) для его обслуживания. Взаимное расположение серверных стоек и кондиционеров в этом случае сводит к минимуму неравномерность распределения холода в аварийной ситуации.
Выбор различных вариантов закрытой архитектуры циркуляции воздуха предложила компания «Астерос»: от изоляции холодного (решение от Knuеrr и Emerson) или горячего коридора (APC) до изоляции воздушных потоков на уровне стойки (Rittal, APC, Emerson, Knuеrr). Причем, как отмечается в проекте, 16 высоконагруженных стоек можно разместить и в отдельном помещении, и в общем зале. В качестве вариантов кондиционерного оборудования специалисты «Астерос» рассмотрели возможность установки внутрирядных кондиционеров APC InRowRP/RD (с изоляцией горячего коридора), Emerson CR040RC и закрытых решений на базе оборудования Knuеrr CoolLoop — во всех этих случаях обеспечивается резервирование на уровне ряда по схеме N+1. Еще один вариант — рядные кондиционеры LCP компании Rittal, состоящие из трех охлаждающих модулей, каждый из которых можно заменить в «горячем» режиме. В полной мере доказав свою «вендоронезависимость», интеграторы «Астерос» все же отметили, что при использовании монобрендового решения, например на базе продуктов Emerson, все элементы могут быть объединены в единую локальную сеть, что позволит оптимизировать работу системы и снизить расход энергии.
Как полагают в «Астерос», размещать трубопроводы в подпотолочной зоне нежелательно, поскольку при наличии подвесного потолка обнаружить и предотвратить протечку и образование конденсата очень сложно. Поэтому они рекомендуют обустроить фальшпол высотой до 300 мм — этого достаточно для прокладки кабельной продукции и трубопроводов холодоснабжения. Так же как и в основном полу, здесь необходимо предусмотреть средства для сбора жидкости при возникновении аварийных ситуаций (гидроизоляция, приямки, разуклонка и т. д.).
Как и шкафные кондиционеры, внутрирядные доводчики выпускаются не только в водяном, но и во фреоновом исполнении. Например, новинка компании RC Group — внутрирядные системы охлаждения Coolside — поставляется в следующих вариантах: с фреоновыми внутренними блоками, с внутренними блоками на охлажденной воде, с одним наружным и одним внутренним фреоновым блоком, а также с одним наружным и несколькими внутренними фреоновыми блоками. Учитывая пожелание Заказчика относительно энергосбережения, для данного проекта выбраны системы Coolside, работающие на охлажденной воде, получаемой от чиллера. Число чиллеров, установленных на первом этапе проекта, придется вдвое увеличить.
Для высокоплотных стоек компания «АМДтехнологии» разработала несколько вариантов решений — в зависимости от концепции, принятой для стоек на 5 кВт. Если Заказчик выберет бюджетный вариант (фреоновые кондиционеры), то в стойках на 20 кВт предлагается установить рядные кондиционеры-доводчики XDH, а в качестве холодильной машины — чиллер внутренней установки с выносными конденсаторами XDC, обеспечивающий циркуляцию холодоносителя для доводчиков XDH. Если же Заказчик с самого начала ориентируется на чиллеры, то рекомендуется добавить еще один чиллер SBH 030 и также использовать кондиционеры-доводчики XDH. Чтобы «развязать» чиллерную воду и фреон 134, используемый кондиционерами XDH, применяются специальные гидравлические модули XDP (см. Рисунок 6).
Специалисты самого производителя — компании Emerson Network — предусмотрели только один вариант, основанный на развитии чиллерной системы, предложенной для стоек на 5 кВт. Они отмечают, что использование в системе Liebert XD фреона R134 исключает ввод воды в помещение ЦОД. В основу работы этой системы положено свойство жидкостей поглощать тепло при испарении. Жидкий холодоноситель, нагнетаемый насосом, испаряется в теплообменниках блоков охлаждения XDH, а затем поступает в модуль XDP, где вновь превращается в жидкость в результате процесса конденсации. Таким образом, компрессионный цикл, присутствующий в традиционных системах, исключается. Даже если случится утечка жидкости, экологически безвредный холодоноситель просто испарится, не причинив никакого вреда оборудованию.
Данная схема предполагает возможность поэтапного ввода оборудования: по мере увеличения мощности нагрузки устанавливаются дополнительные доводчики, которые подсоединяются к существующей системе трубопроводов при помощи гибких подводок и быстроразъемных соединений, что не требует остановки системы кондиционирования.
СПЕЦШКАФЫ
Как считает Александр Шапиро, начальник отдела инженерных систем «Корпорации ЮНИ», тепловыделение 18–20 кВт на шкаф — это примерно та граница, когда тепло можно отвести за разумную цену традиционными методами (с применением внутрирядных и/или подпотолочных доводчиков, выгораживания рядов и т. п.). При более высокой плотности энергопотребления выгоднее использовать закрытые серверные шкафы с локальными системами водяного охлаждения. Желание применить для отвода тепла от второй группы шкафов традиционные методы объяснимо, но, как предупреждает специалист «Корпорации ЮНИ», появление в зале новых энергоемких шкафов потребует монтажа дополнительных холодильных машин, изменения конфигурации выгородок, контроля за изменившейся «тепловой картиной». Проведение таких («грязных») работ в действующем ЦОДе не целесообразно. Поэтому в качестве энергоемких шкафов специалисты «Корпорации ЮНИ» предложили использовать закрытые серверные шкафы CoolLoop с отводом тепла водой производства Knuеrr в варианте с тремя модулями охлаждения (10 кВт каждый, N+1). Подобный вариант предусмотрели и некоторые другие проектировщики.
Минусы такого решения связаны с повышением стоимости проекта (CAPEX) и необходимостью заведения воды в серверный зал. Главный плюс — в отличной масштабируемости: установка новых шкафов не добавляет тепловой нагрузки в зале и не приводит к перераспределению тепла, а подключение шкафа к системе холодоснабжения Заказчик может выполнять своими силами. Кроме того, он имеет возможность путем добавления вентиляционного модуля отвести от шкафа еще 10 кВт тепла (всего 30 кВт при сохранении резервирования N+1) — фактически это резерв для роста. Наконец, как утверждает Александр Шапиро, с точки зрения энергосбережения (OPEX) данное решение является наиболее эффективным.
В проекте «Корпорации ЮНИ» шкафы CoolLoop предполагается установить в общем серверном зале с учетом принципа чередования горячих и холодного коридоров, чем гарантируется работоспособность шкафов при аварийном или технологическом открывании дверей. Причем общее кондиционирование воздуха в зоне энергоемких шкафов обеспечивается аналогично основной зоне серверного зала за одним исключением — запас холода составляет 20–30 кВт. Кондиционеры рекомендовано установить в отдельном помещении, смежном с серверным залом и залом размещения ИБП (см. Рисунок 7). Такая компоновка имеет ряд преимуществ: во-первых, тем самым разграничиваются зоны ответственности службы кондиционирования и ИТ-служб (сотрудникам службы кондиционирования нет необходимости заходить в серверный зал); во-вторых, из зоны размещения кондиционеров обеспечивается подача/забор воздуха как в серверный зал, так и в зал ИБП; в-третьих, сокращается число резервных кондиционеров (резерв общий).
ФРИКУЛИНГ И ЭНЕРГОЭФФЕКТИВНОСТЬ
Как и просил Заказчик, все проектировщики включили функцию фрикулинга в свои решения, но мало кто рассчитал энергетическую эффективность ее использования. Такой расчет провел Михаил Балкаров из APC by Schneider Electric. Выделив три режима работы системы охлаждения — с температурой гликолевого контура 22, 20 и 7°С (режим фрикулинга), — для каждого он указал ее потребление (в процентах от полезной нагрузки) и коэффициент энергетической эффективности (Energy Efficiency Ratio, EER), который определяется как отношение холодопроизводительности кондиционера к потребляемой им мощности. Для нагрузки в 600 кВт среднегодовое потребление предложенной АРС системы охлаждения оказалось равным 66 кВт с функцией фрикулинга и 116 кВт без таковой. Разница 50 кВт в год дает экономию 438 тыс. кВт*ч.
Объясняя высокую энергоэффективность предложенного решения, Михаил Балкаров отмечает, что в первую очередь эти показатели обусловлены выбором чиллеров с высоким EER и применением эффективных внутренних блоков — по его данным, внутрирядные модели кондиционеров в сочетании с изоляцией горячего коридора обеспечивают примерно двукратную экономию по сравнению с наилучшими фальшпольными вариантами и полуторакратную экономию по сравнению с решениями, где используется контейнеризация холодного коридора. Вклад же собственно фрикулинга вторичен — именно поэтому рабочая температура воды выбрана не самой высокой (всего 12°С).
По расчетам специалистов «Комплит», в условиях Московской области предложенное ими решение с функцией фрикулинга за год позволяет снизить расход электроэнергии примерно на 50%. Данная функция (в проекте «Комплит») активизируется при температуре около +7°С, при понижении температуры наружного воздуха вклад фрикулинга в холодопроизводительность будет возрастать. Полностью система выходит на режим экономии при температуре ниже -5°С.
Специалисты «Инженерного бюро ’’Хоссер‘‘» предложили расчет экономии, которую дает применение кондиционеров с функцией фрикулинга (модель ALD-702-GE) по сравнению с использованием устройств, не оснащенных такой функцией (модель ASD-802-A). Как и просил Заказчик, расчет привязан к Московскому региону (см. Рисунок 8).
Как отмечает Виктор Гаврилов, энергопотребление в летний период (при максимальной загрузке) у фреоновой системы ниже, чем у чиллерной, но при температуре менее 14°С, энергопотребление последней снижается, что обусловлено работой фрикулинга. Эта функция позволяет существенно повысить срок эксплуатации и надежность системы, так как в зимний период компрессоры практически не работают — в связи с этим ресурс работы чиллерных систем, как минимум, в полтора раза больше чем у фреоновых.
К преимуществам предложенных Заказчику чиллеров Emerson Виктор Гаврилов относит возможность их объединения в единую сеть управления и использования функции каскадной работы холодильных машин в режиме фрикулинга. Более того, разработанная компанией Emerson система Supersaver позволяет управлять температурой холодоносителя в соответствии с изменениями тепловой нагрузки, что увеличивает период времени, в течение которого возможно функционирование системы в этом режиме. По данным Emerson, при установке чиллеров на 330 кВт режим фрикулинга позволяет сэкономить 45% электроэнергии, каскадное включение — 5%, технология Supersaver — еще 16%, итого — 66%.
Но не все столь оптимистичны в отношении фрикулинга. Александр Шапиро напоминает, что в нашу страну культура использования фрикулинга в значительной мере принесена с Запада, между тем как потребительская стоимость этой опции во многом зависит от стоимости электроэнергии, а на сегодняшний день в России и Западной Европе цены серьезно различаются. «Опция фрикулинга ощутимо дорога, в России же достаточно часто ИТ-проекты планируются с дефицитом бюджета. Поэтому Заказчик вынужден выбирать: либо обеспечить планируемые технические показатели ЦОД путем простого решения (не думая о проблеме увеличения OPEX), либо «ломать копья» в попытке доказать целесообразность фрикулинга, соглашаясь на снижение параметров ЦОД. В большинстве случаев выбор делается в пользу первого варианта», — заключает он.
Среди предложенных Заказчику более полутора десятков решений одинаковых нет — даже те, что построены на аналогичных компонентах одного производителя, имеют свои особенности. Это говорит о том, что задачи, связанные с охлаждением, относятся к числу наиболее сложных, и типовые отработанные решения по сути отсутствуют. Тем не менее, среди представленных вариантов Заказчик наверняка сможет выбрать наиболее подходящий с учетом предпочтений в части CAPEX/OPEX и планов по дальнейшему развитию ЦОД.
Александр Барсков — ведущий редактор «Журнала сетевых решений/LAN»
[ http://www.osp.ru/lan/2010/05/13002554/]
Тематики
EN
Русско-английский словарь нормативно-технической терминологии > система охлаждения ЦОДа
СтраницыСм. также в других словарях:
не далее чем... — см. далее; в зн. нареч. = не да/льше как; не дальше чем … Словарь многих выражений
далее — нар., употр. часто 1. Если что либо происходит далее, значит, оно происходит в продолжение начатого или будет происходить в дальнейшем. Рынок должен и далее активизироваться и развиваться. | Далее компания планирует расширить выбор продукции. |… … Толковый словарь Дмитриева
далее — нареч. = Дальше. До станции не д. двух километров. Продолжайте так и д.! Остановится ли человек на этом? Нет, пойдет д. О чем будет сказано д. Чем д., тем хуже. ◁ И так далее, в зн. нареч. Указывает на то, что перечисление может быть продолжено… … Энциклопедический словарь
далее — нареч. см. тж. и так далее, далее более, не далее как..., не далее чем... = дальше До станции не да/лее двух километров. Продолжайте так и д … Словарь многих выражений
чем далее в спор, тем больше слов — чем дальше в лес, тем больше дров (чем далее в спор, тем больше слов) Ср. Единственное дело их было лганье... но... чем дальше в лес, тем больше дров. С каждым днем талант лганья стал в них... в несомненно бо/льших размерах. Гл. Успенский. Новые… … Большой толково-фразеологический словарь Михельсона
ДАЛЕЕ — ДАЛЕЕ, нареч. То же, что дальше. До села не д. двух километров. Об этом будет сказано д. (ниже). Продолжайте д. • И так далее (сокращённо: и т. д.) употр. в конце перечисления для указания, что перечисление могло бы быть продолжено. Не далее как … Толковый словарь Ожегова
далее — вводное слово и наречие 1. Вводное слово. Указывает на связь мыслей. Выделяется запятыми. Подробно о пунктуации при вводных словах см. в Приложении 2. (↑Приложение 2) Далее, представлялся вопрос: по смерти Юрия кто должен был занять его место? С … Словарь-справочник по пунктуации
чем дальше в лес, тем больше дров(чем далее в спор, тем больше слов) — Ср. Единственное дело их было лганье... но... чем дальше в лес, тем больше дров. С каждым днем талант лганья стал в них... в несомненно бо/льших размерах. Гл. Успенский. Новые времена. Три письма. 2. Ср. Не уйти ли нам за добра ума отсюда? видно … Большой толково-фразеологический словарь Михельсона
далее — I нареч. (затем, потом) II и так да/лее; не да/лее как...; не да/лее чем … Орфографический словарь русского языка
Чем дальше в лес, тем больше дров(чем далее в спор, тем больше слов) — Чѣмъ дальше въ лѣсъ, тѣмъ больше дровъ (чѣмъ далѣе въ споръ, тѣмъ больше словъ). Ср. Единственное дѣло ихъ было лганье... но... чѣмъ дальше въ лѣсъ, тѣмъ больше дровъ. Съ каждымъ днемъ талантъ лганья сталъ въ нихъ... въ несомнѣнно бо̀льшихъ… … Большой толково-фразеологический словарь Михельсона (оригинальная орфография)
Лаванда, Хуторянка, далее везде… — Лаванда, Хуторянка, далее везде... студийный альбом Софии Ротару Дата выпуска 2004 Записан … Википедия
Перевод: с русского на английский
с английского на русский- С английского на:
- Русский
- С русского на:
- Все языки
- Английский
- Башкирский
- Белорусский
- Греческий
- Итальянский
- Немецкий
- Таджикский
- Татарский
- Украинский
- Финский
- Французский