Перевод: с русского на английский

с английского на русский

на+три+части

  • 101 богатство

    1. wealth

     

    богатство
    благосостояние

    Стоимость активов, принадлежащих лицу или группе лиц. Экономическая наука началась с изучения природы богатства (например, труд Адама Смита “Богатство народов”) и того, как оно меняется в течение данного периода. Кейнсианская теория стремилась сделать основной упор на доход (income), рассматривая его как главный объект исследования в макроэкономике; однако сейчас считается, что доход всего лишь оказывает влияние на поведение индивидов, поскольку влияет на их благосостояние.
    [ http://www.vocable.ru/dictionary/533/symbol/97]

    богатство
    Все, что имеет рыночную оценку и может быть продано за деньги или обменено на иные блага. (Это, разумеется, далеко не единственное определение столь общего понятия, но принятое довольно широко в экономической литературе). Б. может быть представлено в вещественной форме и в форме бумажных активов, а также личных способностей человека (если их оказывается возможным продать на рынке труда). Последнее называется неосязаемым (правильнее – нематериальным) богатством, человеческим капиталом. Б. обладает той особенностью, что оно способно приносить доход, то есть нарастать богатством же. Следует отличать само Б., которое в экономико-математических моделях отражается показателями запаса, «резервуара», и прирост богатства, фиксируемый показателями «потоков». Сущность богатства, законов его производства и распределения экономисты сделали предметом своих исследований еще со времен Адама Смита. Этот предмет исследований, по словам Дж.С.Милля, “во все века неизбежно оказывался в центре практических интересов человечества и иногда даже неоправданно поглощал все внимание”. [1] Представление о природе Б. исторически изменялось, в значительной мере в связи с изменениями общественного устройства и структуры самого Б.. Например, в докапиталистических формациях главным Б-м считалась земля и все, что с ней связано. В дальнейшем в центр внимания вышел капитал - в форме производственных фондов, денежных накоплений и т.п. В настоящее же время, в постиндустриальных обществах, наблюдается опережающий рост значения интеллектуального потенциала как важнейшего элемента богатства. Соответственно, на первый план выходит “человеческий капитал”, как форма Б. индивидуума. В современной экономической литературе существуют серьезные расхождения во мнениях о природе и происхождении богатства. Эти расхождения часто проявляются в дискуссиях, связанных с оценкой национального богатства, но касаются и смысла богатства как такового. Например, речь идет о том, следует ли включать в состав национального богатства природные ресурсы страны. Упрощенное толкование теории трудовой теории Маркса приводит к утверждению об исключительно трудовой природе богатства и соответственно - к предложениям об оценке Б. по затраченному на его создание труду, а не по его полезности. При всем значении труда, как источника существенной части Б., такая позиция ведет к искаженному представлению о природе последнего. Лишь в качестве примера: получается, что месторождение, на поиск которого затрачено больше труда, “стоит” дороже, чем случайно найденное, но куда более ценное и крупное, — а таких случаев, как известно, сколько угодно. Еще в классической политической экономии XIX века Б. совершенно четко подразделялось на три категории: Б. индивидуума, Б. общественной группы и, наконец, богатство народа, точнее – нации, объединенной самостоятельной государственностью. В настоящее время эта точка зрения стала общепринятой. См. также Вещественный капитал, Национальное богатство, Человеческий капитал. [1] Милль Дж.С. Основы политической экономии, т.1, М.:. 1980, с.81
    [ http://slovar-lopatnikov.ru/]

    Тематики

    Синонимы

    EN

    Русско-английский словарь нормативно-технической терминологии > богатство

  • 102 бюджетный резерв

    1. budgetary reserve
    2. budget slack

     

    бюджетный резерв
    Заранее обособленная часть бюджетных средств, предназначенная на финансирование различных непредвиденных расходов государства, его субъектов и т.д.
    [ОАО РАО "ЕЭС России" СТО 17330282.27.010.001-2008]

    бюджетный резерв
    Заранее обособленная часть бюджетных средств, предназначенная на финансирование различных непредвиденных расходов государства и субъектов Федерации. Бюджетный федерализм (Budget federalism) – система финансовых отношений между уровнями государственной власти ( федеральным и региональным), а также уровнем местного самоуправления. Б.ф. – основа федерализма вообще. Как распределяются и перераспределяются денежные средства государства, собираемые с налогоплательщиков, таков и федерализм. В настоящее время все субъекты Федерации разделились на три неравные части. Подавляющее большинство из них не в состоянии оплачивать местные расходы и прежде всего «кормить» своих бюджетников. Для этого они получают из столицы бюджетные трансферты, то есть безвозмездные регулирующие дотации. Однако ранее они обязаны перевести в центр по утвержденным нормативам собранные налоговые доходы. Возникает встречное движение денег. Но в целом, при взаимном расчете выходит, что эти регионы получают больше, чем дают, почему их и называют дотационными, или регионами-реципиентами, то есть получателями помощи. Другие регионы сводят свои расчеты с центром по принципу равенства: сколько отправляют налогов, столько и получают трансфертов. И только десяток регионов являются «донорами» (Москва, Санкт-Петербург, Ямало-Ненецкий округ и другие). Это наиболее эффективно хозяйствующие регионы. Среди них есть, впрочем, и такие, где просто зарегистрированы налогоплательщики с высокой нормой и объемом прибыли. Нерациональность существующего порядка в том, что власти регионов-реципиентов могут не заботиться о повышении эффективности производства, развитии промышленности и сельского хозяйства. Они знают, что центр их поддержит, фактически за счет регионов-доноров. Реформа бюджетного федерализма, с одной стороны, должна была бы привести к выравниванию налогового бремени, ложащегося на регионы, но с другой стороны – стимулировать власти субъектов Федерации, чтобы они развивали экономическую деятельность, способствующую улучшению условий и уровня жизни населения своих регионов. Для этого, прежде всего, нужно разделение ответственности. За последние годы был выработан ряд дополнений и изменений в Бюджетный кодекс РФ по теме межбюджетных отношений, а также в связи с реформой местного самоуправления. Совершенствовались и нормативы разделения налогов между региональными властями и местными органами самоуправления. Но эта работа еще далеко не завершена. См. также Финансирование муниципалитетов. Индекс хозяйственного развития территории, Местные и региональные финансы.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > бюджетный резерв

  • 103 бюджетный федерализм

    1. fiscal federalism
    2. budget federalism

     

    бюджетный федерализм
    Способ построения бюджетных отношений между тремя уровнями бюджетной системы (в России - между федеральными органами государственной власти, органами власти субъектов Федерации и органами местного самоуправления).
    [ОАО РАО "ЕЭС России" СТО 17330282.27.010.001-2008]

    бюджетный федерализм
    Система финансовых отношений между уровнями государственной власти (федеральным и региональным), а также уровнем местного самоуправления. Б.ф. – основа федерализма вообще. Как распределяются и перераспределяются денежные средства государства, собираемые с налогоплательщиков, таков и федерализм. В настоящее время все субъекты Федерации разделились на три неравные части. Подавляющее большинство из них не в состоянии оплачивать местные расходы и прежде всего «кормить» своих бюджетников. Для этого они получают из столицы бюджетные трансферты, то есть безвозмездные регулирующие дотации. Однако ранее они обязаны перевести в центр по утвержденным нормативам собранные налоговые доходы. Возникает встречное движение денег. Но в целом, при взаимном расчете выходит, что эти регионы получают больше, чем дают, почему их и называют дотационными, или регионами-реципиентами, то есть получателями помощи. Другие регионы сводят свои расчеты с центром по принципу равенства: сколько отправляют налогов, столько и получают трансфертов. И только десяток регионов являются «донорами» (Москва, Санкт-Петербург, Ямало-Ненецкий округ и другие). Это наиболее эффективно хозяйствующие регионы. Среди них есть, впрочем, и такие, где просто зарегистрированы налогоплательщики с высокой нормой и объемом прибыли. Нерациональность существующего порядка в том, что власти регионов-реципиентов могут не заботиться о повышении эффективности производства, развитии промышленности и сельского хозяйства. Они знают, что центр их поддержит, фактически за счет регионов-доноров. Реформа бюджетного федерализма, с одной стороны, должна была бы привести к выравниванию налогового бремени, ложащегося на регионы, но с другой стороны – стимулировать власти субъектов Федерации, чтобы они развивали экономическую деятельность, способствующую улучшению условий и уровня жизни населения своих регионов. Для этого, прежде всего, нужно разделение ответственности. За последние годы был выработан ряд дополнений и изменений в Бюджетный кодекс РФ по теме межбюджетных отношений, а также в связи с реформой местного самоуправления. Совершенствовались и нормативы разделения налогов между региональными властями и местными органами самоуправления. Но эта работа еще далеко не завершена. См. также Финансирование муниципалитетов. Индекс хозяйственного развития территории, Местные и региональные финансы.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > бюджетный федерализм

  • 104 ионосферное распространение

    1. ionospheric propagation

     

    ионосферное распространение
    Распространение радиоволн, в результате их отражения и рассеяния от части внешней атмосферы Земли, в которой обычно присутствуют свободные электроны, возникающие в результате ионизации, в количестве, достаточном для измерения характеристик проходящих через эти слои радиоволн. Для удобства ионосфера подразделяется на три слоя, обозначаемые буквами D, Е и F, границы которых относительно условны (см. табл. L-1).
    [Л.М. Невдяев. Телекоммуникационные технологии. Англо-русский толковый словарь-справочник. Под редакцией Ю.М. Горностаева. Москва, 2002]

    Тематики

    • электросвязь, основные понятия

    EN

    Русско-английский словарь нормативно-технической терминологии > ионосферное распространение

  • 105 конденсатор компенсации реактивной мощности

    1. power factor correction capacitor

     

    конденсатор для повышения коэффициента мощности
    -
    [ ГОСТ 1282-88]

    EN

    power factor correction capacitor
    a power capacitor connected in parallel with a circuit to improve its power factor
    [IEV number 811-27-22]

    FR

    condensateur d'amélioration de facteur de puissance
    condensateur de puissance destiné à être connecté en parallèle sur un circuit, pour en améliorer le facteur de puissance
    [IEV number 811-27-22]

    Конструктивно конденсатор представляет собой металлический (стальной или алюминиевый) корпус, в котором размещаются секции (пакеты), намотанные из нескольких слоев алюминиевой фольги, проложенных конденсаторной бумагой или синтетической пленкой толщиной 10—15 мкм (0,01—0,015 мм). Соединенные между собой секции имеют выводы, расположенные снаружи корпуса, в его верхней части. Трехфазные конденсаторы имеют три фарфоровых вывода, однофазные — один.

    Конденсатор, как и любой элемент электроэнергетической системы, характеризуется потерями активной мощности, которые приводят к его нагреву. Эти потери тем больше, чем выше приложенное напряжение, его частота и емкость конденсатора. Потери в конденсаторе зависят и от свойств диэлектрика, определяемых тангенсом угла диэлектрических потерь (tg) и характеризующих удельные потери (Вт/квар) в конденсаторе. В зависимости от типа и назначения конденсатора потери в них могут составлять от 0,5 до 4 Вт/квар.

    В электроэнергетике для компенсации реактивной мощности применяют так называемые косинусные конденсаторы, предназначенные для работы при частоте напряжения 50 Гц. Их мощность, измеряемая в киловольт-амперах реактивных (квар), составляет от 10 до 100 квар.

    Шкала номинальных напряжений конденсаторов от 230 В до 10,5 кВ, что позволяет собирать из них установки для сетей напряжением от 380 В и выше. Конденсаторы обладают хорошей перегрузочной способностью по току (до 30 % от номинального) и по напряжению (до 10 % от номинального).
    [ http://www.energocon.com/pages/id1243.html]

    Тематики

    Обобщающие термины

    Синонимы

    EN

    DE

    FR

    Русско-английский словарь нормативно-технической терминологии > конденсатор компенсации реактивной мощности

  • 106 пакетированный лом

    1. bundle scrap
    2. baled scrap

     

    пакетированный лом
    Лом, подготовл. для загрузки в плавильные агрегаты в виде пакетов, спрессов. двух- или трехсторонним сжатием, из легковес. отходов текущего произ-ва (обрезь, высечка, стружка) или из корпусов вышедших из строя агрегатов и машин, включая разные емкости (баки, бочки, канистры и т. п.). Наиб, ценны пакеты, получ. из чистых лист., полос, и мелкосортных отходов и обрези, образ, в цехах прокатных и трубного произ-ва, а тж. в кузнечнопрессовых цехах машиностроит. з-дов. В шихте для получения таких пакетов не д. б. углеродистой стружки, обрези и отходов эмалиров., луженого и оцинков. металла и металла, плакиров. цв. металлами, Ni и Сr. Допустимые размеры пакетов 2000x1050x750 мм при кажущейся плотности 1,2—1,8 т/м3. Кроме того, успешно применяют пресс-ножницы, разрез, смятые в двух взаимно-перпендик. направл. прямоуг. прессовки на три-четыре части с получением пакетов до 1050x750x700 мм. Пакеты из кузовов вышедших из строя легковых автомобилей и др. легковес, крупногабарит. лома, получ. трехсторон. прессов, на гидравлич. прессах или сформиров. на пресс-ножницах после двухсторон. прессования, как правило, используют в шихте молотковых дробилок. При ударном дроблении спрессов. лист, металл превращ. в мелкочешуйчатый фрагметиров. л. с достаточно очищ. от лакокрасочных и эмальпокрытий поверхностью.
    Фракции этих покрытий отделяют магн. сепарацией или отдувом с удалением запыл. воздуха в систему газоочистки. Пакеты амортизац. лома, содерж. детали изделий из лист, металла с покрытиями из олова, цинка, меди и т. п., используют, как правило, в шихте домен. печей, поскольку затраты на их переработку полиградиентной сепарацией не только дороги, но и недостат. эффективны.
    [ http://metaltrade.ru/abc/a.htm]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > пакетированный лом

  • 107 путевой выключатель

    1. position switch
    2. limit switch

     

    путевой выключатель
    Выключатель, изменяющий свое коммутационное положение или состояние при заданных положениях перемещающихся относительно него подвижных частей рабочих машин и механизмов.
    Примечание. Путевой выключатель может быть более двух коммутационных положений.
    [ ГОСТ 17703-72]

    путевой выключатель
    То же, что и конечный (концевой) выключатель, но срабатывающий в момент когда подвижная часть машины или механизма достигла определенного положения (позиции) при своем движении (т. е. срабатывающий по ходу движения подвижной части).
    На практике все три значения часто употребляются как синонимы.

    ... Настоящий стандарт распространяется на следующие аппараты для цепей управления:...
    - конечные (путевые) выключатели для цепей управления, например приводимые в действие частью станка или механизма;...

    [ ГОСТ Р 50030.5.1-99 (МЭК 60947-5-1-97)]

    5.5.27. Цепи кнопок, ключей управления, путевых и конечных выключателей должны быть гальванически разделены.
    [ПУЭ]

    Датчики положения (например, конечные выключатели, контактные выключатели) не должны повреждаться при надлежащей установке в случае перебега.
    [ ГОСТ Р МЭК 60204-1-99]

    Тематики

    Обобщающие термины

    EN

    Русско-английский словарь нормативно-технической терминологии > путевой выключатель

  • 108 разрушение

    1. fracture
    2. failure
    3. degradation

     

    разрушение
    Кинетический процесс зарождения и (или) развития трещин в результате действия внешних или внутренних напряжений, завершающегося разделением изделия (образца) на части. Разрушение классифицируют по разным признакам на следующие виды: по характеру силового воздействия на статически кратковременное, статически длительное, усталостное и ударное (динамическое); по ориентировке макроскопической поверхности разрушения — на разрушение путем отрыва (поверхность разрушения перпендикулярна направлению наибольших растягивающих напряжений или среза (поверхность разрушения составляет угол около 45°); по величине пластической деформации, предшествующей разрушению — на хрупкое и вязкое; по расположению поверхности разрушения относительно структуры — на транскристаллическое (внутрикристалл.), интеркристаллическое (межкристалл.) и смешанное; по влиянию внешней среды — на водородное, жидкометаллическое, коррозионное и т.п. В механике разрушения различают три способа взаимного смещения поверхностей трещины: I — отрыв; II — поперечный и III — продольный (чистый) сдвиг. Если трещина распространяется так же легко (без заметных следов пластической деформации), как и ее зарождение, то разрушение называют хрупким. Когда распространение трещины значительно более энергоемкий (на несколько порядков), чем ее зарождение, процесс, сопровождаемый значительной пластической деформацией не только вблизи поверхности разрушения, но и в объеме тела, то разрушение вязкое. Энергетические затраты на распространение трещины определяет ее трещиностойкость. Характер разрушения проявляется в структуре поверхности излома, изучаемого фрактографией.

    разрушение
    Неровная поверхность, возникающая при разрушении фрагмента металла.
    [ http://www.manual-steel.ru/eng-a.html]

    Тематики

    EN

    3.3 разрушение (degradation): Изменение одного или нескольких механических свойств материала защитных перчаток вследствие контакта с химическим веществом.

    Примечание - Разрушение материала перчаток может сопровождаться отслаиванием, набуханием, разложением, обесцвечиванием, хрупкостью, увеличением жесткости и твердости, изменением размеров, внешнего вида.

    Источник: ГОСТ Р ЕН 374-2009: Система стандартов безопасности труда. Средства индивидуальной защиты рук. Перчатки, защищающие от химикатов и микроорганизмов. Общие технические требования. Методы испытаний

    Русско-английский словарь нормативно-технической терминологии > разрушение

  • 109 секторы экономики

    1. sectors of national economy

     

    секторы экономики
    Части экономики, выделяемые аналитиками по не всегда четким критериям. В одних случаях это такие всеобъемлющие агрегаты, как реальный сектор и финансово-денежный сектор, в других более узкие — такие, как производственный сектор и потребительский сектор, в третьих – по существу, отрасли: банковский сектор, рекреационный сектор и т.п, в четвертых, занимающие промежуточное положение между секторами в широком смысле и отраслями – например, аграрный сектор.– См. например, Система Национальных Счетов. Еще в 1940-х гг. Кларком была предложена модель, согласно которой хозяйство подразделяется на три сектора: первичный – сельское хозяйство и добывающие отрасли промышленности, вторичный – обрабатывающая промышленность и третичный – «услуги»). Вообще, подобных классификаций много, в деталях они различаются (например, А.Мэддисон относил к вторичному сектору обрабатывающую и горную промышленность) Выдвигается деление на четыре и даже пять секторов. Например, к четвертичному сектору относят торговлю, финансовые услуги, страхование и операции с недвижимостью, а к пятеричному – здравоохранение, образование, научные исследования, индустрию отдыха и сферу государственного управления. Для анализа экономической системы особое значение имеет ее деление на государственный и негосударственный секторы. Первый объединяет экономические объекты, находящиеся в государственной собственности и соответственно управляемые учреждениями государственной власти. Ко второму относятся экономические объекты, находящиеся в частной, коллективной и в других формах негосударственной собственности. (См. Формы собственности в России). Их соотношение — критериальная характеристика социально-экономического устройства страны.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > секторы экономики

  • 110 система выведения анестетических газов

    1. anaesthetic gas scavenging system
    2. AGSS

     

    система выведения анестетических газов
    СВАГ

    Система, присоединяемая к выпускному отверстию дыхательного контура или к другому устройству с целью выведения выдыхаемого и (или) излишнего анестетического газа в соответствующее место.
    Примечание
    Система включает три функциональные части: переходную, приемную и передающую. Они могут быть отдельными, последовательно соединенными или объединенными в общую систему. Одна или несколько из этих частей могут быть встроены в дыхательный контур или в другое оборудование.
    [ ГОСТ Р 52423-2005]

    Тематики

    • ингаляц. анестезия, искусств. вентиляц. легких

    Синонимы

    EN

    DE

    FR

    • SEGA
    • système d’évacuation des gaz d’anesthésie

    Русско-английский словарь нормативно-технической терминологии > система выведения анестетических газов

  • 111 система рецептурного управления технологическим процессом

    1. batch management solution
    2. batch

     

    система рецептурного управления технологическим процессом
    -
    [Интент]

    Вообще, batch-процесс – это вид технологического процесса, который иногда противопоставляют непрерывному процессу. Иногда batch-процессы называют рецептурными процессами (или просто рецептами); эту терминологию мы и будем в дальнейшем использовать. Слово “batch” еще можно перевести как “партия продукции”, и это тоже относится к затрагиваемой теме, так как в результате рецептурного процесса производится партия продукции. Ладно, хватит путаницы – теперь по делу.

    Раньше мы рассматривали технологические процессы, которые идут непрерывно в течение 24 часов в день, 7 дней в неделю, 365 дней в году. Хотя, на самом деле, раз в году делают плановый останов на несколько дней для выполнения ремонтных и других работ, но это происходит строго в соответствии с планом, и этому предшествуют значительные подготовительные работы. В другое же время остановка производства – это “чрезвычайное” происшествие. При этом отдельно взятая технологическая установка принимает участие в производстве одного вида продукции, а сам процесс идет по фиксированной технологической цепочке с неизменными настройками (уставками). Короче, все скучно, однообразно и весьма предсказуемо.

    А теперь представим гипотетический пищевой цех по производству сока. При этом цех может производить несколько видов сока: яблочный, вишневый и апельсиновый, т.е. 3 вида продукции. Пусть сок производится из концентрированного сока в специальной емкости с мешалкой, где он тщательно смешивается с водой, а потом пастеризуется и идет на розлив (пакетирование).

    Имеет ли смысл ставить для производства этих трех видов сока три производственные линии (по одной линии на каждый вид сока)? Было бы круто, но чрезвычайно дорого. Выход – использовать одну и ту же линию для выпуска разных видов продукции. При этом понятно, что и технологические параметры для производства различных соков будут заметно друг от друга отличаться. Например, вишневый концентрат нужно смешивать с водой гораздо дольше, чем яблочный, но пастеризовать его надо при меньшей температуре (я на самом деле этого не знаю - чисто предположение:)

    Набор технологических параметров для производства определенного вида продукции называется рецептом (recipe). В нашем примере для сока это может быть: соотношение вода/концентрат, длительность и температура смешивания; температура пастеризации + другие параметры. В общем случае, рецепт также может содержать последовательность технологических операций, которые для различных видов продукции могут быть, строго говоря, разными. Хотя на практике, как правило, рецепт не подразумевает различающиеся технологические операции, а содержит всего лишь массив технологических уставок для того или иного продукта.

    4885

    Рис. 1. Иллюстрация рецептурного управления на примере производства различных видов сока

     

    Это все напоминает процесс приготовления еды на кухне, где мы оттачиваем рецепты разных блюд, но при этом используем одни и те же орудия (кастрюли, ножи, разделочные доски, плиту и т.д.)

    Теперь попробуем дать характеристику batch-процессу:

    1. На выходе несколько видов продукции.
    2. При производстве разных видов продукции задействуется одно и то же технологическое оборудование.
    3. Имеется множество рецептов.
    4. Производство по “партиям”, которое может быть относительно легко и без последствий остановлено после завершения партии, а потом возобновлено.

    Автоматизированное управление batch-процессом называется рецептурным управлением (batch control, или recipe control). Этот вид управления несколько специфичен, и требует от системы управления некоторой смекалки. Конечно, можно использовать для задач рецептурного управления обычные программные блоки, подходящие для управления непрерывным процессом, НО на практике это приводит к огромным трудностям (=головной боли) при попытке все это реализовать, используя стандартные подходы программирования. Поэтому многие производители АСУ ТП разработали специализированные batch-модули, которые адаптированы именно под рецептурные процессы. Эти модули могут выполняться на уровне ПЛК или на выделенном сервере batch. Иногда эти сервера, к тому же, резервируются. Также batch-модули дополняются специализированной средой разработки batch-программ, что сильно облегчает жизнь инженера.

    На рисунке ниже в качестве примера приведена конфигурация верхнего уровня АСУ ТП SIMATIC PCS 7, оснащенной выделенным сервером batch.

    4886

    Рис. 2. Структурная схема АСУ ТП с выделенным сервером batch


    Перечислим основные обязанности системы batch-управления:

    1. Ну, собственно, самая главная задача – хранение/загрузка рецептов и их выполнение в режиме реального времени ( batch process management).
    2. Отслеживание, не занята ли технологическая установка выполнением другого рецепта. Если занята, то выделяется другая аналогичная установка для выполнения данного рецепта ( process unit allocation).
    3. Формирование отчетов об изготовление партии продукции в задаваемой пользователем форме. Причем, требуются отчеты с возможностью отслеживания истории (ретроспективы) “прогона” партии по технологической цепочке ( reporting and batch tracking).
    4. Расчет различных показателей эффективности производства, как, например: удельного времени простоя (в %), производительности (в л/c) технологической установки или полного времени изготовления партии продукции (в мин).
    5. Планирование изготовления партий, что фактически подразумевает составление производственного расписания. Ну, это на самом деле ни одна система в полном объеме пока не реализует ( batch planning).

    И еще несколько слов.

    Как правило, пакет batch состоит из двух частей – операторской (клиентской) и исполняемой. Клиентская часть устанавливается на АРМы и всего лишь обеспечивает удобный операторский интерфейс. Клиентская часть, как правило, органично вписывается в общую операторскую среду, и работа с ней идет непосредственно из мнемосхем.

    Исполняемая часть – это костяк системы. Именно она ответственна за автоматизированное выполнение задач рецептурного управления, описанных выше. Исполняемая часть прогружается в специальные серверы batch или в обычные ПЛК в зависимости от архитектуры АСУ ТП.

    И еще. Существует международный стандарт ISA-88, специфицирующий batch-процессы, определяющий модель и философию рецептурного управления, а также стандартизирующий соответствующую терминологию. Документ тяжеловесный, и посему прочитан полностью мной не был. Тем не менее, в следующей части я попытаюсь более детально описать рецептурные системы с привязкой именно к стандарту ISA-88.

    [ http://kazanets.narod.ru/Batch_P1.htm]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > система рецептурного управления технологическим процессом

  • 112 трехфазный источник бесперебойного питания (ИБП)

    1. three-phase UPS

     

    трехфазный ИБП
    -
    [Интент]


    Глава 7. Трехфазные ИБП

    ... ИБП большой мощности (начиная примерно с 10 кВА) как правило предназначены для подключения к трехфазной электрической сети. Диапазон мощностей 8-25 кВА – переходный. Для такой мощности делают чисто однофазные ИБП, чисто трехфазные ИБП и ИБП с трехфазным входом и однофазным выходом. Все ИБП, начиная примерно с 30 кВА имеют трехфазный вход и трехфазный выход. Трехфазные ИБП имеют и другое преимущество перед однофазными ИБП. Они эффективно разгружают нейтральный провод от гармоник тока и способствуют более безопасной и надежной работе больших компьютерных систем. Эти вопросы рассмотрены в разделе "Особенности трехфазных источников бесперебойного питания" главы 8. Трехфазные ИБП строятся обычно по схеме с двойным преобразованием энергии. Поэтому в этой главе мы будем рассматривать только эту схему, несмотря на то, что имеются трехфазные ИБП, построенные по схеме, похожей на ИБП, взаимодействующий с сетью.

    Схема трехфазного ИБП с двойным преобразованием энергии приведена на рисунке 18.

    4929
    Рис.18. Трехфазный ИБП с двойным преобразованием энергии

    Как видно, этот ИБП не имеет почти никаких отличий на уровне блок-схемы, за исключением наличия трех фаз. Для того, чтобы увидеть отличия от однофазного ИБП с двойным преобразованием, нам придется (почти впервые в этой книге) несколько подробнее рассмотреть элементы ИБП. Мы будем проводить это рассмотрение, ориентируясь на традиционную технологию. В некоторых случаях будут отмечаться схемные особенности, позволяющие улучшить характеристики.

    Выпрямитель

    Слева на рис 18. – входная электрическая сеть. Она включает пять проводов: три фазных, нейтраль и землю. Между сетью и ИБП – предохранители (плавкие или автоматические). Они позволяют защитить сеть от аварии ИБП. Выпрямитель в этой схеме – регулируемый тиристорный. Управляющая им схема изменяет время (долю периода синусоиды), в течение которого тиристоры открыты, т.е. выпрямляют сетевое напряжение. Чем большая мощность нужна для работы ИБП, тем дольше открыты тиристоры. Если батарея ИБП заряжена, на выходе выпрямителя поддерживается стабилизированное напряжение постоянного тока, независимо от нвеличины напряжения в сети и мощности нагрузки. Если батарея требует зарядки, то выпрямитель регулирует напряжение так, чтобы в батарею тек ток заданной величины.

    Такой выпрямитель называется шести-импульсным, потому, что за полный цикл трехфазной электрической сети он выпрямляет 6 полупериодов сингусоиды (по два в каждой из фаз). Поэтому в цепи постоянного тока возникает 6 импульсов тока (и напряжения) за каждый цикл трехфазной сети. Кроме того, во входной электрической сети также возникают 6 импульсов тока, которые могут вызвать гармонические искажения сетевого напряжения. Конденсатор в цепи постоянного тока служит для уменьшения пульсаций напряжения на аккумуляторах. Это нужно для полной зарядки батареи без протекания через аккумуляторы вредных импульсных токов. Иногда к конденсатору добавляется еще и дроссель, образующий совместно с конденсатором L-C фильтр.

    Коммутационный дроссель ДР уменьшает импульсные токи, возникающие при открытии тиристоров и служит для уменьшения искажений, вносимых выпрямителем в электрическую сеть. Для еще большего снижения искажений, вносимых в сеть, особенно для ИБП большой мощности (более 80-150 кВА) часто применяют 12-импульсные выпрямители. Т.е. за каждый цикл трехфазной сети на входе и выходе выпрямителя возникают 12 импульсов тока. За счет удвоения числа импульсов тока, удается примерно вдвое уменьшить их амплитуду. Это полезно и для аккумуляторов и для электрической сети.

    Двенадцати-импульсный выпрямитель фактически состоит из двух 6-импульсных выпрямителей. На вход второго выпрямителя (он изображен ниже на рис. 18) подается трехфазное напряжение, прошедшее через трансформатор, сдвигающий фазу на 30 градусов.

    В настоящее время применяются также и другие схемы выпрямителей трехфазных ИБП. Например схема с пассивным (диодным) выпрямителем и преобразователем напряжения постоянного тока, применение которого позволяет приблизить потребляемый ток к синусоидальному.

    Наиболее современным считается транзисторный выпрямитель, регулируемый высокочастотной схемой широтно-импульсной модуляции (ШИМ). Применение такого выпрямителя позволяет сделать ток потребления ИБП синусоидальным и совершенно отказаться от 12-импульсных выпрямителей с трансформатором.

    Батарея

    Для формирования батареи трехфазных ИБП (как и в однофазных ИБП) применяются герметичные свинцовые аккумуляторы. Обычно это самые распространенные модели аккумуляторов с расчетным сроком службы 5 лет. Иногда используются и более дорогие аккумуляторы с большими сроками службы. В некоторых трехфазных ИБП пользователю предлагается фиксированный набор батарей или батарейных шкафов, рассчитанных на различное время работы на автономном режиме. Покупая ИБП других фирм, пользователь может более или менее свободно выбирать батарею своего ИБП (включая ее емкость, тип и количество элементов). В некоторых случаях батарея устанавливается в корпус ИБП, но в большинстве случаев, особенно при большой мощности ИБП, она устанавливается в отдельном корпусе, а иногда и в отдельном помещении.

    Инвертор

    Как и в ИБП малой мощности, в трехфазных ИБП применяются транзисторные инверторы, управляемые схемой широтно-импульсной модуляции (ШИМ). Некоторые ИБП с трехфазным выходом имеют два инвертора. Их выходы подключены к трансформаторам, сдвигающим фазу выходных напряжений. Даже в случае применения относительно низкочастоной ШИМ, такая схема совместно с применением фильтра переменного тока, построенного на трансформаторе и конденсаторах, позволяет обеспечить очень малый коэффициент гармонических искажений на выходе ИБП (до 3% на линейной нагрузке). Применение двух инверторов увеличивает надежность ИБП, поскольку даже при выходе из строя силовых транзисторов одного из инверторов, другой инвертор обеспечит работу нагрузки, пусть даже при большем коэффициенте гармонических искажений.

    В последнее время, по мере развития технологии силовых полупроводников, начали применяться более высокочастотные транзисторы. Частота ШИМ может составлять 4 и более кГц. Это позволяет уменьшить гармонические искажения выходного напряжения и отказаться от применения второго инвертора. В хороших ИБП существуют несколько уровней защиты инвертора от перегрузки. При небольших перегрузках инвертор может уменьшать выходное напряжение (пытаясь снизить ток, проходящий через силовые полупроводники). Если перегрузка очень велика (например нагрузка составляет более 125% номинальной), ИБП начинает отсчет времени работы в условиях перегрузки и через некоторое время (зависящее от степени перегрузки – от долей секунды до минут) переключается на работу через статический байпас. В случае большой перегрузки или короткого замыкания, переключение на статический байпас происходит сразу.

    Некоторые современные высококлассные ИБП (с высокочакстотной ШИМ) имеют две цепи регулирования выходного напряжения. Первая из них осуществляет регулирование среднеквадратичного (действующего) значения напряжения, независимо для каждой из фаз. Вторая цепь измеряет мгновенные значения выходного напряжения и сравнивает их с хранящейся в памяти блока управления ИБП идеальной синусоидой. Если мгновенное значение напряжения отклонилось от соотвествующего "идеального" значения, то вырабатывается корректирующий импульс и форма синусоиды выходного напряжения исправляется. Наличие второй цепи обратной связи позволяет обеспечить малые искажения формы выходного напряжения даже при нелинейных нагрузках.

    Статический байпас

    Блок статического байпаса состоит из двух трехфазных (при трехфазном выходе) тиристорных переключателей: статического выключателя инвертора (на схеме – СВИ) и статического выключателя байпаса (СВБ). При нормальной работе ИБП (от сети или от батареи) статический выключатель инвертора замкнут, а статический выключатель байпаса разомкнут. Во время значительных перегрузок или выхода из строя инвертора замкнут статический переключатель байпаса, переключатель инвертора разомкнут. В момент переключения оба статических переключателя на очень короткое время замкнуты. Это позволяет обеспечить безразрывное питание нагрузки.

    Каждая модель ИБП имеет свою логику управления и, соответственно, свой набор условий срабатывания статических переключателей. При покупке ИБП бывает полезно узнать эту логику и понять, насколько она соответствует вашей технологии работы. В частности хорошие ИБП сконструированы так, чтобы даже если байпас недоступен (т.е. отсутствует синхронизация инвертора и байпаса – см. главу 6) в любом случае постараться обеспечить электроснабжение нагрузки, пусть даже за счет уменьшения напряжения на выходе инвертора.

    Статический байпас ИБП с трехфазным входом и однофазным выходом имеет особенность. Нагрузка, распределенная на входе ИБП по трем фазным проводам, на выходе имеет только два провода: один фазный и нейтральный. Статический байпас тоже конечно однофазный, и синхронизация напряжения инвертора производится относительно одной из фаз трехфазной сети (любой, по выбору пользователя). Вся цепь, подводящая напряжение к входу статического байпаса должна выдерживать втрое больший ток, чем входной кабель выпрямителя ИБП. В ряде случаев это может вызвать трудности с проводкой.

    Сервисный байпас

    Трехфазные ИБП имеют большую мощность и обычно устанавливаются в местах действительно критичных к электропитанию. Поэтому в случае выхода из строя какого-либо элемента ИБП или необходимости проведения регламентных работ (например замены батареи), в большинстве случае нельзя просто выключить ИБП или поставить на его место другой. Нужно в любой ситуации обеспечить электропитание нагрузки. Для этих ситуаций у всех трехфазных ИБП имеется сервисный байпас. Он представляет собой ручной переключатель (иногда как-то заблокированный, чтобы его нельзя было включить по ошибке), позволяющий переключить нагрузку на питание непосредственно от сети. У большинства ИБП для переключения на сервисный байпас существует специальная процедура (определенная последовательность действий), которая позволяет обеспечит непрерывность питания при переключениях.

    Режимы работы трехфазного ИБП с двойным преобразованием

    Трехфазный ИБП может работать на четырех режимах работы.

    • При нормальной работе нагрузка питается по цепи выпрямитель-инвертор стабилизированным напряжением, отфильтрованным от импульсов и шумов за счет двойного преобразования энергии.
    • Работа от батареи. На это режим ИБП переходит в случае, если напряжение на выходе ИБП становится таким маленьким, что выпрямитель оказывается не в состоянии питать инвертор требуемым током, или выпрямитель не может питать инвертор по другой причине, например из-за поломки. Продолжительность работы ИБП от батареи зависит от емкости и заряда батареи, а также от нагрузки ИБП.
    • Когда какой-нибудь инвертор выходит из строя или испытывает перегрузку, ИБП безразрывно переходит на режим работы через статический байпас. Нагрузка питается просто от сети через вход статического байпаса, который может совпадать или не совпадать со входом выпрямителя ИБП.
    • Если требуется обслуживание ИБП, например для замены батареи, то ИБП переключают на сервисный байпас. Нагрузка питается от сети, а все цепи ИБП, кроме входного выключателя сервисного байпаса и выходных выключателей отделены от сети и от нагрузки. Режим работы на сервисном байпасе не является обязательным для небольших однофазных ИБП с двойным преобразованием. Трехфазный ИБП без сервисного байпаса немыслим.

    Надежность

    Трехфазные ИБП обычно предназначаются для непрерывной круглосуточной работы. Работа нагрузки должна обеспечиваться практически при любых сбоях питания. Поэтому к надежности трехфазных ИБП предъявляются очень высокие требования. Вот некоторые приемы, с помощью которых производители трехфазных ИБП могут увеличивать надежность своей продукции. Применение разделительных трансформаторов на входе и/или выходе ИБП увеличивает устойчивость ИБП к скачкам напряжения и нагрузки. Входной дроссель не только обеспечивает "мягкий запуск", но и защищает ИБП (и, в конечном счете, нагрузку) от очень быстрых изменений (скачков) напряжения.

    Обычно фирма выпускает целый ряд ИБП разной мощности. В двух или трех "соседних по мощности" ИБП этого ряда часто используются одни и те же полупроводники. Если это так, то менее мощный из этих двух или трех ИБП имеет запас по предельному току, и поэтому несколько более надежен. Некоторые трехфазные ИБП имеют повышенную надежность за счет резервирования каких-либо своих цепей. Так, например, могут резервироваться: схема управления (микропроцессор + платы "жесткой логики"), цепи управления силовыми полупроводниками и сами силовые полупроводники. Батарея, как часть ИБП тоже вносит свой вклад в надежность прибора. Если у ИБП имеется возможность гибкого выбора батареи, то можно выбрать более надежный вариант (батарея более известного производителя, с меньшим числом соединений).

    Преобразователи частоты

    Частота напряжения переменного тока в электрических сетях разных стран не обязательно одинакова. В большинстве стран (в том числе и в России) распространена частота 50 Гц. В некоторых странах (например в США) частота переменного напряжения равна 60 Гц. Если вы купили оборудование, рассчитанное на работу в американской электрической сети (110 В, 60 Гц), то вы должны каким-то образом приспособить к нему нашу электрическую сеть. Преобразование напряжения не является проблемой, для этого есть трансформаторы. Если оборудование оснащено импульсным блоком питания, то оно не чувствительно к частоте и его можно использовать в сети с частотой 50 Гц. Если же в состав оборудования входят синхронные электродвигатели или иное чувствительное к частоте оборудование, вам нужен преобразователь частоты. ИБП с двойным преобразованием энергии представляет собой почти готовый преобразователь частоты.

    В самом деле, ведь выпрямитель этого ИБП может в принципе работать на одной частоте, а инвертор выдавать на своем выходе другую. Есть только одно принципиальное ограничение: невозможность синхронизации инвертора с линией статического байпаса из-за разных частот на входе и выходе. Это делает преобразователь частоты несколько менее надежным, чем сам по себе ИБП с двойным преобразованием. Другая особенность: преобразователь частоты должен иметь мощность, соответствующую максимальному возможному току нагрузки, включая все стартовые и аварийные забросы, ведь у преобразователя частоты нет статического байпаса, на который система могла бы переключиться при перегрузке.

    Для изготовления преобразователя частоты из трехфазного ИБП нужно разорвать цепь синхронизации, убрать статический байпас (или, вернее, не заказывать его при поставке) и настроить инвертор ИБП на работу на частоте 60 Гц. Для большинства трехфазных ИБП это не представляет проблемы, и преобразователь частоты может быть заказан просто при поставке.

    ИБП с горячим резервированием

    В некоторых случаях надежности даже самых лучших ИБП недостаточно. Так бывает, когда сбои питания просто недопустимы из-за необратимых последствий или очень больших потерь. Обычно в таких случаях в технике применяют дублирование или многократное резервирование блоков, от которых зависит надежность системы. Есть такая возможность и для трехфазных источников бесперебойного питания. Даже если в конструкцию ИБП стандартно не заложено резервирование узлов, большинство трехфазных ИБП допускают резервирование на более высоком уровне. Резервируется целиком ИБП. Простейшим случаем резервирования ИБП является использование двух обычных серийных ИБП в схеме, в которой один ИБП подключен к входу байпаса другого ИБП.

    4930

    Рис. 19а. Последовательное соединение двух трехфазных ИБП

    На рисунке 19а приведена схема двух последовательно соединенным трехфазных ИБП. Для упрощения на рисунке приведена, так называемая, однолинейная схема, на которой трем проводам трехфазной системы переменного тока соответствует одна линия. Однолинейные схемы часто применяются в случаях, когда особенности трехфазной сети не накладывают отпечаток на свойства рассматриваемого прибора. Оба ИБП постоянно работают. Основной ИБП питает нагрузку, а вспомогательный ИБП работает на холостом ходу. В случае выхода из строя основного ИБП, нагрузка питается не от статического байпаса, как в обычном ИБП, а от вспомогательного ИБП. Только при выходе из строя второго ИБП, нагрузка переключается на работу от статического байпаса.

    Система из двух последовательно соединенных ИБП может работать на шести основных режимах.

    А. Нормальная работа. Выпрямители 1 и 2 питают инверторы 1 и 2 и, при необходимости заряжают батареи 1 и 2. Инвертор 1 подключен к нагрузке (статический выключатель инвертора 1 замкнут) и питает ее стабилизированным и защищенным от сбоев напряжением. Инвертор 2 работает на холостом ходу и готов "подхватить" нагрузку, если инвертор 1 выйдет из строя. Оба статических выключателя байпаса разомкнуты.

    Для обычного ИБП с двойным преобразованием на режиме работы от сети допустим (при сохранении гарантированного питания) только один сбой в системе. Этим сбоем может быть либо выход из строя элемента ИБП (например инвертора) или сбой электрической сети.

    Для двух последовательно соединенных ИБП с на этом режиме работы допустимы два сбоя в системе: выход из строя какого-либо элемента основного ИБП и сбой электрической сети. Даже при последовательном или одновременном возникновении двух сбоев питание нагрузки будет продолжаться от источника гарантированного питания.

    Б. Работа от батареи 1. Выпрямитель 1 не может питать инвертор и батарею. Чаще всего это происходит из-за отключения напряжения в электрической сети, но причиной может быть и выход из строя выпрямителя. Состояние инвертора 2 в этом случае зависит от работы выпрямителя 2. Если выпрямитель 2 работает (например он подключен к другой электрической сети или он исправен, в отличие от выпрямителя 1), то инвертор 2 также может работать, но работать на холостом ходу, т.к. он "не знает", что с первым ИБП системы что-то случилось. После исчерпания заряда батареи 1, инвертор 1 отключится и система постарается найти другой источник электроснабжения нагрузки. Им, вероятно, окажется инвертор2. Тогда система перейдет к другому режиму работы.

    Если в основном ИБП возникает еще одна неисправность, или батарея 1 полностью разряжается, то система переключается на работу от вспомогательного ИБП.

    Таким образом даже при двух сбоях: неисправности основного ИБП и сбое сети нагрузка продолжает питаться от источника гарантированного питания.

    В. Работа от инвертора 2. В этом случае инвертор 1 не работает (из-за выхода из строя или полного разряда батареи1). СВИ1 разомкнут, СВБ1 замкнут, СВИ2 замкнут и инвертор 2 питает нагрузку. Выпрямитель 2, если в сети есть напряжение, а сам выпрямитель исправен, питает инвертор и батарею.

    На этом режиме работы допустим один сбой в системе: сбой электрической сети. При возникновении второго сбоя в системе (выходе из строя какого-либо элемента вспомогательного ИБП) электропитание нагрузки не прерывается, но нагрузка питается уже не от источника гарантированного питания, а через статический байпас, т.е. попросту от сети.

    Г. Работа от батареи 2. Наиболее часто такая ситуация может возникнуть после отключения напряжения в сети и полного разряда батареи 1. Можно придумать и более экзотическую последовательность событий. Но в любом случае, инвертор 2 питает нагругку, питаясь, в свою очередь, от батареи. Инвертор 1 в этом случае отключен. Выпрямитель 1, скорее всего, тоже не работает (хотя он может работать, если он исправен и в сети есть напряжение).

    После разряда батареи 2 система переключится на работу от статического байпаса (если в сети есть нормальное напряжение) или обесточит нагрузку.

    Д. Работа через статический байпас. В случае выхода из строя обоих инверторов, статические переключатели СВИ1 и СВИ2 размыкаются, а статические переключатели СВБ1 и СВБ2 замыкаются. Нагрузка начинает питаться от электрической сети.

    Переход системы к работе через статический байпас происходит при перегрузке системы, полном разряде всех батарей или в случае выхода из строя двух инверторов.

    На этом режиме работы выпрямители, если они исправны, подзаряжают батареи. Инверторы не работают. Нагрузка питается через статический байпас.

    Переключение системы на работу через статический байпас происходит без прерывания питания нагрузки: при необходимости переключения сначала замыкается тиристорный переключатель статического байпаса, и только затем размыкается тиристорный переключатель на выходе того инвертора, от которого нагрузка питалась перед переключением.

    Е. Ручной (сервисный) байпас. Если ИБП вышел из строя, а ответственную нагрузку нельзя обесточить, то оба ИБП системы с соблюдением специальной процедуры (которая обеспечивает безразрыное переключение) переключают на ручной байпас. после этого можно производить ремонт ИБП.

    Преимуществом рассмотренной системы с последовательным соединением двух ИБП является простота. Не нужны никакие дополнительные элементы, каждый из ИБП работает в своем штатном режиме. С точки зрения надежности, эта схема совсем не плоха:- в ней нет никакой лишней, (связанной с резервированием) электроники, соответственно и меньше узлов, которые могут выйти из строя.

    Однако у такого соединения ИБП есть и недостатки. Вот некоторые из них.
     

    1. Покупая такую систему, вы покупаете второй байпас (на нашей схеме – он первый – СВБ1), который, вообще говоря, не нужен – ведь все необходимые переключения могут быть произведены и без него.
    2. Весь второй ИБП выполняет только одну функцию – резервирование. Он потребляет электроэнергию, работая на холостом ходу и вообще не делает ничего полезного (разумеется за исключением того времени, когда первый ИБП отказывается питать нагрузку). Некоторые производители предлагают "готовые" системы ИБП с горячим резервированием. Это значит, что вы покупаете систему, специально (еще на заводе) испытанную в режиме с горячим резервированием. Схема такой системы приведена на рис. 19б.

    4931

    Рис.19б. Трехфазный ИБП с горячим резервированием

    Принципиальных отличий от схемы с последовательным соединением ИБП немного.

    1. У второго ИБП отсутствует байпас.
    2. Для синхронизации между инвертором 2 и байпасом появляется специальный информационный кабель между ИБП (на рисунке не показан). Поэтому такой ИБП с горячим резервированием может работать на тех же шести режимах работы, что и система с последовательным подключением двух ИБП. Преимущество "готового" ИБП с резервированием, пожалуй только одно – он испытан на заводе-производителе в той же комплектации, в которой будет эксплуатироваться.

    Для расмотренных схем с резервированием иногда применяют одно важное упрощение системы. Ведь можно отказаться от резервирования аккумуляторной батареи, сохранив резервирование всей силовой электроники. В этом случае оба ИБП будут работать от одной батареи (оба выпрямителя будут ее заряжать, а оба инвертора питаться от нее в случае сбоя электрической сети). Применение схемы с общей бетареей позволяет сэкономить значительную сумму – стоимость батареи.

    Недостатков у схемы с общей батареей много:

    1. Не все ИБП могут работать с общей батареей.
    2. Батарея, как и другие элементы ИБП обладает конечной надежностью. Выход из строя одного аккумулятора или потеря контакта в одном соединении могут сделать всю системы ИБП с горячим резервирование бесполезной.
    3. В случае выхода из строя одного выпрямителя, общая батарея может быть выведена из строя. Этот последний недостаток, на мой взгляд, является решающим для общей рекомендации – не применять схемы с общей батареей.


    Параллельная работа нескольких ИБП

    Как вы могли заметить, в случае горячего резервирования, ИБП резервируется не целиком. Байпас остается общим для обоих ИБП. Существует другая возможность резервирования на уровне ИБП – параллельная работа нескольких ИБП. Входы и выходы нескольких ИБП подключаются к общим входным и выходным шинам. Каждый ИБП сохраняет все свои элементы (иногда кроме сервисного байпаса). Поэтому выход из строя статического байпаса для такой системы просто мелкая неприятность.

    На рисунке 20 приведена схема параллельной работы нескольких ИБП.

    4932

    Рис.20. Параллельная работа ИБП

    На рисунке приведена схема параллельной системы с раздельными сервисными байпасами. Схема система с общим байпасом вполне ясна и без чертежа. Ее особенностью является то, что для переключения системы в целом на сервисный байпас нужно управлять одним переключателем вместо нескольких. На рисунке предполагается, что между ИБП 1 и ИБП N Могут располагаться другие ИБП. Разные производителю (и для разных моделей) устанавливают свои максимальные количества параллеьно работающих ИБП. Насколько мне известно, эта величина изменяется от 2 до 8. Все ИБП параллельной системы работают на общую нагрузку. Суммарная мощность параллельной системы равна произведению мощности одного ИБП на количество ИБП в системе. Таким образом параллельная работа нескольких ИБП может применяться (и в основном применяется) не столько для увеличения надежности системы бесперебойного питания, но для увеличения ее мощности.

    Рассмотрим режимы работы параллельной системы

    Нормальная работа (работа от сети). Надежность

    Когда в сети есть напряжение, достаточное для нормальной работы, выпрямители всех ИБП преобразуют переменное напряжение сети в постоянное, заряжая батареи и питая инверторы.

    Инверторы, в свою очередь, преобразуют постоянное напряжение в переменное и питают нагрузку. Специальная управляющая электроника параллельной системы следит за равномерным распределением нагрузки между ИБП. В некоторых ИБП распределение нагрузки между ИБП производится без использования специальной параллельной электроники. Такие приборы выпускаются "готовыми к параллельной работе", и для использования их в параллельной системе достаточно установить плату синхронизации. Есть и ИБП, работающие параллельго без специальной электроники. В таком случае количество параллельно работающих ИБП – не более двух. В рассматриваемом режиме работы в системе допустимо несколько сбоев. Их количество зависит от числа ИБП в системе и действующей нагрузки.

    Пусть в системе 3 ИБП мощностью по 100 кВА, а нагрузка равна 90 кВА. При таком соотношении числа ИБП и их мощностей в системе допустимы следующие сбои.

    Сбой питания (исчезновение напряжения в сети)

    Выход из строя любого из инверторов, скажем для определенности, инвертора 1. Нагрузка распределяется между двумя другими ИБП. Если в сети есть напряжение, все выпрямители системы работают.

    Выход из строя инвертора 2. Нагрузка питается от инвертора 3, поскольку мощность, потребляемая нагрузкой меньше мощности одного ИБП. Если в сети есть напряжение, все выпрямители системы продолжают работать.

    Выход из строя инвертора 3. Система переключается на работу через статический байпас. Нагрузка питается напрямую от сети. При наличии в сети нормального напряжения, все выпрямители работают и продолжают заряжать батареи. При любом последующем сбое (поломке статического байпаса или сбое сети) питание нагрузки прекращается. Для того, чтобы параллельная система допускала большое число сбоев, система должна быть сильно недогружена и должна включать большое число ИБП. Например, если нагрузка в приведенном выше примере будет составлять 250 кВА, то система допускает только один сбой: сбой сети или поломку инвертора. В отношении количества допустимых сбоев такая система эквивалентна одиночному ИБП. Это, кстати, не значит, что надежность такой параллельной системы будет такая же, как у одиночного ИБП. Она будет ниже, поскольку параллельная система намного сложнее одиночного ИБП и (при почти предельной нагрузке) не имеет дополнительного резервирования, компенсирующего эту сложность.

    Вопрос надежности параллельной системы ИБП не может быть решен однозначно. Надежность зависит от большого числа параметров: количества ИБП в системе (причем увеличение количества ИБП до бесконечности снижает надежность – система становится слишком сложной и сложно управляемой – впрочем максимальное количество параллельно работающих модулей для известных мне ИБП не превышает 8), нагрузки системы (т.е. соотношения номинальной суммарной мощности системы и действующей нагрузки), примененной схемы параллельной работы (т.е. есть ли в системе специальная электроника для обеспечения распределения нагрузки по ИБП), технологии работы предприятия. Таким образом, если единственной целью является увеличение надежности системы, то следует серьезно рассмотреть возможность использование ИБП с горячим резервированием – его надежность не зависит от обстоятельств и в силу относительной простоты схемы практически всегда выше надежности параллельной системы.

    Недогруженная система из нескольких параллельно работающих ИБП, которая способна реализвать описанную выше логику управления, часто также называется параллельной системой с резервированием.

    Работа с частичной нагрузкой

    Если нагрузка параллельной системы такова, что с ней может справиться меньшее, чем есть в системе количество ИБП, то инверторы "лишних" ИБП могут быть отключены. В некоторых ИБП такая логика управления подразумевается по умолчанию, а другие модели вообще лишены возможности работы в таком режиме. Инверторы, оставшиеся включенными, питают нагрузку. Коэффициент полезного действия системы при этом несколько возрастает. Обычно в этом режиме работы предусматривается некоторая избыточность, т.е. количестов работающих инверторов больше, чем необходимо для питания нагрузки. Тем самым обеспечивается резервирование. Все выпрямители системы продолжают работать, включая выпрямители тех ИБП, инверторы которых отключены.

    Работа от батареи

    В случае исчезновения напряжения в электрической сети, параллельная система переходит на работу от батареи. Все выпрямители системы не работают, инверторы питают нагрузку, получая энергию от батареи. В этом режиме работы (естественно) отсутствует напряжение в электрической сети, которое при нормальной работе было для ИБП не только источником энергии, но и источником сигнала синхронизации выходного напряжения. Поэтому функцию синхронизации берет на себя специальная параллельная электроника или выходная цепь ИБП, специально ориентированная на поддержание выходной частоты и фазы в соответствии с частотой и фазой выходного напряжения параллельно работающего ИБП.

    Выход из строя выпрямителя

    Это режим, при котором вышли из строя один или несколько выпрямителей. ИБП, выпрямители которых вышли из строя, продолжают питать нагрузку, расходуя заряд своей батареи. Они выдает сигнал "неисправность выпрямителя". Остальные ИБП продолжают работать нормально. После того, как заряд разряжающихся батарей будет полностью исчерпан, все зависит от соотношения мощности нагрузки и суммарной мощности ИБП с исправными выпрямителями. Если нагрузка не превышает перегрузочной способности этих ИБП, то питание нагрузки продолжится (если у системы остался значительный запас мощности, то в этом режиме работы допустимо еще несколько сбоев системы). В случае, если нагрузка ИБП превышает перегрузочную способность оставшихся ИБП, то система переходит к режиму работы через статический байпас.

    Выход из строя инвертора

    Если оставшиеся в работоспособном состоянии инверторы могут питать нагрузку, то нагрузка продолжает работать, питаясь от них. Если мощности работоспособных инверторов недостаточно, система переходит в режим работы от статического байпаса. Выпрямители всех ИБП могут заряжать батареи, или ИБП с неисправными инверторами могут быть полностью отключены для выполнения ремонта.

    Работа от статического байпаса

    Если суммарной мощности всех исправных инверторов параллельной системы не достаточно для поддержания работы нагрузки, система переходит к работе через статический байпас. Статические переключатели всех инверторов разомкнуты (исправные инверторы могут продолжать работать). Если нагрузка уменьшается, например в результате отключения части оборудования, параллельная система автоматически переключается на нормальный режим работы.

    В случае одиночного ИБП с двойным преобразованием работа через статический байпас является практически последней возможностью поддержания работы нагрузки. В самом деле, ведь достаточно выхода из строя статического переключателя, и нагрузка будет обесточена. При работе параллельной системы через статический байпас допустимо некоторое количество сбоев системы. Статический байпас способен выдерживать намного больший ток, чем инвертор. Поэтому даже в случае выхода из строя одного или нескольких статических переключателей, нагрузка возможно не будет обесточена, если суммарный допустимый ток оставшихся работоспособными статических переключателей окажется достаточен для работы. Конкретное количество допустимых сбоев системы в этом режиме работы зависит от числа ИБП в системе, допустимого тока статического переключателя и величины нагрузки.

    Сервисный байпас

    Если нужно провести с параллельной системой ремонтные или регламентные работы, то система может быть отключена от нагрузки с помощью ручного переключателя сервисного байпаса. Нагрузка питается от сети, все элементы параллельной системы ИБП, кроме батарей, обесточены. Как и в случае системы с горячим резервированием, возможен вариант одного общего внешнего сервисного байпаса или нескольких сервисных байпасов, встроенных в отдельные ИБП. В последнем случае при использовании сервисного байпаса нужно иметь в виду соотношение номинального тока сервисного байпаса и действующей мощности нагрузки. Другими словами, нужно включить столько сервисных байпасов, чтобы нагрузка не превышала их суммарный номинальных ток.
    [ http://www.ask-r.ru/info/library/ups_without_secret_7.htm]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > трехфазный источник бесперебойного питания (ИБП)

  • 113 цоколь лампы

    1. lamp-cap
    2. lamp cap
    3. lamp base
    4. cap
    5. base

     

    цоколь лампы
    Деталь электрической лампы, служащая для ее крепления в патроне и обеспечивающая присоединение к питающей сети.
    [ ГОСТ 15049-81]

    Типы цоколей ламп и их обозначение

    Первая буква указывает на тип цоколя:

    E – резьбовой цоколь( Эдисона)
    G – штырьковый цоколь
    R – цоколь с утопленным контактом
    B – штифтовой цоколь (Байонет)
    F – цоколь с одним штырьком
    a – цилиндрический штырёк
    b – рифленый штырёк
    c – штырёк специальной формы
    S – софитный цоколь
    K – цоколь с кабельными соединениями
    H – цоколь для ксеноновых ламп
    P – фокусирующий цоколь
    T – телефонный цоколь
    W – основание, в котором электрический контакт с патроном осуществляется непосредственно через токовые вводы, расположенные на стеклянном основании лампы.

    Последующее число указывает диаметр соединительной части цоколя или расстояние между контактами.
    Если далее идут буквы, то они указывают на количество контактных пластин, штырьков или гибких соединений:

    s - один контакт
    d - два контакта
    t - три контакта
    q - четыре контакта
    p - пять контактов

    Иногда к первой букве добавляется еще одна буква, уточняющая (для некоторых типов):

    U – энергосберегающая лампочка;
    V – цоколь с коническим концом;
    A – автомобильная лампа.

    Пример расшифровки цоколя лампы: E14U – лампа энергосберегающая с резьбовым цоколем, диаметром 14 мм.

    Если разделять цоколи ламп глобально, то существуют резьбовые цоколи и цоколи с поверхностными контактами (штыковые, с утопленным контактом и т.д.) Далее и поговорим более конкретно, о каждом из типов цоколей.
    В зависимости от популярности мы будем приводить соответственное количество изображений и информаций о описываемых цоколях ламп. Также до того как мы начали рассказывать конкретно о каждом из них, предлагаем вам ознакомиться с возможными видами цоколей ламп.

    5602

    [ Источник]

    Тематики

    • лампы, светильники, приборы и комплексы световые

    EN

    Русско-английский словарь нормативно-технической терминологии > цоколь лампы

  • 114 условия недиффузного поля

    1. non-diffuse-field conditions

    3.4.9 условия недиффузного поля (non-diffuse-field conditions): Условия распространения звука в помещении или некоторой его части, при которых звук распространяется во всех направлениях по-разному.

    Примечание - Условия недиффузного поля имеют место, если:

    - два каких-либо размера помещения превышают третий размер более чем в три раза, или

    - звукопоглощение поверхностей помещения распределено неравномерно (например, помещение с жесткими стенами и поглощающим потолком), или

    - звукопоглощение велико.

    Источник: ГОСТ Р 52797.1-2007: Акустика. Рекомендуемые методы проектирования малошумных рабочих мест производственных помещений. Часть 1. Принципы защиты от шума оригинал документа

    Русско-английский словарь нормативно-технической терминологии > условия недиффузного поля

  • 115 Оценка систем качества

    4.9. Оценка систем качества

    4.9.1. Общие положения

    При оценке систем качества необходимо задавать следующие три основные вопроса к каждому оцениваемому процессу:

    а) Определены ли процессы и, соответственно, оформлены ли документально их методики?

    b) Полностью ли развернуты и внедрены процессы согласно документации?

    с) Являются ли процессы эффективными для достижения ожидаемых результатов?

    Совокупные ответы на эти вопросы, относящиеся, соответственно, к подходу, развертыванию и результатам, будут определять выходные данные оценки. Оценка системы качества охватывает широкий диапазон деятельности, некоторые виды которой приведены в подразделах 4.9.2 и 4.9.3.

    4.9.2. Анализ со стороны руководства

    Одним из видов деятельности исполнительного руководства организации-поставщика является оценка состояния и адекватности системы качества, включая политику в области качества применительно к требованиям заинтересованных лиц. Анализ со стороны руководства обычно учитывает дополнительные факторы, кроме требований, приведенных в ИСО 9001, ИСО 9002 или ИС 9003. Результаты внутренних и внешних проверок служат важным источником информации. Выходные данные анализа со стороны руководства должны вести к повышению эффективности системы качества.

    4.9.3. Проверки системы качества

    Проверки проводит сама организация или от ее имени (первая сторона), потребители (вторая сторона) или независимые органы (третья сторона). Проверка второй или третьей сторонами повышает объективность.

    Внутренние проверки качества первой стороной проводят члены организации или другие лица от имени организации. Они предоставляют сведения для проведения эффективного анализа со стороны руководства, а также корректирующего, предупреждающего или улучшающего действия.

    Проверки качества второй стороной проводят потребители организации или другие лица от имени потребителя, если рассматривается контракт или серия контрактов. Они обеспечивают уверенность в поставщике.

    Проверки качества третьей стороной проводят компетентные органы по сертификации с целью осуществления сертификации или регистрации, обеспечивая таким образом уверенность потенциальным потребителям.

    Основные требования к системам качества содержатся в ИСО 9001, ИСО 9002 и ИСО 9003. Части 1, 2 и 3 ИСО 10011 содержат методические указания по проверкам.

    Примечание 16. Проверку первой стороной часто называют внутренней проверкой, а проверки качества второй и третьей сторонами - внешними проверками качества.

    Источник: ИСО 9000-1-94: Общее руководство качеством и стандарты по обеспечению качества. Часть 1. Руководящие указания по выбору и применению

    Русско-английский словарь нормативно-технической терминологии > Оценка систем качества

См. также в других словарях:

  • на три части — нареч, кол во синонимов: 1 • натрое (1) Словарь синонимов ASIS. В.Н. Тришин. 2013 …   Словарь синонимов

  • разделивший на три части — прил., кол во синонимов: 1 • перетроивший (2) Словарь синонимов ASIS. В.Н. Тришин. 2013 …   Словарь синонимов

  • разделявший на три части — прил., кол во синонимов: 1 • перетраивавший (2) Словарь синонимов ASIS. В.Н. Тришин. 2013 …   Словарь синонимов

  • деление на три части — tridalis dalijimasis statusas T sritis fizika atitikmenys: angl. ternary fission; tripartition; triple fission vok. Dreierspaltung, f; Dreifachspaltung, f; ternäre Spaltung, f rus. деление на три части, n pranc. fission à tripartition, f; fission …   Fizikos terminų žodynas

  • три — числ., употр. наиб. часто Морфология: сколько? три, (нет) скольких? трёх, скольким? трём, (вижу) сколько? три, сколькими? тремя, о скольких? о трёх 1. В математике три это число 3. Три плюс два. | Разделить, умножить на три. | Сорок три. |… …   Толковый словарь Дмитриева

  • Деление угла на три части —         одна из трех классич. задач античной математики (наряду с квадратурой круга и делийской задачей), состоявшая в попытке разделить угол на три равные части с помощью циркуля и линейки. Найти решение пытались Гиппий, Папп из Александрии и… …   Словарь античности

  • Три жемчужины — Тип марки …   Википедия

  • Три-Хаммок — Three Hummock Island Координаты: Координаты …   Википедия

  • «ТРИ ИСТОЧНИКА И ТРИ СОСТАВНЫХ ЧАСТИ МАРКСИЗМА» —         работа В. И. Ленина, содержащая сжатый анализ историч. корней, сущности и структуры марксизма. Написана в связи с 30 летием со дня смерти К. Маркса. Опубликована в легальном большевистском журн. «Просвещение» (1913, № 3). Статья была… …   Философская энциклопедия

  • "ТРИ ИСТОЧНИКА И ТРИ СОСТАВНЫХ ЧАСТИ МАРКСИЗМА" — работа В. И. Ленина, содержащая сжатый анализ историч. корней, сущности и структуры марксизма. Написана в связи с 30 летием со дня смерти Маркса. Опубл. в легальном большевистском журн. Просвещение (1913, No 3). Как показал опыт революции 1905,… …   Философская энциклопедия

  • Три единства — (классические единства, Аристотелевы единства) правила драматургии, которых придерживался классицизм XVII XIX в. (см. Классическая драма), опираясь на некоторые пассажи «Поэтики» Аристотеля. Содержание 1 Формулировка …   Википедия

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»