Перевод: со всех языков на русский

с русского на все языки

напольные

  • 21 air dispenser

    1. воздухораспределитель

     

    воздухораспределитель
    Концевой элемент для выпуска или отвода в обслуживаемое помещение требуемого количества воздуха.
    Примечания:
    1. Виды воздухораспределителей по конструктивному признаку:
    - решетка,
    - насадок,
    - перфорированная панель.
    2. По месту установки воздухораспределители могут быть:
    - потолочные,
    - пристенные,
    - напольные.
    3. По характеру организации приточной струи воздухораспределители могут быть:
    - с подачей компактной струи,
    - с подачей неполной веерной струи,
    - с подачей полной веерной струи,
    - с подачей плоской струи,
    - с двухструйной подачей. 
    [ ГОСТ 22270-76]


    Воздухораспределение в помещениях: классификация систем

    Воздухораспределение является одной из самых сложных задач, которая, по существу, определяет конечный, потребительский эффект работы вентиляции и кондиционирования воздуха. Как подать воздух в помещение, чтобы избежать сквозняков и застойных зон, обеспечить равномерное распределение температуры воздуха в рабочей (обслуживаемой) зоне, не допустить перетопов, избыточного охлаждения и вентилирования помещения, загрязнения «чистых» зон вредными выделениями «грязных»? Все эти вопросы рассматриваются при выборе схемы организации воздухообмена и типа воздухораспределителей, непосредственно подающих воздух в помещение.

    Сегодня мы публикуем обзор различных технологий вентиляции (схем организации воздухообмена) и видов воздухораспределителей.


    Воздухораспределители являются важнейшими элементами систем кондиционирования воздуха и вентиляции. Однако выбор систем воздухораспределения является достаточно сложной задачей и требует знания всех разработок в этой области.

    Задача воздухораспределителей состоит в обеспечении равномерного распределения воздуха в помещении с целью:

    • ассимиляции тепловой нагрузки, как положительной, так и отрицательной;
    • ассимиляции взвешенной в воздухе мельчайшей пыли и удаление ее вытяжной системой;
    • поддержания в помещении заданной минимальной неравномерности температуры и скорости движения воздуха (градиента температуры и скорости в пределах установленного диапазона по вертикали и горизонтали).

    При проектировании систем воздухораспределения следует учитывать фактические особенности помещения, которые могут влиять на распространение (циркуляцию) воздуха:

    • наличие препятствий на пути движения воздушных струй;
    • наличие локальных интенсивных тепловых источников;
    • изменения температуры и/или расхода воздуха (например, в системах с переменным расходом) в приточных струях, влияющие на их дальнобойность.

    При выборе типа и размера воздухораспределителей (ВР) не следует забывать о том, что любой из них является источником шума в обслуживаемом помещении. Уровень шума ВР, выражаемый в Дб(А), составляет обычно от 25 до 35 единиц. В любом случае после монтажа оборудования следует самым тщательным образом измерить фактические параметры создаваемого ВР шума. Кроме того, необходимо также определить параметры потери нагрузки – в зависимости от значений объемного расхода воздуха они варьируются в диапазоне от 5 до 35 Па.

    Схемы организации воздухообмена в помещении определяются параметрами системы кондиционирования, аэрогидродинамическими характеристиками приточных и вытяжных устройств, их расположением в обслуживаемом помещении, которое часто обусловлено архитектурными решениями.

    Воздухораспределители можно классифицировать по схемам организации воздухообмена, которые в свою очередь делятся на две основные группы: перемешивающие и вытесняющие.

    Перемешивающие системы вентиляции

    Перемешивающую вентиляцию называют еще «распределением воздуха посредством турбулентного потока». Это наиболее популярная система распределения воздуха. Она организуется при помощи ВР, подающих воздух в помещение воздушными струями, имеющими высокую скорость и турбулентность, вызывающими интенсивную циркуляцию воздуха. В результате происходит перемешивание свежего воздуха приточной струи с воздухом помещения. Если происходит полное перемешивание, на определенном расстоянии от места притока параметры воздуха (температура, относительная влажность, скорость движения), а также содержание загрязняющих веществ будут одинаковыми в любой точке обслуживаемого помещения. Объемный расход приточного воздуха, как правило, невелик по сравнению с общей перемещаемой массой воздуха в помещении. Начальная скорость приточной струи может изменяться в зависимости от конкретных условий в очень широком диапазоне – от 2 до 20 м/с. Разность температур между приточным воздухом и воздухом в помещении также может быть достаточно высокой как в режиме отопления, так и в режиме охлаждения помещения. Температура воздуха будет практически одинаковой там, где обеспечивается достаточно интенсивное перемешивание воздуха, и, напротив, в застойных зонах могут иметь место значительные температурные перепады. Следует отметить, что на наличие и размеры застойных зон, помимо приточных струй, оказывают влияние естественные конвективные потоки, формируемые в конкретном помещении. Формирование конвективных потоков и их характеристик определяется множеством факторов, таких, в частности, как наличие локальных источников тепла, их мощность, размеры и расположение в помещении, теплоизоляция ограждений помещения и т. п. Отметим, что критичными представляются случаи, когда застойные зоны образуются в рабочей (обслуживаемой) зоне помещения; менее критичны ситуации, когда застойные зоны расположены за пределами рабочей зоны, например, в верхней зоне помещения. Наличие в помещении застойных зон, независимо от вида используемого ВР, более неприятно при отопительном режиме работы вентиляции, в силу естественной тенденции нагретого воздуха перемещаться вверх за пределы рабочей зоны.

    Размеры застойных зон можно уменьшить путем соответствующего увеличения объемного расхода и скорости приточного воздуха. Эта, на первый взгляд, банальная операция не должна нарушать комфорт пользователей, находящихся на рабочем участке. В этом смысле довольно проблематичным представляется использование перемешивающих систем с напольным распределением воздуха, когда из-за высокой скорости движения воздуха в обслуживаемой зоне могут возникать условия ощутимого дискомфорта. Если же условия комфорта не являются обязательными (например, на участках, где не предусмотрено постоянное присутствие людей), то явление температурного расслоения воздуха по высоте может позволить снизить холодильную нагрузку.

    Виды ВР для перемешивающих систем воздухораспределения приведены в табл. 1. Классификация ВР, представленная в табл. 1, не претендует на то, чтобы быть исчерпывающей.

    Таблица 1
    Виды воздухораспределителей для перемешивающей вентиляции

    Вид

    Подвиды

    Приточные решетки

    - для установки в стене или воздуховоде
    - с одним или двумя рядами лопаток
    - с неподвижными горизонтальными лопатками

    Потолочные ВР (плафоны)

    - многодиффузорные круглые
    - многодиффузорные квадратные (прямоугольные) с различными направлениями приточных струй (секторные кольцевые, с перфорированной крышкой и т. п.)

    ВР, формирующие быстро
    затухающие струи

    - щелевые, устанавливаемые в потолке или стене
    - квадратные или круглые, устанавливаемые в потолке
    - с регулируемыми элементами (стенные, потолочные)
    - с перфорированной элементами, устанавливаемые в потолке или стене

    ВР, формирующие закрученные струи

    - круглые или квадратные с неподвижными или регулируемыми закручивателями
    - щелевые, устанавливаемые в стене

    ВР с регулируемой геометрией

    - с регулируемыми лопатками
    - с неподвижными лопатками и с регулируемым «цилиндром», двухструйные

    Сопловые ВР

    - с шаровой или полусферической камерой
    - с воздухораздающими элементами-закручивателями
    - с рядом воздухораздающих элементов

    ВР напольные

    - круглые, с закрученным воздушным потоком
    - кресельные
    - напольные и лестничные решетки

    См. также:

    Перевод с итальянского С. Н. Булекова.
    Научное редактирование выполнено вице-президентом НП «АВОК» Е. О. Шилькротом и В. Н. Посохиным, заведующим кафедрой ТГВ Казанского государственного архитектурно-строительного университета (КГАСУ)

    [ http://www.abok.ru/for_spec/articles.php?nid=4280]

    Тематики

    Обобщающие термины

    Синонимы

    EN

    Англо-русский словарь нормативно-технической терминологии > air dispenser

  • 22 air distributor

    1. воздухораспределитель

     

    воздухораспределитель
    Концевой элемент для выпуска или отвода в обслуживаемое помещение требуемого количества воздуха.
    Примечания:
    1. Виды воздухораспределителей по конструктивному признаку:
    - решетка,
    - насадок,
    - перфорированная панель.
    2. По месту установки воздухораспределители могут быть:
    - потолочные,
    - пристенные,
    - напольные.
    3. По характеру организации приточной струи воздухораспределители могут быть:
    - с подачей компактной струи,
    - с подачей неполной веерной струи,
    - с подачей полной веерной струи,
    - с подачей плоской струи,
    - с двухструйной подачей. 
    [ ГОСТ 22270-76]


    Воздухораспределение в помещениях: классификация систем

    Воздухораспределение является одной из самых сложных задач, которая, по существу, определяет конечный, потребительский эффект работы вентиляции и кондиционирования воздуха. Как подать воздух в помещение, чтобы избежать сквозняков и застойных зон, обеспечить равномерное распределение температуры воздуха в рабочей (обслуживаемой) зоне, не допустить перетопов, избыточного охлаждения и вентилирования помещения, загрязнения «чистых» зон вредными выделениями «грязных»? Все эти вопросы рассматриваются при выборе схемы организации воздухообмена и типа воздухораспределителей, непосредственно подающих воздух в помещение.

    Сегодня мы публикуем обзор различных технологий вентиляции (схем организации воздухообмена) и видов воздухораспределителей.


    Воздухораспределители являются важнейшими элементами систем кондиционирования воздуха и вентиляции. Однако выбор систем воздухораспределения является достаточно сложной задачей и требует знания всех разработок в этой области.

    Задача воздухораспределителей состоит в обеспечении равномерного распределения воздуха в помещении с целью:

    • ассимиляции тепловой нагрузки, как положительной, так и отрицательной;
    • ассимиляции взвешенной в воздухе мельчайшей пыли и удаление ее вытяжной системой;
    • поддержания в помещении заданной минимальной неравномерности температуры и скорости движения воздуха (градиента температуры и скорости в пределах установленного диапазона по вертикали и горизонтали).

    При проектировании систем воздухораспределения следует учитывать фактические особенности помещения, которые могут влиять на распространение (циркуляцию) воздуха:

    • наличие препятствий на пути движения воздушных струй;
    • наличие локальных интенсивных тепловых источников;
    • изменения температуры и/или расхода воздуха (например, в системах с переменным расходом) в приточных струях, влияющие на их дальнобойность.

    При выборе типа и размера воздухораспределителей (ВР) не следует забывать о том, что любой из них является источником шума в обслуживаемом помещении. Уровень шума ВР, выражаемый в Дб(А), составляет обычно от 25 до 35 единиц. В любом случае после монтажа оборудования следует самым тщательным образом измерить фактические параметры создаваемого ВР шума. Кроме того, необходимо также определить параметры потери нагрузки – в зависимости от значений объемного расхода воздуха они варьируются в диапазоне от 5 до 35 Па.

    Схемы организации воздухообмена в помещении определяются параметрами системы кондиционирования, аэрогидродинамическими характеристиками приточных и вытяжных устройств, их расположением в обслуживаемом помещении, которое часто обусловлено архитектурными решениями.

    Воздухораспределители можно классифицировать по схемам организации воздухообмена, которые в свою очередь делятся на две основные группы: перемешивающие и вытесняющие.

    Перемешивающие системы вентиляции

    Перемешивающую вентиляцию называют еще «распределением воздуха посредством турбулентного потока». Это наиболее популярная система распределения воздуха. Она организуется при помощи ВР, подающих воздух в помещение воздушными струями, имеющими высокую скорость и турбулентность, вызывающими интенсивную циркуляцию воздуха. В результате происходит перемешивание свежего воздуха приточной струи с воздухом помещения. Если происходит полное перемешивание, на определенном расстоянии от места притока параметры воздуха (температура, относительная влажность, скорость движения), а также содержание загрязняющих веществ будут одинаковыми в любой точке обслуживаемого помещения. Объемный расход приточного воздуха, как правило, невелик по сравнению с общей перемещаемой массой воздуха в помещении. Начальная скорость приточной струи может изменяться в зависимости от конкретных условий в очень широком диапазоне – от 2 до 20 м/с. Разность температур между приточным воздухом и воздухом в помещении также может быть достаточно высокой как в режиме отопления, так и в режиме охлаждения помещения. Температура воздуха будет практически одинаковой там, где обеспечивается достаточно интенсивное перемешивание воздуха, и, напротив, в застойных зонах могут иметь место значительные температурные перепады. Следует отметить, что на наличие и размеры застойных зон, помимо приточных струй, оказывают влияние естественные конвективные потоки, формируемые в конкретном помещении. Формирование конвективных потоков и их характеристик определяется множеством факторов, таких, в частности, как наличие локальных источников тепла, их мощность, размеры и расположение в помещении, теплоизоляция ограждений помещения и т. п. Отметим, что критичными представляются случаи, когда застойные зоны образуются в рабочей (обслуживаемой) зоне помещения; менее критичны ситуации, когда застойные зоны расположены за пределами рабочей зоны, например, в верхней зоне помещения. Наличие в помещении застойных зон, независимо от вида используемого ВР, более неприятно при отопительном режиме работы вентиляции, в силу естественной тенденции нагретого воздуха перемещаться вверх за пределы рабочей зоны.

    Размеры застойных зон можно уменьшить путем соответствующего увеличения объемного расхода и скорости приточного воздуха. Эта, на первый взгляд, банальная операция не должна нарушать комфорт пользователей, находящихся на рабочем участке. В этом смысле довольно проблематичным представляется использование перемешивающих систем с напольным распределением воздуха, когда из-за высокой скорости движения воздуха в обслуживаемой зоне могут возникать условия ощутимого дискомфорта. Если же условия комфорта не являются обязательными (например, на участках, где не предусмотрено постоянное присутствие людей), то явление температурного расслоения воздуха по высоте может позволить снизить холодильную нагрузку.

    Виды ВР для перемешивающих систем воздухораспределения приведены в табл. 1. Классификация ВР, представленная в табл. 1, не претендует на то, чтобы быть исчерпывающей.

    Таблица 1
    Виды воздухораспределителей для перемешивающей вентиляции

    Вид

    Подвиды

    Приточные решетки

    - для установки в стене или воздуховоде
    - с одним или двумя рядами лопаток
    - с неподвижными горизонтальными лопатками

    Потолочные ВР (плафоны)

    - многодиффузорные круглые
    - многодиффузорные квадратные (прямоугольные) с различными направлениями приточных струй (секторные кольцевые, с перфорированной крышкой и т. п.)

    ВР, формирующие быстро
    затухающие струи

    - щелевые, устанавливаемые в потолке или стене
    - квадратные или круглые, устанавливаемые в потолке
    - с регулируемыми элементами (стенные, потолочные)
    - с перфорированной элементами, устанавливаемые в потолке или стене

    ВР, формирующие закрученные струи

    - круглые или квадратные с неподвижными или регулируемыми закручивателями
    - щелевые, устанавливаемые в стене

    ВР с регулируемой геометрией

    - с регулируемыми лопатками
    - с неподвижными лопатками и с регулируемым «цилиндром», двухструйные

    Сопловые ВР

    - с шаровой или полусферической камерой
    - с воздухораздающими элементами-закручивателями
    - с рядом воздухораздающих элементов

    ВР напольные

    - круглые, с закрученным воздушным потоком
    - кресельные
    - напольные и лестничные решетки

    См. также:

    Перевод с итальянского С. Н. Булекова.
    Научное редактирование выполнено вице-президентом НП «АВОК» Е. О. Шилькротом и В. Н. Посохиным, заведующим кафедрой ТГВ Казанского государственного архитектурно-строительного университета (КГАСУ)

    [ http://www.abok.ru/for_spec/articles.php?nid=4280]

    Тематики

    Обобщающие термины

    Синонимы

    EN

    Англо-русский словарь нормативно-технической терминологии > air distributor

  • 23 air terminal device

    1. воздухораспределитель

     

    воздухораспределитель
    Концевой элемент для выпуска или отвода в обслуживаемое помещение требуемого количества воздуха.
    Примечания:
    1. Виды воздухораспределителей по конструктивному признаку:
    - решетка,
    - насадок,
    - перфорированная панель.
    2. По месту установки воздухораспределители могут быть:
    - потолочные,
    - пристенные,
    - напольные.
    3. По характеру организации приточной струи воздухораспределители могут быть:
    - с подачей компактной струи,
    - с подачей неполной веерной струи,
    - с подачей полной веерной струи,
    - с подачей плоской струи,
    - с двухструйной подачей. 
    [ ГОСТ 22270-76]


    Воздухораспределение в помещениях: классификация систем

    Воздухораспределение является одной из самых сложных задач, которая, по существу, определяет конечный, потребительский эффект работы вентиляции и кондиционирования воздуха. Как подать воздух в помещение, чтобы избежать сквозняков и застойных зон, обеспечить равномерное распределение температуры воздуха в рабочей (обслуживаемой) зоне, не допустить перетопов, избыточного охлаждения и вентилирования помещения, загрязнения «чистых» зон вредными выделениями «грязных»? Все эти вопросы рассматриваются при выборе схемы организации воздухообмена и типа воздухораспределителей, непосредственно подающих воздух в помещение.

    Сегодня мы публикуем обзор различных технологий вентиляции (схем организации воздухообмена) и видов воздухораспределителей.


    Воздухораспределители являются важнейшими элементами систем кондиционирования воздуха и вентиляции. Однако выбор систем воздухораспределения является достаточно сложной задачей и требует знания всех разработок в этой области.

    Задача воздухораспределителей состоит в обеспечении равномерного распределения воздуха в помещении с целью:

    • ассимиляции тепловой нагрузки, как положительной, так и отрицательной;
    • ассимиляции взвешенной в воздухе мельчайшей пыли и удаление ее вытяжной системой;
    • поддержания в помещении заданной минимальной неравномерности температуры и скорости движения воздуха (градиента температуры и скорости в пределах установленного диапазона по вертикали и горизонтали).

    При проектировании систем воздухораспределения следует учитывать фактические особенности помещения, которые могут влиять на распространение (циркуляцию) воздуха:

    • наличие препятствий на пути движения воздушных струй;
    • наличие локальных интенсивных тепловых источников;
    • изменения температуры и/или расхода воздуха (например, в системах с переменным расходом) в приточных струях, влияющие на их дальнобойность.

    При выборе типа и размера воздухораспределителей (ВР) не следует забывать о том, что любой из них является источником шума в обслуживаемом помещении. Уровень шума ВР, выражаемый в Дб(А), составляет обычно от 25 до 35 единиц. В любом случае после монтажа оборудования следует самым тщательным образом измерить фактические параметры создаваемого ВР шума. Кроме того, необходимо также определить параметры потери нагрузки – в зависимости от значений объемного расхода воздуха они варьируются в диапазоне от 5 до 35 Па.

    Схемы организации воздухообмена в помещении определяются параметрами системы кондиционирования, аэрогидродинамическими характеристиками приточных и вытяжных устройств, их расположением в обслуживаемом помещении, которое часто обусловлено архитектурными решениями.

    Воздухораспределители можно классифицировать по схемам организации воздухообмена, которые в свою очередь делятся на две основные группы: перемешивающие и вытесняющие.

    Перемешивающие системы вентиляции

    Перемешивающую вентиляцию называют еще «распределением воздуха посредством турбулентного потока». Это наиболее популярная система распределения воздуха. Она организуется при помощи ВР, подающих воздух в помещение воздушными струями, имеющими высокую скорость и турбулентность, вызывающими интенсивную циркуляцию воздуха. В результате происходит перемешивание свежего воздуха приточной струи с воздухом помещения. Если происходит полное перемешивание, на определенном расстоянии от места притока параметры воздуха (температура, относительная влажность, скорость движения), а также содержание загрязняющих веществ будут одинаковыми в любой точке обслуживаемого помещения. Объемный расход приточного воздуха, как правило, невелик по сравнению с общей перемещаемой массой воздуха в помещении. Начальная скорость приточной струи может изменяться в зависимости от конкретных условий в очень широком диапазоне – от 2 до 20 м/с. Разность температур между приточным воздухом и воздухом в помещении также может быть достаточно высокой как в режиме отопления, так и в режиме охлаждения помещения. Температура воздуха будет практически одинаковой там, где обеспечивается достаточно интенсивное перемешивание воздуха, и, напротив, в застойных зонах могут иметь место значительные температурные перепады. Следует отметить, что на наличие и размеры застойных зон, помимо приточных струй, оказывают влияние естественные конвективные потоки, формируемые в конкретном помещении. Формирование конвективных потоков и их характеристик определяется множеством факторов, таких, в частности, как наличие локальных источников тепла, их мощность, размеры и расположение в помещении, теплоизоляция ограждений помещения и т. п. Отметим, что критичными представляются случаи, когда застойные зоны образуются в рабочей (обслуживаемой) зоне помещения; менее критичны ситуации, когда застойные зоны расположены за пределами рабочей зоны, например, в верхней зоне помещения. Наличие в помещении застойных зон, независимо от вида используемого ВР, более неприятно при отопительном режиме работы вентиляции, в силу естественной тенденции нагретого воздуха перемещаться вверх за пределы рабочей зоны.

    Размеры застойных зон можно уменьшить путем соответствующего увеличения объемного расхода и скорости приточного воздуха. Эта, на первый взгляд, банальная операция не должна нарушать комфорт пользователей, находящихся на рабочем участке. В этом смысле довольно проблематичным представляется использование перемешивающих систем с напольным распределением воздуха, когда из-за высокой скорости движения воздуха в обслуживаемой зоне могут возникать условия ощутимого дискомфорта. Если же условия комфорта не являются обязательными (например, на участках, где не предусмотрено постоянное присутствие людей), то явление температурного расслоения воздуха по высоте может позволить снизить холодильную нагрузку.

    Виды ВР для перемешивающих систем воздухораспределения приведены в табл. 1. Классификация ВР, представленная в табл. 1, не претендует на то, чтобы быть исчерпывающей.

    Таблица 1
    Виды воздухораспределителей для перемешивающей вентиляции

    Вид

    Подвиды

    Приточные решетки

    - для установки в стене или воздуховоде
    - с одним или двумя рядами лопаток
    - с неподвижными горизонтальными лопатками

    Потолочные ВР (плафоны)

    - многодиффузорные круглые
    - многодиффузорные квадратные (прямоугольные) с различными направлениями приточных струй (секторные кольцевые, с перфорированной крышкой и т. п.)

    ВР, формирующие быстро
    затухающие струи

    - щелевые, устанавливаемые в потолке или стене
    - квадратные или круглые, устанавливаемые в потолке
    - с регулируемыми элементами (стенные, потолочные)
    - с перфорированной элементами, устанавливаемые в потолке или стене

    ВР, формирующие закрученные струи

    - круглые или квадратные с неподвижными или регулируемыми закручивателями
    - щелевые, устанавливаемые в стене

    ВР с регулируемой геометрией

    - с регулируемыми лопатками
    - с неподвижными лопатками и с регулируемым «цилиндром», двухструйные

    Сопловые ВР

    - с шаровой или полусферической камерой
    - с воздухораздающими элементами-закручивателями
    - с рядом воздухораздающих элементов

    ВР напольные

    - круглые, с закрученным воздушным потоком
    - кресельные
    - напольные и лестничные решетки

    См. также:

    Перевод с итальянского С. Н. Булекова.
    Научное редактирование выполнено вице-президентом НП «АВОК» Е. О. Шилькротом и В. Н. Посохиным, заведующим кафедрой ТГВ Казанского государственного архитектурно-строительного университета (КГАСУ)

    [ http://www.abok.ru/for_spec/articles.php?nid=4280]

    Тематики

    Обобщающие термины

    Синонимы

    EN

    Англо-русский словарь нормативно-технической терминологии > air terminal device

  • 24 air terminal unit

    1. воздухораспределитель

     

    воздухораспределитель
    Концевой элемент для выпуска или отвода в обслуживаемое помещение требуемого количества воздуха.
    Примечания:
    1. Виды воздухораспределителей по конструктивному признаку:
    - решетка,
    - насадок,
    - перфорированная панель.
    2. По месту установки воздухораспределители могут быть:
    - потолочные,
    - пристенные,
    - напольные.
    3. По характеру организации приточной струи воздухораспределители могут быть:
    - с подачей компактной струи,
    - с подачей неполной веерной струи,
    - с подачей полной веерной струи,
    - с подачей плоской струи,
    - с двухструйной подачей. 
    [ ГОСТ 22270-76]


    Воздухораспределение в помещениях: классификация систем

    Воздухораспределение является одной из самых сложных задач, которая, по существу, определяет конечный, потребительский эффект работы вентиляции и кондиционирования воздуха. Как подать воздух в помещение, чтобы избежать сквозняков и застойных зон, обеспечить равномерное распределение температуры воздуха в рабочей (обслуживаемой) зоне, не допустить перетопов, избыточного охлаждения и вентилирования помещения, загрязнения «чистых» зон вредными выделениями «грязных»? Все эти вопросы рассматриваются при выборе схемы организации воздухообмена и типа воздухораспределителей, непосредственно подающих воздух в помещение.

    Сегодня мы публикуем обзор различных технологий вентиляции (схем организации воздухообмена) и видов воздухораспределителей.


    Воздухораспределители являются важнейшими элементами систем кондиционирования воздуха и вентиляции. Однако выбор систем воздухораспределения является достаточно сложной задачей и требует знания всех разработок в этой области.

    Задача воздухораспределителей состоит в обеспечении равномерного распределения воздуха в помещении с целью:

    • ассимиляции тепловой нагрузки, как положительной, так и отрицательной;
    • ассимиляции взвешенной в воздухе мельчайшей пыли и удаление ее вытяжной системой;
    • поддержания в помещении заданной минимальной неравномерности температуры и скорости движения воздуха (градиента температуры и скорости в пределах установленного диапазона по вертикали и горизонтали).

    При проектировании систем воздухораспределения следует учитывать фактические особенности помещения, которые могут влиять на распространение (циркуляцию) воздуха:

    • наличие препятствий на пути движения воздушных струй;
    • наличие локальных интенсивных тепловых источников;
    • изменения температуры и/или расхода воздуха (например, в системах с переменным расходом) в приточных струях, влияющие на их дальнобойность.

    При выборе типа и размера воздухораспределителей (ВР) не следует забывать о том, что любой из них является источником шума в обслуживаемом помещении. Уровень шума ВР, выражаемый в Дб(А), составляет обычно от 25 до 35 единиц. В любом случае после монтажа оборудования следует самым тщательным образом измерить фактические параметры создаваемого ВР шума. Кроме того, необходимо также определить параметры потери нагрузки – в зависимости от значений объемного расхода воздуха они варьируются в диапазоне от 5 до 35 Па.

    Схемы организации воздухообмена в помещении определяются параметрами системы кондиционирования, аэрогидродинамическими характеристиками приточных и вытяжных устройств, их расположением в обслуживаемом помещении, которое часто обусловлено архитектурными решениями.

    Воздухораспределители можно классифицировать по схемам организации воздухообмена, которые в свою очередь делятся на две основные группы: перемешивающие и вытесняющие.

    Перемешивающие системы вентиляции

    Перемешивающую вентиляцию называют еще «распределением воздуха посредством турбулентного потока». Это наиболее популярная система распределения воздуха. Она организуется при помощи ВР, подающих воздух в помещение воздушными струями, имеющими высокую скорость и турбулентность, вызывающими интенсивную циркуляцию воздуха. В результате происходит перемешивание свежего воздуха приточной струи с воздухом помещения. Если происходит полное перемешивание, на определенном расстоянии от места притока параметры воздуха (температура, относительная влажность, скорость движения), а также содержание загрязняющих веществ будут одинаковыми в любой точке обслуживаемого помещения. Объемный расход приточного воздуха, как правило, невелик по сравнению с общей перемещаемой массой воздуха в помещении. Начальная скорость приточной струи может изменяться в зависимости от конкретных условий в очень широком диапазоне – от 2 до 20 м/с. Разность температур между приточным воздухом и воздухом в помещении также может быть достаточно высокой как в режиме отопления, так и в режиме охлаждения помещения. Температура воздуха будет практически одинаковой там, где обеспечивается достаточно интенсивное перемешивание воздуха, и, напротив, в застойных зонах могут иметь место значительные температурные перепады. Следует отметить, что на наличие и размеры застойных зон, помимо приточных струй, оказывают влияние естественные конвективные потоки, формируемые в конкретном помещении. Формирование конвективных потоков и их характеристик определяется множеством факторов, таких, в частности, как наличие локальных источников тепла, их мощность, размеры и расположение в помещении, теплоизоляция ограждений помещения и т. п. Отметим, что критичными представляются случаи, когда застойные зоны образуются в рабочей (обслуживаемой) зоне помещения; менее критичны ситуации, когда застойные зоны расположены за пределами рабочей зоны, например, в верхней зоне помещения. Наличие в помещении застойных зон, независимо от вида используемого ВР, более неприятно при отопительном режиме работы вентиляции, в силу естественной тенденции нагретого воздуха перемещаться вверх за пределы рабочей зоны.

    Размеры застойных зон можно уменьшить путем соответствующего увеличения объемного расхода и скорости приточного воздуха. Эта, на первый взгляд, банальная операция не должна нарушать комфорт пользователей, находящихся на рабочем участке. В этом смысле довольно проблематичным представляется использование перемешивающих систем с напольным распределением воздуха, когда из-за высокой скорости движения воздуха в обслуживаемой зоне могут возникать условия ощутимого дискомфорта. Если же условия комфорта не являются обязательными (например, на участках, где не предусмотрено постоянное присутствие людей), то явление температурного расслоения воздуха по высоте может позволить снизить холодильную нагрузку.

    Виды ВР для перемешивающих систем воздухораспределения приведены в табл. 1. Классификация ВР, представленная в табл. 1, не претендует на то, чтобы быть исчерпывающей.

    Таблица 1
    Виды воздухораспределителей для перемешивающей вентиляции

    Вид

    Подвиды

    Приточные решетки

    - для установки в стене или воздуховоде
    - с одним или двумя рядами лопаток
    - с неподвижными горизонтальными лопатками

    Потолочные ВР (плафоны)

    - многодиффузорные круглые
    - многодиффузорные квадратные (прямоугольные) с различными направлениями приточных струй (секторные кольцевые, с перфорированной крышкой и т. п.)

    ВР, формирующие быстро
    затухающие струи

    - щелевые, устанавливаемые в потолке или стене
    - квадратные или круглые, устанавливаемые в потолке
    - с регулируемыми элементами (стенные, потолочные)
    - с перфорированной элементами, устанавливаемые в потолке или стене

    ВР, формирующие закрученные струи

    - круглые или квадратные с неподвижными или регулируемыми закручивателями
    - щелевые, устанавливаемые в стене

    ВР с регулируемой геометрией

    - с регулируемыми лопатками
    - с неподвижными лопатками и с регулируемым «цилиндром», двухструйные

    Сопловые ВР

    - с шаровой или полусферической камерой
    - с воздухораздающими элементами-закручивателями
    - с рядом воздухораздающих элементов

    ВР напольные

    - круглые, с закрученным воздушным потоком
    - кресельные
    - напольные и лестничные решетки

    См. также:

    Перевод с итальянского С. Н. Булекова.
    Научное редактирование выполнено вице-президентом НП «АВОК» Е. О. Шилькротом и В. Н. Посохиным, заведующим кафедрой ТГВ Казанского государственного архитектурно-строительного университета (КГАСУ)

    [ http://www.abok.ru/for_spec/articles.php?nid=4280]

    Тематики

    Обобщающие термины

    Синонимы

    EN

    Англо-русский словарь нормативно-технической терминологии > air terminal unit

  • 25 luminaire

    1. светильник
    2. воздухораспределитель

     

    воздухораспределитель
    Концевой элемент для выпуска или отвода в обслуживаемое помещение требуемого количества воздуха.
    Примечания:
    1. Виды воздухораспределителей по конструктивному признаку:
    - решетка,
    - насадок,
    - перфорированная панель.
    2. По месту установки воздухораспределители могут быть:
    - потолочные,
    - пристенные,
    - напольные.
    3. По характеру организации приточной струи воздухораспределители могут быть:
    - с подачей компактной струи,
    - с подачей неполной веерной струи,
    - с подачей полной веерной струи,
    - с подачей плоской струи,
    - с двухструйной подачей. 
    [ ГОСТ 22270-76]


    Воздухораспределение в помещениях: классификация систем

    Воздухораспределение является одной из самых сложных задач, которая, по существу, определяет конечный, потребительский эффект работы вентиляции и кондиционирования воздуха. Как подать воздух в помещение, чтобы избежать сквозняков и застойных зон, обеспечить равномерное распределение температуры воздуха в рабочей (обслуживаемой) зоне, не допустить перетопов, избыточного охлаждения и вентилирования помещения, загрязнения «чистых» зон вредными выделениями «грязных»? Все эти вопросы рассматриваются при выборе схемы организации воздухообмена и типа воздухораспределителей, непосредственно подающих воздух в помещение.

    Сегодня мы публикуем обзор различных технологий вентиляции (схем организации воздухообмена) и видов воздухораспределителей.


    Воздухораспределители являются важнейшими элементами систем кондиционирования воздуха и вентиляции. Однако выбор систем воздухораспределения является достаточно сложной задачей и требует знания всех разработок в этой области.

    Задача воздухораспределителей состоит в обеспечении равномерного распределения воздуха в помещении с целью:

    • ассимиляции тепловой нагрузки, как положительной, так и отрицательной;
    • ассимиляции взвешенной в воздухе мельчайшей пыли и удаление ее вытяжной системой;
    • поддержания в помещении заданной минимальной неравномерности температуры и скорости движения воздуха (градиента температуры и скорости в пределах установленного диапазона по вертикали и горизонтали).

    При проектировании систем воздухораспределения следует учитывать фактические особенности помещения, которые могут влиять на распространение (циркуляцию) воздуха:

    • наличие препятствий на пути движения воздушных струй;
    • наличие локальных интенсивных тепловых источников;
    • изменения температуры и/или расхода воздуха (например, в системах с переменным расходом) в приточных струях, влияющие на их дальнобойность.

    При выборе типа и размера воздухораспределителей (ВР) не следует забывать о том, что любой из них является источником шума в обслуживаемом помещении. Уровень шума ВР, выражаемый в Дб(А), составляет обычно от 25 до 35 единиц. В любом случае после монтажа оборудования следует самым тщательным образом измерить фактические параметры создаваемого ВР шума. Кроме того, необходимо также определить параметры потери нагрузки – в зависимости от значений объемного расхода воздуха они варьируются в диапазоне от 5 до 35 Па.

    Схемы организации воздухообмена в помещении определяются параметрами системы кондиционирования, аэрогидродинамическими характеристиками приточных и вытяжных устройств, их расположением в обслуживаемом помещении, которое часто обусловлено архитектурными решениями.

    Воздухораспределители можно классифицировать по схемам организации воздухообмена, которые в свою очередь делятся на две основные группы: перемешивающие и вытесняющие.

    Перемешивающие системы вентиляции

    Перемешивающую вентиляцию называют еще «распределением воздуха посредством турбулентного потока». Это наиболее популярная система распределения воздуха. Она организуется при помощи ВР, подающих воздух в помещение воздушными струями, имеющими высокую скорость и турбулентность, вызывающими интенсивную циркуляцию воздуха. В результате происходит перемешивание свежего воздуха приточной струи с воздухом помещения. Если происходит полное перемешивание, на определенном расстоянии от места притока параметры воздуха (температура, относительная влажность, скорость движения), а также содержание загрязняющих веществ будут одинаковыми в любой точке обслуживаемого помещения. Объемный расход приточного воздуха, как правило, невелик по сравнению с общей перемещаемой массой воздуха в помещении. Начальная скорость приточной струи может изменяться в зависимости от конкретных условий в очень широком диапазоне – от 2 до 20 м/с. Разность температур между приточным воздухом и воздухом в помещении также может быть достаточно высокой как в режиме отопления, так и в режиме охлаждения помещения. Температура воздуха будет практически одинаковой там, где обеспечивается достаточно интенсивное перемешивание воздуха, и, напротив, в застойных зонах могут иметь место значительные температурные перепады. Следует отметить, что на наличие и размеры застойных зон, помимо приточных струй, оказывают влияние естественные конвективные потоки, формируемые в конкретном помещении. Формирование конвективных потоков и их характеристик определяется множеством факторов, таких, в частности, как наличие локальных источников тепла, их мощность, размеры и расположение в помещении, теплоизоляция ограждений помещения и т. п. Отметим, что критичными представляются случаи, когда застойные зоны образуются в рабочей (обслуживаемой) зоне помещения; менее критичны ситуации, когда застойные зоны расположены за пределами рабочей зоны, например, в верхней зоне помещения. Наличие в помещении застойных зон, независимо от вида используемого ВР, более неприятно при отопительном режиме работы вентиляции, в силу естественной тенденции нагретого воздуха перемещаться вверх за пределы рабочей зоны.

    Размеры застойных зон можно уменьшить путем соответствующего увеличения объемного расхода и скорости приточного воздуха. Эта, на первый взгляд, банальная операция не должна нарушать комфорт пользователей, находящихся на рабочем участке. В этом смысле довольно проблематичным представляется использование перемешивающих систем с напольным распределением воздуха, когда из-за высокой скорости движения воздуха в обслуживаемой зоне могут возникать условия ощутимого дискомфорта. Если же условия комфорта не являются обязательными (например, на участках, где не предусмотрено постоянное присутствие людей), то явление температурного расслоения воздуха по высоте может позволить снизить холодильную нагрузку.

    Виды ВР для перемешивающих систем воздухораспределения приведены в табл. 1. Классификация ВР, представленная в табл. 1, не претендует на то, чтобы быть исчерпывающей.

    Таблица 1
    Виды воздухораспределителей для перемешивающей вентиляции

    Вид

    Подвиды

    Приточные решетки

    - для установки в стене или воздуховоде
    - с одним или двумя рядами лопаток
    - с неподвижными горизонтальными лопатками

    Потолочные ВР (плафоны)

    - многодиффузорные круглые
    - многодиффузорные квадратные (прямоугольные) с различными направлениями приточных струй (секторные кольцевые, с перфорированной крышкой и т. п.)

    ВР, формирующие быстро
    затухающие струи

    - щелевые, устанавливаемые в потолке или стене
    - квадратные или круглые, устанавливаемые в потолке
    - с регулируемыми элементами (стенные, потолочные)
    - с перфорированной элементами, устанавливаемые в потолке или стене

    ВР, формирующие закрученные струи

    - круглые или квадратные с неподвижными или регулируемыми закручивателями
    - щелевые, устанавливаемые в стене

    ВР с регулируемой геометрией

    - с регулируемыми лопатками
    - с неподвижными лопатками и с регулируемым «цилиндром», двухструйные

    Сопловые ВР

    - с шаровой или полусферической камерой
    - с воздухораздающими элементами-закручивателями
    - с рядом воздухораздающих элементов

    ВР напольные

    - круглые, с закрученным воздушным потоком
    - кресельные
    - напольные и лестничные решетки

    См. также:

    Перевод с итальянского С. Н. Булекова.
    Научное редактирование выполнено вице-президентом НП «АВОК» Е. О. Шилькротом и В. Н. Посохиным, заведующим кафедрой ТГВ Казанского государственного архитектурно-строительного университета (КГАСУ)

    [ http://www.abok.ru/for_spec/articles.php?nid=4280]

    Тематики

    Обобщающие термины

    Синонимы

    EN

     

    светильник
    Световой прибор, перераспределяющий свет лампы (ламп) внутри больших телесных углов и обеспечивающий угловую концентрацию светового потока с коэффициентом усиления не более 30 для круглосимметричных и не более 15 для симметричных приборов.
    [ ГОСТ 16703-79]

    светильник

    Устройство, состоящее из осветительной арматуры и источников света и предназначенное для освещения помещений и открытых, пространств
    [Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)]

    светильник
    Прибор, перераспределяющий, фильтрующий или преобразующий свет, излучаемый одной или несколькими лампами, и содержащий все необходимые детали для установки, крепления и защиты его и ламп, но не сами лампы, а при необходимости - электрические цепи и элементы для присоединения к электрической сети.
    Примечание - Прибор с несъемными незаменяемыми лампами считают светильником, за исключением приборов с несъемными лампами или несъемными лампами со встроенным ПРА, которые не подвергают испытаниям.
    [ ГОСТ Р МЭК 60598-1-2011]

    Тематики

    • лампы, светильники, приборы и комплексы световые

    EN

    DE

    FR

    1.2.1 светильник (luminaire): Прибор, перераспределяющий, фильтрующий или преобразующий свет, излучаемый одной или несколькими лампами, и содержащий все необходимые детали для установки, крепления и защиты его и ламп, но не сами лампы, а при необходимости - электрические цепи и элементы для присоединения к электрической сети.

    Примечание - Прибор с несъемными незаменяемыми лампами считают светильником, за исключением приборов с несъемными лампами или несъемными лампами со встроенным ПРА, которые не подвергают испытаниям.

    Источник: ГОСТ Р МЭК 60598-1-2011: Светильники. Часть 1. Общие требования и методы испытаний оригинал документа

    Англо-русский словарь нормативно-технической терминологии > luminaire

  • 26 supply air outlet

    1. воздухораспределитель

     

    воздухораспределитель
    Концевой элемент для выпуска или отвода в обслуживаемое помещение требуемого количества воздуха.
    Примечания:
    1. Виды воздухораспределителей по конструктивному признаку:
    - решетка,
    - насадок,
    - перфорированная панель.
    2. По месту установки воздухораспределители могут быть:
    - потолочные,
    - пристенные,
    - напольные.
    3. По характеру организации приточной струи воздухораспределители могут быть:
    - с подачей компактной струи,
    - с подачей неполной веерной струи,
    - с подачей полной веерной струи,
    - с подачей плоской струи,
    - с двухструйной подачей. 
    [ ГОСТ 22270-76]


    Воздухораспределение в помещениях: классификация систем

    Воздухораспределение является одной из самых сложных задач, которая, по существу, определяет конечный, потребительский эффект работы вентиляции и кондиционирования воздуха. Как подать воздух в помещение, чтобы избежать сквозняков и застойных зон, обеспечить равномерное распределение температуры воздуха в рабочей (обслуживаемой) зоне, не допустить перетопов, избыточного охлаждения и вентилирования помещения, загрязнения «чистых» зон вредными выделениями «грязных»? Все эти вопросы рассматриваются при выборе схемы организации воздухообмена и типа воздухораспределителей, непосредственно подающих воздух в помещение.

    Сегодня мы публикуем обзор различных технологий вентиляции (схем организации воздухообмена) и видов воздухораспределителей.


    Воздухораспределители являются важнейшими элементами систем кондиционирования воздуха и вентиляции. Однако выбор систем воздухораспределения является достаточно сложной задачей и требует знания всех разработок в этой области.

    Задача воздухораспределителей состоит в обеспечении равномерного распределения воздуха в помещении с целью:

    • ассимиляции тепловой нагрузки, как положительной, так и отрицательной;
    • ассимиляции взвешенной в воздухе мельчайшей пыли и удаление ее вытяжной системой;
    • поддержания в помещении заданной минимальной неравномерности температуры и скорости движения воздуха (градиента температуры и скорости в пределах установленного диапазона по вертикали и горизонтали).

    При проектировании систем воздухораспределения следует учитывать фактические особенности помещения, которые могут влиять на распространение (циркуляцию) воздуха:

    • наличие препятствий на пути движения воздушных струй;
    • наличие локальных интенсивных тепловых источников;
    • изменения температуры и/или расхода воздуха (например, в системах с переменным расходом) в приточных струях, влияющие на их дальнобойность.

    При выборе типа и размера воздухораспределителей (ВР) не следует забывать о том, что любой из них является источником шума в обслуживаемом помещении. Уровень шума ВР, выражаемый в Дб(А), составляет обычно от 25 до 35 единиц. В любом случае после монтажа оборудования следует самым тщательным образом измерить фактические параметры создаваемого ВР шума. Кроме того, необходимо также определить параметры потери нагрузки – в зависимости от значений объемного расхода воздуха они варьируются в диапазоне от 5 до 35 Па.

    Схемы организации воздухообмена в помещении определяются параметрами системы кондиционирования, аэрогидродинамическими характеристиками приточных и вытяжных устройств, их расположением в обслуживаемом помещении, которое часто обусловлено архитектурными решениями.

    Воздухораспределители можно классифицировать по схемам организации воздухообмена, которые в свою очередь делятся на две основные группы: перемешивающие и вытесняющие.

    Перемешивающие системы вентиляции

    Перемешивающую вентиляцию называют еще «распределением воздуха посредством турбулентного потока». Это наиболее популярная система распределения воздуха. Она организуется при помощи ВР, подающих воздух в помещение воздушными струями, имеющими высокую скорость и турбулентность, вызывающими интенсивную циркуляцию воздуха. В результате происходит перемешивание свежего воздуха приточной струи с воздухом помещения. Если происходит полное перемешивание, на определенном расстоянии от места притока параметры воздуха (температура, относительная влажность, скорость движения), а также содержание загрязняющих веществ будут одинаковыми в любой точке обслуживаемого помещения. Объемный расход приточного воздуха, как правило, невелик по сравнению с общей перемещаемой массой воздуха в помещении. Начальная скорость приточной струи может изменяться в зависимости от конкретных условий в очень широком диапазоне – от 2 до 20 м/с. Разность температур между приточным воздухом и воздухом в помещении также может быть достаточно высокой как в режиме отопления, так и в режиме охлаждения помещения. Температура воздуха будет практически одинаковой там, где обеспечивается достаточно интенсивное перемешивание воздуха, и, напротив, в застойных зонах могут иметь место значительные температурные перепады. Следует отметить, что на наличие и размеры застойных зон, помимо приточных струй, оказывают влияние естественные конвективные потоки, формируемые в конкретном помещении. Формирование конвективных потоков и их характеристик определяется множеством факторов, таких, в частности, как наличие локальных источников тепла, их мощность, размеры и расположение в помещении, теплоизоляция ограждений помещения и т. п. Отметим, что критичными представляются случаи, когда застойные зоны образуются в рабочей (обслуживаемой) зоне помещения; менее критичны ситуации, когда застойные зоны расположены за пределами рабочей зоны, например, в верхней зоне помещения. Наличие в помещении застойных зон, независимо от вида используемого ВР, более неприятно при отопительном режиме работы вентиляции, в силу естественной тенденции нагретого воздуха перемещаться вверх за пределы рабочей зоны.

    Размеры застойных зон можно уменьшить путем соответствующего увеличения объемного расхода и скорости приточного воздуха. Эта, на первый взгляд, банальная операция не должна нарушать комфорт пользователей, находящихся на рабочем участке. В этом смысле довольно проблематичным представляется использование перемешивающих систем с напольным распределением воздуха, когда из-за высокой скорости движения воздуха в обслуживаемой зоне могут возникать условия ощутимого дискомфорта. Если же условия комфорта не являются обязательными (например, на участках, где не предусмотрено постоянное присутствие людей), то явление температурного расслоения воздуха по высоте может позволить снизить холодильную нагрузку.

    Виды ВР для перемешивающих систем воздухораспределения приведены в табл. 1. Классификация ВР, представленная в табл. 1, не претендует на то, чтобы быть исчерпывающей.

    Таблица 1
    Виды воздухораспределителей для перемешивающей вентиляции

    Вид

    Подвиды

    Приточные решетки

    - для установки в стене или воздуховоде
    - с одним или двумя рядами лопаток
    - с неподвижными горизонтальными лопатками

    Потолочные ВР (плафоны)

    - многодиффузорные круглые
    - многодиффузорные квадратные (прямоугольные) с различными направлениями приточных струй (секторные кольцевые, с перфорированной крышкой и т. п.)

    ВР, формирующие быстро
    затухающие струи

    - щелевые, устанавливаемые в потолке или стене
    - квадратные или круглые, устанавливаемые в потолке
    - с регулируемыми элементами (стенные, потолочные)
    - с перфорированной элементами, устанавливаемые в потолке или стене

    ВР, формирующие закрученные струи

    - круглые или квадратные с неподвижными или регулируемыми закручивателями
    - щелевые, устанавливаемые в стене

    ВР с регулируемой геометрией

    - с регулируемыми лопатками
    - с неподвижными лопатками и с регулируемым «цилиндром», двухструйные

    Сопловые ВР

    - с шаровой или полусферической камерой
    - с воздухораздающими элементами-закручивателями
    - с рядом воздухораздающих элементов

    ВР напольные

    - круглые, с закрученным воздушным потоком
    - кресельные
    - напольные и лестничные решетки

    См. также:

    Перевод с итальянского С. Н. Булекова.
    Научное редактирование выполнено вице-президентом НП «АВОК» Е. О. Шилькротом и В. Н. Посохиным, заведующим кафедрой ТГВ Казанского государственного архитектурно-строительного университета (КГАСУ)

    [ http://www.abok.ru/for_spec/articles.php?nid=4280]

    Тематики

    Обобщающие термины

    Синонимы

    EN

    Англо-русский словарь нормативно-технической терминологии > supply air outlet

  • 27 charger

    1. узел зарядки
    2. обойма
    3. засыпной аппарат
    4. зарядный выпрямитель
    5. зарядный агрегат
    6. зарядное устройство источника бесперебойного питания
    7. зарядное устройство (в электротехнике)
    8. зарядное устройство
    9. загрузочная машина
    10. завалочная машина

     

    завалочная машина
    Машина для загрузки шихты в сталеплав. печь. Различают з. м.: напольные (рельсовые и безрельсовые) и подвесные. Напольные рельсовые з. м. используются в мартен. цехах с крупными печами (> 150 т). Напольные безрельсовые з. м. предназначены для обслуж. мартен. печей малой емкости (5—20 т). Подвесные з. м. работают, как правило, в цехах с печами средней емкости (20—150 т). М. такого типа состоит из мостового крана с гл. и вспомогат. тележками.
    [ http://metaltrade.ru/abc/a.htm]

    Тематики

    EN

     

    загрузочная машина
    Машина для загрузки заготовок в нагреват. или термич. печи.
    [ http://metaltrade.ru/abc/a.htm]

    Тематики

    EN

     

    зарядное устройство

    [Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.]

    Тематики

    • электротехника, основные понятия

    EN

     

    устройство зарядное (в электротехнике)
    Устройство для зарядки электрических аккумуляторов и батарей конденсаторов.
    [РД 01.120.00-КТН-228-06]


    Зарядные устройства аккумуляторов

    Емкость и время работы аккумуляторных батарей очень сильно зависят от типа и качества зарядных устройств, применяемых для их заряда, которые обеспечивают определенный метод заряда и выбор режима разряда. Выбор хорошего зарядного устройства для пользователя аккумуляторов часто является вопросом второстепенной важности, особенно при использовании аккумуляторов в бытовой электронной технике. Однако это очень существенный вопрос, и решать его нужно сразу, чтобы впоследствии не удивляться, почему так быстро приходится менять аккумуляторы или почему они не держат заряд. В большинстве случаев деньги, вложенные в покупку хорошего зарядного устройства, оправдывают себя в результате эффективной работы и длительного срока службы аккумуляторов.

    Построение схемы простейшего зарядного устройства зависит от принципов заряда, которых, в общем, два: ограничение тока заряда и ограничение напряжения заряда. Принцип заряда с ограничением тока заряда используется при заряде никель-кадмиевых и никель-металлгидридных аккумуляторов, а принцип с ограничением напряжения заряда - при заряде свинцово-кислотных, литий-ионных и литий-полимерных аккумуляторов.

    Весьма быстрое развитие электроники, совершенствование её элементной базы привели к созданию специализированных микросхем зарядных устройств, способные автоматически обеспечить заряд аккумулятора по заданному алгоритму и предназначенные для заряда аккумуляторов любого типа. Кроме того, отдельные типы микросхем помимо заряда обеспечивают измерение емкости аккумулятора или аккумуляторной батареи и степени разряда.

    Современные микросхемы зарядных устройств способны очень четкое прекращать процесса заряда практически по всем возможным характеристикам заряда: по скорости повышения температуры ΔТ/Δt, по пиковому напряжению на аккумуляторной батарее, по кратковременному понижению напряжения ΔU/Δt, по максимальной температуре, по сигналу таймера. Отдельные микросхемы обеспечивают контроль температуры окружающей среды и в зависимости от этого корректируют режим заряда и разряда. Например, такая коррекция происходит пошагово при изменении температуры на каждые 10 °С в пределах от -35 до +85 °С. На практике любая из этих схем, взятая за основу, обрастает дополнительными элементами, добавляющими зарядному устройству новые возможности, улучшая его характеристики.

    Зарядные устройства аккумуляторов, обеспечивающие постоянный ток ( гальваностатический режим заряда)
    Большая часть зарядных устройств обеспечивает заряд только постоянным током и потому пригодны лишь для заряда щелочных герметичных аккумуляторов (никель-металлгидридных и никель-кадмиевых). Простейшие бытовые зарядные устройства, осуществляющие заряд постоянным током, применяются для заряда от 1 до 4 аккумуляторов. Они различаются в основном конструкцией, а не принципиальной электрической схемой. Чаще всего такие зарядные устройства питаются через трансформатор от сети 220В и обеспечивают выпрямленный ток с невысоким уровнем его стабилизации. Ток практически всегда не регулируется, а время заряда определяется самим пользователем.

    Универсальность бытовых зарядных устройств, как правило, означает возможность установки в них аккумуляторов разных габаритов и обеспечение постоянного тока порядка 0,1С, по отношению к емкости, которую производитель зарядного устройства считает типичной для аккумуляторов такого типоразмера. Поэтому следует быть внимательным при установке в них аккумуляторов и правильно определять время заряда. За последние 5-7 лет быстрый прогресс промышленности привел к выпуску щелочных аккумуляторов одинаковых габаритов, но отличающихся по емкости в 3 раза. Стремление использовать простые универсальные зарядные устройства для заряда аккумуляторов все большей емкости может привести к очень продолжительному и, главное, малоэффективному заряду токами существенно меньше стандартного значения. Главным достоинством таких зарядных устройств является их низкая цена.

    Более дорогие зарядные устройства обеспечивают несколько режимов: доразряд (если он необходим), заряд и режим подзаряда. Доразряд щелочных аккумуляторов (до 1 В/ак) производится с целью снятия остаточной емкости. Однако следует учитывать, что в таких зарядных устройствах аккумуляторы, устанавливаемые в пружинные контакты, могут быть соединены последовательно, а контроль разряда выполняется по предельному разрядному напряжению U=(n х 1,0)В, где n - количество аккумуляторов в цепочке. Но после длительной эксплуатации аккумуляторы могут очень сильно различаться по емкости, и контроль по среднему напряжению для всей цепочки может привести к переразряду или переполюсованию наиболее слабых и их порче.

    Прекращение заряда или переключение в режим подзаряда (малым током для компенсации саморазряда) производится в таких зарядных устройствах автоматически в соответствии с некоторыми из тех параметров контроля, которые описаны в другой статье. При использовании таких зарядных устройств следует помнить, что не рекомендуется часто и надолго оставлять аккумуляторы в режиме компенсационного подзаряда, так как это укорачивает срок их службы.

    Некоторые зарядные устройства конструктивно оформлены так, что обеспечивают заряд как 1-4 отдельных аккумуляторов, так и 9 В батареи типоразмера 6E22 (E-BLOCK). Некоторые зарядные устройства имеют индивидуальный контроль процесса заряда (детекция -ΔU) в каждом канале, что дает возможность заряжать одновременно аккумуляторы разных типоразмеров.

    Следует заметить, что в том случае, когда пользователь может позволить себе длительный заряд никель-кадмиевых или никель-металлгидридных аккумуляторов стандартным током 0,1 С в течение 16 ч, можно использовать простейшие зарядные устройства с контролем процесса по времени. При этом, если нет уверенности в полном исчерпании емкости, следует очередной заряд сократить по времени: лучше некоторый недозаряд аккумуляторов, чем значительный перезаряд, который может привести к их деградации и преждевременном выходе из строя. Но вообще большая часть современных цилиндрических аккумуляторов может перенести случайный довольно значительный перезаряд без повреждения и последствий, хотя емкость их при последующем разряде и не повысится.

    Если же нужно максимально сократить время переподготовки аккумуляторов после исчерпания емкости, следует использовать зарядные устройства для быстрого заряда, но с высоким уровнем контроля процесса. При выборе зарядного устройства с разными параметрами контроля процесса следует учитывать, что контроль его по абсолютной величине конечного напряжения ненадежен, а из двух наиболее часто рекомендуемых производителями аккумуляторов параметров (-ΔU и ΔT/Δt) первый реализован уже во многих современных зарядных устройствах, второй - для обычных зарядных устройств редок, прежде всего из-за того, что требует наличия термодатчика, а его устанавливают только в батареях, но возможна установка термодатчика в место контакта аккумулятора с зарядным устройством. Не следует увлекаться и чересчур быстрым зарядом аккумуляторов (некоторые компании предлагают заряд за 15-30 мин). При плохом аппаратурном обеспечении даже надежного способа контроля заряда, столь быстрый заряд значительно сократит срок службы аккумулятора.

    Зарядные устройства аккумуляторов, обеспечивающие режим постоянного напряжения ( потенциостатический режим заряда) и комбинированный заряд
    Зарядные устройства для свинцово-кислотных, литий-ионных и литий-полимерных аккумуляторных батарей должны осуществлять стабилизацию тока на первой стадии заряда и стабилизацию напряжения питания на второй. Кроме того, должен быть обеспечен контроль конца заряда, который в общем случае может выполняться либо по времени, либо по снижению тока до заданной минимальной величины.

    Зарядных устройств с такой стратегией заряда на рынке много меньше, чем зарядных устройств, реализующих режим постоянного тока (имеются ввиду зарядные устройства для непосредственного заряда аккумуляторов и батарей, а не блоки питания для сотовых телефонов, ноутбуков и т.п.).

    О зарядных устройствах никель-кадмиевых и никель-металлгидридных аккумуляторах
    Для никель-кадмиевых и никель-металлгидридных аккумуляторных батарей существует три типа зарядных устройств. К ним относятся:

    1. Зарядные устройства нормального (медленного) заряда
    2. Зарядные устройства быстрого заряда
    3. Зарядные устройства скоростного заряда

    1. Зарядные устройства нормального (медленного) заряда.

    Зарядные устройства этого типа, иногда называют ночными. Ток нормального заряда составляет 0,1С. Время заряда - 14...16 ч. При таком малом токе заряда трудно определить время окончания заряда. Поэтому обычно индикатор готовности батареи в зарядных устройствах для нормального заряда отсутствует. Они самые дешевые и предназначены только для зарядки никель-кадмиевых аккумуляторов. Для зарядки как никель-кадмиевых так и никель-металлгидридных аккумуляторов используются другие, более совершенные зарядные устройства. Если зарядный ток установлен правильно, полностью заряженная батарея становится чуть теплой на ощупь. В таком случае нет надобности немедленно отключать ее от зарядного устройства. В нем она может оставаться более чем на один день. Но все же ее отсоединение сразу после окончания заряда - лучший вариант. При применении таких зарядных устройствах проблемы возникают, если они используются для зарядки батарей малой емкости, в то время как рассчитаны для работы с более мощными батареями. В таком случае аккумуляторная батарея станет нагреваться уже по достижении 70% своей емкости. Поскольку возможность понизить ток заряда или прекратить его процесс вообще отсутствует, то во второй половине цикла заряда начнется процесс теплового разрушения аккумуляторов. Единственно возможный способ сохранить аккумуляторы, это отключить их, как только они станут горячими. В случае, если для зарядки мощной аккумуляторной батареи используется недостаточно мощное зарядное устройство, батарея в процессе заряда будет оставаться холодной и никогда не будет заряжена до конца. Тогда она потеряет часть своей емкости.

    2. Зарядные устройства быстрого заряда.
    Они позиционируются как зарядные устройства среднего класса как по скорости заряда, так и по цене. Заряд аккумуляторов в них происходит в течение 3...6 часов током около 0,ЗС. В качестве необходимого элемента эти зарядные устройства имеют схему контроля достижения аккумуляторами определенного напряжения в конце заряда и их отключения в этот момент. Такие зарядные устройства обеспечивают лучшее по сравнению с устройствами медленного заряда обслуживание аккумуляторов. В настоящее время они уступили свое место зарядным устройствам скоростного заряда.

    3. Зарядные устройства скоростного заряда.
    Такие зарядные устройства имеют несколько преимуществ перед зарядными устройствами других типов. Главное из них - меньшее время заряда. Хотя из-за большей мощности источника напряжения и необходимости использования специальных узлов контроля и управления такие зарядные устройства имеют наиболее высокие цены. Время заряда в зарядных устройствах такого типа зависит от тока заряда, степени разряда аккумуляторов, их емкости и типа. При токе заряда 1С разряженная никель-кадмиевая батарея заряжается в среднем менее чем за один час. Если же аккумуляторная батарея полностью заряжена, некоторые зарядные устройства переходят в режим подзарядки пониженным током заряда и с отключением по сигналу таймера.

    Современные устройства скоростного заряда обычно используются для зарядки как никель-кадмиевых, так и никель-металлгидридных аккумуляторных батарей. Поскольку этот процесс происходит при повышенном токе заряда и за ним необходим контроль, крайне важно, чтобы в конкретном зарядном устройстве заряжались только те аккумуляторы, которые рекомендованы для скоростного заряда производителем. Некоторые батареи маркируют электрически на заводах-изготовителях с той целью, чтобы зарядное устройство могло распознать их тип и основные электрические характеристики. После этого зарядное устройство автоматически установит величину тока и задаст алгоритм процесса заряда, соответствующие установленным в него аккумуляторам.

    Еще раз подчеркнем, что свинцово-кислотные и литий-ионные аккумуляторные батареи имеют алгоритмы заряда, не совместимые с алгоритмом заряда никель-кадмиевых и никель-металлгидридных аккумуляторов.

    [ http://www.powerinfo.ru/charge.php]

    Тематики

    EN

     

    зарядное устройство источника бесперебойного питания
    Часть ИБП, которая обеспечивает поддержание аккумуляторной батареи в заряженном состоянии. В современных ИБП зарядное устройство работает по сложному алгоритму, обеспечивающему максимальный срок эксплуатации аккумуляторной батареи ИБП, при условии рекомендованного диапазона температуры окружающей среды, и быстрый термокомпенсированный заряд.
    [ http://www.radistr.ru/misc/document423.phtml]

    EN

    battery charger
    Functional UPS module that converts the utility mains AC voltage to DC voltage for charging batteries, in order to restore the charge that was withdrawn during mains outage.
    Generally, system's Rectifier fulfills also the charging function.
    [ http://www.upsonnet.com/UPS-Glossary/]

    Тематики

    Синонимы

    EN

     

    зарядный агрегат

    [Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.]

    Тематики

    • электротехника, основные понятия

    EN

     

    зарядный выпрямитель

    [Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.]

    Тематики

    • электротехника, основные понятия

    EN

     

    засыпной аппарат
    Устр-во для загрузки в домен, печь шихтовых материалов и их распределения по окружности и радиусу печи, выполняющее одноврем. ф-ции газ. затвора при давлении газа под колошником печи до 0,25 МПа. Пропускная способность з. а. совр. домен, печей достигает 1000 т/час. В конце XX в. получили наиб. распространение з. а.: конусный, конусный с подвижными колошниковыми плитами, бесконусный с лотковым распределителем шихты. Осн. конструктивные решения конусного з. а., предлож. англ. инж. Парри (неподвижная воронка и подвижный конус) в 1850 г. и амер. инж. Мак-Ки (вращающийся распределитель с малым конусом) в 1906 г., сохранились в совр. з. а. этого типа и в конусных з. а. с подвижными колошниковыми плитами, выполняющими ф-ции распределителя шихты (рис. 1). Осн. конструктивные решения, определ. более широкие возможности управляемого распределения шихты и герметизации печи (система запирающих клапанов, центр, течка, вращающ. распределит, лоток) применяются в бесконусном з. а. (БЗА) фирмы «Paul Wurt» с 1970-х гг. В мире установлено более 150 БЗА ф. «Paul Wurt», из них около 100 устройств однотрактовые. В 1990-х гг. было создано (Гипромез, ВНИИметмаш и др.) и установлено на доменных печах несколько типов одно- и двухтрактовых отечеств. БЗА.
    Установка БЗА с автоматизир. средствами контроля и управления, широкими возможностями управления радиальным и окружным распределением шихты, высокой долговечностью и ремонтопригодностью на всех вновь строящихся и реконструируемых печах стала одним из перспективных направлений повышения эффективности домен. произ-ва.
    [ http://metaltrade.ru/abc/a.htm]

    Тематики

    EN

     

    обойма
    [Департамент лингвистических услуг Оргкомитета «Сочи 2014». Глоссарий терминов]

    EN

    charger
    Another term for (cartridge) clip.
    [Департамент лингвистических услуг Оргкомитета «Сочи 2014». Глоссарий терминов]

    Тематики

    EN

     

    узел зарядки
    электризатор

    Техническое средство для нанесения электростатических зарядов на поверхность ЭФГ-фоторецептора.
    [ http://www.morepc.ru/dict/]

    Тематики

    Синонимы

    EN

    Англо-русский словарь нормативно-технической терминологии > charger

  • 28 charging machine

    1. посадочная машина
    2. загрузочная машина
    3. завалочная машина

     

    завалочная машина
    Машина для загрузки шихты в сталеплав. печь. Различают з. м.: напольные (рельсовые и безрельсовые) и подвесные. Напольные рельсовые з. м. используются в мартен. цехах с крупными печами (> 150 т). Напольные безрельсовые з. м. предназначены для обслуж. мартен. печей малой емкости (5—20 т). Подвесные з. м. работают, как правило, в цехах с печами средней емкости (20—150 т). М. такого типа состоит из мостового крана с гл. и вспомогат. тележками.
    [ http://metaltrade.ru/abc/a.htm]

    Тематики

    EN

     

    загрузочная машина
    Машина для загрузки заготовок в нагреват. или термич. печи.
    [ http://metaltrade.ru/abc/a.htm]

    Тематики

    EN

     

    посадочная машина
    Подъемно-транспорт. м., примен. в кузнечно-штампов. произ-ве для подачи крупных заготовок в нагреват. печи, выдачи их из печей и подачи к молотам и прессам.
    [ http://metaltrade.ru/abc/a.htm]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > charging machine

  • 29 charging unit

    1. устройство зарядное
    2. зарядный блок
    3. зарядное устройство
    4. загрузочная машина
    5. завалочная машина

     

    завалочная машина
    Машина для загрузки шихты в сталеплав. печь. Различают з. м.: напольные (рельсовые и безрельсовые) и подвесные. Напольные рельсовые з. м. используются в мартен. цехах с крупными печами (> 150 т). Напольные безрельсовые з. м. предназначены для обслуж. мартен. печей малой емкости (5—20 т). Подвесные з. м. работают, как правило, в цехах с печами средней емкости (20—150 т). М. такого типа состоит из мостового крана с гл. и вспомогат. тележками.
    [ http://metaltrade.ru/abc/a.htm]

    Тематики

    EN

     

    загрузочная машина
    Машина для загрузки заготовок в нагреват. или термич. печи.
    [ http://metaltrade.ru/abc/a.htm]

    Тематики

    EN

     

    зарядное устройство

    [Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.]

    Тематики

    • электротехника, основные понятия

    EN

     

    зарядный блок

    [Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.]

    Тематики

    • электротехника, основные понятия

    EN

     

    устройство зарядное
    Механизм для заполнения зарядной полости взрывчатым веществом
    [Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)]

    EN

    DE

    FR

    Англо-русский словарь нормативно-технической терминологии > charging unit

  • 30 access floor service fitting

    1. напольное устройство для подключения

     

    напольное устройство для подключения
    Специальное устройство, предназначенное для установки электрических аппаратов и электроустановочных изделий, применяемое в напольных, устанавливаемых под полом и заподлицо с полом системах.
    [ ГОСТ Р МЭК 61084-1 2007]

    напольное устройство для подключения

    -
    [IEV number 442-02-42]

    EN

    floor service unit
    specific apparatus mounting device used when installing a floor system
    [IEV number 442-02-42]

    FR

    bloc de distribution au plancher
    dispositif de montage d'appareil spécifique utilisé pour les systèmes installés au plancher
    [IEV number 442-02-42]

    4419

    Рис. THORSMAN
    Напольное устройство для подключения, установленное заподлицо с полом


    4458

    Рис. Wiremold/Legrand
    Напольное устройство для подключения, установленное заподлицо с полом
     

    Параллельные тексты EN-RU

    An Activation for Every Application!

    The Walkerduct Pro Series System offers a complete range of service fittings to meet all power, data and communication requirements.

    The flush service fittings are available in brushed aluminum, brass and nonmetallic finishes for single-, double- and triple-duct runs.

    Fittings are available for feeding directly out of the underfloor duct preset while keeping the connections to a minimum visibility.

    [Wiremold/Legrand]

    Напольные устройства подключения для любых применений!

    Система Walkerduct Pro Series System содержит полный комплект напольных устройств для подключения, допускающих встраивание любых электрических и телекоммуникационных розеток.

    В состав серии входят алюминиевые (с матовой поверхностью), латунные и пластмассовые устанавливаемые заподлицо с полом устройства, соединяемые с одно-, двух- и трехканальными коробами.

    Кабели попадают в напольные устройства непосредственно из расположенных под чистым полом специальных (глухих) коробов через закрепленные на них монтажные коробки. При этом напольные устройства остаются практически незаметными.

    [Перевод Интент]


    Тематики

    EN

    DE

    FR

    Англо-русский словарь нормативно-технической терминологии > access floor service fitting

  • 31 floor service unit

    1. неиспользуемое напольное устройство для подключения
    2. напольное устройство для подключения
    3. используемое напольное устройство для подключения

     

    напольное устройство для подключения
    Специальное устройство, предназначенное для установки электрических аппаратов и электроустановочных изделий, применяемое в напольных, устанавливаемых под полом и заподлицо с полом системах.
    [ ГОСТ Р МЭК 61084-1 2007]

    напольное устройство для подключения

    -
    [IEV number 442-02-42]

    EN

    floor service unit
    specific apparatus mounting device used when installing a floor system
    [IEV number 442-02-42]

    FR

    bloc de distribution au plancher
    dispositif de montage d'appareil spécifique utilisé pour les systèmes installés au plancher
    [IEV number 442-02-42]

    4419

    Рис. THORSMAN
    Напольное устройство для подключения, установленное заподлицо с полом


    4458

    Рис. Wiremold/Legrand
    Напольное устройство для подключения, установленное заподлицо с полом
     

    Параллельные тексты EN-RU

    An Activation for Every Application!

    The Walkerduct Pro Series System offers a complete range of service fittings to meet all power, data and communication requirements.

    The flush service fittings are available in brushed aluminum, brass and nonmetallic finishes for single-, double- and triple-duct runs.

    Fittings are available for feeding directly out of the underfloor duct preset while keeping the connections to a minimum visibility.

    [Wiremold/Legrand]

    Напольные устройства подключения для любых применений!

    Система Walkerduct Pro Series System содержит полный комплект напольных устройств для подключения, допускающих встраивание любых электрических и телекоммуникационных розеток.

    В состав серии входят алюминиевые (с матовой поверхностью), латунные и пластмассовые устанавливаемые заподлицо с полом устройства, соединяемые с одно-, двух- и трехканальными коробами.

    Кабели попадают в напольные устройства непосредственно из расположенных под чистым полом специальных (глухих) коробов через закрепленные на них монтажные коробки. При этом напольные устройства остаются практически незаметными.

    [Перевод Интент]


    Тематики

    EN

    DE

    FR

    3.105 неиспользуемое напольное устройство для подключения (floor service unit, when not in use): Напольное устройство для подключения, не содержащее кабелей и/или проводов, присоединенных к электрическим приборам (электроустановочным изделиям) устройства.

    Источник: ГОСТ Р МЭК 61084-2-2-2007: Системы кабельных и специальных кабельных коробов для электрических установок. Часть 2-2. Частные требования. Системы кабельных и специальных кабельных коробов, предназначенные для установки под и заподлицо с полом оригинал документа

    3.106 используемое напольное устройство для подключения (floor service unit, when in use): Устройство для подключения, содержащее кабели и/или провода, присоединенные к электрическим приборам (электроустановочным изделиям) устройства.

    Источник: ГОСТ Р МЭК 61084-2-2-2007: Системы кабельных и специальных кабельных коробов для электрических установок. Часть 2-2. Частные требования. Системы кабельных и специальных кабельных коробов, предназначенные для установки под и заподлицо с полом оригинал документа

    Англо-русский словарь нормативно-технической терминологии > floor service unit

  • 32 service fitting

    1. напольное устройство для подключения

     

    напольное устройство для подключения
    Специальное устройство, предназначенное для установки электрических аппаратов и электроустановочных изделий, применяемое в напольных, устанавливаемых под полом и заподлицо с полом системах.
    [ ГОСТ Р МЭК 61084-1 2007]

    напольное устройство для подключения

    -
    [IEV number 442-02-42]

    EN

    floor service unit
    specific apparatus mounting device used when installing a floor system
    [IEV number 442-02-42]

    FR

    bloc de distribution au plancher
    dispositif de montage d'appareil spécifique utilisé pour les systèmes installés au plancher
    [IEV number 442-02-42]

    4419

    Рис. THORSMAN
    Напольное устройство для подключения, установленное заподлицо с полом


    4458

    Рис. Wiremold/Legrand
    Напольное устройство для подключения, установленное заподлицо с полом
     

    Параллельные тексты EN-RU

    An Activation for Every Application!

    The Walkerduct Pro Series System offers a complete range of service fittings to meet all power, data and communication requirements.

    The flush service fittings are available in brushed aluminum, brass and nonmetallic finishes for single-, double- and triple-duct runs.

    Fittings are available for feeding directly out of the underfloor duct preset while keeping the connections to a minimum visibility.

    [Wiremold/Legrand]

    Напольные устройства подключения для любых применений!

    Система Walkerduct Pro Series System содержит полный комплект напольных устройств для подключения, допускающих встраивание любых электрических и телекоммуникационных розеток.

    В состав серии входят алюминиевые (с матовой поверхностью), латунные и пластмассовые устанавливаемые заподлицо с полом устройства, соединяемые с одно-, двух- и трехканальными коробами.

    Кабели попадают в напольные устройства непосредственно из расположенных под чистым полом специальных (глухих) коробов через закрепленные на них монтажные коробки. При этом напольные устройства остаются практически незаметными.

    [Перевод Интент]


    Тематики

    EN

    DE

    FR

    Англо-русский словарь нормативно-технической терминологии > service fitting

  • 33 air conditioning system

    1. система кондиционирования воздуха (спорт)
    2. система кондиционирования воздуха

     

    система кондиционирования воздуха
    Совокупность воздухотехнического оборудования, предназначенная для кондиционирования воздуха в помещениях
    [ ГОСТ 22270-76]

    система кондиционирования воздуха

    Совокупность технических средств для обработки и распределения воздуха, а также автоматического регулирования его параметров с дистанционным управлением всеми процессами
    [Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)]

    система кондиционирования воздуха

    Комбинация всех компонент, необходимых для обработки воздуха, в процессе которой осуществляется контроль или понижение температуры, возможно, в комбинации с контролем вентиляции, влажности и чистоты воздуха.
    [ДИРЕКТИВА 2002/91/ЕС ЕВРОПЕЙСКОГО ПАРЛАМЕТА И СОВЕТА от 16 декабря 2002 г. по энергетическим характеристикам зданий]


    КЛАССИФИКАЦИЯ



    Классификация систем кондиционирования воздуха

    М. Г. Тарабанов, директор НИЦ «ИНВЕНТ», канд. техн. наук, вице-президент НП «АВОК», лауреат премии НП «АВОК» «Медаль имени И. Ф. Ливчака», «Медаль имени В. Н. Богословского», otvet@abok.ru

    Общие положения

    Краткий, но достаточно полный обзор истории развития кондиционирования воздуха представлен в работе А. И. Липы [1], поэтому отметим только несколько моментов. Родоначальником техники кондиционирования воздуха в ее современном понимании считается американский инженер Виллис Хэвилэнд Кэрриер (Willis Haviland Carrier), который в 1902 году в Нью-Йорке в Бруклинской типографии применил поверхностный водяной воздухоохладитель с вентилятором для получения летом в помещении температуры +26,5 °C и относительной влажности 55 %. Вода охлаждалась в аммиачной холодильной машине. Зимой для увлажнения внутреннего воздуха до 55 % использовался водяной пар от бойлера.
    Термин «кондиционирование воздуха» был предложен в 1906 году Стюартом Уорреном Крамером (Stuart Warren Cramer).
    В отечественной практике некоторые авторы применяют термин «кондиционирование микроклимата». Заметим, что этот термин отличается от «кондиционирования воздуха», так как включает в себя дополнительные факторы, не связанные с состоянием воздушной среды в помещении (шум, инсоляция и др.).
    К сожалению, несмотря на солидный возраст термин «кондиционирование воздуха» не получил четкого определения в современных отечественных нормативных документах. Для устранения этого пробела сформулируем: «Кондиционирование воздуха – это создание и автоматическое поддержание в обслуживаемом помещении или технологическом объеме требуемых параметров и качества воздуха независимо от внутренних возмущений и внешних воздействий». К параметрам воздуха относятся: температура, относительная влажность или влагосодержание и подвижность. Качество воздуха включает в себя газовый состав, запыленность, запахи, аэроионный состав, т. е. более широкий круг показателей, чем термин «чистота», используемый в [2].
    Комплекс оборудования, элементов и устройств, с помощью которых обеспечивается кондиционирование воздуха в обслуживаемых помещениях, называется системой кондиционирования воздуха (СКВ).
    Приведенное выше определение системы кондиционирования воздуха по смыслу полностью совпадает с определением ASHRAE: «”air-conditioning system” – комплекс оборудования для одновременной обработки и регулирования температуры, влажности, чистоты воздуха и распределения последнего в соответствии с заданными требованиями» [3].
    Общепринятого, устоявшегося мнения, что следует включать в состав СКВ, к сожалению, нет.
    Так, например, по мнению О. Я. Кокорина [4] СКВ может включать в себя:

    • установку кондиционирования воздуха (УКВ), обеспечивающую необходимые кондиции воздушной среды по тепловлажностным качествам, чистоте, газовому составу и наличию запахов;
    • средства автоматического регулирования и контроля за приготовлением воздуха нужных кондиций в УКВ, а также для поддержания в обслуживаемом помещении или сооружении постоянства заданных кондиций воздуха;
    • устройства для транспортирования и распределения кондиционированного воздуха;
    • устройства для транспортирования и удаления загрязненного внутреннего воздуха;
    • устройства для глушения шума, вызываемого работой элементов СКВ;
    • устройства для приготовления и транспортирования источников энергии, необходимых для работы аппаратов в СКВ.

    В зависимости от конкретных условий некоторые составные части СКВ могут отсутствовать.
    Однако согласиться с отдельными пунктами предложенного состава СКВ нельзя, так как если следовать логике автора [4], то в состав СКВ должны войти и системы оборотного водоснабжения, водопровода и канализации, ИТП и трансформаторные, которые также необходимы для работы аппаратов в СКВ.
    Достаточно полное представление о структуре СКВ дает разработанная во ВНИИкондиционере «Блок-схема системы кондиционирования воздуха» (рис. 1) [5].

    4804

    Включенные в эту блок-схему подсистемы обработки воздуха по своему функциональному назначению делятся на блоки:

    • основной обработки и перемещения: Б1.1 – приемный, Б1.8 – очистки, Б1.2 – сухого (первого) подогрева, Б1.3 – охлаждения, Б1.6 – тепловлажностной обработки, Б1.9 – перемещения приточного воздуха;
    • дополнительной обработки и перемещения: Б2.1 – утилизации, Б2.2 – предварительного подогрева, Б2.3 – доводки общей (второй подогрев, дополнительное охлаждение), Б2.4 – зональной доводки, Б2.5 – местной доводки (эжекционные доводчики и др.), Б2.7 – шумоглушения, Б2.8 – перемещения рециркуляционного воздуха;
    • специальной обработки: Б5.5 – тонкой очистки;
    • воздушной сети: Б4.2 – воздухораспределительных устройств, Б4.3 – вытяжных устройств, Б4.5 – воздуховодов;
    • автоматизации – арматуры – Б3.1.

    Помимо этих блоков в СКВ может входить система холодоснабжения (снабжение электроэнергией и теплом осуществляется, как правило, централизованно). Ее включение в состав СКВ, видимо, относится к автономным кондиционерам (см. далее).
    Для определения состава оборудования, входящего в СКВ, и границ раздела целесообразно воспользоваться делением на разделы, которое сложилось в практике проектирования.
    В частности, при выполнении проектов кондиционирования воздуха достаточно серьезных объектов обычно выделяют в самостоятельные разделы: теплоснабжение СКВ; холодоснабжение и холодильные центры; электроснабжение; автоматизация; водоснабжение, в том числе оборотное, канализация и дренаж.
    Причем по каждому из разделов составляют свою спецификацию, в которую включено оборудование, материалы и арматура, относящиеся к своему конкретному разделу.
    Таким образом, в состав СКВ следует включить:

    • УКВ, предназначенную для очистки и тепловлажностной обработки и получения необходимого качества воздуха и его транспортировки по сети воздуховодов до обслуживаемого помещения или технического объема;
    • сеть приточных воздуховодов с воздухораспределителями, клапанами и регулирующими устройствами;
    • вытяжной вентилятор и сеть вытяжных и рециркуляционных воздуховодов с сетевым оборудованием;
    • сеть фреоновых трубопроводов для сплит-систем и VRV-систем с кабелями связи наружных блоков с внутренними;
    • фэнкойлы, эжекционные доводчики, моноблоки, холодные и теплые потолки и балки и др. доводчики для охлаждения и (или) нагревания непосредственно внутреннего воздуха;
    • оборудование для утилизации теплоты и холода;
    • дополнительные воздушные фильтры, шумоглушители и другие элементы.

    И даже систему автоматики, входящую в СКВ как бы по определению, целесообразно выделить отдельно, так как ее проектируют инженеры другой специальности, хотя и по заданию так называемых технологов СКВ.
    Границей СКВ и систем теплохолодоснабжения можно считать узлы регулирования, а границей электроснабжения и автоматики – электрические щиты и щиты управления, которые в последнее время очень часто делают совмещенными.

    Классификация систем кондиционирования воздуха

    Проблемам классификации СКВ в большей или меньшей степени уделяли внимание практически все авторы учебников и монографий по кондиционированию воздуха. Вот что написал по этому вопросу известный специалист, доктор техн. наук А. А. Рымкевич [6]: «Анализ иерархической структуры самих СКВ прежде всего требует их классификации и только затем их декомпозиции на подсистемы. …Однако для СКВ, решения которых базируются на учете большого числа данных, разработать такую классификацию всегда сложно. Не случайно в литературе нет единого мнения по данному вопросу, и поэтому многие известные авторы… предложили различные методы классификации».
    Предложенная А. А. Рымкеви-чем концепция выбора признаков классификации СКВ сформулирована очень точно, и с ней нельзя не согласиться. Проблема состоит в том, как этой концепцией воспользоваться и какие признаки считать определяющими, а какие вторичными, и как точно сформулировать эти признаки.
    В начале восьмидесятых годов прошлого века наиболее полная классификация СКВ была предложена в работе Б. В. Баркалова и Е. Е. Карписа [7].
    Основные признаки этой классификации с некоторыми дополнениями использованы и в недавно изданной монографии А. Г. Сотникова [8] и в других работах, однако некоторые формулировки отдельных признаков требуют уточнения и корректировки.
    Например, для опытных специалистов не составит труда разделить СКВ на центральные и местные, посмотрим, как признак такого деления сформулирован разными авторами.
    Б. В. Баркалов, Е. Е. Карпис пишут [7]: «В зависимости от расположения кондиционеров по отношению к обслуживаемым помеще-ниям СКВ делятся на центральные и местные». А. Г. Сотников [8] считает необходимым дополнить: «Деление на местные и центральные СКВ учитывает как место установки кондиционера, так и группировку помещений по системам», а О. Я. Кокорин уточняет: «По характеру связи с обслуживаемым помещением можно подразделить СКВ на три вида: центральные, местные и центрально-местные. Центральные СКВ характеризуются расположением УКВ в удалении от обслуживаемых объектов и наличием приточных воздуховодов значительной протяженности. Местные СКВ характеризуются расположением УКВ в самом обслуживаемом помещении или в непосредственной близости от него, при отсутствии (или наличии весьма коротких) приточных воздуховодов. Центрально-местные СКВ характеризуются как наличием УКВ в удалении от обслуживаемых объектов, так и местных УКВ, располагаемых в самих помещениях или в непосредственной близости от них».
    Трудно понять, что имеется в виду под группировкой помещений по системам и что считается протяженными или весьма короткими воздуховодами. Например, кондиционеры, обслуживающие текстильные цеха на Волжском заводе синтетического волокна, имеют производительность по воздуху до 240 м3/ч и расположены рядом с обслуживаемыми помещениями, то есть непосредственно за стенами, но никто из указанных выше авторов не отнес бы их к местным системам.
    Несколько иной признак клас-сификации предложил Е. В. Стефанов [9]: «… по степени централизации – на системы центральные, обслуживающие из одного центра несколько помещений, и местные, устраиваемые для отдельных помещений и располагающиеся, как правило, в самих обслуживаемых помещениях».
    К сожалению, и эта формулировка является нечеткой, так как одно большое помещение могут обслуживать несколько центральных кондиционеров, а группу небольших помещений – один местный кондиционер.
    Фактически в отечественной практике негласно действовал совсем другой признак классификации: все кондиционеры, выпускавшиеся Харьковским заводом «Кондиционер», кроме шкафных, считались центральными, а все кондиционеры, выпускавшиеся Домодедовским заводом «Кондиционер», кроме горизонтальных производительностью 10 и 20 тыс. м3/ч, – относились к местным.
    Конечно, сегодня такое деление выглядит смешным, а между тем в нем был определенный здравый смысл.
    Известно, что в местных системах используются готовые агрегаты полной заводской сборки обычно шкафного типа со стандартным набором тепломассообменного оборудования с уже готовыми, заданными заранее техническими характеристиками, поэтому местные УКВ не проектируют, а подбирают для конкретного обслуживаемого помещения или группы небольших однотипных помещений.
    Максимальная производительность местных систем по воздуху обычно не превышает 20–30 тыс. м3/ч.
    Центральные кондиционеры могут быть также полной заводской сборки или собираются на месте монтажа, причем технические характеристики всех элементов, включая воздушные фильтры, вентиляторы и тепломассообменное оборудование, задаются производителями в очень широких пределах, поэтому такие кондиционеры не подбирают, а проектируют, а затем изготавливают в соответствии с бланком-заказом для конкретного объекта.
    Обычно центральные кондиционеры собирают в виде горизонтальных блоков, причем производительность таких кондиционеров по воздуху значительно больше, чем у местных и достигает 100–250 тыс. м3/ч у разных фирм-производителей.
    Очевидно, что отмеченные признаки относятся к УКВ, но их можно использовать и для классификации СКВ, например, СКВ с центральной УКВ – центральная СКВ, а с местной УКВ – местная СКВ. Такой подход не исключает полностью признаки, предложенные другими авторами, а дополняет их, исключая некоторые неопределенности, типа протяженности воздуховодов и др.
    Для дальнейшей классификации СКВ рассмотрим схему ее функционирования.
    На параметры внутреннего воздуха в обслуживаемом помещении или технологическом объеме оказывают воздействие внутренние возмущения, то есть изменяющиеся тепло- и влаговыделения, а также внешние факторы, например, изменение температуры и влагосодержания наружного воздуха, воздействие на остекленный фасад прямой солнечной радиации в разное время суток и др.
    Задача СКВ состоит в том, чтобы улавливать и своевременно устранять последствия этих возмущений и воздействий для сохранения параметров внутреннего воздуха в заданных пределах, используя систему автоматического регулирования и необходимый набор оборудования (воздухоохладители, воздухонагреватели, увлажнители и др.), а также источники теплоты и холода.
    Поддерживать требуемые параметры внутреннего воздуха можно изменяя параметры или расход приточного воздуха, подаваемого в помещение извне, или с помощью аппаратов, установленных непосредственно в помещении, так называемых доводчиков.
    Сегодня в качестве доводчиков используют внутренние блоки сплит-систем и VRV-систем, фэнкойлы, моноблоки, охлаждаемые потолки и балки и другие элементы.
    К сожалению, в классификации [7] вместо понятия «доводчики» используется понятие «водовоздушные СКВ», а в классификации [8] дополнительно вводится термин «водо- и фреоновоздушная СКВ». С подобными предложениями нельзя согласиться в принципе, так как их авторы вольно или невольно присваивают сплит-системам или фэнкойлам статус систем кондиционирования воздуха, которыми они не являются и, естественно, не могут входить в классификацию СКВ, поскольку являются всего лишь местными охладителями или нагревателями, то есть не более чем доводчиками.
    Справедливости ради отметим, что Б. В. Баркалов начинает описание центральных водовоздушных систем очень точной фразой: «В каждое помещение вводится наружный воздух, приготовленный в центральном кондиционере. Перед выпуском в помещение он смешивается с воздухом данного помещения, предварительно охлажденным или нагретым в теплообменниках кондиционеров?доводчиков, снабжаемых холодной и горячей водой». Приведенная цитата показывает, что автор хорошо понимает неопределенность предложенного им признака классификации и поэтому сразу поясняет, что он имеет в виду под центральными водовоздушными системами.
    Системы без доводчиков могут быть прямоточными, когда в помещение подается обработанный наружный воздух, и с рециркуляцией, когда к наружному воздуху подмешивают воздух, забираемый из помещения. Кроме того, технологические СКВ, обслуживающие помещения или аппараты без пребывания людей, могут работать без подачи наружного воздуха со 100 % рециркуляцией. В зависимости от алгоритма работы СКВ различают системы с постоянной рециркуляцией, в которых соотношение количества наружного и рециркуляционного воздуха во время работы не изменяется, и СКВ с переменной рециркуляцией, в которых количество наружного воздуха может изменяться от 100 % до некоторого нормируемого минимального уровня.
    Кроме того, системы с рециркуляцией могут быть одновентиляторными и двухвентиляторными. В первых системах подача приточного воздуха в помещение, а также забор наружного и рециркуляционного воздуха осуществляется приточным вентилятором УКВ. Во втором случае для удаления воздуха из помещения и подачи его на рециркуляцию или на выброс применяют дополнительный вытяжной вентилятор.
    Независимо от схемы компоновки и устройства отдельных элементов СКВ подразделяют также по их назначению. Многие авторы делят СКВ на комфортные, технологические и комфортно-технологические. Более удачной и полной представляется классификация СКВ по назначению на эргономической основе, разработанная ВНИИкондиционером [5].
    Определено, что СКВ могут выполнять одну из трех функций обслуживания: машин; машин + людей; людей.
    1-я группа (символ «машина») определена как технологические СКВ. СКВ этой группы обслуживают технологические аппараты, камеры, боксы, машины и т. п., то есть применяются в тех случаях, когда условия воздушной среды диктуются обеспечением работоспособности технологического оборудования. При этом параметры воздушной среды могут отличаться от тех, которые определяются санитарно-гигиеническими нормами.
    1-я группа имеет две модификации:

    • Подгруппа 1–1 включает в себя кондиционируемые объекты, полностью исключающие возможность пребывания в них человека, то есть это системы технологического охлаждения, обдува электронных блоков вычислительных машин, шахты обдува волокна прядильных машин и т. п.
    • Подгруппа 1–2 включает в себя кондиционируемые объекты: технологические аппараты (машины, камеры, боксы) и помещения с особыми параметрами воздушной среды (калориметрического, экологического и другого назначения), в которых человек отсутствует или находится эпизодически (для снятия показаний приборов, изменения режима работы и т. д.).

    Если для группы 1–1 отсутствуют какие-либо ограничения по параметрам и составу воздушной среды, то для объектов подгруппы 1–2 газовый состав воздушной среды должен находиться в пределах, установленных ГОСТ.
    2-я группа (символ «машина + человек») определена как технологически комфортные СКВ. СКВ этой группы обслуживают производственные помещения, в которых длительно пребывают люди.
    2-я группа имеет три модификации:

    • Подгруппа 2–1. Технологически комфортные СКВ обеспечивают условия нормального осуществления технологических процессов как для производств, в которых затруднено или практически невозможно получение продукции без поддержания определенных параметров воздушной среды, так и для производств, в которых колебания параметров воздуха существенно влияют на качество продукции и величину брака.
    • Для этих помещений СКВ устраивается в первую (и основную) очередь по требованиям технологии, однако в связи с наличием в этих помещениях людей, параметры КВ устанавливают с учетом требований санитарно-гигиенических норм.
    • Подгруппа 2–2. СКВ создаются для исключения дискомфортных условий труда при тяжелых режимах работы людей (кабины крановщиков мостовых кранов металлургических заводов и ТЭЦ, кабины строительно-дорожных машин и т. д.). Производственные или экономические аспекты для этих установок имеют второстепенное значение.
    • Подгруппа 2–3. СКВ обеспечивают в производственных помещениях комфортные условия труда, способствующие повышению производительности труда, улучшению проведения основных технологических режимов, снижению заболеваемости, уменьшению эксплуатационных затрат и т. п.

    3-я группа (символ «люди») определена как комфортные СКВ, обеспечивающие санитарно-гигиенические условия труда, отдыха или иного пребывания людей в помещениях гражданских зданий, то есть вне промышленного производства.
    Эта группа имеет две модификации:

    • Подгруппа 3–1. СКВ обслуживают помещения общественных зданий, в которых для одной части людей пребывание в них кратковременно (например, покупатели в универмаге), а для другой – длительно (например, продавцы в этом же универмаге).
    • Подгруппа 3–2. СКВ обеспечивают оптимальные условия пребывания людей в жилых помещениях.

    В классификацию ВНИИконди-ционера необходимо ввести еще одну группу – медицинские СКВ. Очевидно, что СКВ, обслуживающие операционные, реанимационные или палаты интенсивной терапии, никак нельзя считать комфортными, а чтобы отнести их к технологическим, надо в качестве «машины» рассматривать самого человека, что просто глупо.
    Медицинские СКВ должны иметь две подгруппы:

    • Подгруппа 4–1. СКВ обслуживают операционные, реанимационные и т. п. помещения.
    • Подгруппа 4–2. СКВ обеспечивают требуемые параметры воздуха в палатах, кабинетах врачей, процедурных и т. п.

     

    4805

    Для завершения классификации СКВ рассмотрим еще несколько признаков.
    По типу системы холодоснабжения различают автономные и неавтономные СКВ. В автономных источник холода встроен в кондиционер, в неавтономных – источником холода является отдельный холодильный центр. Кроме того, в автономных кондиционерах в воздухоохладитель может подаваться кипящий хладон или жидкий промежуточный хладоноситель (холодная вода, растворы). Заметим, что на многих объектах мы использовали схему с подачей хладона в воздухоохладитель центрального кондиционера от расположенной рядом холодильной машины или внешнего блока VRV.
    По способу компенсации изменяющихся тепловых и (или) влажностных возмущений в обслуживаемом помещении различают СКВ с постоянным расходом воздуха (CAV) – системы, в которых внутренние параметры поддерживают изменяя температуру и влажность приточного воздуха (качественное регулирование), и системы с переменным расходом воздуха (VAV) – системы с количественным регулированием.
    По числу воздуховодов для подачи кондиционированного воздуха в помещенияСКВ делятся на одноканальные и двухканальные, при этом приточный воздух в каждом канале имеет разную температуру и влажность, что позволяет, изменяя соотношение приточного воздуха, подаваемого через каждый канал, поддерживать требуемые параметры в обслуживаемом помещении.
    По числу точек стабилизации одноименного параметра (t; φ)в большом помещении или группе небольших помещений различают одно- и многозональные СКВ.
    –это СКВ с местными доводчиками. В этих СКВ центральная или местная УКВ подает в помещение санитарную норму наружного воздуха, даже не обязательно обработанного, а местные доводчики обеспечивают поддержание в помещении требуемых параметров воздуха (температуры, относительной влажности и подвижности).
    Сегодня в качестве местных доводчиков применяют: внутренние блоки сплит-систем или VRV-систем; фэнкойлы (двух- или четырехтрубные); моноблоки (напольные, потолочные или настенные); эжекционные доводчики; местные увлажнители воздуха; охлаждаемые и нагреваемые потолки; охлаждающие балки (пассивные и активированные).
    Все указанные доводчики сами по себе не являются кондиционерами, хотя их и называют так продавцы оборудования.
    Известно, что некоторые фирмы работают над созданием, например, фэнкойлов или сплит-систем, подающих в помещение наружный воздух. Но, если это и произойдет в массовом масштабе, то ничего страшного с классификацией не случится, просто это оборудование получит статус местных кондиционеров.
    Блок-схема рассмотренной классификации СКВ приведена на рис. 2.
    Помимо рассмотренных признаков в схему на рис. 2 включен еще один: наличие утилизаторов теплоты и холода, которые могут быть как в центральных, так и в местных СКВ. Причем необходимо различать системы утилизации типа воздух-воздух, к которым относятся схемы с промежуточным теплоносителем, с пластинчатыми теплообменниками* и с регенеративными вращающимися и переключаемыми теплообменниками, а также системы утилизации теплоты оборотной воды и теплоты обратного теплоносителя систем централизованного теплоснабжения и систем технологического жидкостного охлаждения.

    Литература

    1. Липа А. И. Кондиционирование воздуха. Основы теории. Совре-менные технологии обработки воздуха. – Одесса: Издательство ВМВ, 2010.
    2. СНиП 41–01–2003. Отопление, вентиляция, кондиционирование. М.: Госстрой России. – 2004.
    3. Англо-русский терминологический словарь по отоплению, вентиляции, кондиционированию воздуха и охлаждению. М.: Изд-во «АВОК-ПРЕСС», 2002.
    4. Кокорин О. Я. Энергосберегаю-щие системы кондиционирования воздуха. ООО «ЛЭС». – М., 2007.
    5. Кондиционеры. Каталог-спра-воч-ник ЦНИИТЭстроймаш. – М., 1981.
    6. Рымкевич А. А. Системный анализ оптимизации общеобменной вентиляции и кондиционирования воздуха. Изд. 1. – М.: Стройиздат, 1990.
    7. Баркалов Б. В., Карпис Е. Е. Кондиционирование воздуха в промышленных, общественных и жилых зданиях. Изд. 2. – М.: Стройиздат, 1982.
    8. Сотников А. Г. Процессы, аппараты и системы кондиционирования воздуха и вентиляции. Т. 1. ООО «АТ». – С.-Петербург, 2005.
    9. Стефанов Е. В. Вентиляция и кондиционирование воздуха. – С.-Петербург: Изд-во «АВОК-Северо-Запад», 2005.

    [ http://www.abok.ru/for_spec/articles.php?nid=5029]

    Тематики

    EN

    DE

    FR

     

    система кондиционирования воздуха
    СКВ

    Система, позволяющая контролировать температуру, а иногда влажность и чистоту воздуха в помещении или транспортном средстве.
    [Департамент лингвистических услуг Оргкомитета «Сочи 2014». Глоссарий терминов]

    EN

    air conditioning system
    ACS
    System for controlling temperature and sometimes humidity and purity of the air indoor or in a vehicle.
    [Департамент лингвистических услуг Оргкомитета «Сочи 2014». Глоссарий терминов]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > air conditioning system

  • 34 kaappikello


    yks.nom. kaappikello; yks.gen. kaappikellon; yks.part. kaappikelloa; yks.ill. kaappikelloon; mon.gen. kaappikellojen; mon.part. kaappikelloja; mon.ill. kaappikelloihinkaappikello напольные часы

    напольные часы

    Финско-русский словарь > kaappikello

  • 35 lattiavaaka


    lattiavaaka напольные весы

    напольные весы

    Финско-русский словарь > lattiavaaka

  • 36 engineered floor cassettes

    Универсальный англо-русский словарь > engineered floor cassettes

  • 37 floor reel

    Большой англо-русский и русско-английский словарь > floor reel

  • 38 long-case clock

    (высокие) напольные часы

    Большой англо-русский и русско-английский словарь > long-case clock

  • 39 tall-case clock

    высокие напольные часы

    Большой англо-русский и русско-английский словарь > tall-case clock

  • 40 longcase clock


    long-case clock
    1> (высокие) напольные часы

    НБАРС > longcase clock

См. также в других словарях:

  • НАПОЛЬНЫЕ УСТРОЙСТВА СЦБ — приборы, устанавливаемые вне постовых зданий и помещений дежурных по станции. К Н. у. СЦБ относятся: а) при механ. централизации и ключевой зависимости гибкие тяги, опорные столбики, поддерживающие ролики, поворотные и угловые шкивы, напольные… …   Технический железнодорожный словарь

  • напольные экранные трубы котла — Устанавливаются с небольшим наклоном для ускорения потока воды и предотвращения конденсации пара на поверхности труб [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN floor tubes …   Справочник технического переводчика

  • Напольные Котяки — Деревня Напольные Котяки чуваш. Катек ялě Страна РоссияРоссия …   Википедия

  • Напольные весы — 1.24. Напольные весы Передвижные весы, устанавливаемые на полу Источник: ГОСТ 29329 92: Весы для статического взвешивания. Общие технические требования оригинал документа …   Словарь-справочник терминов нормативно-технической документации

  • Напольные унитазы — Французский унитаз Напольный унитаз унитаз, предполагающий сидение на корточках. Имеются различные виды напольных унитазов, но все они представляют собой в сущности отверстие в полу. Так же существуют унитазы для сидения на корточках, имеющие ту… …   Википедия

  • Напольные часы —    Крупные часы в вертикальном футляре, установленные на полу в интерьере.    (Термины российского архитектурного наследия. Плужников В.И., 1995) …   Архитектурный словарь

  • Напольные Котяки — 429345, Чувашской Республики, Канашского …   Населённые пункты и индексы России

  • Смеси сухие напольные — – смеси, предназначенные для устройства элементов пола. [ГОСТ 31189 2003] Смеси сухие напольные – применяемые для элементов полов с уплотнением, затирочные и самонивелирующиеся. [Ушеров Маршак А. В. Бетоноведение: лексикон. М.: РИФ… …   Энциклопедия терминов, определений и пояснений строительных материалов

  • ГОСТ Р 52272-2004: Материалы текстильные. Покрытия и изделия ковровые напольные. Воспламеняемость. Метод определения и классификация — Терминология ГОСТ Р 52272 2004: Материалы текстильные. Покрытия и изделия ковровые напольные. Воспламеняемость. Метод определения и классификация оригинал документа: 3.3 время самостоятельного горения (тления): Время, в течение которого… …   Словарь-справочник терминов нормативно-технической документации

  • Смеси сухие напольные выравнивающие — – смеси, предназначенные для выравнивания основания пола под покрытие. [ГОСТ 31189 2003] Смеси сухие напольные выравнивающие – смеси, предназначенные для выравнивания основания пола под покрытие. [ГОСТ 31189 2003] Рубрики термина:… …   Энциклопедия терминов, определений и пояснений строительных материалов

  • Смеси сухие напольные затирочные — – смеси, предназначенные для окончательной отделки покрытия пола затиркой сухой смесью свежеуложенной бетонной или растворной поверхности. [ГОСТ 31189 2003] Смеси сухие напольные затирочные – смеси, предназначенные для окончательной… …   Энциклопедия терминов, определений и пояснений строительных материалов

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»