Перевод: со всех языков на русский

с русского на все языки

магистраль+управления

  • 1 Bitbus

    1. последовательная магистраль управления

     

    последовательная магистраль управления
    Bitbus
    Разработана фирмой Intel для построения иерархических недорогих систем управления на основе ЭВМ различных классов. В одном сегменте интерфейса допускается до 200 исполнителей. Повторители используются для увеличения длины магистрали или числа узлов внутри системы. Магистраль может работать в одном из двух режимов: синхронном или с самосинхронизацией. В синхронном режиме обеспечивается длина магистрали до 30 м, подключение не более 28 узлов, скорость передачи от 500 Кбит/с до 2,4 Мбит/с и используются две дифференциальные сигнальные пары (данных и синхронизации данных). Режим самосинхронизации дает возможность работать на расстоянии до 300 м при скорости 375 Кбит/с и до 1200 м при скорости 62,5 Кбит/с. В каждом сегменте может быть не более 28 узлов, при использовании повторителей число узлов в этом режиме может быть до 250 на расстоянии несколько тысяч метров. В этом режиме используются две дифференциальные пары (данных и управления приемопередатчиком повторителей). Физическая реализация передатчика магистрали и сигналов магистрали соответствует требованиям стандарта RS-485.
    [Е.С.Алексеев, А.А.Мячев. Англо-русский толковый словарь по системотехнике ЭВМ. Москва 1993]

    Тематики

    Синонимы

    EN

    Англо-русский словарь нормативно-технической терминологии > Bitbus

  • 2 control manifold

    Универсальный англо-русский словарь > control manifold

  • 3 control bus

    2) Телекоммуникации: магистраль управления
    3) Вычислительная техника: управляющая шина, шина управления

    Универсальный англо-русский словарь > control bus

  • 4 control bus

    шина управления; магистраль управления

    English-Russian dictionary of telecommunications and their abbreviations > control bus

  • 5 vadības maģistrāle

    ▪ Termini
    lv autot.
    ru магистраль управления
    LZA90
    ▪ EuroTermBank termini
    MašB
    lv vadības līnija
    ru линия управления
    ETB

    Latviešu-krievu vārdnīcu > vadības maģistrāle

  • 6 Bitbus

    Универсальный англо-русский словарь > Bitbus

  • 7 Hauptsteuerleitung

    Универсальный немецко-русский словарь > Hauptsteuerleitung

  • 8 Anhängersteuerleitung

    Deutsch-russische wörterbuch der automobil-und automotive service > Anhängersteuerleitung

  • 9 Anhängersteuerleitung

    Универсальный немецко-русский словарь > Anhängersteuerleitung

  • 10 bitbus

    Англо-русский словарь компьютерных и интернет терминов > bitbus

  • 11 bitbus

    English-Russian dictionary of terms that are used in computer games > bitbus

  • 12 Bitbus

    English-Russian information technology > Bitbus

  • 13 bitbus

    English-Russian dictionary of Information technology > bitbus

  • 14 switching technology

    1. технология коммутации

     

    технология коммутации
    -
    [Интент]

    Современные технологии коммутации
    [ http://www.xnets.ru/plugins/content/content.php?content.84]

    Статья подготовлена на основании материалов опубликованных в журналах "LAN", "Сети и системы связи", в книге В.Олифер и Н.Олифер "Новые технологии и оборудование IP-сетей", на сайтах www.citforum.ru и опубликована в журнале "Компьютерные решения" NN4-6 за 2000 год.

    Введение

    На сегодня практически все организации, имеющие локальные сети, остановили свой выбор на сетях типа Ethernet. Данный выбор оправдан тем, что начало внедрения такой сети сопряжено с низкой стоимостью и простотой реализации, а развитие - с хорошей масштабируемостью и экономичностью.

    Бросив взгляд назад - увидим, что развитие активного оборудования сетей шло в соответствии с требованиями к полосе пропускания и надежности. Требования, предъявляемые к большей надежности, привели к отказу от применения в качестве среды передачи коаксиального кабеля и перевода сетей на витую пару. В результате такого перехода отказ работы соединения между одной из рабочих станций и концентратором перестал сказываться на работе других рабочих станций сети. Но увеличения производительности данный переход не принес, так как концентраторы используют разделяемую (на всех пользователей в сегменте) полосу пропускания. По сути, изменилась только физическая топология сети - с общей шины на звезду, а логическая топология по-прежнему осталась - общей шиной.

    Дальнейшее развитие сетей шло по нескольким путям:

    • увеличение скорости,
    • внедрение сегментирования на основе коммутации,
    • объединение сетей при помощи маршрутизации.

    Увеличение скорости при прежней логической топологии - общая шина, привело к незначительному росту производительности в случае большого числа портов.

    Большую эффективность в работе сети принесло сегментирование сетей с использованием технология коммутации пакетов. Коммутация наиболее действенна в следующих вариантах:

    Вариант 1, именуемый связью "многие со многими" – это одноранговые сети, когда одновременно существуют потоки данных между парами рабочих станций. При этом предпочтительнее иметь коммутатор, у которого все порты имеют одинаковую скорость, (см. Рисунок 1).

    5001

    Вариант 2, именуемый связью "один со многими" – это сети клиент-сервер, когда все рабочие станции работают с файлами или базой данных сервера. В данном случае предпочтительнее иметь коммутатор, у которого порты для подключения рабочих станций имеют одинаковую небольшую скорость, а порт, к которому подключается сервер, имеет большую скорость,(см. Рисунок 2).

    5002

    Когда компании начали связывать разрозненные системы друг с другом, маршрутизация обеспечивала максимально возможную целостность и надежность передачи трафика из одной сети в другую. Но с ростом размера и сложности сети, а также в связи со все более широким применением коммутаторов в локальных сетях, базовые маршрутизаторы (зачастую они получали все данные, посылаемые коммутаторами) стали с трудом справляться со своими задачами.

    Проблемы с трафиком, связанные с маршрутизацией, проявляются наиболее остро в средних и крупных компаниях, а также в деятельности операторов Internet, так как они вынуждены иметь дело с большими объемами IP-трафика, причем этот трафик должен передаваться своевременно и эффективно.

    С подключением настольных систем непосредственно к коммутаторам на 10/100 Мбит/с между ними и магистралью оказывается все меньше промежуточных устройств. Чем выше скорость подключения настольных систем, тем более скоростной должна быть магистраль. Кроме того, на каждом уровне устройства должны справляться с приходящим трафиком, иначе возникновения заторов не избежать.

    Рассмотрению технологий коммутации и посвящена данная статья.

    Коммутация первого уровня

    Термин "коммутация первого уровня" в современной технической литературе практически не описывается. Для начала дадим определение, с какими характеристиками имеет дело физический или первый уровень модели OSI:

    физический уровень определяет электротехнические, механические, процедурные и функциональные характеристики активации, поддержания и дезактивации физического канала между конечными системами. Спецификации физического уровня определяют такие характеристики, как уровни напряжений, синхронизацию изменения напряжений, скорость передачи физической информации, максимальные расстояния передачи информации, физические соединители и другие аналогичные характеристики.

    Смысл коммутации на первом уровне модели OSI означает физическое (по названию уровня) соединение. Из примеров коммутации первого уровня можно привести релейные коммутаторы некоторых старых телефонных и селекторных систем. В более новых телефонных системах коммутация первого уровня применяется совместно с различными способами сигнализации вызовов и усиления сигналов. В сетях передачи данных данная технология применяется в полностью оптических коммутаторах.

    Коммутация второго уровня

    Рассматривая свойства второго уровня модели OSI и его классическое определение, увидим, что данному уровню принадлежит основная доля коммутирующих свойств.

    Определение. Канальный уровень (формально называемый информационно-канальным уровнем) обеспечивает надежный транзит данных через физический канал. Канальный уровень решает вопросы физической адресации (в противоположность сетевой или логической адресации), топологии сети, линейной дисциплины (каким образом конечной системе использовать сетевой канал), уведомления о неисправностях, упорядоченной доставки блоков данных и управления потоком информации.

    На самом деле, определяемая канальным уровнем модели OSI функциональность служит платформой для некоторых из сегодняшних наиболее эффективных технологий. Большое значение функциональности второго уровня подчеркивает тот факт, что производители оборудования продолжают вкладывать значительные средства в разработку устройств с такими функциями.

    С технологической точки зрения, коммутатор локальных сетей представляет собой устройство, основное назначение которого - максимальное ускорение передачи данных за счет параллельно существующих потоков между узлами сети. В этом - его главное отличие от других традиционных устройств локальных сетей – концентраторов (Hub), предоставляющих всем потокам данных сети всего один канал передачи данных.

    Коммутатор позволяет передавать параллельно несколько потоков данных c максимально возможной для каждого потока скоростью. Эта скорость ограничена физической спецификацией протокола, которую также часто называют "скоростью провода". Это возможно благодаря наличию в коммутаторе большого числа центров обработки и продвижения кадров и шин передачи данных.

    Коммутаторы локальных сетей в своем основном варианте, ставшем классическим уже с начала 90-х годов, работают на втором уровне модели OSI, применяя свою высокопроизводительную параллельную архитектуру для продвижения кадров канальных протоколов. Другими словами, ими выполняются алгоритмы работы моста, описанные в стандартах IEEE 802.1D и 802.1H. Также они имеют и много других дополнительных функций, часть которых вошла в новую редакцию стандарта 802.1D-1998, а часть остается пока не стандартизованной.

    Коммутаторы ЛВС отличаются большим разнообразием возможностей и, следовательно, цен - стоимость 1 порта колеблется в диапазоне от 50 до 1000 долларов. Одной из причин столь больших различий является то, что они предназначены для решения различных классов задач. Коммутаторы высокого класса должны обеспечивать высокую производительность и плотность портов, а также поддерживать широкий спектр функций управления. Простые и дешевые коммутаторы имеют обычно небольшое число портов и не способны поддерживать функции управления. Одним из основных различий является используемая в коммутаторе архитектура. Поскольку большинство современных коммутаторов работают на основе патентованных контроллеров ASIC, устройство этих микросхем и их интеграция с остальными модулями коммутатора (включая буферы ввода-вывода) играет важнейшую роль. Контроллеры ASIC для коммутаторов ЛВС делятся на 2 класса - большие ASIC, способные обслуживать множество коммутируемых портов (один контроллер на устройство) и небольшие ASIC, обслуживающие по несколько портов и объединяемые в матрицы коммутации.

    Существует 3 варианта архитектуры коммутаторов:
     

    На рисунке 3 показана блок-схема коммутатора с архитектурой, используемой для поочередного соединения пар портов. В любой момент такой коммутатор может обеспечить организацию только одного соединения (пара портов). При невысоком уровне трафика не требуется хранение данных в памяти перед отправкой в порт назначения - такой вариант называется коммутацией на лету cut-through. Однако, коммутаторы cross-bar требуют буферизации на входе от каждого порта, поскольку в случае использования единственно возможного соединения коммутатор блокируется (рисунок 4). Несмотря на малую стоимость и высокую скорость продвижения на рынок, коммутаторы класса cross-bar слишком примитивны для эффективной трансляции между низкоскоростными интерфейсами Ethernet или token ring и высокоскоростными портами ATM и FDDI.

    5003

    5004

    Коммутаторы с разделяемой памятью имеют общий входной буфер для всех портов, используемый как внутренняя магистраль устройства (backplane). Буферизагия данных перед их рассылкой (store-and-forward - сохранить и переслать) приводит к возникновению задержки. Однако, коммутаторы с разделяемой памятью, как показано на рисунке 5 не требуют организации специальной внутренней магистрали для передачи данных между портами, что обеспечивает им более низкую цену по сравнению с коммутаторами на базе высокоскоростной внутренней шины.

    5005

    На рисунке 6 показана блок-схема коммутатора с высокоскоростной шиной, связывающей контроллеры ASIC. После того, как данные преобразуются в приемлемый для передачи по шине формат, они помещаются на шину и далее передаются в порт назначения. Поскольку шина может обеспечивать одновременную (паралельную) передачу потока данных от всех портов, такие коммутаторы часто называют "неблокируемыми" (non-blocking) - они не создают пробок на пути передачи данных.

    5006

    Применение аналогичной параллельной архитектуры для продвижения пакетов сетевых протоколов привело к появлению коммутаторов третьего уровня модели OSI.

    Коммутация третьего уровня

    В продолжении темы о технологиях коммутации рассмотренных в предыдущем номера повторим, что применение параллельной архитектуры для продвижения пакетов сетевых протоколов привело к появлению коммутаторов третьего уровня. Это позволило существенно, в 10-100 раз повысить скорость маршрутизации по сравнению с традиционными маршрутизаторами, в которых один центральный универсальный процессор выполняет программное обеспечение маршрутизации.

    По определению Сетевой уровень (третий) - это комплексный уровень, который обеспечивает возможность соединения и выбор маршрута между двумя конечными системами, подключенными к разным "подсетям", которые могут находиться в разных географических пунктах. В данном случае "подсеть" это, по сути, независимый сетевой кабель (иногда называемый сегментом).

    Коммутация на третьем уровне - это аппаратная маршрутизация. Традиционные маршрутизаторы реализуют свои функции с помощью программно-управляемых процессоров, что будем называть программной маршрутизацией. Традиционные маршрутизаторы обычно продвигают пакеты со скоростью около 500000 пакетов в секунду. Коммутаторы третьего уровня сегодня работают со скоростью до 50 миллионов пакетов в секунду. Возможно и дальнейшее ее повышение, так как каждый интерфейсный модуль, как и в коммутаторе второго уровня, оснащен собственным процессором продвижения пакетов на основе ASIC. Так что наращивание количества модулей ведет к наращиванию производительности маршрутизации. Использование высокоскоростной технологии больших заказных интегральных схем (ASIC) является главной характеристикой, отличающей коммутаторы третьего уровня от традиционных маршрутизаторов. Коммутаторы 3-го уровня делятся на две категории: пакетные (Packet-by-Packet Layer 3 Switches, PPL3) и сквозные (Cut-Through Layer 3 Switches, CTL3). PPL3 - означает просто быструю маршрутизацию (Рисунок_7). CTL3 – маршрутизацию первого пакета и коммутацию всех остальных (Рисунок 8).

    5007

    5008

    У коммутатора третьего уровня, кроме реализации функций маршрутизации в специализированных интегральных схемах, имеется несколько особенностей, отличающих их от традиционных маршрутизаторов. Эти особенности отражают ориентацию коммутаторов 3-го уровня на работу, в основном, в локальных сетях, а также последствия совмещения в одном устройстве коммутации на 2-м и 3-м уровнях:
     

    • поддержка интерфейсов и протоколов, применяемых в локальных сетях,
    • усеченные функции маршрутизации,
    • обязательная поддержка механизма виртуальных сетей,
    • тесная интеграция функций коммутации и маршрутизации, наличие удобных для администратора операций по заданию маршрутизации между виртуальными сетями.

    Наиболее "коммутаторная" версия высокоскоростной маршрутизации выглядит следующим образом (рисунок 9). Пусть коммутатор третьего уровня построен так, что в нем имеется информация о соответствии сетевых адресов (например, IP-адресов) адресам физического уровня (например, MAC-адресам) Все эти МАС-адреса обычным образом отображены в коммутационной таблице, независимо от того, принадлежат ли они данной сети или другим сетям.

    5009

    Первый коммутатор, на который поступает пакет, частично выполняет функции маршрутизатора, а именно, функции фильтрации, обеспечивающие безопасность. Он решает, пропускать или нет данный пакет в другую сеть Если пакет пропускать нужно, то коммутатор по IP-адресу назначения определяет МАС-адрес узла назначения и формирует новый заголовок второго уровня с найденным МАС-адресом. Затем выполняется обычная процедура коммутации по данному МАС-адресу с просмотром адресной таблицы коммутатора. Все последующие коммутаторы, построенные по этому же принципу, обрабатывают данный кадр как обычные коммутаторы второго уровня, не привлекая функций маршрутизации, что значительно ускоряет его обработку. Однако функции маршрутизации не являются для них избыточными, поскольку и на эти коммутаторы могут поступать первичные пакеты (непосредственно от рабочих станций), для которых необходимо выполнять фильтрацию и подстановку МАС-адресов.

    Это описание носит схематический характер и не раскрывает способов решения возникающих при этом многочисленных проблем, например, проблемы построения таблицы соответствия IP-адресов и МАС-адресов

    Примерами коммутаторов третьего уровня, работающих по этой схеме, являются коммутаторы SmartSwitch компании Cabletron. Компания Cabletron реализовала в них свой протокол ускоренной маршрутизации SecureFast Virtual Network, SFVN.

    Для организации непосредственного взаимодействия рабочих станций без промежуточного маршрутизатора необходимо сконфигурировать каждую из них так, чтобы она считала собственный интерфейс маршрутизатором по умолчанию. При такой конфигурации станция пытается самостоятельно отправить любой пакет конечному узлу, даже если этот узел находится в другой сети. Так как в общем случае (см. рисунок 10) станции неизвестен МАС-адрес узла назначения, то она генерирует соответствующий ARP-запрос, который перехватывает коммутатор, поддерживающий протокол SFVN. В сети предполагается наличие сервера SFVN Server, являющегося полноценным маршрутизатором и поддерживающего общую ARP-таблицу всех узлов SFVN-сети. Сервер возвращает коммутатору МАС-адрес узла назначения, а коммутатор, в свою очередь, передает его исходной станции. Одновременно сервер SFVN передает коммутаторам сети инструкции о разрешении прохождения пакета с МАС-адресом узла назначения через границы виртуальных сетей. Затем исходная станция передает пакет в кадре, содержащем МАС-адрес узла назначения. Этот кадр проходит через коммутаторы, не вызывая обращения к их блокам маршрутизации. Отличие протокола SFVN компании Cabletron от - описанной выше общей схемы в том, что для нахождения МАС-адреса по IP-адресу в сети используется выделенный сервер.

    5010

    Протокол Fast IP компании 3Com является еще одним примером реализации подхода с отображением IP-адреса на МАС-адрес. В этом протоколе основными действующими лицами являются сетевые адаптеры (что не удивительно, так как компания 3Com является признанным лидером в производстве сетевых адаптеров Ethernet) С одной стороны, такой подход требует изменения программного обеспечения драйверов сетевых адаптеров, и это минус Но зато не требуется изменять все остальное сетевое оборудование.

    При необходимости передать пакет узлу назначения другой сети, исходный узел в соответствии с технологией Fast IP должен передать запрос по протоколу NHRP (Next Hop Routing Protocol) маршрутизатору сети. Маршрутизатор переправляет этот запрос узлу назначения, как обычный пакет Узел назначения, который также поддерживает Fast IP и NHRP, получив запрос, отвечает кадром, отсылаемым уже не маршрутизатору, а непосредственно узлу-источнику (по его МАС-адресу, содержащемуся в NHRP-запросе). После этого обмен идет на канальном уровне на основе известных МАС-адресов. Таким образом, снова маршрутизировался только первый пакет потока (как на рисунке 9 кратковременный поток), а все остальные коммутировались (как на рисунке 9 долговременный поток).

    Еще один тип коммутаторов третьего уровня — это коммутаторы, работающие с протоколами локальных сетей типа Ethernet и FDDI. Эти коммутаторы выполняют функции маршрутизации не так, как классические маршрутизаторы. Они маршрутизируют не отдельные пакеты, а потоки пакетов.

    Поток — это последовательность пакетов, имеющих некоторые общие свойства. По меньшей мере, у них должны совпадать адрес отправителя и адрес получателя, и тогда их можно отправлять по одному и тому же маршруту. Если классический способ маршрутизации использовать только для первого пакета потока, а все остальные обрабатывать на основании опыта первого (или нескольких первых) пакетов, то можно значительно ускорить маршрутизацию всего потока.

    Рассмотрим этот подход на примере технологии NetFlow компании Cisco, реализованной в ее маршрутизаторах и коммутаторах. Для каждого пакета, поступающего на порт маршрутизатора, вычисляется хэш-функция от IP-адресов источника, назначения, портов UDP или TCP и поля TOS, характеризующего требуемое качество обслуживания. Во всех маршрутизаторах, поддерживающих данную технологию, через которые проходит данный пакет, в кэш-памяти портов запоминается соответствие значения хэш-функции и адресной информации, необходимой для быстрой передачи пакета следующему маршрутизатору. Таким образом, образуется квазивиртуальный канал (см. Рисунок 11), который позволяет быстро передавать по сети маршрутизаторов все последующие пакеты этого потока. При этом ускорение достигается за счет упрощения процедуры обработки пакета маршрутизатором - не просматриваются таблицы маршрутизации, не выполняются ARP-запросы.

    5011

    Этот прием может использоваться в маршрутизаторах, вообще не поддерживающих коммутацию, а может быть перенесен в коммутаторы. В этом случае такие коммутаторы тоже называют коммутаторами третьего уровня. Примеров маршрутизаторов, использующих данный подход, являются маршрутизаторы Cisco 7500, а коммутаторов третьего уровня — коммутаторы Catalyst 5000 и 5500. Коммутаторы Catalyst выполняют усеченные функции описанной схемы, они не могут обрабатывать первые пакеты потоков и создавать новые записи о хэш-функциях и адресной информации потоков. Они просто получают данную информацию от маршрутизаторов 7500 и обрабатывают пакеты уже распознанных маршрутизаторами потоков.

    Выше был рассмотрен способ ускоренной маршрутизации, основанный на концепции потока. Его сущность заключается в создании квазивиртуальных каналов в сетях, которые не поддерживают виртуальные каналы в обычном понимании этого термина, то есть сетях Ethernet, FDDI, Token Ring и т п. Следует отличать этот способ от способа ускоренной работы маршрутизаторов в сетях, поддерживающих технологию виртуальных каналов — АТМ, frame relay, X 25. В таких сетях создание виртуального канала является штатным режимом работы сетевых устройств. Виртуальные каналы создаются между двумя конечными точками, причем для потоков данных, требующих разного качества обслуживания (например, для данных разных приложений) может создаваться отдельный виртуальный канал. Хотя время создания виртуального канала существенно превышает время маршрутизации одного пакета, выигрыш достигается за счет последующей быстрой передачи потока данных по виртуальному каналу. Но в таких сетях возникает другая проблема — неэффективная передача коротких потоков, то есть потоков, состоящих из небольшого количества пакетов (классический пример — пакеты протокола DNS).

    Накладные расходы, связанные с созданием виртуального канала, приходящиеся на один пакет, снижаются при передаче объемных потоков данных. Однако они становятся неприемлемо высокими при передаче коротких потоков. Для того чтобы эффективно передавать короткие потоки, предлагается следующий вариант, при передаче нескольких первых пакетов выполняется обычная маршрутизация. Затем, после того как распознается устойчивый поток, для него строится виртуальный канал, и дальнейшая передача данных происходит с высокой скоростью по этому виртуальному каналу. Таким образом, для коротких потоков виртуальный канал вообще не создается, что и повышает эффективность передачи.

    По такой схеме работает ставшая уже классической технология IP Switching компании Ipsilon. Для того чтобы сети коммутаторов АТМ передавали бы пакеты коротких потоков без установления виртуального канала, компания Ipsilon предложила встроить во все коммутаторы АТМ блоки IP-маршрутизации (рисунок 12), строящие обычные таблицы маршрутизации по обычным протоколам RIP и OSPF.

    5012

    Компания Cisco Systems выдвинула в качестве альтернативы технологии IP Switching свою собственную технологию Tag Switching, но она не стала стандартной. В настоящее время IETF работает над стандартным протоколом обмена метками MPLS (Multi-Protocol Label Switching), который обобщает предложение компаний Ipsilon и Cisco, а также вносит некоторые новые детали и механизмы. Этот протокол ориентирован на поддержку качества обслуживания для виртуальных каналов, образованных метками.

    Коммутация четвертого уровня

    Свойства четвертого или транспортного уровня модели OSI следующие: транспортный уровень обеспечивает услуги по транспортировке данных. В частности, заботой транспортного уровня является решение таких вопросов, как выполнение надежной транспортировки данных через объединенную сеть. Предоставляя надежные услуги, транспортный уровень обеспечивает механизмы для установки, поддержания и упорядоченного завершения действия виртуальных каналов, систем обнаружения и устранения неисправностей транспортировки и управления информационным потоком (с целью предотвращения переполнения данными из другой системы).

    Некоторые производители заявляют, что их системы могут работать на втором, третьем и даже четвертом уровнях. Однако рассмотрение описания стека TCP/IP (рисунок 1), а также структуры пакетов IP и TCP (рисунки 2, 3), показывает, что коммутация четвертого уровня является фикцией, так как все относящиеся к коммутации функции осуществляются на уровне не выше третьего. А именно, термин коммутация четвертого уровня с точки зрения описания стека TCP/IP противоречий не имеет, за исключением того, что при коммутации должны указываться адреса компьютера (маршрутизатора) источника и компьютера (маршрутизатора) получателя. Пакеты TCP имеют поля локальный порт отправителя и локальный порт получателя (рисунок 3), несущие смысл точек входа в приложение (в программу), например Telnet с одной стороны, и точки входа (в данном контексте инкапсуляции) в уровень IP. Кроме того, в стеке TCP/IP именно уровень TCP занимается формированием пакетов из потока данных идущих от приложения. Пакеты IP (рисунок 2) имеют поля адреса компьютера (маршрутизатора) источника и компьютера (маршрутизатора) получателя и следовательно могут наряду с MAC адресами использоваться для коммутации. Тем не менее, название прижилось, к тому же практика показывает, что способность системы анализировать информацию прикладного уровня может оказаться полезной — в частности для управления трафиком. Таким образом, термин "зависимый от приложения" более точно отражает функции так называемых коммутаторов четвертого уровня.

    5013

    5014

    5015

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > switching technology

  • 15 Main

    1. n геогр. р. Майн
    2. n поэт. открытое море, океан
    3. n обыкн. спец. магистраль

    street mains — магистральные каналы, идущие под землёй вдоль улиц

    main line — главная железнодорожная линия; магистраль

    4. n горн. главные выработки
    5. a основной, главный

    main office — главная контора; главная редакция; штаб

    the main thing is to keep quiet — главное — это молчать

    main title — кино заглавный титр, титульный кадр, надпись с названием кинофильма

    main body — главные силы; ядро

    main bearing — коренной подшипник; подшипник коленчатого вала

    6. a эмоц. -усил. доведённый до предела
    7. a диал. удивительный, значительный
    8. a мор. относящийся к грот-мачте
    9. n число очков, которые играющий в кости называет перед броском
    10. n петушиный бой
    11. adv диал. чрезвычайно
    12. v сл. вводить наркотик в вену
    Синонимический ряд:
    1. first (adj.) capital; cardinal; chief; dominant; first; foremost; key; leading; major; number one; outstanding; paramount; predominant; preeminent; pre-eminent; premier; primary; prime; principal; star; stellar; top
    2. channel (noun) channel; conduit; duct; pipe
    3. ocean (noun) blue; brine; deep; drink; high seas; ocean; sea
    4. strength (noun) effort; force; might; power; strength
    Антонимический ряд:
    inessential; inferior; least; limb; member; minor; minority; portion; secondary; subordinate; tributary; unimportant; weakness

    English-Russian base dictionary > Main

  • 16 line

    acceleration control line flow restrictor
    дроссельный пакет линии управления приемистостью
    acoustically lined jet pipe
    акустически облицованная реактивная труба
    agonic line
    агона, линия нулевого магнитного склонения
    aircraft center line
    осевая линия воздушного судна
    aircraft position line
    линия положения воздушного судна
    aircraft production break line
    линия технологического разъема воздушного судна
    aircraft stand lead-in line
    линия заруливания воздушного судна на стоянку
    airfoil center line
    средняя линия аэродинамического профиля
    air line
    воздушная линия
    Air Line Pilot's
    Ассоциация пилотов гражданской авиации
    align the aircraft with the center line
    устанавливать воздушное судно по оси
    all cargo line
    линия грузовых перевозок
    apron safety line
    линия безопасности на перроне
    assembly line
    линия сборки
    barrette center line
    линия центрального ряда линейных огней
    bypass fuel line
    линия перепуска топлива
    center line
    ось
    center line approach
    заход на посадку по осевой линии
    chord line
    линия хорды
    control transfer line
    рубеж передачи управления
    course line
    линия заданного пути
    dorsal line
    верхний обвод
    drain line
    линия дренажа
    entry line
    линия входа
    fly the rhumb line
    летать по локсодромии
    fuel crossfeed line
    магистраль кольцевания топливных баков
    fuel line
    топливопровод
    fuselage brake line
    эксплуатационный разъем фюзеляжа
    fuselage water line
    строительная горизонталь фюзеляжа
    glide slope limit line
    линия ограничения отклонения от глиссады
    glide slope line
    линия глиссады
    great circle line
    ортодромическая линия
    grid line
    линия координатной сетки
    heading lubber line
    указатель отсчета курса
    identify the center line
    обозначать осевую линию
    instability line
    линия неустойчивого состояния атмосферы
    International Federation of Air Line Pilots' Associations
    Международная федерация ассоциаций линейных пилотов
    lateral line
    боковая линия
    lead-in line
    линия заруливания
    lead-out line
    линия выруливания
    leveling plumb line
    нивелировочный отвес
    life line
    предохранительный трос
    line connection cap
    заглушка соединительной магистрали
    lined mixer
    облицованный смеситель
    line maintenance base
    база оперативного технического обслуживания
    line man
    сигнальщик
    line of flight
    линия полета
    line of position
    линия положения
    line of sight
    линия визирования
    line oriental flight training
    летная подготовка в условиях, приближенных к реальным
    line squall
    фронтальный шквал
    line up
    выруливать на исполнительный старт
    line up the aircraft
    выруливать воздушное судно на исполнительный старт
    line vortex
    вихрь в направлении линии полета
    lubber line
    курсовая линия
    obstacle clearance line
    линия безопасного пролета над препятствиями
    obstacle line
    линия ограничения препятствий
    on aircraft center line
    по оси воздушного судна
    on-course line
    линия полета по курсу
    painter line
    присоединительный трос
    parting line
    линия разъема
    plumb line
    отвес
    pumping line
    магистраль нагнетания
    radar warning line
    граница радиолокационного обнаружения
    return line system
    система линий слива
    (рабочей жидкости в бак) rhumb line
    локсодромия
    rigging line
    парашютная стропа
    routing line
    линия маршрута
    runway center line
    ось ВПП
    scavenging line
    магистраль откачки
    shroud line
    парашютная стропа
    slant course line
    наклонная линия курса
    stand center line
    ось места стоянки
    static line
    вытяжной фал
    stop line
    линия стоп
    take off line
    линия взлета
    taxiing direction line
    линия направления руления
    teleprinter line
    телетайпная линия
    tiedown line
    швартовочный трос
    trailing line
    буксировочный трос
    turning line
    линия разворота
    vent line connection
    штуцер суфлирования
    ventral line
    нижний обвод
    wing base line
    базовая линия крыла
    wing chord line
    линия хорды крыла
    wing split line
    линия разъема крыла
    wing tip clearance line
    линия ограничения безопасного расстояния до конца крыла

    English-Russian aviation dictionary > line

  • 17 cable route

    1. кабельная трасса
    2. кабельная магистраль

     

    кабельная магистраль

    [Л.Г.Суменко. Англо-русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.]

    Тематики

    EN

    3.3 кабельная трасса (cable route): Физическая магистраль, проходящая через станцию, вдоль которой можно проложить большое количество кабелей, например помещение или кабельный туннель в здании станции, либо металлический канал, кабельная коробка или труба, а также канал под дорогой или платформа над ней.

    Источник: ГОСТ Р МЭК 60709-2011: Атомные станции. Системы контроля и управления, важные для безопасности. Разделение оригинал документа

    Англо-русский словарь нормативно-технической терминологии > cable route

  • 18 Administration Management Domain

    1) Сетевые технологии: домен административного управления, домен административного управления, административный домен (Примеры: MCImail и ATTmail в США, British Telecom Gold400mail в Великобритании. ADMD всех стран совместно образуют магистраль X.400 (backbone))
    2) Интернет: административный домен (Примеры: MCImail и ATTmail в США, British Telecom Gold400mail в Великобритании. ADMD всех стран совместно образуют магистраль X.400 (backbone))

    Универсальный англо-русский словарь > Administration Management Domain

  • 19 administration management domain

    1) Сетевые технологии: домен административного управления, домен административного управления, административный домен (Примеры: MCImail и ATTmail в США, British Telecom Gold400mail в Великобритании. ADMD всех стран совместно образуют магистраль X.400 (backbone))
    2) Интернет: административный домен (Примеры: MCImail и ATTmail в США, British Telecom Gold400mail в Великобритании. ADMD всех стран совместно образуют магистраль X.400 (backbone))

    Универсальный англо-русский словарь > administration management domain

  • 20 extended technology-bus

    1. шина ПЭВМ с расширенной технологией

     

    шина ПЭВМ с расширенной технологией
    Системная магистраль, разработанная фирмой IBM, используется в серии IBM PC XT на основе микропроцессора 8088 с 8-разрядной шиной данных. Магистраль содержит 20-разрядную шину 8-разрядную двунаправленную шину данных, 6 линий уровня прерывания, линии управления тремя каналами ПДП, линии управления операциями регенерации и контроля, дополнительные линии питания и земли. Для портов ввода-вывода отводятся 512 адресов. Производительность магистрали составляет около 1 Мбайт/с, для операций регенерации отводится около 7 % общей пропускной способности магистрали. Торговый знак фирмы IBM.
    [Е.С.Алексеев, А.А.Мячев. Англо-русский толковый словарь по системотехнике ЭВМ. Москва 1993]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > extended technology-bus

См. также в других словарях:

  • последовательная магистраль управления — Bitbus Разработана фирмой Intel для построения иерархических недорогих систем управления на основе ЭВМ различных классов. В одном сегменте интерфейса допускается до 200 исполнителей. Повторители используются для увеличения длины магистрали или… …   Справочник технического переводчика

  • магистраль — и, ж. magistrale adj. 1. Всякая главная линия (канал, на железной дороге, толстые электрические провода). Брокг. 1907. Главная труба водопровода или главный провод электрической энергии, дающие разветвления в разные места. Павленков 1911.… …   Исторический словарь галлицизмов русского языка

  • Трансполярная магистраль — Эта статья должна быть полностью переписана. На странице обсуждения могут быть пояснения …   Википедия

  • Амуро-Якутская железнодорожная магистраль — Амуро Якутская магистраль Полное название: Амуро Якутская железнодорожная магистраль Страна: Россия Город управления: Алдан Состояние: действующая …   Википедия

  • Байкало-Амурская магистраль — Ниже приводится справочная информация. Байкало Амурская магистраль (БАМ) железная дорога в Восточной Сибири и на Дальнем Востоке, второй магистральный (наряду с Транссибирской магистралью) железнодорожный выход России к Тихому океану. Байкало… …   Энциклопедия ньюсмейкеров

  • электрическая управляющая магистраль — 2.23 электрическая управляющая магистраль: Электрическое соединение между механическим транспортным средством и прицепом, которое обеспечивает функцию управления торможением прицепа. Она состоит из электрического кабеля и соединительного… …   Словарь-справочник терминов нормативно-технической документации

  • ГОСТ Р МЭК 60709-2011: Атомные станции. Системы контроля и управления, важные для безопасности. Разделение — Терминология ГОСТ Р МЭК 60709 2011: Атомные станции. Системы контроля и управления, важные для безопасности. Разделение оригинал документа: 3.2 барьер (barrier): Устройство или конструкция, размещаемые между резервным оборудованием или контурами …   Словарь-справочник терминов нормативно-технической документации

  • ТОРМОЗНАЯ МАГИСТРАЛЬ — воздухопроводная труба с соединительными рукавами, осуществляющая непрерывность действия автотормоза и служащая для управления им путем изменения давления в Т. м. состоит из труб диам. 25 мм и имеет под каждым тормозным вагоном ответвления к… …   Технический железнодорожный словарь

  • область административного управления — административный домен Примеры: MCImail и ATTmail в США, British Telecom Gold400mail в Великобритании. ADMD всех стран совместно образуют магистраль (backbone) X.400. См. также PRMD.  [http://www.lexikon.ru/dict/net/index.html] Тематики сети… …   Справочник технического переводчика

  • Словарь метротерминов — Эта страница глоссарий. Приведены основные понятия, термины и аббревиатуры, встречающиеся в литературе о метрополитене и железной дороге. Подавляющее большинство сокращений пришли в метрополитен с железной дороги напрямую или образованы по… …   Википедия

  • Северный широтный ход — Магистраль «Северный широтный ход»  это железная дорога, проходящая по маршруту: ст. Обская 2  Салехард  Надым  Коротчаево. Протяженность  707 км. Планы о её строительстве появились в 2003 году, когда была создана… …   Википедия

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»