Перевод: со всех языков на английский

с английского на все языки

исходя+из+этого

  • 41 вывод

    This deduction (or conclusion, or inference) is confirmed by results of catalytic hydrogenation.

    II

    The withdrawal of a rod...

    * * *
    Вывод -- conclusion, deduction, inference, judgement (на основе логического рассуждения или данных); implication (косвенным путем); suggestion (предположение); conclusion (заключительный раздел статьи); observation (на основе наблюдений); development, derivation, formulation (уравнений и т.п.); removal, removing, withdrawal (удаление)
     This deduction is supported by the comparison between the measured loads and the corresponding theoretical predictions.
     The main conclusions are summarized as follows.
     However, more detailed analysis of the phenomena occurring in the diffuser refutes this observation.

    Русско-английский научно-технический словарь переводчика > вывод

  • 42 синхронизация времени

    1. time synchronization
    2. clock synchronization

     

    синхронизация времени
    -
    [ ГОСТ Р МЭК 60870-5-103-2005]

    Также нормированы допустимые временные задержки для различных видов сигналов, включая дискретные сигналы, оцифрованные мгновенные значения токов и напряжений, сигналы синхронизации времени и т.п.
    [Новости Электротехники №4(76) | СТАНДАРТ МЭК 61850]

    Широковещательное сообщение, как правило, содержит адрес отправителя и глобальный адрес получателя. Примером широковещательного сообщения служит синхронизация времени.
    [ ГОСТ Р 54325-2011 (IEC/TS 61850-2:2003)]

    Устройства последних поколений дают возможность синхронизации времени с точностью до микросекунд с помощью GPS.

    С помощью этого интерфейса сигнал синхронизации времени (от радиоприемника DCF77 сигнал точного времени из Braunschweig, либо от радиоприемника iRiG-B сигнал точного времени  глобальной спутниковой системы GPS) может быть передан в терминал для точной синхронизации времени.

    [Герхард Циглер. ЦИФРОВАЯ ДИСТАНЦИОННАЯ ЗАЩИТА. ПРИНЦИПЫ И ПРИМЕНЕНИЕ
    Перевод с английского ]

    В  том  случае  если  принятое  сообщение  искажено ( повреждено)  в  результате неисправности  канала  связи  или  в  результате  потери  синхронизации  времени, пользователь имеет возможность...

    2.13 Синхронизация часов реального времени сигналом по оптовходу 
    В современных системах релейной защиты зачастую требуется синхронизированная работа часов всех реле в системе для восстановления хронологии работы разных реле.
    Это может быть выполнено с использованием сигналов синхронизации времени   по интерфейсу IRIG-B, если  реле  оснащено  таким  входом  или  сигналом  от  системы OP

    [Дистанционная защита линии MiCOM P443/ ПРИНЦИП  РАБОТЫ]


    СИНХРОНИЗАЦИЯ ВРЕМЕНИ СОГЛАСНО СТАНДАРТУ IEEE 1588

    Автор: Андреас Дреер (Hirschmann Automation and Control)

    Вопрос синхронизации устройств по времени важен для многих распределенных систем промышленной автоматизации. При использовании протокола Precision Time Protocol (PTP), описанного стандартом IEEE 1588, становится возможным выполнение синхронизации внутренних часов устройств, объединенных по сети Ethernet, с погрешностями, не превышающими 1 микросекунду. При этом к вычислительной способности устройств и пропускной способности сети предъявляются относительно низкие требования. В 2008 году была утверждена вторая редакция стандарта (IEEE 1588-2008 – PTP версия 2) с рядом внесенных усовершенствований по сравнению с первой его редакцией.

    ЗАЧЕМ НЕОБХОДИМА СИНХРОНИЗАЦИЯ УСТРОЙСТВ ПО ВРЕМЕНИ?

    Во многих системах должен производиться отсчет времени. О неявной системе отсчета времени можно говорить тогда, когда в системе отсутствуют часы и ход времени определяется процессами, протекающими в аппаратном и программном обеспечении. Этого оказывается достаточно во многих случаях. Неявная система отсчета времени реализуется, к примеру, передачей сигналов, инициирующих начало отсчета времени и затем выполнение определенных действий, от одних устройств другим.

    Система отсчета времени считается явной, если показания времени в ней определяются часами. Указанное необходимо для сложных систем. Таким образом, осуществляется разделение процедур передачи данных о времени и данных о процессе.

    Два эффекта должны быть учтены при настройке или синхронизации часов в отдельных устройствах. Первое – показания часов в отдельных устройствах изначально отличаются друг от друга (смещение показаний времени друг относительно друга). Второе – реальные часы не производят отсчет времени с одинаковой скоростью. Таким образом, требуется проводить постоянную корректировку хода самых неточных часов.

    ПРЕДЫДУЩИЕ РЕШЕНИЯ

    Существуют различные способы синхронизации часов в составе отдельных устройств, объединенных в одну информационную сеть. Наиболее известные способы – это использование протокола NTP (Network Time Protocol), а также более простого протокола, который образован от него – протокола SNTP (Simple Network Time Protocol). Данные методы широко распространены для использования в локальных сетях и сети Интернет и позволяют обеспечивать синхронизацию времени с погрешностями в диапазоне миллисекунд. Другой вариант – использование радиосигналов с GPS спутников. Однако при использовании данного способа требуется наличие достаточно дорогих GPS-приемников для каждого из устройств, а также GPS-антенн. Данный способ теоретически может обеспечить высокую точность синхронизации времени, однако материальные затраты и трудозатраты обычно препятствуют реализации такого метода синхронизации.

    Другим решением является передача высокоточного временного импульса (например, одного импульса в секунду) каждому отдельному устройству по выделенной линии. Реализация данного метода влечет за собой необходимость создания выделенной линии связи к каждому устройству.

    Последним методом, который может быть использован, является протокол PTP (Precision Time Protocol), описанный стандартом IEEE 1588. Протокол был разработан со следующими целями:

    • Обеспечение синхронизация времени с погрешностью, не превышающей 1 микросекунды.
    • Предъявление минимальных требований к производительности процессоров устройств и к пропускной способности линии связи, что позволило бы обеспечить реализацию протокола в простых и дешевых устройствах.
      • Предъявление невысоких требований к обслуживающему персоналу.
      • Возможность использования в сетях Ethernet, а также в других сетях.
      • Спецификация его как международного стандарта.

    ОБЛАСТИ ПРИМЕНЕНИЯ ПРОТОКОЛА PTP

    Протокол PTP может быть применен в различного рода системах. В системах автоматизации, протокол PTP востребован везде, где требуется точная синхронизация устройств по времени. Протокол позволяет синхронизировать устройства в робототехнике или печатной промышленности, в системах осуществляющих обработку бумаги и упаковку продукции и других областях.

    В общем и целом в любых системах, где осуществляется измерение тех или иных величин и их сравнение с величинами, измеренными другими устройствами, использование протокола PTP является популярным решением. Системы управления турбинами используют протокол PTP для обеспечения более эффективной работы станций. События, происходящие в различных частях распределенных в пространстве систем, определяются метками точного времени и затем для целей архивирования и анализа осуществляется их передача на центры управления. Геоученые используют протокол PTP для синхронизации установок мониторинга сейсмической активности, удаленных друг от друга на значительные расстояния, что предоставляет возможность более точным образом определять эпицентры землетрясений. В области телекоммуникаций рассматривают возможность использования протокола PTP для целей синхронизации сетей и базовых станций. Также синхронизация времени согласно стандарту IEEE 1588 представляет интерес для разработчиков систем обеспечения жизнедеятельности, систем передачи аудио и видео потоков и может быть использована в военной промышленности.

    В электроэнергетике протокол PTPv2 (протокол PTP версии 2) определен для синхронизации интеллектуальных электронных устройств (IED) по времени. Например, при реализации шины процесса, с передачей мгновенных значений тока и напряжения согласно стандарту МЭК 61850-9-2, требуется точная синхронизация полевых устройств по времени. Для реализации систем защиты и автоматики с использованием сети Ethernet погрешность синхронизации данных различных устройств по времени должна лежать в микросекундном диапазоне.

    Также для реализации функций синхронизированного распределенного векторного измерения электрических величин согласно стандарту IEEE C37.118, учета, оценки качества электрической энергии или анализа аварийных событий необходимо наличие устройств, синхронизированных по времени с максимальной точностью, для чего может быть использован протокол PTP.

    Вторая редакция стандарта МЭК 61850 определяет использование в системах синхронизации времени протокола PTP. Детализация профиля протокола PTP для использования на объектах электроэнергетики (IEEE Standard Profile for Use of IEEE 1588 Precision Time Protocol in Power System Applications) в настоящее время осуществляется рабочей группой комитета по релейной защите и автоматике организации (PSRC) IEEE.

    ПРОТОКОЛ PTP ВЕРСИИ 2

    В 2005 году была начата работа по изменению стандарта IEEE1588-2002 с целью расширения возможных областей его применения (телекоммуникации, беспроводная связь и в др.). Результатом работы стало новое издание IEEE1588-2008, которое доступно с марта 2008 со следующими новыми особенностями:

    • Усовершенствованные алгоритмы для обеспечения погрешностей в наносекундном диапазоне.
    • Повышенное быстродействие синхронизации времени (возможна более частая передача сообщений синхронизации Sync).
    • Поддержка новых типов сообщений.
    • Ввод однорежимного принципа работы (не требуется передачи сообщений типа FollowUp).
    • Ввод поддержки функции т.н. прозрачных часов для предотвращения накопления погрешностей измерения при каскадной схеме соединения коммутаторов.
    • Ввод профилей, определяющих настройки для новых областей применения.
    • Возможность назначения на такие транспортные механизмы как DeviceNet, PROFInet и IEEE802.3/Ethernet (прямое назначение).
    • Ввод структуры TLV (тип, длина, значение) для расширения возможных областей применения стандарта и удовлетворения будущих потребностей.
    • Ввод дополнительных опциональных расширений стандарта.

    ПРИНЦИП ФУНКЦИОНИРОВАНИЯ СИСТЕМ НА ОСНОВЕ ПРОТОКОЛА PTP

    В системах, где используется протокол PTP, различают два вида часов: ведущие часы и ведомые часы. Ведущие часы, в идеале, контролируются либо радиочасами, либо GPS-приемниками и осуществляют синхронизацию ведомых часов. Часы в конечном устройстве, неважно ведущие ли они или ведомые, считаются обычными часами; часы в составе устройств сети, выполняющих функцию передачи и маршрутизации данных (например, в Ethernet-коммутаторах), считаются граничными часами.

    Процедура синхронизации согласно протоколу PTP подразделяется на два этапа. На первом этапе осуществляется коррекция разницы показаний времени между ведущими и ведомыми часами – то есть осуществляется так называемая коррекция смещения показаний времени. Для этого ведущее устройство осуществляет передачу сообщения для целей синхронизации времени Sync ведомому устройству (сообщение типа Sync). Сообщение содержит в себе текущее показание времени ведущих часов и его передача осуществляется периодически через фиксированные интервалы времени. Однако поскольку считывание показаний ведущих часов, обработка данных и передача через контроллер Ethernet занимает некоторое время, информация в передаваемом сообщении к моменту его приема оказывается неактуальной.   Одновременно с этим осуществляется как можно более точная фиксация момента времени, в который сообщение Sync уходит от отправителя, в составе которого находятся ведущие часы (TM1). Затем ведущее устройство осуществляет передачу зафиксированного момента времени передачи сообщения Sync ведомым устройствам (сообщение FollowUp). Те также как можно точнее осуществляют измерение момента времени приема первого сообщения (TS1) и вычисляют величину, на которую необходимо выполнить коррекцию разницы в показаниях времени между собою и ведущим устройством соответственно (O) (см. рис. 1 и рис. 2). Затем непосредственно осуществляется коррекция показаний часов в составе ведомых устройств на величину смещения. Если задержки в передачи сообщений по сети не было, то можно утверждать, что устройства синхронизированы по времени.

    На втором этапе процедуры синхронизации устройств по времени осуществляется определение задержки в передаче упомянутых выше сообщений по сети между устройствами. Указанное выполняется  при использовании сообщений специального типа. Ведомое устройство отправляет так называемое сообщение Delay Request (Запрос задержки в передаче сообщения по сети) ведущему устройству и осуществляет фиксацию момента передачи данного сообщения. Ведущее устройство фиксирует момент приема данного сообщения и отправляет зафиксированное значение в сообщении Delay Response (Ответное сообщение с указанием момента приема сообщения). Исходя из зафиксированных времен передачи сообщения Delay Request ведомым устройством и приема сообщения Delay Response ведущим устройством производится оценка задержки в передачи сообщения между ними по сети. Затем производится соответствующая коррекция показаний часов в ведомом устройстве. Однако все упомянутое выше справедливо, если характерна симметричная задержка в передаче сообщения в обоих направлениях между устройствами (то есть характерны одинаковые значения в задержке передачи сообщений в обоих направлениях).

    Задержка в передачи сообщения в обоих направлениях будет идентичной в том случае, если устройства соединены между собой по одной линии связи и только. Если в сети между устройствами имеются коммутаторы или маршрутизаторы, то симметричной задержка в передачи сообщения между устройствами не будет, поскольку коммутаторы в сети осуществляют сохранение тех пакетов данных, которые проходят через них, и реализуется определенная очередность их передачи. Эта особенность может, в некоторых случаях, значительным образом влиять на величину задержки в передаче сообщений (возможны значительные отличия во временах передачи данных). При низкой информационной загрузке сети этот эффект оказывает малое влияние, однако при высокой информационной загрузке, указанное может значительным образом повлиять на точность синхронизации времени. Для исключения больших погрешностей был предложен специальный метод и введено понятие граничных часов, которые реализуются в составе коммутаторов сети. Данные граничные часы синхронизируются по времени с часами ведущего устройства. Далее коммутатор по каждому порту является ведущим устройством для всех ведомых устройств, подключенных к его портам, в которых осуществляется соответствующая синхронизация часов. Таким образом, синхронизация всегда осуществляется по схеме точка-точка и характерна практически одинаковая задержка в передаче сообщения в прямом и обратном направлении, а также практическая неизменность этой задержки по величине от одной передачи сообщения к другой.

    Хотя принцип, основанный на использовании граничных часов показал свою практическую эффективность, другой механизм был определен во второй  версии протокола PTPv2 – механизм использования т. н. прозрачных часов. Данный механизм  предотвращает накопление погрешности, обусловленной изменением величины задержек в передаче сообщений синхронизации коммутаторами и предотвращает снижение точности синхронизации в случае наличия сети с большим числом каскадно-соединенных коммутаторов. При использовании такого механизма передача сообщений синхронизации осуществляется от ведущего устройства ведомому, как и передача любого другого сообщения в сети. Однако когда сообщение синхронизации проходит через коммутатор фиксируется задержка его передачи коммутатором. Задержка фиксируется в специальном поле коррекции в составе первого сообщения синхронизации Sync или в составе последующего сообщения FollowUp (см. рис. 2). При передаче сообщений Delay Request и Delay Response также осуществляется фиксация времени задержки их в коммутаторе. Таким образом, реализация поддержки т. н. прозрачных часов в составе коммутаторов позволяет компенсировать задержки, возникающие непосредственно в них.

    РЕАЛИЗАЦИЯ ПРОТОКОЛА PTP

    Если необходимо использование протокола PTP в системе, должен быть реализован стек протокола PTP. Это может быть сделано при предъявлении минимальных требований к производительности процессоров устройств и к пропускной способности сети. Это очень важно для реализации стека протокола в простых и дешевых устройствах. Протокол PTP может быть без труда реализован даже в системах, построенных на дешевых контроллерах (32 бита).

    Единственное требование, которое необходимо удовлетворить для обеспечения высокой точности синхронизации, – как можно более точное измерение устройствами момента времени, в который осуществляется передача сообщения, и момента времени, когда осуществляется прием сообщения. Измерение должно производится максимально близко к аппаратной части (например, непосредственно в драйвере) и с максимально возможной точностью. В реализациях исключительно на программном уровне архитектура и производительность системы непосредственно ограничивают максимально допустимую точность.

    При использовании дополнительной поддержки аппаратного обеспечения для присвоения меток времени, точность может быть значительным образом повышена и может быть обеспечена ее виртуальная независимость от программного обеспечения. Для этого необходимо использование дополнительной логики, которая может быть реализована в программируемой логической интегральной схеме или специализированной для решения конкретной задачи интегральной схеме на сетевом входе.

    РЕЗУЛЬТАТЫ

    Компания Hirschmann – один из первых производителей, реализовавших протокол PTP и оптимизировавших его использование. Компанией был разработан стек, максимально эффективно реализующий протокол, а также чип (программируемая интегральная логическая схема), который обеспечивает высокую точность проводимых замеров.

    В системе, в которой несколько обычных часов объединены через Ethernet-коммутатор с функцией граничных часов, была достигнута предельная погрешность +/- 60 нс при практически полной независимости от загрузки сети и загрузки процессора. Также компанией была протестирована система, состоящая из 30 каскадно-соединенных коммутаторов, обладающих функцией поддержки т.н. прозрачных часов и были зафиксированы  погрешности менее в пределах +/- 200 нс.

    Компания Hirschmann Automation and Control реализовала протоколы PTP версии 1 и версии 2 в промышленных коммутаторах серии MICE, а также в серии монтируемых на стойку коммутаторов MACH100.

    ВЫВОДЫ

    Протокол PTP во многих областях уже доказал эффективность своего применения. Можно быть уверенным, что он получит более широкое распространение в течение следующих лет и что многие решения при его использовании смогут быть реализованы более просто и эффективно чем при использовании других технологий.

    [ Источник]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > синхронизация времени

  • 43 амортизация методом двойного уменьшающегося остатка

    1. double-declining-balance depreciation
    2. DDB

     

    амортизация методом двойного уменьшающегося остатка
    Распределение амортизируемой стоимости актива, при котором постоянный процент, применяемый к балансовой стоимости при вычислении суммы амортизации за год, составляет удвоенное значение дроби 1/п (где п - срок службы, выраженный в годах).
    В российской практике применяется способ уменьшаемого остатка, в соответствии с которым амортизация рассчитывается исходя из остаточной стоимости объекта основных средств на начало отчетного года и нормы амортизации, исчисленной исходя из срока полезного использования этого объекта и коэффициента ускорения, установленного в соответствии с законодательством Российской Федерации (п. 19 ПБУ 6/01). Повышающий коэффициент для лизингового оборудования - до 3.
    [ http://www.lexikon.ru/dict/uprav/index.html]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > амортизация методом двойного уменьшающегося остатка

  • 44 Защита от короткого замыкания и прочность при коротком замыкании

    1. cos j

    7.5. Защита от короткого замыкания и прочность при коротком замыкании

    Примечание. В настоящее время требования этого пункта применимы главным образом к устройствам переменного тока. Требования к устройствам постоянного тока находятся в стадии рассмотрения.

    7.5.1. Общие положения

    НКУ должны иметь конструкцию, способную выдерживать тепловые и электродинамические нагрузки, возникающие при значениях токов короткого замыкания, не превышающих установленных.

    Примечание. Нагрузки, возникающие вследствие короткого замыкания, могут быть уменьшены при помощи токоограничивающих устройств (индуктивностей, токоограничивающих плавких предохранителей или других токоограничивающих коммутационных устройств).

    НКУ должны быть защищены от токов короткого замыкания, например, автоматическими выключателями, плавкими предохранителями или тем и другим вместе, которые могут быть частью НКУ или располагаться за его пределами.

    Примечание. Если НКУ предназначены для использования в системах IT*, то аппарат защиты в каждой фазе должен иметь достаточную отключающую способность относительно междуфазного напряжения при двухфазном замыкании на землю.

    * См title="Электроустановки зданий. Часть 3. Основные характеристики".

    Потребитель, заказывая НКУ, должен определить условия короткого замыкания на месте его установки.

    Примечание. Желательно, чтобы в случае повреждения, ведущего к образованию дуги внутри НКУ, обеспечивалась максимально возможная степень защиты персонала, хотя главной целью является предупреждение образования такой дуги принятием соответствующих мер при проектировании или ограничение длительности горения дуги.

    Для ЧИ НКУ рекомендуется использовать устройства, прошедшие типовые испытания, например, системы сборных шин, если на них не распространяются исключения пп. 8.2.3.1.1 - 8.2.3.1.3. В случаях, когда применение устройств, прошедших типовые испытания, не представляется возможным, прочность этих частей при коротком замыкании проверяют путем экстраполяции, исходя из устройств, испытанных в соответствии с типовыми испытаниями.

    7.5.2. Сведения, касающиеся прочности при коротком замыкании

    7.5.2.1. Для НКУ, в котором имеется только один блок ввода, изготовитель обязан представлять сведения о прочности при коротком замыкании следующим образом:

    7.5.2.1.1. Для НКУ с устройством защиты от короткого замыкания, включенным в блок ввода, указанием максимально допустимого значения ожидаемого тока короткого замыкания на зажимах блока ввода. Эта величина не должна превышать номинальные значения (см. пп. 4.3 - 4.7). Коэффициент мощности и пиковые значения должны соответствовать указанным в п. 7.5.3.

    Если устройством защиты от короткого замыкания является плавкий предохранитель, то изготовитель обязан указать характеристики плавкой вставки (номинальный ток, отключающую способность, ток отключения, I2t и т.д.).

    Если используют автоматический выключатель с расцепителем, имеющим выдержку времени, то может потребоваться указание максимальной выдержки времени и значения тока уставки, соответствующих ожидаемому току короткого замыкания.

    7.5.2.1.2. Для НКУ, в которых защитное устройство от короткого замыкания не входит в блок ввода, прочность при коротком замыкании указывают с помощью следующих способов (одного или нескольких):

    а) номинальный кратковременно выдерживаемый ток (п. 4.3) и номинальный ударный ток (п. 4.4) вместе с соответствующим временем, если оно отличается от 1 с. Отношение пикового значения к действующему должно соответствовать указанному в табл. 5.

    Примечание. Для периодов времени с максимальным значением до 3 с соотношение между кратковременно выдерживаемым током и соответствующим временем представляется формулой

    i2t = const

    при условии, что пиковое значение не превышает значение номинального ударного тока;

    b) номинальный ожидаемый ток короткого замыкания на зажимах блока ввода НКУ, а также соответствующее время, если оно отличается от 1 с. Соотношение между пиковым и действующим значением должно быть таким, как указано в табл. 5;

    с) номинальный условный ток короткого замыкания (п. 4.6);

    d) номинальный ток короткого замыкания, отключаемый плавким предохранителем (п. 4.7).

    Для подпунктов с) и d) изготовитель обязан указывать характеристики (номинальный ток, отключающая способность, ток отключения, I2t и т.д.) токоограничивающих коммутационных устройств (например, автоматических выключателей или плавких предохранителей), необходимых для защиты НКУ.

    Примечание. При замене плавких вставок должны использоваться вставки с такими же характеристиками.

    7.5.2.2. Для НКУ с несколькими блоками ввода, одновременная работа которых маловероятна, прочность при коротком замыкании может указываться для каждого из блоков в соответствии с п. 7.5.2.1.

    7.5.2.3. Для НКУ с несколькими блоками ввода, которые могут работать одновременно, а также для НКУ с одним блоком ввода и одним или несколькими блоками вывода для вращающихся машин большой мощности, могущих повлиять на величину тока короткого замыкания, должно быть заключено специальное соглашение о величинах ожидаемого тока короткого замыкания в каждом блоке ввода или вывода и на шинах.

    7.5.3. Зависимость между пиковыми и действующим и значениями тока короткого замыкания

    Пиковое значение тока короткого замыкания (пиковое значение первой волны тока короткого замыкания, включая постоянную составляющую) для определения электродинамических усилий, получается умножением действующего значения тока короткого замыкания на коэффициент п. Стандартные значения коэффициента n и соответствующего коэффициента мощности даны в табл. 5.

    Таблица 5

    Действующее значение тока короткого замыкания

    cos j

    n

    I £ 5 кА

    0,7

    1,5

    5 кА < I £ 10 кА

    0,5

    1,7

    10 кА < I £ 20 кА

    0,3

    2

    20 кА < I £ 50 кА

    0,25

    2,1

    50 кА < I

    0,2

    2,2

    Примечание. Значения, приведенные в табл. 5, соответствуют большинству случаев применения. В специальных местах, например, вблизи трансформаторов или генераторов, коэффициент мощности может иметь более низкие значения; таким образом, максимальное пиковое значение ожидаемого тока станет предельным значением вместо действующего значения тока короткого замыкания.

    7.5.4. Координация устройств защиты от короткого замыкания

    7.5.4.1. Координация устройств защиты должна являться предметом согласования между потребителем и изготовителем. Вместо такого соглашения можно использовать сведения, приводимые в каталоге предприятия-изготовителя.

    7.5.4.2. Если по условиям эксплуатации необходима непрерывность питания, то уставки или выбор устройств защиты от короткого замыкания внутри НКУ должны производиться таким образом, чтобы короткое замыкание, возникающее в любой отходящей цепи ответвления, могло быть устранено с помощью отключающего устройства, установленного в поврежденной цепи ответвления без какого-либо воздействия на другие отходящие ответвления, чем гарантируется селективность системы защиты.

    7.5.5. Внутренние цепи НКУ

    7.5.5.1. Главные цепи

    7.5.5.1.1. Шины (оголенные или с изоляцией) должны располагаться таким образом, чтобы при нормальных условиях эксплуатации исключалась возможность внутреннего короткого замыкания. При отсутствии других указаний их выбирают согласно сведениям о прочности при коротком замыкании (п. 7.5.2) и должны выдерживать по крайней мере воздействия коротких замыканий, ограниченных устройствами защиты на стороне подачи питания на шины.

    7.5.5.1.2. Проводники между главными шинами и стороной питания отдельного функционального блока, также как и комплектующие, входящие в этот блок, могут быть выбраны, исходя из уменьшенных воздействий короткого замыкания со стороны присоединения нагрузки к устройству защиты от короткого замыкания в этом блоке, при условии такого расположения этих проводников, при котором в нормальных рабочих условиях внутреннее короткое замыкание между фазами и/или между фазами и землей является маловероятным, например, если проводники имеют соответствующую изоляцию или оболочку. Это также относится к проводникам со стороны питания отдельных функциональных блоков внутри НКУ, не содержащих главных шин.

    7.5.5.2. Вспомогательные цепи

    Обычно вспомогательные цепи должны быть защищены от воздействия коротких замыканий. Однако защитное устройство, предохраняющее от короткого замыкания, не следует применять в случае, если его срабатывание может иметь опасные последствия. В этом случае проводники вспомогательных цепей должны располагаться таким образом, чтобы в нормальных условиях работы исключалась возможность возникновения короткого замыкания.

    Источник: ГОСТ 28668-90 Э: Низковольтные комплектные устройства распределения и управления. Часть 1. Требования к устройствам, испытанным полностью или частично оригинал документа

    Русско-английский словарь нормативно-технической терминологии > Защита от короткого замыкания и прочность при коротком замыкании

  • 45 всего

    All told (or Altogether) there are more than 20,000 items distributed by the firm.

    ( All) in all, the program board carries 75 red and 75 black sockets.

    A total of eight holes is drilled at the first working station.

    * * *
    Всего -- in all, in sum, total of, all told (итого, в общей сложности); only, but, as low as, as brief as (только, не более чем, всего лишь)
     In all, two distinct regions of flow were separately visualized.
     This was repeated twice more so that, in all, four different thermocouple installations were used.
     A total of twenty-two injection taps were installed.
     Tilly's tests were conducted at 104 m/s, while in this investigation velocities as low as 10 m/s at room temperature were employed.
    —завершён всего на

    Русско-английский научно-технический словарь переводчика > всего

  • 46 ожидать

    (= ждать) expect, wait (for), anticipate, look forward to
    ..., что и следовало ожидать. -..., which was to be expected.
    Более того, то лее самое общее поведение следует ожидать, когда... - Furthermore, the same general behavior is to be expected when...
    В общем случае следует ожидать, что... - In general it should be anticipated that...
    В общем случае у нас нет оснований ожидать... - In the general case, we cannot reasonably expect...
    В первом приближении мы должны ожидать... - То а first approximation we should expect...
    Данное предложение ожидалось к 10 декабря. - The proposal was due by December 10.
    Другими словами, мы бы ожидали... - In other words, we would expect...
    Естественно ожидать, что... - It is naturally to be expected that...
    Заранее у нас нет никаких причин ожидать, что... - We have no a priori reason to expect that...
    Из физических соображений мы могли бы ожидать, что... - On physical grounds we might expect that...
    Имеет смысл ожидать, что... - It is reasonable to anticipate that...
    Как и следовало ожидать,... - As one should expect...
    Как можно было бы ожидать,... - As one might expect; As one would expect, As might be expected from...; As might be hoped for...
    Можно ожидать, что метод обеспечит нахождение по меньшей мере одного корня. - The method can be expected to provide at least one root.
    Мы можем ожидать новые кардинальные улучшения в... - We can expect dramatic improvements in...
    Мы не можем ожидать выполнения этого результата в случае... - This result cannot be expected to hold for...
    Мы не ожидали, что... - We had not anticipated that...
    Мы ожидаем (= предполагаем) опубликовать нашу работу в течение двух лет. - We expect to publish our work within two years.
    Мы уже убедились (= видели), что в общем случае мы не можем ожидать... - We have already seen that we cannot, in general, expect...
    Не является беспочвенным ожидать, что... - It is not altogether unreasonable to expect that...
    Необходимо (= следует) ожидать, что... - It is to be expected that...
    Ожидается, что... - It is anticipated that...; It is expected that...
    Основываясь на этом анализе, мы должны ожидать... - On the basis of this analysis we should expect...
    По этой причине мы должны ожидать, что... - For this reason we should expect...
    После всего этого, мы могли бы ожидать, что... - We would expect, after all, that...
    После короткого промежутка времени мы должны были бы ожидать... - After a short time, we would expect...
    Последний результат существенно отличается от того, что мы ожидали. - The latter result differs considerably from what we expected.
    С первого взгляда мы могли бы ожидать... - At first sight we might expect...
    Следовательно, можно ожидать значительное улучшение (в случае), когда... - Hence, a major improvement can be expected when...
    Следовательно, можно ожидать, что... - Therefore it may be expected that...
    Следовательно, мы можем ожидать, что... - We may anticipate, therefore, that...
    Следовательно, разумно ожидать, что... - It is thus reasonable to expect that...
    Следует ожидать, что... - It is to be expected that...
    Тогда можно ожидать, что... - One may then expect that...
    Хотя мы и не проводили многочисленные эксперименты, однако мы ожидаем, что... - Although no extensive experiments have been carried out, we expect that...
    Это можно было бы ожидать из физических соображений, потому что... - Physically, this could be expected because...
    Этого результата следовало ожидать, исходя из факта, что... - This result was to be expected from the fact that...

    Русско-английский словарь научного общения > ожидать

  • 47 факт

    (см. также данные, результат, вариант, версия, случай) fact, case, one point
    Благодаря этому факту усиленно напрашивается, что... - This fact strongly suggests that...
    В свете всех этих фактов становится естественным (вычислить и т. п.)... - In view of all these facts it becomes natural to...
    В связи с тем фактом, что..., очевидно, что это невозможно. - This is obviously impossible in light of the fact that...
    В этом параграфе мы устанавливаем основные факты относительно... - In this section we establish the basic facts about...
    Важность этого факта станет понятна после того, как мы обсудим... - The importance of this fact will become clear when we discuss...
    Внимание читателя привлекается к тому факту, что... - The reader's attention is drawn to the fact that...
    Вряд ли необходимо еще подчеркивать тот факт, что... - It is hardly necessary to stress the fact that...
    Данная теория также объясняет тот факт, что... - This theory also explains the fact that...
    Данное утверждение интуитивно очевидно, если исходить из факта, что... - The proposition is intuitively obvious from the fact that...
    Данный подход должен быть изменен так, чтобы он учитывал факт, что... - The approach must be modified to accommodate the fact that...
    Добавьте к этому тот факт, что... - Add to this the fact that...
    Его принципиальная важность заключается в том факте, что... - Its principal importance lies ultimately in the fact that...
    Задача усложняется тем фактом, что... - The problem is complicated by the fact that...
    Замечательным фактом является то, что... - It is a remarkable fact that...
    Замечательным фактом является, что... - It is a remarkable fact that...
    Здесь принимается во внимание тот факт, что... - This takes account of the fact that...
    Зная этот набор фактов, мы понимаем, что... - With this framework before us, we realize that...
    Из этого факта, совместно с (1), вытекает, что... - This fact, taken together with (1), implies that...
    Интересным и полезным фактом является то, что... - The interesting and useful fact is that...
    Исключительным фактом является то, что... - It is an extraordinary fact that...
    Мы используем этот факт в дальнейшем. - We shall make use of this fact later.
    Мы можем использовать преимущество, предоставляемое этим фактом, чтобы... - We can take advantage of this fact to...
    Мы можем объяснить этот факт тем, что... - We can explain this fact by...
    Мы привлекаем внимание к факту, что... - We call attention to the fact that...
    Мы примем этот важный факт без доказательства. - We shall accept this important fact without proof.
    На некоторое время мы пренебрегаем тем фактом, что... - We neglect, for the time being, the fact that...
    На этом этапе мы хотим привлечь внимание к тому факту, что... - At this point, we wish to call attention to the fact that...
    На этом этапе необходимо указать очень важный факт. - At this stage a very important fact must be pointed out.
    Наиболее важным является тот факт, что... - Most important is the fact that...
    Нам всем (хорошо) известен тот факт, что... - We are all familiar with the fact that...
    Некоторые из этих проблем возникают из того факта, что... - Some of the problems arise from the fact that...
    Немедленным следствием предыдущего результата является тот факт, что... - An immediate corollary of the above result is the fact that...
    Необходимо заметить, что в той же мере важным является тот факт, что... - But equally important, one should notice, is the fact that...
    Неожиданным фактом является то, что... - An unexpected fact is that...
    Однако имеет смысл использовать факт, что... - But the sensible thing is to use the fact that...
    Однако при вычислении величины W мы должны принять во внимание тот факт, что... - In computing W, however, we must take into account the fact that...
    Очевидно, что этот ответ обязан быть следствием факта, что... - The answer must obviously be sought in the fact that...
    Подтверждение такой точки зрения вытекает из того факта, что... - Confirmation of this view is found in the fact that...
    Позднее нам будут необходимы несколько фактов относительно... - Later on we shall need certain facts about...
    Полезно помнить следующий факт:... - A useful result to remember is that...
    Поразительным фактом является то, что... - A striking fact is that...
    Предыдущие примеры иллюстрируют общий факт, что... - The preceding examples illustrate the general fact that...
    Причиной этого является факт, что... - The reason for this lies in the fact that...
    Простейшим объяснением всех этих фактов является... - The simplest explanation for these facts is...
    Рассмотрим некоторые важные факты относительно... - Let us review some important facts regarding...
    Следует уделить внимание тому факту, что... - Attention should be paid to the fact that...
    Таким образом, мы возвращаемся к факту, что... - We thus recover the fact that...
    Твердо установленным фактом является, что... - It is a well-established result that...
    Тот факт, что..., ничего не говорит о... - The fact that... says nothing about...
    Тривиальным фактом здесь является... - It is a trivial observation that...
    Тщательное сравнение затрудняется тем фактом, что... - Careful comparison is somewhat hampered by the fact that...
    Учитывая эти факты, мы можем... - Taking these facts into account, we can...
    Фактом чрезвычайной важности является то, что... - This is a fact of tremendous importance to...
    Фундаментальным фактом является то, что каждый... - It is a fundamental fact that every...
    Чтобы сделать это, мы используем тот факт, что... - То do this, we make use of the fact that...
    Чтобы учесть данный факт, Максвелл предположил, что... - То account for this fact, Maxwell supposed that...
    Экспериментально обнаружено, что... - It is found, as an experimental fact, that...
    Эти важные факты можно подытожить следующим образом. - The relevant facts may be summarized as follows.
    Эти факты могут быть объяснены, если... - These facts can be explained if...
    Эти факты позволяют нам... - These facts allow us to...
    Это выливается в не что иное как простое переформулирование факта, что... - This amounts to no more than a restatement of the fact that...
    Это иллюстрирует тот факт, что... - This illustrates the fact that...
    Это могло бы показаться довольно неопределенным в свете того факта, что... - This may seem rather pointless in light of the fact that...
    Это могло бы показаться парадоксальным в свете факта, что... - This may appear to be paradoxical in view of the fact that...
    Это необходимое следствие того факта, что... - This is a necessary consequence of the fact that...
    Это очевидным образом вытекает из того факта, что... - This is clearly borne out by the fact that...
    Это предположение игнорирует тот факт, что... - The assumption ignores the fact that...
    Это происходит вследствие того факта, что... - This arises from the fact that...
    Это просто другой способ выражения того факта, что... - This is just another way of expressing the fact that...
    Это просто последствие того факта, что... - This is simply a consequence of the fact that...
    Это связано с тем фактом, что... - This is connected with the fact that...
    Это следует из нашего обсуждения соотношения (4), а также из того факта, что... - This follows from our discussion of (4) and the fact that...
    Это совершенно очевидно следует из того факта, что... - This is at once obvious from the fact that...
    Это соответствует тому факту, что... - This corresponds to the fact that...
    Это справедливо, несмотря на тот факт, что... - This is so despite the fact that...
    Этот пример иллюстрирует основной факт, что... - This example illustrates the general fact that...
    Этот результат более или менее ожидаем, если исходить из факта, что... - This result is more or less to be expected from the fact that...
    Этот результат было необходимо ожидать, исходя из факта, что... - This result was to be expected from the fact that...
    Этот результат согласуется с тем фактом, что... - This result is in agreement with the fact that...
    Этот факт был отмечен без доказательства в главе 4. - This fact was noted without proof in Chapter 4.
    Является интересным тот факт, что... - It is an interesting fact that...

    Русско-английский словарь научного общения > факт

  • 48 автоматическое повторное включение

    1. reclosure
    2. reclosing
    3. reclose
    4. autoreclosure
    5. autoreclosing
    6. automatic recluse
    7. automatic reclosing
    8. auto-reclosing
    9. ARC
    10. AR

     

    автоматическое повторное включение
    АПВ

    Коммутационный цикл, при котором выключатель вслед за его отключением автоматически включается через установленный промежуток времени (О - tбт - В).
    [ ГОСТ Р 52565-2006]

    автоматическое повторное включение
    АПВ

    Автоматическое включение аварийно отключившегося элемента электрической сети
    [ОАО РАО "ЕЭС России" СТО 17330282.27.010.001-2008]

    (автоматическое) повторное включение
    АПВ


    [Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва]

    EN

    automatic reclosing
    automatic reclosing of a circuit-breaker associated with a faulted section of a network after an interval of time which permits that section to recover from a transient fault
    [IEC 61936-1, ed. 1.0 (2002-10)]
    [IEV 604-02-32]


    auto-reclosing
    the operating sequence of a mechanical switching device whereby, following its opening, it closes automatically after a predetermined time
    [IEC 62271-100, ed. 2.0 (2008-04)]
    auto-reclosing (of a mechanical switching device)
    the operating sequence of a mechanical switching device whereby, following its opening, it closes automatically after a predetermined time
    [IEV number 441-16-10]

    FR

    réenclenchement automatique
    refermeture du disjoncteur associé à une fraction de réseau affectée d'un défaut, par un dispositif automatique après un intervalle de temps permettant la disparition d'un défaut fugitif
    [IEC 61936-1, ed. 1.0 (2002-10)]
    [IEV 604-02-32]


    refermeture automatique
    séquence de manoeuvres par laquelle, à la suite d’une ouverture, un appareil mécanique de connexion est refermé automatiquement après un intervalle de temps prédéterminé
    [IEC 62271-100, ed. 2.0 (2008-04)]
    refermeture automatique (d'un appareil mécanique de connexion)
    séquence de manoeuvres par laquelle, à la suite d'une ouverture, un appareil mécanique de connexion est refermé automatiquement après un intervalle de temps prédéterminé
    [IEV number 441-16-10]

     
    Автоматическое повторное включение (АПВ), быстрое автоматическое обратное включение в работу высоковольтных линий электропередачи и электрооборудования высокого напряжения после их автоматического отключения; одно из наиболее эффективных средств противоаварийной автоматики. Повышает надёжность электроснабжения потребителей и восстанавливает нормальный режим работы электрической системы. Во многих случаях после быстрого отключения участка электрической системы, на котором возникло короткое замыкание в результате кратковременного нарушения изоляции или пробоя воздушного промежутка, при последующей подаче напряжения повторное короткое замыкание не возникает.   АПВ выполняется с помощью автоматических устройств, воздействующих на высоковольтные выключатели после их аварийного автоматического отключения от релейной защиты. Многие из этих автоматических устройств обеспечивают АПВ при самопроизвольном отключении выключателей, например при сильных сотрясениях почвы во время близких взрывов, землетрясениях и т. п. Эффективность АПВ тем выше, чем быстрее следует оно за аварийным отключением, т. е. чем меньше время перерыва питания потребителей. Это время зависит от длительности цикла АПВ. В электрических системах применяют однократное АПВ — с одним циклом, двукратное — при неуспешном первом цикле, и трёхкратное — с тремя последовательными циклами. Цикл АПВ — время от момента подачи сигнала на отключение до замыкания цепи главными контактами выключателя — состоит из времени отключения и включения выключателя и времени срабатывания устройства АПВ. Длительность бестоковой паузы, когда потребитель не получает электроэнергию, выбирается такой, чтобы успело произойти восстановление изоляции (деионизация среды) в месте короткого замыкания, привод выключателя после отключения был бы готов к повторному включению, а выключатель к моменту замыкания его главных контактов восстановил способность к отключению поврежденной цепи в случае неуспешного АПВ. Время деионизации зависит от среды, климатических условий и других факторов. Время восстановления отключающей способности выключателя определяется его конструкцией и количеством циклов АПВ., предшествовавших данному. Обычно длительность 1-го цикла не превышает 0,5—1,5 сек, 2-го — от 10 до 15 сек, 3-го — от 60 до 120 сек.

    Наиболее распространено однократное АПВ, обеспечивающее на воздушных линиях высокого напряжения (110 кв и выше) до 86 %, а на кабельных линиях (3—10 кв) — до 55 % успешных включений. Двукратное АПВ обеспечивает во втором цикле до 15 % успешных включений. Третий цикл увеличивает число успешных включений всего на 3—5 %. На линиях электропередачи высокого напряжения (от 110 до 500 кВ) применяется однофазовое АПВ; при этом выключатели должны иметь отдельные приводы на каждой фазе.

    Применение АПВ экономически выгодно, т. к. стоимость устройств АПВ и их эксплуатации несравнимо меньше ущерба из-за перерыва в подаче электроэнергии.
    [ БСЭ]

     

    НАЗНАЧЕНИЕ И ОБЛАСТЬ ПРИМЕНЕНИЯ АПВ

    Опыт эксплуатации сетей высокого напряжения показал, что если поврежденную линию электропередачи быстро отключить, т. е. снять с нее напряжение, то в большинстве случаев повреждение ликвидируется. При этом электрическая дуга, возникавшая в месте короткого замыкания (КЗ), не успевает вызвать существенных разрушений оборудования, препятствующих обратному включению линии под напряжение.
    Самоустраняющиеся повреждения принято называть неустойчивыми. Такие повреждения возникают в результате грозовых перекрытий изоляции, схлестывания проводов при ветре и сбрасывании гололеда, падения деревьев, задевания проводов движущимися механизмами.
    Данные о повреждаемости воздушных линий электропередачи (ВЛ) за многолетний период эксплуатации показывают, что доля неустойчивых повреждений весьма высока и составляет 50—90 %.
    При ликвидации аварии оперативный персонал производит обычно опробование линии путем включения ее под напряжение, так как отыскание места повреждения на линии электропередачи путем ее обхода требует длительного времени, а многие повреждения носят неустойчивый характер. Эту операцию называют повторным включением.
    Если КЗ самоустранилось, то линия, на которой произошло неустойчивое повреждение, при повторном включении остается в работе. Поэтому повторные включения при неустойчивых повреждениях принято называть успешными.
    На ВЛ успешность повторного включения сильно зависит от номинального напряжения линий. На линиях ПО кВ и выше успешность повторного включения значительно выше, чем на ВЛ 6—35 кВ. Высокий процент успешных повторных включений в сетях высокого и сверхвысокого напряжения объясняется быстродействием релейной защиты (как правило, не более 0,1-0,15 с), большим сечением проводов и расстояний между ними, высокой механической прочностью опор. [Овчинников В. В., Автоматическое повторное включение. — М.:Энергоатомиздат, 1986.— 96 с: ил. — (Б-ка электромонтера; Вып. 587). Энергоатомиздат, 1986]

    АВТОМАТИЧЕСКОЕ ПОВТОРНОЕ ВКЛЮЧЕНИЕ (АПВ)

    3.3.2. Устройства АПВ должны предусматриваться для быстрого восстановления питания потребителей или межсистемных и внутрисистемных связей путем автоматического включения выключателей, отключенных устройствами релейной защиты.

    Должно предусматриваться автоматическое повторное включение:

    1) воздушных и смешанных (кабельно-воздушных) линий всех типов напряжением выше 1 кВ. Отказ от применения АПВ должен быть в каждом отдельном случае обоснован. На кабельных линиях 35 кВ и ниже АПВ рекомендуется применять в случаях, когда оно может быть эффективным в связи со значительной вероятностью повреждений с образованием открытой дуги (например, наличие нескольких промежуточных сборок, питание по одной линии нескольких подстанций), а также с целью исправления неселективного действия защиты. Вопрос о применении АПВ на кабельных линиях 110 кВ и выше должен решаться при проектировании в каждом отдельном случае с учетом конкретных условий;

    2) шин электростанций и подстанций (см. 3.3.24 и 3.3.25);

    3) трансформаторов (см. 3.3.26);

    4) ответственных электродвигателей, отключаемых для обеспечения самозапуска других электродвигателей (см. 3.3.38).

    Для осуществления АПВ по п. 1-3 должны также предусматриваться устройства АПВ на обходных, шиносоединительных и секционных выключателях.

    Допускается в целях экономии аппаратуры выполнение устройства группового АПВ на линиях, в первую очередь кабельных, и других присоединениях 6-10 кВ. При этом следует учитывать недостатки устройства группового АПВ, например возможность отказа в случае, если после отключения выключателя одного из присоединений отключение выключателя другого присоединения происходит до возврата устройства АПВ в исходное положение.

    3.3.3. Устройства АПВ должны быть выполнены так, чтобы они не действовали при:

    1) отключении выключателя персоналом дистанционно или при помощи телеуправления;

    2) автоматическом отключении от релейной защиты непосредственно после включения персоналом дистанционно или при помощи телеуправления;

    3) отключении выключателя защитой от внутренних повреждений трансформаторов и вращающихся машин, устройствами противоаварийной автоматики, а также в других случаях отключений выключателя, когда действие АПВ недопустимо. АПВ после действия АЧР (ЧАПВ) должно выполняться в соответствии с 3.3.81.

    Устройства АПВ должны быть выполнены так, чтобы была исключена возможностью многократного включения на КЗ при любой неисправности в схеме устройства.

    Устройства АПВ должны выполняться с автоматическим возвратом.

    3.3.4. При применении АПВ должно, как правило, предусматриваться ускорение действия релейной защиты на случай неуспешного АПВ. Ускорение действия релейной защиты после неуспешного АПВ выполняется с помощью устройства ускорения после включения выключателя, которое, как правило, должно использоваться и при включении выключателя по другим причинам (от ключа управления, телеуправления или устройства АВР). При ускорении защиты после включения выключателя должны быть приняты меры против возможного отключения выключателя защитой под действием толчка тока при включении из-за неодновременного включения фаз выключателя.

    Не следует ускорять защиты после включения выключателя, когда линия уже включена под напряжение другим своим выключателем (т. е. при наличии симметричного напряжения на линии).

    Допускается не ускорять после АПВ действие защит линий 35 кВ и ниже, выполненных на переменном оперативном токе, если для этого требуется значительное усложнение защит и время их действия при металлическом КЗ вблизи места установки не превосходит 1,5 с.

    3.3.5. Устройства трехфазного АПВ (ТАПВ) должны осуществляться преимущественно с пуском при несоответствии между ранее поданной оперативной командой и отключенным положением выключателя; допускается также пуск устройства АПВ от защиты.

    3.3.6. Могут применяться, как правило, устройства ТАПВ однократного или двукратного действия (последнее - если это допустимо по условиям работы выключателя). Устройство ТАПВ двукратного действия рекомендуется принимать для воздушных линий, в особенности для одиночных с односторонним питанием. В сетях 35 кВ и ниже устройства ТАПВ двукратного действия рекомендуется применять в первую очередь для линий, не имеющих резервирования по сети.

    В сетях с изолированной или компенсированной нейтралью, как правило, должна применяться блокировка второго цикла АПВ в случае замыкания на землю после АПВ первого цикла (например, по наличию напряжений нулевой последовательности). Выдержка времени ТАПВ во втором цикле должна быть не менее 15-20 с.

    3.3.7. Для ускорения восстановления нормального режима работы электропередачи выдержка времени устройства ТАПВ (в особенности для первого цикла АПВ двукратного действия на линиях с односторонним питанием) должна приниматься минимально возможной с учетом времени погасания дуги и деионизации среды в месте повреждения, а также с учетом времени готовности выключателя и его привода к повторному включению.

    Выдержка времени устройства ТАПВ на линии с двусторонним питанием должна выбираться также с учетом возможного неодновременного отключения повреждения с обоих концов линии; при этом время действия защит, предназначенных для дальнего резервирования, учитываться не должно. Допускается не учитывать разновременности отключения выключателей по концам линии, когда они отключаются в результате срабатывания высокочастотной защиты.

    С целью повышения эффективности ТАПВ однократного действия допускается увеличивать его выдержку времени (по возможности с учетом работы потребителя).

    3.3.8. На одиночных линиях 110 кВ и выше с односторонним питанием, для которых допустим в случае неуспешного ТАПВ переход на длительную работу двумя фазами, следует предусматривать ТАПВ двукратного действия на питающем конце линии. Перевод линии на работу двумя фазами может производиться персоналом на месте или при помощи телеуправления.

    Для перевода линии после неуспешного АПВ на работу двумя фазами следует предусматривать пофазное управление разъединителями или выключателями на питающем и приемном концах линии.

    При переводе линии на длительную работу двумя фазами следует при необходимости принимать меры к уменьшению помех в работе линий связи из-за неполнофазного режима работы линии. С этой целью допускается ограничение мощности, передаваемой по линии в неполнофазном режиме (если это возможно по условиям работы потребителя).

    В отдельных случаях при наличии специального обоснования допускается также перерыв в работе линии связи на время неполнофазного режима.

    3.3.9. На линиях, отключение которых не приводит к нарушению электрической связи между генерирующими источниками, например на параллельных линиях с односторонним питанием, следует устанавливать устройства ТАПВ без проверки синхронизма.

    3.3.10. На одиночных линиях с двусторонним питанием (при отсутствии шунтирующих связей) должен предусматриваться один из следующих видов трехфазного АПВ (или их комбинаций):

    а) быстродействующее ТАПВ (БАПВ)

    б) несинхронное ТАПВ (НАПВ);

    в) ТАПВ с улавливанием синхронизма (ТАПВ УС).

    Кроме того, может предусматриваться однофазное АПВ (ОАПВ) в сочетании с различными видами ТАПВ, если выключатели оборудованы пофазным управлением и не нарушается устойчивость параллельной работы частей энергосистемы в цикле ОАПВ.

    Выбор видов АПВ производится, исходя из совокупности конкретных условий работы системы и оборудования с учетом указаний 3.3.11-3.3.15.

    3.3.11. Быстродействующее АПВ, или БАПВ (одновременное включение с минимальной выдержкой времени с обоих концов), рекомендуется предусматривать на линиях по 3.3.10 для автоматического повторного включения, как правило, при небольшом расхождении угла между векторами ЭДС соединяемых систем. БАПВ может применяться при наличии выключателей, допускающих БАПВ, если после включения обеспечивается сохранение синхронной параллельной работы систем и максимальный электромагнитный момент синхронных генераторов и компенсаторов меньше (с учетом необходимого запаса) электромагнитного момента, возникающего при трехфазном КЗ на выводах машины.

    Оценка максимального электромагнитного момента должна производиться для предельно возможного расхождения угла за время БАПВ. Соответственно запуск БАПВ должен производиться лишь при срабатывании быстродействующей защиты, зона действия которой охватывает всю линию. БАПВ должно блокироваться при срабатывании резервных защит и блокироваться или задерживаться при работе УРОВ.

    Если для сохранения устойчивости энергосистемы при неуспешном БАПВ требуется большой объем воздействий от противоаварийной автоматики, применение БАПВ не рекомендуется.

    3.3.12. Несинхронное АПВ (НАПВ) может применяться на линиях по 3.3.10 (в основном 110-220 кВ), если:

    а) максимальный электромагнитный момент синхронных генераторов и компенсаторов, возникающий при несинхронном включении, меньше (с учетом необходимого запаса) электромагнитного момента, возникающего при трехфазном КЗ на выводах машины, при этом в качестве практических критериев оценки допустимости НАПВ принимаются расчетные начальные значения периодических составляющих токов статора при угле включения 180°;

    б) максимальный ток через трансформатор (автотрансформатор) при угле включения 180° меньше тока КЗ на его выводах при питании от шин бесконечной мощности;

    в) после АПВ обеспечивается достаточно быстрая ресинхронизация; если в результате несинхронного автоматического повторного включения возможно возникновение длительного асинхронного хода, должны применяться специальные мероприятия для его предотвращения или прекращения.

    При соблюдении этих условий НАПВ допускается применять также в режиме ремонта на параллельных линиях.

    При выполнении НАПВ необходимо принять меры по предотвращению излишнего срабатывания защиты. С этой целью рекомендуется, в частности, осуществлять включение выключателей при НАПВ в определенной последовательности, например выполнением АПВ с одной из сторон линии с контролем наличия напряжения на ней после успешного ТАПВ с противоположной стороны.

    3.3.13. АПВ с улавливанием синхронизма может применяться на линиях по 3.3.10 для включения линии при значительных (примерно до 4%) скольжениях и допустимом угле.

    Возможно также следующее выполнение АПВ. На конце линии, который должен включаться первым, производится ускоренное ТАПВ (с фиксацией срабатывания быстродействующей защиты, зона действия которой охватывает всю линию) без контроля напряжения на линии (УТАПВ БК) или ТАПВ с контролем отсутствия напряжения на линии (ТАПВ ОН), а на другом ее конце - ТАПВ с улавливанием синхронизма. Последнее производится при условии, что включение первого конца было успешным (это может быть определено, например, при помощи контроля наличия напряжения на линии).

    Для улавливания синхронизма могут применяться устройства, построенные по принципу синхронизатора с постоянным углом опережения.

    Устройства АПВ следует выполнять так, чтобы имелась возможность изменять очередность включения выключателей по концам линии.

    При выполнении устройства АПВ УС необходимо стремиться к обеспечению его действия при возможно большей разности частот. Максимальный допустимый угол включения при применении АПВ УС должен приниматься с учетом условий, указанных в 3.3.12. При применении устройства АПВ УС рекомендуется его использование для включения линии персоналом (полуавтоматическая синхронизация).

    3.3.14. На линиях, оборудованных трансформаторами напряжения, для контроля отсутствия напряжения (КОН) и контроля наличия напряжения (КНН) на линии при различных видах ТАПВ рекомендуется использовать органы, реагирующие на линейное (фазное) напряжение и на напряжения обратной и нулевой последовательностей. В некоторых случаях, например на линиях без шунтирующих реакторов, можно не использовать напряжение нулевой последовательности.

    3.3.15. Однофазное автоматическое повторное включение (ОАПВ) может применяться только в сетях с большим током замыкания на землю. ОАПВ без автоматического перевода линии на длительный неполнофазный режим при устойчивом повреждении фазы следует применять:

    а) на одиночных сильно нагруженных межсистемных или внутрисистемных линиях электропередачи;

    б) на сильно нагруженных межсистемных линиях 220 кВ и выше с двумя и более обходными связями при условии, что отключение одной из них может привести к нарушению динамической устойчивости энергосистемы;

    в) на межсистемных и внутрисистемных линиях разных классов напряжения, если трехфазное отключение линии высшего напряжения может привести к недопустимой перегрузке линий низшего напряжения с возможностью нарушения устойчивости энергосистемы;

    г) на линиях, связывающих с системой крупные блочные электростанции без значительной местной нагрузки;

    д) на линиях электропередачи, где осуществление ТАПВ сопряжено со значительным сбросом нагрузки вследствие понижения напряжения.

    Устройство ОАПВ должно выполняться так, чтобы при выводе его из работы или исчезновении питания автоматически осуществлялся перевод действия защит линии на отключение трех фаз помимо устройства.

    Выбор поврежденных фаз при КЗ на землю должен осуществляться при помощи избирательных органов, которые могут быть также использованы в качестве дополнительной быстродействующей защиты линии в цикле ОАПВ, при ТАПВ, БАПВ и одностороннем включении линии оперативным персоналом.

    Выдержка временем ОАПВ должна отстраиваться от времени погасания дуги и деионизации среды в месте однофазного КЗ в неполнофазном режиме с учетом возможности неодновременного срабатывания защиты по концам линии, а также каскадного действия избирательных органов.

    3.3.16. На линиях по 3.3.15 ОАПВ должно применяться в сочетании с различными видами ТАПВ. При этом должна быть предусмотрена возможность запрета ТАПВ во всех случаях ОАПВ или только при неуспешном ОАПВ. В зависимости от конкретных условий допускается осуществление ТАПВ после неуспешного ОАПВ. В этих случаях предусматривается действие ТАПВ сначала на одном конце линии с контролем отсутствия напряжения на линии и с увеличенной выдержкой времени.

    3.3.17. На одиночных линиях с двусторонним питанием, связывающих систему с электростанцией небольшой мощности, могут применяться ТАПВ с автоматической самосинхронизацией (АПВС) гидрогенераторов для гидроэлектростанций и ТАПВ в сочетании с делительными устройствами - для гидро- и теплоэлектростанций.

    3.3.18. На линиях с двусторонним питанием при наличии нескольких обходных связей следует применять:

    1) при наличии двух связей, а также при наличии трех связей, если вероятно одновременное длительное отключение двух из этих связей (например, двухцепной линии):

    несинхронное АПВ (в основном для линий 110-220 кВ и при соблюдении условий, указанных в 3.3.12, но для случая отключения всех связей);

    АПВ с проверкой синхронизма (при невозможности выполнения несинхронного АПВ по причинам, указанным в 3.3.12, но для случая отключения всех связей).

    Для ответственных линий при наличии двух связей, а также при наличии трех связей, две из которых - двухцепная линия, при невозможности применения НАПВ по причинам, указанным в 3.3.12, разрешается применять устройства ОАПВ, БАПВ или АПВ УС (см. 3.3.11, 3.3.13, 3.3.15). При этом устройства ОАПВ и БАПВ следует дополнять устройством АПВ с проверкой синхронизма;

    2) при наличии четырех и более связей, а также при наличии трех связей, если в последнем случае одновременное длительное отключение двух из этих связей маловероятно (например, если все линии одноцепные), - АПВ без проверки синхронизма.

    3.3.19. Устройства АПВ с проверкой синхронизма следует выполнять на одном конце линии с контролем отсутствия напряжения на линии и с контролем наличия синхронизма, на другом конце - только с контролем наличия синхронизма. Схемы устройства АПВ с проверкой синхронизма линии должны выполняться одинаковыми на обоих концах с учетом возможности изменения очередности включения выключателей линии при АПВ.

    Рекомендуется использовать устройство АПВ с проверкой синхронизма для проверки синхронизма соединяемых систем при включении линии персоналом.

    3.3.20. Допускается совместное применение нескольких видов трехфазного АПВ на линии, например БАПВ и ТАПВ с проверкой синхронизма. Допускается также использовать различные виды устройств АПВ на разных концах линии, например УТАПВ БК (см. 3.3.13) на одном конце линии и ТАПВ с контролем наличия напряжения и синхронизма на другом.

    3.3.21. Допускается сочетание ТАПВ с неселективными быстродействующими защитами для исправления неселективного действия последних. В сетях, состоящих из ряда последовательно включенных линий, при применении для них неселективных быстродействующих защит для исправления их действия рекомендуется применять поочередное АПВ; могут также применяться устройства АПВ с ускорением защиты до АПВ или с кратностью действия (не более трех), возрастающей по направлению к источнику питания.

    3.3.22. При применении трехфазного однократного АПВ линий, питающих трансформаторы, со стороны высшего напряжения которых устанавливаются короткозамыкатели и отделители, для отключения отделителя в бестоковую паузу время действия устройства АПВ должно быть отстроено от суммарного времени включения короткозамыкателя и отключения отделителя. При применении трехфазного АПВ двукратного действия (см. 3.3.6) время действия АПВ в первом цикле по указанному условию не должно увеличиваться, если отключение отделителя предусматривается в бестоковую паузу второго цикла АПВ.

    Для линий, на которые вместо выключателей устанавливаются отделители, отключение отделителей в случае неуспешного АПВ в первом цикле должно производиться в бестоковую паузу второго цикла АПВ.

    3.3.23. Если в результате действия АПВ возможно несинхронное включение синхронных компенсаторов или синхронных электродвигателей и если такое включение для них недопустимо, а также для исключения подпитки от этих машин места повреждения следует предусматривать автоматическое отключение этих синхронных машин при исчезновении питания или переводить их в асинхронный режим отключением АГП с последующим автоматическим включением или ресинхронизацией после восстановления напряжения в результате успешного АПВ.

    Для подстанций с синхронными компенсаторами или синхронными электродвигателями должны применяться меры, предотвращающие излишние срабатывания АЧР при действии АПВ.

    3.3.24. АПВ шин электростанций и подстанций при наличии специальной защиты шин и выключателей, допускающих АПВ, должно выполняться по одному из двух вариантов:

    1) автоматическим опробованием (постановка шин под напряжение выключателем от АПВ одного из питающих элементов);

    2) автоматической сборкой схемы; при этом первым от устройства АПВ включается один из питающих элементов (например, линия, трансформатор), при успешном включении этого элемента производится последующее, возможно более полное автоматическое восстановление схемы доаварийного режима путем включения других элементов. АПВ шин по этому варианту рекомендуется применять в первую очередь для подстанций без постоянного дежурства персонала.

    При выполнении АПВ шин должны применяться меры, исключающие несинхронное включение (если оно является недопустимым).

    Должна обеспечиваться достаточная чувствительность защиты шин на случай неуспешного АПВ.

    3.3.25. На двухтрансформаторных понижающих подстанциях при раздельной работе трансформаторов, как правило, должны предусматриваться устройства АПВ шин среднего и низшего напряжений в сочетании с устройствами АВР; при внутренних повреждениях трансформаторов должно действовать АВР, при прочих повреждениях - АПВ (см. 3.3.42).

    Допускается для двухтрансформаторной подстанции, в нормальном режиме которой предусматривается параллельная работа трансформаторов на шинах данного напряжения, устанавливать дополнительно к устройству АПВ устройство АВР, предназначенное для режима, когда один из трансформаторов выведен в резерв.

    3.3.26. Устройствами АПВ должны быть оборудованы все одиночные понижающие трансформаторы мощностью более 1 MB·А на подстанциях энергосистем, имеющие выключатель и максимальную токовую защиту с питающей стороны, когда отключение трансформатора приводит к обесточению электроустановок потребителей. Допускается в отдельных случаях действие АПВ и при отключении трансформатора защитой от внутренних повреждений.

    3.3.27. При неуспешном АПВ включаемого первым выключателем элемента, присоединенного двумя или более выключателями, АПВ остальных выключателей этого элемента, как правило, должно запрещаться.

    3.3.28. При наличии на подстанции или электростанции выключателей с электромагнитным приводом, если от устройства АПВ могут быть одновременно включены два или более выключателей, для обеспечения необходимого уровня напряжения аккумуляторной батареи при включении и для снижения сечения кабелей цепей питания электромагнитов включения следует, как правило, выполнять АПВ так, чтобы одновременное включение нескольких выключателей было исключено (например, применением на присоединениях АПВ с различными выдержками времени).

    Допускается в отдельных случаях (преимущественно при напряжении 110 кВ и большом числе присоединений, оборудованных АПВ) одновременное включение от АПВ двух выключателей.

    3.3.29. Действие устройств АПВ должно фиксироваться указательными реле, встроенными в реле указателями срабатывания, счетчиками числа срабатываний или другими устройствами аналогичного назначения.
    [ ПУЭ]

    Тематики

    Обобщающие термины

    Синонимы

    Сопутствующие термины

    EN

    DE

    FR

    Русско-английский словарь нормативно-технической терминологии > автоматическое повторное включение

  • 49 необходимо

    (= нужно) it is necessary, it is essential
    В более сложных системах необходимо... - In more complicated systems, it is necessary to...
    В подобной ситуации необходимо... - In such a situation, it is necessary to...
    В самом деле, необходимо... - It is in fact necessary to...
    В связи с этим необходимо отметить, что... - In this connection, it should be noted that...
    В то же время необходимо объяснить, что... - At the same time it must be explained that...
    Во многих инженерных приложениях необходимо рассматривать... - In many engineering applications, it is necessary to consider...
    Во многих приложениях это и есть все что необходимо. - In many applications this is all that is required.
    Возникает вопрос, действительно ли обратное (утверждение и т. п.) является необходимым. - A question arises as to whether the converse necessarily holds.
    Вот почему было необходимо (показать и т. п.)... - That is why it has been necessary to...
    Вряд ли здесь необходимо говорить о том, что... - It hardly needs to be stated that...
    Вряд ли необходимо подчеркивать тот факт, что... - It is hardly necessary to stress the fact that...
    Все, что необходимо здесь сказать, это... - All that need be said now is that...
    Все, что необходимо - это заметить, что... - All that is necessary is to observe that...
    Для лучшего понимания процесса необходимо... - In order to have a better understanding of the process, it is necessary to...
    Для последующего нам необходимо одно обобщение (чего-л). - In the sequel we require a generalization of...
    Для этого нам необходима концепция... - For this we require the concept of...
    Еще очень многое необходимо сделать в этой области. - Much remains to be done in this area.
    Заметьте, что необходимо (сделать что-л). - Notice that it is necessary to...
    Здесь необходимо сделать одно предостережение. - A word of warning is necessary here.
    Изредка необходимо... - Occasionally, it is necessary to...
    Имеется один нюанс, о котором здесь необходимо сказать. - There is a subtle point that should be mentioned here.
    На этом этапе необходимо отметить очень важный факт. - At this stage a very important fact must be pointed out.
    Наконец, необходимо допустить, что... - Finally, it must be granted that...
    Нам все еще необходимо решить как (действовать и т. п.)... - We have yet to decide how to...
    Нам необходима некоторая гарантия того, что... - At the very least some assurance is needed that...
    Нам необходимо еще одно условие, чтобы определить... - We need one more condition to determine...
    Нам необходимо еще раз... - Once again it is necessary to...
    Нам необходимо найти число... - We wish to find the number of...
    Нам необходимо одно определение. - We need a definition.
    Нам необходимо найти решение... - We need to determine the solution of...
    Нам необходимо рассмотреть более подробно практические последствия... - We need to consider in more detail the practical implications of...
    Нам необходимы более точные определения, потому что... - More exact definitions are necessary because...
    Не так редко, однако, необходимо... - Not infrequently, however, it is necessary to...
    Необходимо более внимательно изучить данные. - A closer look at the data is called for.
    Необходимо быть осторожным в применениях данной формулы. - One must be careful in using this formula.
    Необходимо внести коренные изменения в... - There has to be a radical change in...
    Необходимо выяснить, действительно ли... - It needs to be ascertained if...
    Необходимо добавить, что... - It should be added that...
    Необходимо заметить, что существуют два способа, которыми... - It should be noted that there are two ways in which...
    Необходимо кратко остановиться на... - Brief mention should be made of...
    Необходимо лишь... - It is merely necessary to...; It is only necessary to...
    Необходимо (-- Нужно) ожидать, что... - It is to be expected that...
    Необходимо особенно подчеркнуть, что... - It cannot be too highly stressed that...
    Необходимо особенно тщательно следить за тем, чтобы... - Special care must be used to
    Необходимо отметить, что... - It is to be noted that...
    Необходимо подчеркнуть, что... - It is necessary to stress that...; It should be stressed that...; It must be emphasized that...
    Необходимо понимать, что... - It should be realized that...
    Необходимо понять и выяснить роль процессов, задействованных в... - It is therefore important to understand and appreciate the processes involved in...
    Необходимо понять, что... - It is to be understood that...
    Необходимо проверить... - There is a need to examine...
    Необходимо проследить за... - It is necessary to keep track of...
    Необходимо проявлять большую осторожность в выборе... - Great care must be exercised in selecting...
    Необходимо рассмотреть эту проблему в некоторых деталях. - It is necessary to consider this problem in some detail.
    Необходимо сделать несколько замечаний. - There are a number of points to be made.
    Необходимо сделать следующее замечание. - It should be noted that; It should be pointed out that; A remark is in order
    Необходимо сказать с самого начала, что... - It should be said from the outset that...
    Необходимо следить за тем, чтобы не произошел перегрев... - Care must be exercised to avoid overheating...
    Необходимо учесть... - Account must be taken of...; Proper allowance must be made for...
    Необходимо четко отметить, что... - It must be carefully noted that...
    Необходимо, чтобы... - It is necessary that...; It is essential that...
    Однако модификации необходимы, когда... - Modifications, however, are necessary when...
    Однако необходимо всегда помнить, что... - One should always keep in mind, however, that...
    Однако необходимо заметить, что... - It must be observed, however, that...
    Однако необходимо знать, что понимается под... - It is necessary, however, to know what is meant by...
    Однако необходимо подчеркнуть, что... - But it needs to be stressed that...
    Однако необходимо понимать, что.. i. - However, it must be understood that...
    Однако сначала необходимо... -It is first necessary, however, to...
    Однако часто бывает необходимо... - However, it is frequently necessary to...
    Однако, во-первых, нам необходимо изучить общую теорию... - First, however, we need to study the general theory of...
    Относительно... необходимо сделать пояснение. - A word of explanation is necessary with regard to...
    Очевидно, необходимо, чтобы... - Clearly, it is necessary that...
    Очевидно, нет необходимости (= нам не надо) (нечто проделать). - Clearly, there is no need to...
    Перед тем как вернуться к рассмотрению этих проблем, нам необходимо... - Before returning to these matters, it is necessary to...
    Перед тем как установить только что упомянутые результаты, необходимо (рассмотреть и т. п.)... - Before establishing the results just mentioned it is necessary to...
    Помимо всего, нам необходимо показать, что... - Above all, we need to show that...
    Поэтому необходимо... - For this reason it is necessary to...
    Прежде всего необходимо (вычислить и т. п.)... - It is first of all necessary to...
    При этих обстоятельствах необходимо... - In these circumstances, it is necessary to...
    Производя экспериментальные работы, иногда необходимо... - In the course of experimental work, it is sometimes necessary to...
    С другой стороны, необходимо всегда удостовериться, что... - On the other hand one always has to make sure that...
    С этим обозначением необходимо обращаться аккуратно. - One must be careful with the notation.
    Следовательно в каждом (отдельном) из этих случаев необходимо... - In each of these cases, therefore, it is necessary to...
    Следовательно, необходимо помнить, что... - It should therefore be borne in mind that...
    Следовательно, необходимо развить общий метод для... - It is, therefore, necessary to devise a general method for...
    Таким образом, в принципе необходимо только... - Thus, in principle at least, it is only necessary to...
    Сначала нам необходимо определить, что понимается под... - We need first to define what is meant by...
    Совершенно необходимо, чтобы... - It is important that...
    Тем не менее, необходимо допустить, что... - Nevertheless, it must be admitted that...
    Тем не менее, необходимо уделить внимание... - Nevertheless, attention needs to be paid to...
    То, что нам необходимо, это понятие о... - What is needed is a notion of...
    Удобно, хотя и не необходимо (= не очень нужно),... -It is convenient (though not necessary) to...
    Часто бывает необходимо... - It is frequently necessary to...
    Часто необходимо произвести... - It is frequently necessary to generate...
    Что (действительно) необходимо - это ясное понимание... - What is needed is a clear understanding of...
    Чтобы доказать (3), необходимо только... - То establish (3) we need only to...
    Чтобы достичь цели, необходимо... - То meet this objective, it is necessary to...
    Чтобы не допустить этого, необходимо... - То prevent this it is necessary to...
    Чтобы справиться с подобной ситуацией, нам необходимо... - In order to handle such a situation, we need to...
    Это вполне справедливо, однако необходимо понять, что... - This is quite true, but it should be realized that...
    Это необходимо для существенного понимания... - This is required for a fundamental understanding of...
    Это условие необходимо для... - The condition is required to satisfy...
    Этот результат было необходимо (= нужно) ожидать, исходя из факта... - This result was to be expected from the fact that...

    Русско-английский словарь научного общения > необходимо

  • 50 соображение

    (= резон, причина) concept, consideration, reason, argument
    В следующей части параграфа приводятся некоторые дополнительные соображения. - The following subsection outlines some additional considerations.
    Вследствие этого и других соображений, мы ограничимся... - For this and other reasons, we limit ourselves to...
    Далее, из элементарных соображений мы знаем, что... - Furthermore, we know from elementary considerations that...
    Из геометрических соображений легко видно, что... - It is easily seen geometrically that...
    Из соображений на будущее было рекомендовано, чтобы... - For planning purposes it was recommended that...
    Из соображений простоты мы будем рассматривать случай, в котором... - For the sake of simplicity we will consider a case in which...
    Из физических соображений мы могли бы ожидать, что... - On physical grounds we might expect that...
    Из физических соображений (= с физической точки зрения) это возникает вследствие... - Physically this arises because of...
    Из физических соображений этого можно было бы ожидать, потому что... - Physically, this could be expected because...
    Исходя из вышеприведенных соображений, ясно, что... - From the above reasoning it is clear that...
    На основании ряда физических соображений он установил, что... - Не established, on several physical grounds, that...
    Общие соображения показывают... - It is a matter of common observation that...
    Однако из практических соображений принято... - However, for practical reasons it is conventional to...
    По некоторым соображениям удобно... - For some purposes it is convenient to...
    Такой способ принят из соображений простоты. - This policy is adopted in the interest of simplicity.
    Теоретические соображения показывают, что... - Theoretical considerations show that...
    Теперь мы получим ту же самую формулу из других соображений. - We now obtain the same formula from another point of view.
    Точно те же самые соображения могут быть приложены здесь, но с одним существенным отличием:... - Exactly the same considerations apply here, with one important difference:...
    Это немедленно вытекает из физических соображений. - This follows at once from physical considerations.
    Это определение основано на следующих соображениях. - This definition is based on the following considerations.

    Русско-английский словарь научного общения > соображение

  • 51 следующий

    Следующий за-- In these cases, the transient following a step change in wall temperature is known to consist of three relatively distinct regimes.

    Русско-английский научно-технический словарь переводчика > следующий

  • 52 развитие Я

    В соответствии с современными теоретическими представлениями психический аппарат при рождении индивида находится в недифференцированном состоянии, а возможности развития Я и Оно детерминируются наследственными и конституциональными факторами. В значительной степени развитие зависит также от взаимодействия ребенка и окружения. Определенные события отражают развитие Я и проявляются не только во внешнем поведении, но и в психических состояниях.
    На ребенка устремляется поток внешних стимулов, которые, если не задерживаются стимульным барьером, могут быть для него невыносимыми. В физиологическом отношении младенец менее чувствителен к боли и другим стимулам, чем взрослый индивид. Примитивное состояние Я также помогает ребенку оградить себя от осознания неприятных стимулов, возникающих как изнутри, так и снаружи. Способность отграничивать приятное от неприятного существует чуть ли не с момента рождения, и этот опыт откладывается в следах памяти. Постепенно на основе соединения этих следов строится образ тела. Источником для этого построения служат отчасти физиологические процессы, отчасти — поддержка со стороны первого эмоционально заряженного объекта, матери. Психические репрезентации других людей поначалу фрагментарны: грудь, лицо, руки и тепло тела репрезентируют мать. Репрезентации Самости и объекта плохо дифференцированы; даже в зрелом возрасте они остаются несколько расплывчатыми и взаимозаменяемыми.
    Удовлетворение матерью физиологических потребностей младенца приводит к появлению соответствующих следов памяти, которые реактивируются в представлении об исполнении желаний, когда мать, как это неизбежно бывает, не способна немедленно удовлетворить потребности. Этот прогресс от восприятия потребности до психического состояния удовлетворения, даже если потребность на самом деле не была удовлетворена (например, при галлюцинаторном исполнении желаний), имеет антиципирующее качество условного рефлекса, но также является первой формой фантазии и мышления. Мать вступает в контакт со своим ребенком, распознавая значение его двигательной активности и эмоций; такое ее понимание и реакции на эти довербальные сигналы создают примитивную аффективно-моторную форму коммуникации между ними. Степень удовлетворения в этом взаимообмене способствует развитию способности к эмпатии в дальнейшей жизни, а также других черт характера. Ребенок улыбается в ответ на улыбку матери, и такая имитация является предшественником последующих процессов идентификации, основой дальнейшего развития Я.
    Ребенок ассоциирует повторяющиеся переживания удовольствия и боли с человеческим существом, прежде всего с матерью. Он начинает воспринимать мать как отдельного индивида в конце первого года жизни. Вначале ее отсутствие вызывает ощущение дискомфорта, сопровождающееся страхом сепарации, а присутствие посторонних людей пугает ребенка (страх незнакомца). Эти феномены знаменуют важные стадии развития Я. Начинают появляться объекты; воспоминания отделяются от текущего восприятия; развиваются предшественники защиты от болезненной стимуляции. В своем примитивном функционировании Я следует модели телесных функций: психика интроецирует (то есть "вбирает в себя", как при кормлении) все, что приятно и удовлетворяет потребности, и стремится избежать или оградить себя от осознания того, что является вредным и неприятным, или отвергает, удаляет или экстернализирует впечатления, которые неизбежно воспринимаются.
    Со второй половины первого года жизни и до трехлетнего возраста ребенок проходит стадию, описанную Малер как сепарация-индивидуация. Вырабатывается психическое понимание Самости, существующей отдельно от объекта. На протяжении второго года жизни у ребенка развивается способность оставаться в одиночестве. С этих пор он не нуждается в постоянном присутствии матери, поскольку она, так сказать, становится частью его личности: константность объекта получает свое представительство в психике ребенка. Константность объекта и взаимные удовлетворительные объектные отношения оказывают значительное влияние на развитие Я, и наоборот. Однако пресыщение по-прежнему приводит к слиянию репрезентантов Самости и объекта и к возврату к психическому состоянию, сходному с ранним единением с матерью. С другой стороны, депривация усиливает ощущение сепарации. Если мать не обеспечивает ребенка оптимальным уровнем удовлетворения влечений и фрустрации потребностей и не подкрепляет развитие его психики, то индивидуация и развитие чувства Самости и идентичности нарушаются. То есть сама идентичность индивида отчасти детерминируется уровнем удовлетворения влечений другими людьми, особенно матерью и отцом. Конфликты, связанные с подобного рода удовлетворением, могут препятствовать или облегчать идентификацию с родителем того же пола. Все люди обладают смешанными мужскими и женскими качествами, проистекающими из идентификации с обоими родителями.
    В ранней жизни ребенок не может знать, насколько он беспомощен; его потребности удовлетворяются словно по волшебству и еще не отделены от него самого; все происходит так, будто ребенок всесилен. Позже, когда появляется осознание собственной обособленности и беспомощности, ребенок наделяет всесилием своих родителей и идеализирует их. Когда же ребенок понимает степень своей зависимости от других, он начинает стремиться к тому, чтобы его любили, и ради этого готов отказаться от удовлетворения некоторых своих желаний — предшественник способности давать и принимать любовь. Это знаменует начало перехода от пассивности к активности, чему способствует развитие моторных навыков, благодаря которым ребенок получает возможность овладевать окружающим миром.
    Развитие речи в середине второго года и ее становление на третьем—пятом годах жизни сопровождается большим прогрессом процессов мышления. Первичный процесс мышления замещается вторичным; последний, однако, еще долгое время остается довольно хрупким. Во многих ситуациях свое влияние по-прежнему оказывает магическое и всемогущее мышление. Благодаря психическим репрезентантам интроецированных объектов достигается определенный контроль над побуждениями. Однако ребенок по-прежнему продолжает действовать скорее из страха перед наказанием и желания заслужить любовь, чем под влиянием чувства вины или исходя из собственного мнения. То и другое возникают лишь постепенно, достигая максимума своего развития тогда, когда происходит отказ от эдиповых желаний и у ребенка развивается идентификация с отцом (у мальчика Сверх-Я формируется в результате разрешения эдипова комплекса).
    После эдипова периода и формирования Сверх-Я возникает стадия ослабления сексуальных проявлений, длящаяся примерно с шестого года жизни до пубертата (латентный период). Реорганизация защитной структуры Я, достигаемая отчасти благодаря развитию Сверх-Я, ставит инстинктивные влечения под более надежный контроль; они становятся менее деструктивными для Я, выполняющего задачу стабилизации аффектов. Психика все более ориентируется вовне; учителя и наставники становятся объектами для эдиповых смещений и идентификаций. Мышление становится менее эгоцентричным, менее персонализированным и более конкретным; рациональное мышление и фантазии все более отделяются друг от друга. Благодаря воздействию культуры и воспитания создается возможность для сублимации и интеллектуального роста, поведение становится более устойчивым, а привычные способы реагирования превращаются в черты характера.
    В процессе развития функций Я дифференциация Самости и мира объектов обеспечивается константностью объектов и, наконец, в подростковом возрасте — способностью к объектной любви. Объектная любовь требует отказа от инфантильных объектов и чрезмерной любви к себе (нарциссизма). Если окружение является достаточно благоприятным, то индивид овладевает реальностью, учится объективно мыслить, становится все более автономным и способным эффективно регулировать влечения. Совершенствование специфических функций Я продолжается и в зрелом возрасте, когда способности индивида любить, работать и адаптироваться к окружающему внешнему миру достигают максимума.

    Словарь психоаналитических терминов и понятий > развитие Я

  • 53 дифференциальный манометр

    1. differential-pressure gage
    2. differential pressure indicator
    3. differential pressure gage
    4. differential manometer
    5. differential gauge pressure

     

    дифференциальный манометр
    дифманометр

    Манометр для измерения разности двух давлений.
    Примечание
    Дифманометр с верхним пределом измерения не более 40000 Па (4000 кгс/м2) называется микроманометром.
    [ГОСТ 8.271-77]

    дифференциальный манометр
    -

    [Лугинский Я. Н. и др. Англо-русский словарь по электротехнике и электроэнергетике. 2-е издание - М.: РУССО, 1995 - 616 с.]

    EN

    differential-pressure gage
    (engineering) Apparatus to measure pressure differences between two points in a system; it can be a pressured liquid column balanced by a pressured liquid reservoir, a formed metallic pressure element with opposing force, or an electrical-electronic gage (such as strain, thermal-conductivity, or ionization).

    [ http://www.answers.com/topic/differential-pressure-gage#ixzz1gzzibWaQ]

    Малые значения дифференциального давления могут измеряться приборами на основе мембран и сильфонов.
    Манометры дифференциальные сильфонные показывающие типа ДСП-160 нашли широкое применение на территории СНГ. Принцип их действия основан на деформации двух автономных сильфонных блоков, находящихся под воздействием «плюсового» и «минусового» давления. Эти деформации преобразовываются в перемещение указательной стрелки прибора. Перемещение стрелки осуществляется до установления равновесия между «плюсовым» сильфоном, с одной стороны, и «минусовым» и цилиндрической пружиной - с другой.

    4147
    Рис. 2.23

    Дифференциальный сильфонный манометр:

    а – схема привода стрелки;
    б – блок первичного преобразования;
    1 – «плюсовый» сильфон;
    2 – «минусовый» сильфон;
    3 – шток;
    4 – рычаг;
    5 – торсионный вывод;
    6 – цилиндрическая пружина;
    7 – компенсатор;
    8 – плоскостный клапан;
    9 – основание;
    10 и 11 – крышки;
    12 – подводящий штуцер;
    13 – манжета;
    14 – дросселирующий канал;
    15 – клапан;
    16 – рычажная система;
    17 – трибко-секторный механизм;
    18 – стрелка;
    19 – регулировочный винт;
    20 – натяжная пружина;
    21 – пробка;
    22 – уплотнительное резиновое кольцо

    «Плюсовый» 1 и «минусовый» 2 сильфоны (рис. Рис. 2.23, б) соединены между собой штоком 3, функционально связанным с рычагом 4, который, в свою очередь, неподвижно закреплен на оси торсионного вывода 5. К концу штока на выходе «минусового» сильфона присоединена цилиндрическая пружина 6, закрепленная нижним основанием на компенсаторе 7 и работающая на растяжение. Каждому номинальному перепаду давления соответствует определенная пружина.

    «Плюсовый» сильфон состоит из двух частей. Его первая часть (компенсатор 7, состоящий из трех дополнительных гофр и плоскостных клапанов 8) предназначена для уменьшения температурной погрешности прибора из-за изменения объема жидкости-наполнителя, обусловленного варьированием температуры окружающего воздуха. При изменении температуры окружающей среды и соответственно рабочей жидкости ее увеличивающийся объем перетекает через плоскостный клапан во внутреннюю полость сильфонов. Вторая часть «плюсового» сильфона рабочая и идентична по конструкции «минусовому» сильфону.

    «Плюсовый» и «минусовый» сильфоны присоединены к основанию 9, на котором установлены крышки 10 и 11, образующие вместе с сильфонами «плюсовую» и «минусовую» камеры с соответствующими подводящими штуцерами 12 давления р + и р

    Внутренние объемы сильфонов, так же как и внутренняя полость основания 9, заполняются: жидкостью ПМС-5 для обычного и коррозионно-стойкого исполнений; составом ПЭФ-703110 – в кислородном варианте; дистиллированной водой – в варианте для пищевой промышленности и жидкостью ПМС-20 – для газового исполнения.

    В конструкциях дифманометров, предназначенных для измерения давления газа, на шток одета манжета 13, движение среды организовано через дросселирующий канал 14. Регулированием размера проходного канала с помощью клапана 15 обеспечивается степень демпфирования измеряемого параметра.

    Дифманометр работает следующим образом. Среды «плюсового» и «минусового» давления поступают через подводящие штуцеры в «плюсовую» и «минусовую» камеры соответственно. «Плюсовое» давление в большей степени воздействует на сильфон 1, сжимая его. Это приводит к перетоку находящейся внутри жидкости в «минусовый» сильфон, который растягивается и разжимает цилиндрическую пружину. Такая динамика происходит до уравновешивания сил взаимодействия между «плюсовым» сильфоном и парой – «минусовый» сильфон – цилиндрическая пружина. Мерой деформации сильфонов и их упругого взаимодействия служит перемещение штока, которое передается на рычаг и соответственно на ось торсионного вывода. На этой оси (рис. 2.23,а) закреплена рычажная система 16, обеспечивающая передачу вращения оси торсионного вывода к трибко-секторному механизму 17 и стрелке 18. Таким образом, воздействие на один из сильфонов приводит к угловому перемещению оси торсионного вывода и затем к повороту указательной стрелки прибора.
    Регулировочным винтом 19 с помощью натяжной пружины 20 производится корректировка нулевой точки прибора.

    Пробки 21 предназначены для продувки импульсных линий, промывки измерительных полостей сильфонного блока, слива рабочей среды, заполнения измерительных полостей разделительной жидкостью при вводе прибора в работу.
    При односторонней перегрузке одной из камер происходит сжатие сильфона и перемещение штока. Клапан в виде уплотнительного резинового кольца 22 садится в гнездо основания, перекрывает переток жидкости из внутренней полости сильфона, и таким образом предотвращается его необратимая деформация. При непродолжительных перегрузках разность «плюсового» и «минусового» давления на сильфонный блок может достигать 25 МПа, а в отдельных типах приборов не превышать 32 МПа.
    прибор может выпускаться как в общетеническом, так и в аммиачном (А), кислородном (К), коррозионно-стойком-пищевом (Пп) исполнениях.
     

    4148
    Рис. 2.24

    Показывающий дифференциальный манометр на основе мембранной коробки:

    1 – мембранная коробка;
    2 – держатель «плюсового» давления;
    3 – держатель «минусового» давления;
    4 – корпус;
    5 – передаточный механизм;
    6 – стрелка;
    7 – цифербла

    Достаточно широкое распространение получили приборы на основе мембран и мембранных коробок. В одном из вариантов (рис. 2.24) мембранная коробка 1, внутрь которой через подводящий штуцер держателя 2 поступает «плюсовое» давление, является чувствительным элементом дифманометра. Под воздействием этого давления смещается подвижный центр мембранной коробки.
    «Минусовое» давление через подводящий штуцер держателя 3 подается внутрь герметичного корпуса 4 прибора и воздействует на мембранную коробку снаружи, создавая противодействие перемещению ее подвижного центра. Таким образом «плюсовое» и «минусовое» давления уравновешивают друг друга, а перемещение подвижного центра мембранной коробки свидетельствует о величине разностного – дифференциального давления. Этот сдвиг через передаточный механизм передается на указательную стрелку 6, которая на шкале циферблата 7 показывает измеряемое дифференциальное давление.
    Диапазон измеряемого давления определяется свойствами мембран и ограничивается, как правило, в пределах от 0 до 0,4…40 кПа. При этом класс точности может составлять 1,5; 1,0; 0,6; 0,4, а в некоторых приборах 0,25.

    Обязательная конструктивная герметичность корпуса определяет высокую защищенность от внешних воздействий и определяется в основном уровнем IP66.

    В качестве материала для чувствительных элементов приборов используется бериллиевая и другие бронзы, а также нержавеющая сталь, для штуцеров, передаточных механизмов – медные сплавы, коррозионно-стойкие сплавы, включая нержавеющую сталь.
    Приборы могут изготавливаться в корпусах малых (63 мм), средних (100 мм), и больших (160 мм) диаметров.

    Мембранные показывающие дифференциальные манометры, как и приборы с мембранными коробками, используются для измерения малых значений дифференциального давления. Отличительная особенность – устойчивая работа при высоком статическом давлении.
     

    4149
    Рис. 2.25

    Мембранные показывающие дифференциальные манометры с вертикальной мембраной:

    1 – «плюсовая» камера;
    2 – «минусовая» камера;
    3 – чувствительная гофрированная мембрана;
    4 – передающий шток;
    5 – передаточный механизм;
    6 – предохранительный клапан

    Дифманометр с вертикальной мембраной (Рис. 2.25) состоит из «плюсовой» 1 и «минусовой» 2 рабочих камер, разделенных чувствительной гофрированной мембраной 3. Под воздействием давления мембрана деформируется, в результате чего перемещается ее центр вместе с закрепленным на нем передающим штоком 4. Линейное смещение штока в передаточном механизме 5 преобразуется в осевое вращение трибки, и соответственно указательной стрелки, отсчитывающей на шкале прибора измеряемое давление.

    Для сохранения работоспособности чувствительной гофрированной мембраны при превышении максимального допустимого статического давления предусмотрен открывающийся предохранительный клапан 6. Причем конструкции этих клапанов могут быть различны. Соответственно такие приборы не могут использоваться, когда не допускается контакт сред из «плюсовой» и «минусовой» камер.

    4150
    Рис. 2.26

    Мембранный показывающий дифференциальный манометр с горизонтальной мембраной:

    1 – «плюсовая» камера;
    2 – «минусовая» камера;
    3 – входной блок;
    4 - чувствительная гофрированная мембрана;
    5 – толкатель;
    6 – сектор;
    7 – трибка;
    8 – стрелка;
    9 – циферблат;
    10 – разделительный сильфон

    Дифманометр с горизонтальной чувствительной мембраной показан на рис. 2.26. Входной блок 3 состоит из двух частей, между которыми устанавливается гофрированная мембрана 4. В ее центре закреплен толкатель 5, передающий перемещение от мембраны, через сектор 6, трибку 7 к стрелке 8. В этом передаточном звене линейное перемещение толкателя преобразуется в осевое вращение стрелки 8, отслеживающей на шкале циферблата 9 измеряемое давление. В этой конструкции применена сильфонная система вывода толкателя из зоны рабочего давления. Разделительный сильфон 10 своим основанием герметично закрепляется на центре чувствительной мембраны, а верхней частью также герметично прикрепляется к входному блоку. Такая конструкция исключает контакт измеряемой и окружающей сред.
    Конструкция входного блока предусматривает возможность промывки или продувки «плюсовой» и «минусовой» камер и обеспечивает применение таких приборов для работы даже в условиях загрязненных рабочих сред.

    4151
    Рис. 2.27

    Мембранный двухкамерный показывающий дифманометр:

    1 – «плюсовая» камера;
    2 – «минусовая» камера;
    3 – передающий шток;
    4 – сектор;
    5 – трибка;
    6 – коромысло

    Двухкамерная система измерения дифференциального давления применена в конструкции прибора, показанного на рис. 2.27. Измеряемые потоки среды направляются в «плюсовую» 1 и «минусовую» 2 рабочие камеры, основными функциональными элементами которых являются автономные чувствительные мембраны. Преобладание одного давления над другим приводит к линейному перемещению передающего штока 3, которое через коромысло 6 передается соответственно на сектор 4, трибку 5 и систему стрелочной индикации измеряемого параметра.
    Дифманометры с двухкамерной системой измерения используются для измерения малых дифференциальных давлений при высоких статических нагрузках, вязких сред и сред с твердыми вкраплениями.

    4152
    Рис. 2.28.

    Дифманометр с магнитным преобразователем:

    1 – поворотный магнит;
    2 – стрелка;
    3 – корпус;
    4 – магнитный поршень;
    5 – фторопластовый сальник;
    6 – рабочий канал;
    7 – пробка;
    8 – диапазонная пружина;
    9 – блок электроконтактов

    Принципиально иной показывающий дифманометр изображен на рис. 2.28. Поворотный магнит 1, на торце которого установлена стрелка 2, размещен в корпусе 3, выполненном из немагнитного металла. Магнитный поршень, уплотненный фторопластовым сальником 5, может передвигаться в рабочем канале 6. Магнитный поршень 4 со стороны «минусового» давления подпирает пробка 7, в свою очередь поджимаемая диапазонной пружиной 8.
    Среда «плюсового» давления через соответствующий подводящий штуцер воздействует на магнитный поршень и сдвигает его вместе с пробкой 7 по каналу 6 до уравновешивания такого смещения противодействующими силами – «минусовым» давлением и диапазонной пружиной. Движение магнитного поршня приводит к осевому вращению поворотного магнита и соответственно указательной стрелки. Такой сдвиг пропорционален перемещению стрелки. Полное согласование достигается подбором упругих характеристик диапазонной пружины.
    В дифманометре с магнитным преобразователем предусмотрен блок 9, замыкающий и размыкающий соответствующие контакты при прохождении вблизи его магнитного поршня.

    Приборы с магнитным преобразователем устойчивы к воздействию статического давления (до 10 МПа). Они обеспечивают относительно невысокую погрешность (примерно 2 %) в диапазоне функционирования до 0,4 Мпа и используются для измерения давления воздуха, газов, различных жидкостей.

    [ http://jumas.ru/index.php?area=1&p=static&page=razdel_2_3_2]

     

    4145     4146
        Показывающий дифференциальный манометр на основе трубчатой пружины

    1 и 2 – держатели;
    3 и 4 – трубчатые пружины;
    5 и 8 – трибки;
    6 – стрелка «плюсового» давления;
    7 и 9 – шкалы избыточного давления;
    10 – стрелка «минусового» давления

    В приборах такого типа на автономных держателях 1 и 2, соединенных вместе, установлены трубчатые пружины. Каждый держатель вместе с трубчатым чувствительным элементом образовывают автономные измерительные каналы. Среда «плюсового» давления поступает через входной штуцер держателя 2 в трубку 4, деформирует ее овал, в результате чего перемещается наконечник трубки и это перемещение через соответствующий зубчатый сектор передается на трибку 5. Эта трибка соответственно приводит к отклонению указательной стрелки 6, которая показывает на шкале 7 значение «плюсового» избыточного давления.

    «Минусовое» давление посредством держателя 1, трубчатой пружины 3, трибки 8 приводит к перемещению циферблата 9, объединенного со стрелкой 10, которая на шкале 7 отслеживает значение измеряемого параметра.

    Дифференциальные манометры (далее – дифманометры), как отмечалось в п.1.3, являются названием отнесенным в нашей стране к показывающим приборам. (Устройства, обеспечивающие электрический выходной сигнал, пропорциональный измеряемому дифференциальному давлению имеют название измерительных преобразователей разности давлений). Хотя отдельные производители, а также некоторые специалисты-эксплуатанционщики измерительные преобразователи разности давлений также называют дифманометрами.

    Дифманометры нашли основное применение в технологических процессах для измерения, контроля, регистрации и регулирования следующих параметров:

    · расхода различных жидких, газообразных и парообразных сред по перепаду давления на разного рода сужающих устройствах (стандартных диафрагмах, соплах, включая сопла Вентури) и дополнительно вводимых в поток гидро- и аэродинамических сопротивлениях, например на преобразователях типа Annubar или на нестандартных гидро- и аэродинамических препятствиях;

    · перепада - разности давления, вакуумметрических, избыточных, в двух точках технологического цикла, включая потери на фильтрах систем вентиляции и кондиционирования воздуха;

    · уровня жидких сред по величине гидростатического столба.

    Согласно ГОСТ 18140–84/23/, предельные номинальные перепады давления дифманометров-расходомеров, верхние пределы или сумма абсолютных значений верхних пределов измерений дифманометров-перепадомеров должны приниматься из следующего ряда:

    10; 16; 25; 40; 63; 100; 160; 250; 400; 630 Па;

    1; 1,6; 2,5; 4; 6,3; 10; 16; 25; 40; 63; 100; 160; 250; 400; 630 кПа;

    1; 1,6; 2,5; 4; 6,3 МПа.

    У дифманометров-расходомеров верхние пределы измерений выбираются из ряда, определяемого выражением:

    А = а × 10n, (2.7)

    где а – одно из чисел следующего ряда: 1; 1,25; 1,6; 2,0; 2,5; 3,2; 4; 5; 6,3; 8; n – целое (положительное или отрицательное) число или нуль.

    Верхние пределы измерений или сумма абсолютных значений верхних пределов измерений дифманометров-уровнемеров следует выбирать и ряда:

    0,25; 0,4; 0,63; 1,0; 1,6; 2,5; 4,0; 6,3; 10; 16; 25; 40; 63; 100 и 160 метров.

    Одной из важных характеристик дифманометров является предельно допустимое рабочее избыточное давление, т. е. избыточное давление, которое могут выдержать рабочие каналы без необратимой деформации чувствительных элементов. Такое значение параметра принимается из следующего ряда:

    25; 40; 63; 100; 160; 250; 400 и 630 кПа;

    1; 1,6; 2,5; 4; 6,3; 10; 16; 25; 32; 40 и 63 МПа.

    Нижние пределы измерений дифманометров-расходо-меров из-за неустойчивости работы стандартных сужающих устройств при малых Числах Рейнольдса измеряемого потока не должны превышать 30 % шкалы прибора. У преобразователей Annubar этот предел не превышает 10 % при сохранении объявленного класса точности (1,0).

    Классы точности дифманометров принимаются из ряда: 0,25; 0,5; 1,0; 1,5.

    Дифманометры должны иметь линейную шкалу при измерении уровня или перепада, линейную или квадратичную – при измерении расхода.

    Дифманометры могут иметь условные обозначения, предложенные в методике п.1.4. Указываются модель прибора, причем на первом месте в обозначении фиксируется измеряемый параметр – тип измерителя (дифманометр), затем – принцип измерения и функция, предельный номинальный перепад, избыточное рабочее давление, класс точности. Например, дифманометр сильфонный показывающий в корпусе диаметром 160 мм, на предельный номинальный перепад давления 630 кПа, с рабочим избыточным давлением 32 МПа, класса точности 1,5 обозначается как

    ДСП 160 (0…630 кПа)-32 МПа-1,5.

    После этого допускается указывать дополнительные обозначения, например исполнение по «IP», измеряемой среде, присоединительным линиям и т. д.

    Специфика измерения дифференциального давления обусловливает наличие в дифманометрах устройств продувки импульсных линий без необходимости демонтажа прибора или его узлов.

    При испытаниях, а также в нормальных условиях отечественные дифманометры, согласно требований производителя, должны обеспечивать заданные метрологические характеристики после выдержки не менее 6-ти часов при температуре окружающей среды:

    20 ± 2 или 23 ± 2 оС – для приборов классов точности 0,5; 0,6 и 1;

    20 ± 5 или 23 ± 5 оС – для приборов класса точности 1,5.

    Современные конструкции из-за снижения металлоемкости и совершенствования преобразователей позволяют сокращать время температурной адаптации у некоторых моделей до нескольких десятков минут.

    Конкретная температура приведена в ТУ на измеритель и должна регистрироваться в техническом описании или паспорте на прибор.

    Дифманометры, не защищенные от одностороннего воздействия, должны выдерживать перегрузку со стороны среды «плюсового» давления, превышающую предельные номинальные перепады на 10…50 %. «Плюсовым», в противовес «минусовому», называют большее из двух давлений среды, поступающей на вход дифференциального манометра.

    Конструкции, у которых предусмотрены односторонние перегрузки, должны выдерживать десятикратные, стократные или двухсот пятидесятикратные односторонние перегрузки/23/.

    Показывающие дифференциальные манометры на основе трубчатой пружины находят широкое применение для визуализации расхода различных сред, гидродинамических потерь в системах теплового отопления.

    Дифференциальное давление, т. е. разность давлений р отсчитывается стрелкой на шкале циферблата.

    Дифманометры такого типа, исходя из особенностей трубчатых пружин, обеспечивают работоспособность в промышленных условиях в диапазоне от 0 до 100 МПа.

    [ http://jumas.ru/index.php?area=1&p=static&page=razdel2_2_4]

    Тематики

    Синонимы

    EN

    DE

    FR

    Русско-английский словарь нормативно-технической терминологии > дифференциальный манометр

  • 54 модульный центр обработки данных (ЦОД)

    1. modular data center

     

    модульный центр обработки данных (ЦОД)
    -
    [Интент]

    Параллельные тексты EN-RU

    [ http://loosebolts.wordpress.com/2008/12/02/our-vision-for-generation-4-modular-data-centers-one-way-of-getting-it-just-right/]

    [ http://dcnt.ru/?p=9299#more-9299]

    Data Centers are a hot topic these days. No matter where you look, this once obscure aspect of infrastructure is getting a lot of attention. For years, there have been cost pressures on IT operations and this, when the need for modern capacity is greater than ever, has thrust data centers into the spotlight. Server and rack density continues to rise, placing DC professionals and businesses in tighter and tougher situations while they struggle to manage their IT environments. And now hyper-scale cloud infrastructure is taking traditional technologies to limits never explored before and focusing the imagination of the IT industry on new possibilities.

    В настоящее время центры обработки данных являются широко обсуждаемой темой. Куда ни посмотришь, этот некогда малоизвестный аспект инфраструктуры привлекает все больше внимания. Годами ИТ-отделы испытывали нехватку средств и это выдвинуло ЦОДы в центр внимания, в то время, когда необходимость в современных ЦОДах стала как никогда высокой. Плотность серверов и стоек продолжают расти, все больше усложняя ситуацию для специалистов в области охлаждения и организаций в их попытках управлять своими ИТ-средами. И теперь гипермасштабируемая облачная инфраструктура подвергает традиционные технологии невиданным ранее нагрузкам, и заставляет ИТ-индустрию искать новые возможности.

    At Microsoft, we have focused a lot of thought and research around how to best operate and maintain our global infrastructure and we want to share those learnings. While obviously there are some aspects that we keep to ourselves, we have shared how we operate facilities daily, our technologies and methodologies, and, most importantly, how we monitor and manage our facilities. Whether it’s speaking at industry events, inviting customers to our “Microsoft data center conferences” held in our data centers, or through other media like blogging and white papers, we believe sharing best practices is paramount and will drive the industry forward. So in that vein, we have some interesting news to share.

    В компании MicroSoft уделяют большое внимание изучению наилучших методов эксплуатации и технического обслуживания своей глобальной инфраструктуры и делятся результатами своих исследований. И хотя мы, конечно, не раскрываем некоторые аспекты своих исследований, мы делимся повседневным опытом эксплуатации дата-центров, своими технологиями и методологиями и, что важнее всего, методами контроля и управления своими объектами. Будь то доклады на отраслевых событиях, приглашение клиентов на наши конференции, которые посвящены центрам обработки данных MicroSoft, и проводятся в этих самых дата-центрах, или использование других средств, например, блоги и спецификации, мы уверены, что обмен передовым опытом имеет первостепенное значение и будет продвигать отрасль вперед.

    Today we are sharing our Generation 4 Modular Data Center plan. This is our vision and will be the foundation of our cloud data center infrastructure in the next five years. We believe it is one of the most revolutionary changes to happen to data centers in the last 30 years. Joining me, in writing this blog are Daniel Costello, my director of Data Center Research and Engineering and Christian Belady, principal power and cooling architect. I feel their voices will add significant value to driving understanding around the many benefits included in this new design paradigm.

    Сейчас мы хотим поделиться своим планом модульного дата-центра четвертого поколения. Это наше видение и оно будет основанием для инфраструктуры наших облачных дата-центров в ближайшие пять лет. Мы считаем, что это одно из самых революционных изменений в дата-центрах за последние 30 лет. Вместе со мной в написании этого блога участвовали Дэниел Костелло, директор по исследованиям и инжинирингу дата-центров, и Кристиан Белади, главный архитектор систем энергоснабжения и охлаждения. Мне кажется, что их авторитет придаст больше веса большому количеству преимуществ, включенных в эту новую парадигму проектирования.

    Our “Gen 4” modular data centers will take the flexibility of containerized servers—like those in our Chicago data center—and apply it across the entire facility. So what do we mean by modular? Think of it like “building blocks”, where the data center will be composed of modular units of prefabricated mechanical, electrical, security components, etc., in addition to containerized servers.

    Was there a key driver for the Generation 4 Data Center?

    Наши модульные дата-центры “Gen 4” будут гибкими с контейнерами серверов – как серверы в нашем чикагском дата-центре. И гибкость будет применяться ко всему ЦОД. Итак, что мы подразумеваем под модульностью? Мы думаем о ней как о “строительных блоках”, где дата-центр будет состоять из модульных блоков изготовленных в заводских условиях электрических систем и систем охлаждения, а также систем безопасности и т.п., в дополнение к контейнеризованным серверам.
    Был ли ключевой стимул для разработки дата-центра четвертого поколения?


    If we were to summarize the promise of our Gen 4 design into a single sentence it would be something like this: “A highly modular, scalable, efficient, just-in-time data center capacity program that can be delivered anywhere in the world very quickly and cheaply, while allowing for continued growth as required.” Sounds too good to be true, doesn’t it? Well, keep in mind that these concepts have been in initial development and prototyping for over a year and are based on cumulative knowledge of previous facility generations and the advances we have made since we began our investments in earnest on this new design.

    Если бы нам нужно было обобщить достоинства нашего проекта Gen 4 в одном предложении, это выглядело бы следующим образом: “Центр обработки данных с высоким уровнем модульности, расширяемости, и энергетической эффективности, а также возможностью постоянного расширения, в случае необходимости, который можно очень быстро и дешево развертывать в любом месте мира”. Звучит слишком хорошо для того чтобы быть правдой, не так ли? Ну, не забывайте, что эти концепции находились в процессе начальной разработки и создания опытного образца в течение более одного года и основываются на опыте, накопленном в ходе развития предыдущих поколений ЦОД, а также успехах, сделанных нами со времени, когда мы начали вкладывать серьезные средства в этот новый проект.

    One of the biggest challenges we’ve had at Microsoft is something Mike likes to call the ‘Goldilock’s Problem’. In a nutshell, the problem can be stated as:

    The worst thing we can do in delivering facilities for the business is not have enough capacity online, thus limiting the growth of our products and services.

    Одну из самых больших проблем, с которыми приходилось сталкиваться Майкрософт, Майк любит называть ‘Проблемой Лютика’. Вкратце, эту проблему можно выразить следующим образом:

    Самое худшее, что может быть при строительстве ЦОД для бизнеса, это не располагать достаточными производственными мощностями, и тем самым ограничивать рост наших продуктов и сервисов.

    The second worst thing we can do in delivering facilities for the business is to have too much capacity online.

    А вторым самым худшим моментом в этой сфере может слишком большое количество производственных мощностей.

    This has led to a focus on smart, intelligent growth for the business — refining our overall demand picture. It can’t be too hot. It can’t be too cold. It has to be ‘Just Right!’ The capital dollars of investment are too large to make without long term planning. As we struggled to master these interesting challenges, we had to ensure that our technological plan also included solutions for the business and operational challenges we faced as well.
    So let’s take a high level look at our Generation 4 design

    Это заставило нас сосредоточиваться на интеллектуальном росте для бизнеса — refining our overall demand picture. Это не должно быть слишком горячим. И это не должно быть слишком холодным. Это должно быть ‘как раз, таким как надо!’ Нельзя делать такие большие капиталовложения без долгосрочного планирования. Пока мы старались решить эти интересные проблемы, мы должны были гарантировать, что наш технологический план будет также включать решения для коммерческих и эксплуатационных проблем, с которыми нам также приходилось сталкиваться.
    Давайте рассмотрим наш проект дата-центра четвертого поколения

    Are you ready for some great visuals? Check out this video at Soapbox. Click here for the Microsoft 4th Gen Video.

    It’s a concept video that came out of my Data Center Research and Engineering team, under Daniel Costello, that will give you a view into what we think is the future.

    From a configuration, construct-ability and time to market perspective, our primary goals and objectives are to modularize the whole data center. Not just the server side (like the Chicago facility), but the mechanical and electrical space as well. This means using the same kind of parts in pre-manufactured modules, the ability to use containers, skids, or rack-based deployments and the ability to tailor the Redundancy and Reliability requirements to the application at a very specific level.


    Посмотрите это видео, перейдите по ссылке для просмотра видео о Microsoft 4th Gen:

    Это концептуальное видео, созданное командой отдела Data Center Research and Engineering, возглавляемого Дэниелом Костелло, которое даст вам наше представление о будущем.

    С точки зрения конфигурации, строительной технологичности и времени вывода на рынок, нашими главными целями и задачами агрегатирование всего дата-центра. Не только серверную часть, как дата-центр в Чикаго, но также системы охлаждения и электрические системы. Это означает применение деталей одного типа в сборных модулях, возможность использования контейнеров, салазок, или стоечных систем, а также возможность подстраивать требования избыточности и надежности для данного приложения на очень специфичном уровне.

    Our goals from a cost perspective were simple in concept but tough to deliver. First and foremost, we had to reduce the capital cost per critical Mega Watt by the class of use. Some applications can run with N-level redundancy in the infrastructure, others require a little more infrastructure for support. These different classes of infrastructure requirements meant that optimizing for all cost classes was paramount. At Microsoft, we are not a one trick pony and have many Online products and services (240+) that require different levels of operational support. We understand that and ensured that we addressed it in our design which will allow us to reduce capital costs by 20%-40% or greater depending upon class.


    Нашими целями в области затрат были концептуально простыми, но трудно реализуемыми. В первую очередь мы должны были снизить капитальные затраты в пересчете на один мегаватт, в зависимости от класса резервирования. Некоторые приложения могут вполне работать на базе инфраструктуры с резервированием на уровне N, то есть без резервирования, а для работы других приложений требуется больше инфраструктуры. Эти разные классы требований инфраструктуры подразумевали, что оптимизация всех классов затрат имеет преобладающее значение. В Майкрософт мы не ограничиваемся одним решением и располагаем большим количеством интерактивных продуктов и сервисов (240+), которым требуются разные уровни эксплуатационной поддержки. Мы понимаем это, и учитываем это в своем проекте, который позволит нам сокращать капитальные затраты на 20%-40% или более в зависимости от класса.

    For example, non-critical or geo redundant applications have low hardware reliability requirements on a location basis. As a result, Gen 4 can be configured to provide stripped down, low-cost infrastructure with little or no redundancy and/or temperature control. Let’s say an Online service team decides that due to the dramatically lower cost, they will simply use uncontrolled outside air with temperatures ranging 10-35 C and 20-80% RH. The reality is we are already spec-ing this for all of our servers today and working with server vendors to broaden that range even further as Gen 4 becomes a reality. For this class of infrastructure, we eliminate generators, chillers, UPSs, and possibly lower costs relative to traditional infrastructure.

    Например, некритичные или гео-избыточные системы имеют низкие требования к аппаратной надежности на основе местоположения. В результате этого, Gen 4 можно конфигурировать для упрощенной, недорогой инфраструктуры с низким уровнем (или вообще без резервирования) резервирования и / или температурного контроля. Скажем, команда интерактивного сервиса решает, что, в связи с намного меньшими затратами, они будут просто использовать некондиционированный наружный воздух с температурой 10-35°C и влажностью 20-80% RH. В реальности мы уже сегодня предъявляем эти требования к своим серверам и работаем с поставщиками серверов над еще большим расширением диапазона температур, так как наш модуль и подход Gen 4 становится реальностью. Для подобного класса инфраструктуры мы удаляем генераторы, чиллеры, ИБП, и, возможно, будем предлагать более низкие затраты, по сравнению с традиционной инфраструктурой.

    Applications that demand higher level of redundancy or temperature control will use configurations of Gen 4 to meet those needs, however, they will also cost more (but still less than traditional data centers). We see this cost difference driving engineering behavioral change in that we predict more applications will drive towards Geo redundancy to lower costs.

    Системы, которым требуется более высокий уровень резервирования или температурного контроля, будут использовать конфигурации Gen 4, отвечающие этим требованиям, однако, они будут также стоить больше. Но все равно они будут стоить меньше, чем традиционные дата-центры. Мы предвидим, что эти различия в затратах будут вызывать изменения в методах инжиниринга, и по нашим прогнозам, это будет выражаться в переходе все большего числа систем на гео-избыточность и меньшие затраты.

    Another cool thing about Gen 4 is that it allows us to deploy capacity when our demand dictates it. Once finalized, we will no longer need to make large upfront investments. Imagine driving capital costs more closely in-line with actual demand, thus greatly reducing time-to-market and adding the capacity Online inherent in the design. Also reduced is the amount of construction labor required to put these “building blocks” together. Since the entire platform requires pre-manufacture of its core components, on-site construction costs are lowered. This allows us to maximize our return on invested capital.

    Еще одно достоинство Gen 4 состоит в том, что он позволяет нам разворачивать дополнительные мощности, когда нам это необходимо. Как только мы закончим проект, нам больше не нужно будет делать большие начальные капиталовложения. Представьте себе возможность более точного согласования капитальных затрат с реальными требованиями, и тем самым значительного снижения времени вывода на рынок и интерактивного добавления мощностей, предусматриваемого проектом. Также снижен объем строительных работ, требуемых для сборки этих “строительных блоков”. Поскольку вся платформа требует предварительного изготовления ее базовых компонентов, затраты на сборку также снижены. Это позволит нам увеличить до максимума окупаемость своих капиталовложений.
    Мы все подвергаем сомнению

    In our design process, we questioned everything. You may notice there is no roof and some might be uncomfortable with this. We explored the need of one and throughout our research we got some surprising (positive) results that showed one wasn’t needed.

    В своем процессе проектирования мы все подвергаем сомнению. Вы, наверное, обратили внимание на отсутствие крыши, и некоторым специалистам это могло не понравиться. Мы изучили необходимость в крыше и в ходе своих исследований получили удивительные результаты, которые показали, что крыша не нужна.
    Серийное производство дата центров


    In short, we are striving to bring Henry Ford’s Model T factory to the data center. http://en.wikipedia.org/wiki/Henry_Ford#Model_T. Gen 4 will move data centers from a custom design and build model to a commoditized manufacturing approach. We intend to have our components built in factories and then assemble them in one location (the data center site) very quickly. Think about how a computer, car or plane is built today. Components are manufactured by different companies all over the world to a predefined spec and then integrated in one location based on demands and feature requirements. And just like Henry Ford’s assembly line drove the cost of building and the time-to-market down dramatically for the automobile industry, we expect Gen 4 to do the same for data centers. Everything will be pre-manufactured and assembled on the pad.

    Мы хотим применить модель автомобильной фабрики Генри Форда к дата-центру. Проект Gen 4 будет способствовать переходу от модели специализированного проектирования и строительства к товарно-производственному, серийному подходу. Мы намерены изготавливать свои компоненты на заводах, а затем очень быстро собирать их в одном месте, в месте строительства дата-центра. Подумайте о том, как сегодня изготавливается компьютер, автомобиль или самолет. Компоненты изготавливаются по заранее определенным спецификациям разными компаниями во всем мире, затем собираются в одном месте на основе спроса и требуемых характеристик. И точно так же как сборочный конвейер Генри Форда привел к значительному уменьшению затрат на производство и времени вывода на рынок в автомобильной промышленности, мы надеемся, что Gen 4 сделает то же самое для дата-центров. Все будет предварительно изготавливаться и собираться на месте.
    Невероятно энергоэффективный ЦОД


    And did we mention that this platform will be, overall, incredibly energy efficient? From a total energy perspective not only will we have remarkable PUE values, but the total cost of energy going into the facility will be greatly reduced as well. How much energy goes into making concrete? Will we need as much of it? How much energy goes into the fuel of the construction vehicles? This will also be greatly reduced! A key driver is our goal to achieve an average PUE at or below 1.125 by 2012 across our data centers. More than that, we are on a mission to reduce the overall amount of copper and water used in these facilities. We believe these will be the next areas of industry attention when and if the energy problem is solved. So we are asking today…“how can we build a data center with less building”?

    А мы упоминали, что эта платформа будет, в общем, невероятно энергоэффективной? С точки зрения общей энергии, мы получим не только поразительные значения PUE, но общая стоимость энергии, затраченной на объект будет также значительно снижена. Сколько энергии идет на производство бетона? Нам нужно будет столько энергии? Сколько энергии идет на питание инженерных строительных машин? Это тоже будет значительно снижено! Главным стимулом является достижение среднего PUE не больше 1.125 для всех наших дата-центров к 2012 году. Более того, у нас есть задача сокращения общего количества меди и воды в дата-центрах. Мы думаем, что эти задачи станут следующей заботой отрасли после того как будет решена энергетическая проблема. Итак, сегодня мы спрашиваем себя…“как можно построить дата-центр с меньшим объемом строительных работ”?
    Строительство дата центров без чиллеров

    We have talked openly and publicly about building chiller-less data centers and running our facilities using aggressive outside economization. Our sincerest hope is that Gen 4 will completely eliminate the use of water. Today’s data centers use massive amounts of water and we see water as the next scarce resource and have decided to take a proactive stance on making water conservation part of our plan.

    Мы открыто и публично говорили о строительстве дата-центров без чиллеров и активном использовании в наших центрах обработки данных технологий свободного охлаждения или фрикулинга. Мы искренне надеемся, что Gen 4 позволит полностью отказаться от использования воды. Современные дата-центры расходуют большие объемы воды и так как мы считаем воду следующим редким ресурсом, мы решили принять упреждающие меры и включить экономию воды в свой план.

    By sharing this with the industry, we believe everyone can benefit from our methodology. While this concept and approach may be intimidating (or downright frightening) to some in the industry, disclosure ultimately is better for all of us.

    Делясь этим опытом с отраслью, мы считаем, что каждый сможет извлечь выгоду из нашей методологией. Хотя эта концепция и подход могут показаться пугающими (или откровенно страшными) для некоторых отраслевых специалистов, раскрывая свои планы мы, в конечном счете, делаем лучше для всех нас.

    Gen 4 design (even more than just containers), could reduce the ‘religious’ debates in our industry. With the central spine infrastructure in place, containers or pre-manufactured server halls can be either AC or DC, air-side economized or water-side economized, or not economized at all (though the sanity of that might be questioned). Gen 4 will allow us to decommission, repair and upgrade quickly because everything is modular. No longer will we be governed by the initial decisions made when constructing the facility. We will have almost unlimited use and re-use of the facility and site. We will also be able to use power in an ultra-fluid fashion moving load from critical to non-critical as use and capacity requirements dictate.

    Проект Gen 4 позволит уменьшить ‘религиозные’ споры в нашей отрасли. Располагая базовой инфраструктурой, контейнеры или сборные серверные могут оборудоваться системами переменного или постоянного тока, воздушными или водяными экономайзерами, или вообще не использовать экономайзеры. Хотя можно подвергать сомнению разумность такого решения. Gen 4 позволит нам быстро выполнять работы по выводу из эксплуатации, ремонту и модернизации, поскольку все будет модульным. Мы больше не будем руководствоваться начальными решениями, принятыми во время строительства дата-центра. Мы сможем использовать этот дата-центр и инфраструктуру в течение почти неограниченного периода времени. Мы также сможем применять сверхгибкие методы использования электрической энергии, переводя оборудование в режимы критической или некритической нагрузки в соответствии с требуемой мощностью.
    Gen 4 – это стандартная платформа

    Finally, we believe this is a big game changer. Gen 4 will provide a standard platform that our industry can innovate around. For example, all modules in our Gen 4 will have common interfaces clearly defined by our specs and any vendor that meets these specifications will be able to plug into our infrastructure. Whether you are a computer vendor, UPS vendor, generator vendor, etc., you will be able to plug and play into our infrastructure. This means we can also source anyone, anywhere on the globe to minimize costs and maximize performance. We want to help motivate the industry to further innovate—with innovations from which everyone can reap the benefits.

    Наконец, мы уверены, что это будет фактором, который значительно изменит ситуацию. Gen 4 будет представлять собой стандартную платформу, которую отрасль сможет обновлять. Например, все модули в нашем Gen 4 будут иметь общепринятые интерфейсы, четко определяемые нашими спецификациями, и оборудование любого поставщика, которое отвечает этим спецификациям можно будет включать в нашу инфраструктуру. Независимо от того производите вы компьютеры, ИБП, генераторы и т.п., вы сможете включать свое оборудование нашу инфраструктуру. Это означает, что мы также сможем обеспечивать всех, в любом месте земного шара, тем самым сводя до минимума затраты и максимальной увеличивая производительность. Мы хотим создать в отрасли мотивацию для дальнейших инноваций – инноваций, от которых каждый сможет получать выгоду.
    Главные характеристики дата-центров четвертого поколения Gen4

    To summarize, the key characteristics of our Generation 4 data centers are:

    Scalable
    Plug-and-play spine infrastructure
    Factory pre-assembled: Pre-Assembled Containers (PACs) & Pre-Manufactured Buildings (PMBs)
    Rapid deployment
    De-mountable
    Reduce TTM
    Reduced construction
    Sustainable measures

    Ниже приведены главные характеристики дата-центров четвертого поколения Gen 4:

    Расширяемость;
    Готовая к использованию базовая инфраструктура;
    Изготовление в заводских условиях: сборные контейнеры (PAC) и сборные здания (PMB);
    Быстрота развертывания;
    Возможность демонтажа;
    Снижение времени вывода на рынок (TTM);
    Сокращение сроков строительства;
    Экологичность;

    Map applications to DC Class

    We hope you join us on this incredible journey of change and innovation!

    Long hours of research and engineering time are invested into this process. There are still some long days and nights ahead, but the vision is clear. Rest assured however, that we as refine Generation 4, the team will soon be looking to Generation 5 (even if it is a bit farther out). There is always room to get better.


    Использование систем электропитания постоянного тока.

    Мы надеемся, что вы присоединитесь к нам в этом невероятном путешествии по миру изменений и инноваций!

    На этот проект уже потрачены долгие часы исследований и проектирования. И еще предстоит потратить много дней и ночей, но мы имеем четкое представление о конечной цели. Однако будьте уверены, что как только мы доведем до конца проект модульного дата-центра четвертого поколения, мы вскоре начнем думать о проекте дата-центра пятого поколения. Всегда есть возможность для улучшений.

    So if you happen to come across Goldilocks in the forest, and you are curious as to why she is smiling you will know that she feels very good about getting very close to ‘JUST RIGHT’.

    Generations of Evolution – some background on our data center designs

    Так что, если вы встретите в лесу девочку по имени Лютик, и вам станет любопытно, почему она улыбается, вы будете знать, что она очень довольна тем, что очень близко подошла к ‘ОПИМАЛЬНОМУ РЕШЕНИЮ’.
    Поколения эволюции – история развития наших дата-центров

    We thought you might be interested in understanding what happened in the first three generations of our data center designs. When Ray Ozzie wrote his Software plus Services memo it posed a very interesting challenge to us. The winds of change were at ‘tornado’ proportions. That “plus Services” tag had some significant (and unstated) challenges inherent to it. The first was that Microsoft was going to evolve even further into an operations company. While we had been running large scale Internet services since 1995, this development lead us to an entirely new level. Additionally, these “services” would span across both Internet and Enterprise businesses. To those of you who have to operate “stuff”, you know that these are two very different worlds in operational models and challenges. It also meant that, to achieve the same level of reliability and performance required our infrastructure was going to have to scale globally and in a significant way.

    Мы подумали, что может быть вам будет интересно узнать историю первых трех поколений наших центров обработки данных. Когда Рэй Оззи написал свою памятную записку Software plus Services, он поставил перед нами очень интересную задачу. Ветра перемен двигались с ураганной скоростью. Это окончание “plus Services” скрывало в себе какие-то значительные и неопределенные задачи. Первая заключалась в том, что Майкрософт собиралась в еще большей степени стать операционной компанией. Несмотря на то, что мы управляли большими интернет-сервисами, начиная с 1995 г., эта разработка подняла нас на абсолютно новый уровень. Кроме того, эти “сервисы” охватывали интернет-компании и корпорации. Тем, кому приходится всем этим управлять, известно, что есть два очень разных мира в области операционных моделей и задач. Это также означало, что для достижения такого же уровня надежности и производительности требовалось, чтобы наша инфраструктура располагала значительными возможностями расширения в глобальных масштабах.

    It was that intense atmosphere of change that we first started re-evaluating data center technology and processes in general and our ideas began to reach farther than what was accepted by the industry at large. This was the era of Generation 1. As we look at where most of the world’s data centers are today (and where our facilities were), it represented all the known learning and design requirements that had been in place since IBM built the first purpose-built computer room. These facilities focused more around uptime, reliability and redundancy. Big infrastructure was held accountable to solve all potential environmental shortfalls. This is where the majority of infrastructure in the industry still is today.

    Именно в этой атмосфере серьезных изменений мы впервые начали переоценку ЦОД-технологий и технологий вообще, и наши идеи начали выходить за пределы общепринятых в отрасли представлений. Это была эпоха ЦОД первого поколения. Когда мы узнали, где сегодня располагается большинство мировых дата-центров и где находятся наши предприятия, это представляло весь опыт и навыки проектирования, накопленные со времени, когда IBM построила первую серверную. В этих ЦОД больше внимания уделялось бесперебойной работе, надежности и резервированию. Большая инфраструктура была призвана решать все потенциальные экологические проблемы. Сегодня большая часть инфраструктуры все еще находится на этом этапе своего развития.

    We soon realized that traditional data centers were quickly becoming outdated. They were not keeping up with the demands of what was happening technologically and environmentally. That’s when we kicked off our Generation 2 design. Gen 2 facilities started taking into account sustainability, energy efficiency, and really looking at the total cost of energy and operations.

    Очень быстро мы поняли, что стандартные дата-центры очень быстро становятся устаревшими. Они не поспевали за темпами изменений технологических и экологических требований. Именно тогда мы стали разрабатывать ЦОД второго поколения. В этих дата-центрах Gen 2 стали принимать во внимание такие факторы как устойчивое развитие, энергетическая эффективность, а также общие энергетические и эксплуатационные.

    No longer did we view data centers just for the upfront capital costs, but we took a hard look at the facility over the course of its life. Our Quincy, Washington and San Antonio, Texas facilities are examples of our Gen 2 data centers where we explored and implemented new ways to lessen the impact on the environment. These facilities are considered two leading industry examples, based on their energy efficiency and ability to run and operate at new levels of scale and performance by leveraging clean hydro power (Quincy) and recycled waste water (San Antonio) to cool the facility during peak cooling months.

    Мы больше не рассматривали дата-центры только с точки зрения начальных капитальных затрат, а внимательно следили за работой ЦОД на протяжении его срока службы. Наши объекты в Куинси, Вашингтоне, и Сан-Антонио, Техас, являются образцами наших ЦОД второго поколения, в которых мы изучали и применяли на практике новые способы снижения воздействия на окружающую среду. Эти объекты считаются двумя ведущими отраслевыми примерами, исходя из их энергетической эффективности и способности работать на новых уровнях производительности, основанных на использовании чистой энергии воды (Куинси) и рециклирования отработанной воды (Сан-Антонио) для охлаждения объекта в самых жарких месяцах.

    As we were delivering our Gen 2 facilities into steel and concrete, our Generation 3 facilities were rapidly driving the evolution of the program. The key concepts for our Gen 3 design are increased modularity and greater concentration around energy efficiency and scale. The Gen 3 facility will be best represented by the Chicago, Illinois facility currently under construction. This facility will seem very foreign compared to the traditional data center concepts most of the industry is comfortable with. In fact, if you ever sit around in our container hanger in Chicago it will look incredibly different from a traditional raised-floor data center. We anticipate this modularization will drive huge efficiencies in terms of cost and operations for our business. We will also introduce significant changes in the environmental systems used to run our facilities. These concepts and processes (where applicable) will help us gain even greater efficiencies in our existing footprint, allowing us to further maximize infrastructure investments.

    Так как наши ЦОД второго поколения строились из стали и бетона, наши центры обработки данных третьего поколения начали их быстро вытеснять. Главными концептуальными особенностями ЦОД третьего поколения Gen 3 являются повышенная модульность и большее внимание к энергетической эффективности и масштабированию. Дата-центры третьего поколения лучше всего представлены объектом, который в настоящее время строится в Чикаго, Иллинойс. Этот ЦОД будет выглядеть очень необычно, по сравнению с общепринятыми в отрасли представлениями о дата-центре. Действительно, если вам когда-либо удастся побывать в нашем контейнерном ангаре в Чикаго, он покажется вам совершенно непохожим на обычный дата-центр с фальшполом. Мы предполагаем, что этот модульный подход будет способствовать значительному повышению эффективности нашего бизнеса в отношении затрат и операций. Мы также внесем существенные изменения в климатические системы, используемые в наших ЦОД. Эти концепции и технологии, если применимо, позволят нам добиться еще большей эффективности наших существующих дата-центров, и тем самым еще больше увеличивать капиталовложения в инфраструктуру.

    This is definitely a journey, not a destination industry. In fact, our Generation 4 design has been under heavy engineering for viability and cost for over a year. While the demand of our commercial growth required us to make investments as we grew, we treated each step in the learning as a process for further innovation in data centers. The design for our future Gen 4 facilities enabled us to make visionary advances that addressed the challenges of building, running, and operating facilities all in one concerted effort.

    Это определенно путешествие, а не конечный пункт назначения. На самом деле, наш проект ЦОД четвертого поколения подвергался серьезным испытаниям на жизнеспособность и затраты на протяжении целого года. Хотя необходимость в коммерческом росте требовала от нас постоянных капиталовложений, мы рассматривали каждый этап своего развития как шаг к будущим инновациям в области дата-центров. Проект наших будущих ЦОД четвертого поколения Gen 4 позволил нам делать фантастические предположения, которые касались задач строительства, управления и эксплуатации объектов как единого упорядоченного процесса.


    Тематики

    Синонимы

    EN

    Русско-английский словарь нормативно-технической терминологии > модульный центр обработки данных (ЦОД)

  • 55 экономико-математическая модель

    1. economico-mathematical model
    2. economic model

     

    экономико-математическая модель
    Математическое описание экономического процесса или объекта, произведенное в целях их исследования и управления ими: математическая запись решаемой экономической задачи (поэтому часто термины “модель” и “задача” употребляются как синонимы). Существует еще несколько вариантов определения этого термина. В самой общей форме модель — условный образ объекта исследования, сконструированный для упрощения этого исследования. При построении модели предполагается, что ее непосредственное изучение дает новые знания о моделируемом объекте (см. Моделирование). Все это полностью относится и к Э.-м.м. В принципе в экономике применимы не только математические (знаковые), но и материальные модели. Например, гидравлические (в которых потоки воды имитируют потоки денег и товаров, а резервуары отождествляются с такими экономическими категориями, как объем промышленного производства, личное потребление и др.) и электрические (в США была известна модель «Эконорама», представлявшая собой сложную электрическую схему, в которой имитировались экономические процессы). Но все эти попытки имели лишь демонстрационное применение, а не служили средством изучения закономерностей экономики. С развитием же электронно-вычислительной техники потребность в них, по-видимому, и вовсе отпала. Э.-м.м. оказывается в этих условиях основным средством модельного исследования экономики. Модель может описывать либо внутреннюю структуру объекта, либо, если структура неизвестна, — его поведение, т.е. реакцию на воздействие известных факторов (принцип «черного ящика«). Один и тот же объект может быть описан различными моделями в зависимости от исследовательской или практической потребности, возможностей математического аппарата и т.п. Поэтому всегда необходима оценка модели и области, в которой выводы из ее изучения могут быть достоверны. Во всех случаях необходимо, чтобы модель содержала достаточно детальное описание объекта, позволяющее, в частности, осуществлять измерение экономических величин и их взаимосвязей, чтобы были выделены факторы, воздействующие на исследуемые показатели. Например, формула, по которой определяется на заводе потребность в материалах, исходя из норм расхода, есть Э.-м.м. Если количество видов изделий обозначить через n, нормативы расхода — ai, количество изделий каждого вида — xi, то модель запишется так: где i = 1, 2, …, n. Кроме того, полезно записать условия, в которых она действительна, т.е. ограничения модели (например, лимиты на те или иные материалы). Строго говоря, расчет по такой формуле не даст точного результата: потребность в материалах может зависеть также от случайных изменений в размерах брака и отходов, от страховых запасов и т.д. Но в общем, она зависит именно от указанных двух видов величин: норм расхода материала и объемов выпуска продукции. Первые из них в данном случае называются параметрами модели, вторые — переменными модели. Такая модель называется описательной, или дескриптивной; она описывает зависимость расхода (потребности в материале), от двух факторов: количества изделий и расходных норм. Большое значение в экономике имеют оптимизационные модели (или оптимальные). Они представляют собой системы уравнений, равенств и неравенств, которые кроме ограничений (условий) включают также особого рода уравнение, называемое функционалом или критерием оптимальности. С помощью такого критерия находят решение, наилучшее по какому-либо показателю, например, минимум затрат на материалы при заданном объеме продукции, или, наоборот, максимум продукции (или прибыли) при заданных ограничениях по ресурсам и т.д. Например, можно попытаться найти такой план работы цеха, который при заданном объеме материалов (т.е. их расход не должен быть больше какой-то величины, допустим, B) гарантирует наибольший объем продукции. Единственное, что надо при этом знать дополнительно — цену единицы продукции — pi. Тогда модель будет записываться так при условии Кроме того, обязательно надо учесть, что искомые величины объемов производства каждого изделия не должны быть отрицательными: xi ? 0, i = 1, 2, …, n. Мы получили элементарную оптимизационную модель, относящуюся к типу моделей линейного программирования. Решив эту модель, т.е. узнав значения всех xi от 1-го до n-го, мы получим искомый план. Важное свойство Э.-м.м. — их применимость к разным, на первый взгляд непохожим ситуациям. Например, если в приведенном примере через ai обозначить нормы внесения удобрений, а через xi — размеры участков, то та же самая формула покажет общий объем потребности в удобрениях. Точно такую же формулу можно применить к расчету затрат семьи на покупку разных продуктов, и во многих других случаях. Модель может быть сформулирована тремя способами: в результате прямого наблюдения и изучения некоторых явлений действительности (феноменологический способ), вычленения из более общей модели (дедуктивный способ), обобщения более частных моделей (индуктивный способ). Подобные модели, в которых описывается моментное состояние экономики, называются статическими (от слова «статика»). Те же, которые показывают развитие объекта моделирования, — динамическими. Модели могут строиться не только в виде формул, как рассмотренные здесь (это называется аналитическое представление модели; см. Аналитическая модель), но и в виде числовых примеров (численное представление) и в форме таблиц (матричное представление), и в форме особого рода графов (сетевое представление модели). Соответственно различают модели числовые, аналитические, матричные, сетевые. Экономическая наука давно пользуется моделями. Одной из первых была модель воспроизводства, разработанная французским ученым Ф.Кенэ еще в XYIII в. А в XX в. первая общая модель развивающейся экономики была сконструирована Дж. фон Нейманом. Значительный опыт построения э.-м. моделей накоплен учеными СССР, применявшими их для анализа экономических процессов, прогнозирования и планирования во всех звеньях и на всех уровнях экономики, вплоть до планирования развития народного хозяйства страны в целом, особенно — перспективного. Принято подразделять Э-м.м. на две большие группы: модели, отражающие преимущественно производственный аспект экономики; модели, отражающие преимущественно социальные аспекты экономики. Разумеется, такое деление в значительной степени условно, поскольку в каждой из моделей в той или иной степени сочетаются производственный и социальный аспекты. Из моделей первой группы можно назвать: модели долгосрочного прогноза сводных показателей экономического развития; межотраслевые модели; отраслевые модели оптимального планирования и размещения производства, а также модели оптимизации структуры производства в отраслях. Из моделей второй группы наиболее разработаны модели, связанные с прогнозированием и планированием доходов и потребления населения, демографических процессов. Существует большое число классификаций типов Э.-м.м., которые, однако, носят фрагментарный характер. И это, по-видимому, неизбежно, так как нереально охватить все многообразие социально-экономических задач, объектов и процессов, описываемых различными моделями. Представленные в нашем словаре модели можно условно классифицировать следующим образом 1. Наиболее общее деление моделей — по способу отражения действительности: Аналоговая модель Иконическая модель (то же: портретная модель) Концептуальная модел Структурная модель Функциональная модель. 2. По предназначению (цели создания и применения) модели: Балансовая модель Дескриптивная модель (то же: Описательная) Имитационная модель Информационная модель Нормативная модель (то же: Прескриптивная модель), в т.ч. Оптимальная модель (то же: Оптимизационная модель). 3. По способу логико-математического описания моделируемых экономических систем: Аналитическая модель Вероятностная модель (то же: Стохастическая модель) Детерминированная модель Дискретная модель Линейная модель Математико-статистическая модель Матричная модель Нелинейная модель Непрерывная модель Модель равновесия Неравновесная модель Регрессионная модель Сетевая модель Числовая модель Эконометрическая модель. - дискретного выбора - непрерывной длительности (выживания) -логит-иодель -пробит-модель - тобит-модель.. 4. По временному и пространственному признаку: Гравитационная модель Динамическая модель (см. Динамические модели экономики) Модели с «бесконечным временем» Статическая модель Точечная модель Трендовая модель и др.. 5. По уровню моделируемого объекта в хозяйственной иерархии: Глобальная модель Макроэкономическая модель (то же: Агрегатная модель) Модели мезоэкономики Микроэкономическая модель 6. По внутренней структуре модельного описания системы: Автономная модель Закрытая модель Комплекс моделей Многосекторная модель (многоотраслевая, многопродуктовая) Однопродуктовая модель Открытая модель Система моделей (в том числе многоуровневая или многоступенчатая). 7.. По сфере применения. Выше было указано на необозримость областей применения Э.-м.м.; поэтому мы не даем здесь их перечисления, а отсылаем к соответствующим статьям словаря: например, о прогнозных моделях — к статье Прогнозирование, об отраслевых — к статье Отраслевые задачи оптимального планирования развития и размещения производства, и т.д. Наиболее развитая типология социально-экономических задач и моделей представлена в кн.: Вилкас Э.Й., Майминас Е.З. Решения: теория, информация, моделирование. — М.: “Радио и связь”, 1981.При разработке приведенной выше условной классификации учитывались материалы этой книги.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > экономико-математическая модель

  • 56 лишь

    The hydrogenation and hydroboration of alkynes are but two of many useful stereoselective reactions.

    The crust of the continents is merely the uppermost layer of the continental lithosphere.

    Many ions are required in only small amounts.

    But (or Only) nineteen other units employ some transistors.

    It is desired here merely to point out that...

    Maximum viscosity was not reached until September 1.

    Here I can do no more than describe briefly one example of these recent advances.

    A good approximation of all the forces acting... can be deduced from the force between just two stationary molecules.

    * * *
    Лишь -- only, merely; but; not until (о времени)
     The above are but two examples of the usefulness and versatility of the methods, discussed here.
     Not until recently has research focused on the relationship between misalignment and wear.
    —указывать лишь на

    Русско-английский научно-технический словарь переводчика > лишь

  • 57 насколько

    Насколько - how, how much, what; as far as, as much as, as nearly as, so far as

    Русско-английский научно-технический словарь переводчика > насколько

  • 58 представление

    Представление - idea, conception, understanding, insight (понимание); submittal (документов); presentation (доклада, таблицы и т.п.); representation (в каком-либо переработанном виде, в новом оформлении)
     In order to obtain some idea of the scale of the numerical errors we can interchange the sequence of integration.
     Experimental data obtained from 1925 until the present time considerably changed our conceptions.
     The analysis was performed to gain some understanding of the force distribution.
     The writers choose to gain some insight into the nature of the stress state.

    Русско-английский научно-технический словарь переводчика > представление

  • 59 психоз

    Форма психических расстройств, характеризующихся выраженной регрессией Я и либидо и сопровождающихся отчетливой дезорганизацией личности. Психозы принято разделять на две группы — органические и функциональные. Органические психозы являются вторичным расстройством по отношению к физическим (соматическим) заболеваниям, например, сифилиса головного мозга, опухолей, атеросклероза и др. Функциональные психозы первично связаны с психосоциальными факторами, а также с биологической предрасположенностью к их проявлению. Основные типы функциональных психозов составляют аффективные расстройства (маниакально-депрессивный психоз) и расстройства мышления (шизофрения и истинная паранойя).
    При рассмотрении психозов, в частности, шизофренического типа, имеются существенные различия в отношении условий их возникновения: с одной стороны, наиболее важным признается влияние генетических и конституционально-нейроэндокринных, соматических и метаболических факторов, с другой — онтогенетических и средовых, воздействующих на индивида в сугубо психологической плоскости. Несомненно, однако, что переживания индивида и психологические формы его реагирования играют немаловажную роль в этиологии и развитии психотического процесса и его симптоматического оформления.
    На феноменологическом уровне основными характеристиками психоза, в зависимости от его типа, являются: необычное поведение, бредовые, неадекватные по своему размаху и интенсивности аффективные реакции, отгороженность и выраженные расстройства восприятия и функции проверки реальности. Нередко встречаются также расстройства восприятия (в частности, галлюцинаторные переживания), трудности осмысления и обобщения (рыхлость ассоциаций и "блокирование" мыслей), а также склонность к ипохондрии.
    Психоаналитическая концепция психозов Фрейда предполагает существование некой базисной общности между особенностями протекания психических процессов при психозах и неврозах. Вместе с тем Фрейд подчеркивал существенные различия между этими двумя типами психических нарушений. С его точки зрения, лица, страдающие психотическими расстройствами, бессознательно фиксируются на ранних стадиях либидинозного развития, в частности, на нарциссической фазе. Такая фиксация приводит к формированию специфической регрессии, то есть к тому, что следует рассматривать как важнейший признак развития психоза — к изменению отношения индивида к другим людям и объектам. Пациенты в психотическом состоянии начинают воспринимать других как отчужденных, "непонятных" или враждебно настроенных. С таким восприятием сопряжены представления об измененности или даже нереальности окружающего мира, людей и предметов. Фрейд считал, что такая симптоматика отражает специфический разрыв пациента с реальностью и является наиболее характерным признаком психотического процесса.
    В течение первой, начальной, стадии развития психоза представления пациента о других людях и объектах претерпевают существенные искажения; либидо "освобождается" и катектирует самого человека, создавая тем самым основу для образования общей для всех психотических состояний ипохондрической симптоматики. В течение второй стадии — реституционной (обратного развития) — больной нередко при участии галлюцинаторных либо бредовых построений пытается рекатектировать объектные представления с целью восстановления контактов с внешним миром. Однако такое "восстановление" носит явно патологический характер.
    Современный психоанализ, исходя из накопленных клинических наблюдений и соответствующих теоретических построений, убеждает в том, что поздние концепции Фрейда, в частности, его структурная теория и концепция регрессии Я, способны объяснить многие клинические феномены более успешно, нежели ранняя теория либидинозного катексиса и обратного катексиса. Согласно современным представлениям большинство изменений в сфере функций Я и Сверх-Я при психическом типе расстройств является специфической защитой, направленной прежде всего против тревоги. При этом, однако, происходящие изменения психической деятельности настолько массивны, что их последствия приводят к дезинтеграции объектных отношений, а затем и к отрыву от реальности.
    Психотические и невротические нарушения Фрейд пытался разграничить на основе нескольких основных признаков. Неврозы — это прежде всего вытеснение запретных желаний и потребностей, которые исходят из сферы Оно, а затем возвращаются в сферу сознательного в искаженной форме (симптомообразования). В случае психозов речь прежде всего идет о декатексисе объектных представлений, то есть об отрыве от реальности и попытках обрести ее вновь. Таким образом, невротические расстройства характеризуются возвратом в сознание вытесненного материала, психотические — отрывом от реальности.
    При неврозе основная "борьба" разворачивается между истинными влечениями Оно и защитными процессами Я; иначе обстоит дело при психозе — Оно (а также отчасти Сверх-Я), преодолевая защиту Я, вступает в конфликт с фрустрирующей реальностью, в конфликт, превозмочь который удается лишь с помощью деструктивных фантазий и болезненной компенсации.
    Многочисленные клинические наблюдения, в частности, полученные при изучении отдельных типов психотических расстройств, заставили Фрейда и других аналитиков пересмотреть такие фундаментальные понятия, как либидо и топографические области психики. Более глубокое понимание сущности нарциссизма, агрессивных влечений и концепции Самости привели исследователей к необходимости создания структурной теории влечений и в конечном счете психологии Я. Правомерность новых теоретических построений все более подтверждают результаты лечения больных с психотическими расстройствами, а также "пограничными" состояниями.
    Следует сказать, однако, что основным полем деятельности психоаналитической психотерапии являются все же невротические расстройства, неврозы характера и сексуальные перверсии. Лишь в отдельных случаях "расширение этого поля" касается психотических нарушений. В частности, отдельные модификации психоаналитической техники в их приложении к лечению психозов разработаны школой М. Кляйн.
    На заре развития психоанализа преобладающей точкой зрения являлось положение о том, что развитие переноса при психотических нарушениях невозможно, поскольку чрезмерная степень нарциссизма больного является непреодолимым препятствием. В настоящее время подобные воззрения большинством аналитиков отвергнуты: как было показано, образование переноса возможно и при психотических расстройствах. Такой перенос, однако, отличается целым рядом особенностей, главными среди которых являются его чрезмерная интенсивность и зачастую искаженность (психоз переноса). Его преодоление и разрешение хотя и возможно, но требует чрезвычайного внимания со стороны аналитика, поскольку такой психоз следует рассматривать как попытку пациента восстановить объектные отношения за счет других людей.

    Словарь психоаналитических терминов и понятий > психоз

  • 60 реальность

    Совокупность базисных предпосылок, касающихся наличия и сущности воспринимаемого человеком внешнего мира. Психоаналитическая традиция не всегда согласуется с таким определением: согласно одному из основных подходов к определению реальности, последняя представляет собой абсолютное, фиксированное и объективное описание внешнего материального мира и происходящих в нем событий. Реальность, таким образом, самоочевидна и не может быть представлена различными способами. Согласно другой точке зрения, первостепенным при определении реальности является субъективный опыт. Соответственно реальность можно рассматривать как относительное, изменчивое и субъективное описание переживаний индивида. Она есть лишь интерпретация воспринимаемого вовне, а потому может быть представлена в виде различных версий. Большинством психоаналитиков используются преимущества обоих определений. Достигаемое таким синтетическим путем понимание реальности неразрывно связано с современными теоретическими воззрениями на развитие человека, его психическую деятельность, психопатологию и психоаналитическую терапию.
    Начальные этапы развития организма человека характеризуются формированием концепции реальности, основанной на разграничении "Я" и "не-Я", внутреннего и внешнего. В дальнейшем с дифференциацией индивида и развитием Я нарастает степень осознания реальности как некоего "внешнего феномена", внешнего компонента общего процесса дифференциации. Параллельно с образованием постоянных образов себя и объектов развивается ощущение постоянства реальности, связанное с процессом интернализации и стабилизацией представлений о внешнем мире. Одной из важнейших интегративных частей такого процесса являются переживания, связанные с любимыми объектами. Формирующаяся в результате стабильная структура внутренних представлений помогает индивиду сохранять чувство своей идентичности и ориентироваться в изменчивых условиях без нарушений психической деятельности и расстройств адаптации. Постоянство реальности способствует становлению таких функций Я, как предвидение, предсказание, планирование, восприятие, оценка реальности и др. Недостаток постоянства реальности, напротив, приводит к чувству "нереальности", трудностям усвоения нового опыта и пережитых ранее ситуаций, а также к нарушениям сохранности контактов с реальностью. Постоянство реальности поддерживает силу и автономность функций Я. Исходя из сказанного, реальность можно рассматривать как непосредственно данный, естественный мир конкретно воздействующих на индивида объектов, поддающихся верификации путем научного наблюдения. С этой точки зрения внешняя реальность включает два понятия — фактическую (материальную) и объективную реальность.
    Фрейд (1911) описал два регулирующих принципа психической деятельности, необходимых, с его точки зрения, для понимания концепции реальности. Основополагающим (и более ранним из них) является принцип удовольствия. Последний, однако, постепенно преобразуется в принцип реальности, благодаря которому индивид развивает способность отказываться от немедленного, но вместе с тем неопределенного в своих последствиях удовлетворения в пользу длительного и стабильного вознаграждения и самосохранения. Хотя при нормальном зрелом развитии начинают преобладать способы деятельности, соответствующие требованиям внешней реальности, мотивационная сила стремления к удовольствию полностью не исчезает и не замещается другими, сохраняясь в редуцированной форме. Если ребенок, например, откладывает приятную игру во дворе и задерживается в доме или молодой отец отказывается от увлекательного хобби ради сохранения спокойствия в семье, то такое поведение следует рассматривать в аспекте принципа реальности. Более того, подобное поведение является сообразным реальности, то есть таким, в котором отдельные поступки согласуются с пониманием причин и следствий во внешнем реальном мире (включая мир человеческих отношений). Однако в некоторых случаях индивид может на некоторое время отказаться от реалистичного взгляда на мир и отдать предпочтение непосредственному и сиюминутному удовлетворению потребностей. Такое поведение будет характеризоваться как период регрессии или "сознательно принимаемой альтернативы". Принципы удовольствия и реальности можно дополнить двумя родственными понятиями: Я-удовольствие и Я-реальность. Редко используемые в современном психоаналитическом лексиконе из-за их неоднозначности и дискуссионности, оба термина, тем не менее, могут применяться при описании взаимоотношений Я с миром влечений или, наоборот, с внешней средой.
    Понятием проверка реальности обозначается функция Я, с помощью которой осуществляется разграничение мыслительной деятельности и процессов восприятия и тем самым разграничение внешнего опыта и внутреннего. Другими словами, проверка реальности позволяет распознавать представления, исходящие из внутренней психической жизни (воспоминания, фантазии), и отделять их от тех, что поступают из внешнего мира через органы восприятия. Однако, как показывают современные исследования, такая дихотомия является несколько упрощенной. Сенсорные импульсы испытывают на себе сдерживающее или искажающее влияние психики и в непосредственном виде до уровня сознания на доходят. С другой стороны, на воспоминания и фантазии могут оказывать значительное модифицирующее воздействие объекты внешнего мира. И все же на индивидуальном уровне основной характеристикой проверки реальности является способность к разграничению внутренних переживаний и переживаний, связанных с существованием внешнего мира. Проверка реальности действует прежде всего в направлении укрепления внутренних связей Я и достижения индивидом большей четкости и точности отграничения себя от объектов.
    Более сложным компонентом проверки реальности является постоянная деятельность по "примирению" или согласованию несоответствий, возникающих между внутренне и внешне обусловленными переживаниями. При наличии таких несоответствий внутренние представления (проистекающие из воспоминаний, накопленных в процессе обучения, убеждений, верований и фантазий) со временем претерпевают изменения под влиянием новых впечатлений и воспринимаемых образов. Так, например, новоприобретенный опыт может изменить представления о дружественном расположении всех без исключения "мохнатых" животных (многие из которых в действительности могут быть опасными), в других случаях могут возобладать интрапсихические представления, и тогда индивид приходит к выводу о неистинности воспринимаемого объекта (например, при оптических иллюзиях). Этот компонент проверки реальности играет немаловажную роль в формировании внутреннего опыта, где требуется участие внутренних убеждений и фантазий.
    Проверка реальности имеет свои закономерности развития — от простого разграничения внутреннего и внешнего до комплексного процесса оценки приобретенного опыта. Последний, наиболее высокий уровень проверки реальности, нередко обозначаемый как процессуализация реальности, включает способность воспринимать, распознавать и оценивать собственные аффекты, мотивы и внутренние представления об объекте, разграничивать прошлое и настоящее, а также другие, еще более тонкие, нюансы внутреннего опыта. Процессуализация реальности может включать, в частности, понимание того, какое влияние оказывают собственные предрассудки, особенности характера, нарушения процессов переноса, возникающего при установлении взаимоотношений с другими. На этом уровне функция проверки реальности может быть значительно улучшена с помощью психоаналитической терапии.
    Если термин проверка реальности обозначает прежде всего функции поиска и сравнения, проявляющиеся автоматически на бессознательном уровне, то другое понятие — чувство реальности — принято относить к процессам субъективного осознания реальных или воображаемых событий, причем осознания не беспочвенного, а основанного на приобретенных знаниях о внешнем мире или самом себе.
    Адаптация к реальности означает приспособление поведения индивида или принятие постоянно изменяющихся требований окружения, включая человеческие взаимоотношения.
    Проверка реальности, чувство реальности и адаптация к реальности создают отношение к реальности, включающее в себя понимание событий внутреннего и внешнего мира, их разграничение, а также образование наиболее приемлемых для индивида связей и форм реагирования. Под воздействием неблагоприятных факторов (стресса, психопатологических нарушений, сенсорной депривации и т.д.) любая из трех указанных функций может нарушиться, подвергнуться регрессии к более примитивному уровню или полностью исчезнуть.
    Нарушения функции адаптации к реальности имеют самый широкий спектр — от незначительного снижения гибкости у лиц с чертами навязчивости до полного игнорирования окружения, наблюдаемое при органических синдромах. Выраженные нарушения функции проверки реальности в форме иллюзий, галлюцинаций или потери способности дифференцировать собственные проявления обнаруживаются прежде всего при психотических состояниях. При психоневрозах и характеропатиях обычно повреждаются лишь поверхностные (внешние) уровни процессуализации реальности, сопровождающиеся, однако, нарушениями адаптивных функций. У пограничных больных наряду с высшими уровнями могут повреждаться и такие функции, как чувство реальности и идентичности. При шизофрении нередко встречаются стойкие состояния деперсонализации, чувство отчужденности и/или гибели Я, а также искажения схемы тела.
    В большинстве случаев, если рассматривать упрощенно, реальность принято отождествлять с внешним миром. Однако при более скрупулезном ее рассмотрении, особенно если учитывать проявления внутреннего мира субъективных переживаний, мы вынуждены признать возможность различных интерпретаций мира внешних событий (примерами здесь могут служить следующие вопросы: что более реально — идея, мысль или стол и стул? Что более истинно — поэма или научный эксперимент?).
    В общепринятом смысле психическая реальность — это весь субъективно переживаемый мир индивида, который включает мысли, чувства, фантазии и другие феномены, отражающие внешний мир. Таким образом, психическую реальность можно рассматривать как синоним внутренней и субъективной реальности. Все три термина призваны отграничивать в психоаналитической теории субъективный опыт индивида от мира физических объектов. Психическая реальность рассматривается также как одна из возможных версий — созданных благодаря восприятию внешних объектов и внутренним представлениям — реального внешнего мира. Психическая реальность, следовательно, представляет собой фундаментальное интегративное образование. Некоторые теоретики предпринимают попытки разграничить психическую и внутреннюю реальность, сопоставляя психическую реальность с внутренними источниками субъективного опыта, то есть с бессознательными фантазиями и представлениями. При этом ощущения, поступающие из внешнего мира, являются внешним источником субъективного опыта. Под термином внутренняя реальность теоретиками этого направления подразумевается наиболее общий феномен, отражающий тотальный субъективный опыт, основанный на интеграции представлений о воспринимаемом внешнем мире.
    Подобно тому, как внутренняя реальность не является "чистым" продуктом фантазии, так и внешняя реальность имеет свое сложное строение. Можно утверждать, что внешняя реальность сводима к двум следующим основным проявлениям: "фактическому" — объективно верифицируемому и подтверждаемому путем научного познания — и "искусственному" — интерсубъектно общепринятому, "конвенциальному", состоящему из мира слов, мифов, традиций, межличностных и групповых форм поведения. Философские взгляды, основанные на подчеркивании фактической или искусственно-интерсубъектной стороны внешней реальности, хотя и имеют первостепенное значение для культуры, непосредственного преломления в психоаналитической теории не находят. Здесь необходимо вкратце остановиться на понятии реальности в психоаналитическом аспекте.
    Некоторые формы психотерапии, в первую очередь поведенческая и поддерживающая, направлены прежде всего на улучшение адаптации к условиям внешней реальности. Психофармакотерапия и лечение, основанное на структурировании внешней для больного среды, преследуют не менее важные цели, а именно восстановление искаженных или поврежденных функций проверки реальности и чувства реальности. В противоположность этим методам лечения, психоаналитическая терапия нацелена на восстановление высших уровней реальной деятельности и психической реальности как таковой, а также на расширение понимания, познания и обретение свободы пациентом, особенно по отношению к той части его душевной жизни, которую мы причисляем к миру внутреннего опыта. Психоанализ, в отличие от других методов лечения, не пытается навязать какие-либо фиксированные взгляды на реальность, равно как и заранее уготовленные (а потому предвзятые) способы "правильного" приспособления.
    см. индивидуация, принцип удовольствия/неудовольствия, развитие Я, фантазия, функции Я
    \
    Лит.: [267, 328, 470, 674, 728, 860]

    Словарь психоаналитических терминов и понятий > реальность

См. также в других словарях:

  • исходя из — предлог Обороты с предлогом «исходя из» обычно выделяются запятыми. Исходя из прошлого опыта, догадываюсь, что это с плиты свалилась сковорода. В. Токарева, Будет другое лето. Исходя из этого, мы засыпаем в амбар для колхозников две с половиной… …   Словарь-справочник по пунктуации

  • ЖИЗНЬ — Иисус Христос Спаситель и Жизнеподатель. Икона. 1394 г. (Художественная галерея, Скопье) Иисус Христос Спаситель и Жизнеподатель. Икона. 1394 г. (Художественная галерея, Скопье) [греч. βίος, ζωή; лат. vita], христ. богословие в учении о Ж.… …   Православная энциклопедия

  • ЗЛО — [греч. ἡ κακία, τὸ κακόν, πονηρός, τὸ αἰσχρόν, τὸ φαῦλον; лат. malum], характеристика падшего мира, связанная со способностью разумных существ, одаренных свободой воли, уклоняться от Бога; онтологическая и моральная категория, противоположность… …   Православная энциклопедия

  • Заработная плата — (Wages) Важнейшее средство повышения заинтересованности работников Участие трудящихся в доле вновь созданных материальных и духовных благ Содержание Содержание. > заработная плата – это важнейшее средство повышения заинтересованности… …   Энциклопедия инвестора

  • Астрономия Древней Греции — Астрономия Древней Греции  астрономические познания и взгляды тех людей, которые писали на древнегреческом языке, независимо от географического региона: сама Эллада, эллинизированные монархии Востока, Рим или ранняя Византия. Охватывает… …   Википедия

  • Суверенитет — (Sovereignty) Суверенитет это независимость государства от других стран Суверенитет России и его проблемы, суверенитет Украины, суверенитет республики Беларусь, суверенитет Казахстана, суверенитет Чечни, Проблемы суверенитета стран Европы,… …   Энциклопедия инвестора

  • Лимит — (Limit) Содержание Содержание Определения описываемого предмета Лимитирование банковских операций Позиционные Объемные лимиты Лимиты на характеристики позиций, на взвешенный объем Структурные лимиты (долевые лимиты, лимиты концентрации) Лимиты… …   Энциклопедия инвестора

  • ИНДИВИД — [от лат. individuum неделимое], понятие, обозначающее представителя к. л. группы, к рый обладает отдельным самостоятельным существованием и характерными особенностями, благодаря наличию к рых он не может быть отождествлен с др. представителями… …   Православная энциклопедия

  • Фотон — У этого термина существуют и другие значения, см. Фотон (значения). Фотон Символ: иногда …   Википедия

  • Денежно-кредитная политика — (Monetary policy) Понятие денежно кредитной политики, цели денежно кредитной политики Информация о понятии денежно кредитной политики, цели денежно кредитной политики Содержание >>>>>>>>>> …   Энциклопедия инвестора

  • Методические рекомендации по бухгалтерскому учету затрат на производство и калькулированию себестоимости продукции (работ, услуг) в сельскохозяйственных организациях — Терминология Методические рекомендации по бухгалтерскому учету затрат на производство и калькулированию себестоимости продукции (работ, услуг) в сельскохозяйственных организациях: 50. Бюджетирование технология финансового планирования, учета и… …   Словарь-справочник терминов нормативно-технической документации

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»