Перевод: со всех языков на русский

с русского на все языки

изменение+со+временем

  • 1 variation with time

    Англо-русский строительный словарь > variation with time

  • 2 temporal frequency

    Англо-русский словарь по ядерным испытаниям и горному делу > temporal frequency

  • 3 temperal variation of density

    English-Russian aviation meteorology dictionary > temperal variation of density

  • 4 change

    I [tʃeɪndʒ] n
    1) изменение, перемена, сдвиг, модификация, разнообразие

    Change, constant change, is the law of organic life. — Изменение, вечное непрекращающееся изменение - закон органической жизни.

    There was little change in his condition. — Его состояние не изменилось.

    - little change
    - marked change
    - momentous change
    - needed change
    - quick change
    - radical change
    - sudden change
    - welcome change
    - great change in smb
    - changes in personnel
    - change in one's life
    - change for the better
    - do smth for a change
    - make changes in one's plans
    - undergo change
    2) мелочь, мелкие деньги
    - have some change
    - take some change out of one's pocket

    Here is your change. — Вот ваша сдача.

    Don't forget your change. — Возьмите сдачу. /Не забудьте сдачу.

    Passengers are requested to examine their ticketsand change before leaving. — Пассажиров просят проверять билеты и сдачу не отходя от кассы.

    - give the change
    - count one's change
    - give change for
    - keep the change
    - make change
    - make a change
    - make a change for another line II [tʃeɪndʒ] v
    1) менять, обменять, изменять, заменять, сменять
    - change smth beyond recognition
    - change the colour
    - change one's voice
    - change places
    - change money
    - change buses
    - change at a certain place
    - change for another train
    3) меняться, изменяться
    - change beyond recognition
    - honours change manners
    - change horses while crossing the stream
    WAYS OF DOING THINGS:
    Глаголы to change и to change smth, smb в значениях "менять, изменять, изменяться" описывают данное действие в наиболее общем виде, не учитывая характера и обстоятельств изменения. Уточнение характера изменения передается глаголами to alter, to vary, to fluctuate.
    Глагол to alter обозначает не полное изменение, а некоторое видоизменение, в чем он отличается от глагола to change, который предполагает полное изменение или постепенное изменение в течение длительного периода, в чем он сближается с глаголом to change: her face has altered much over the years с годами у нее изменилось лицо; my home town has not altered/changed much since I was there last мой родной город почти не изменился с тех пор, когда я был там в последний раз; she has changed (но не altered) since she went to college, she is quite a different person now она переменилась после того, как начала ходить в колледж; it is amusing to see how things change with times интересно наблюдать, как со временем меняется жизнь; how do you want this dress altered? (но не changed) как вы хотите переделать это платье?
    Глагол to vary описывает изменения, предполагает множественные варианты - варьировать, менять, меняться: his mood varies with weather у него настроение меняется в зависимости от погоды; how much milk do you use a day? - Oh, it varies. Сколько у вас уходит молока в день? - Ох, по-разному; we played chess at six o'clock every evening, and it never varied over these twenty years в шесть часов вечера мы всегда играем в шахматы и на разу за эти двадцать лет не изменили этому правилу.
    Глагол to fluctuate описывает также изменение, перемену, но подчеркивает, что это изменение от верхнего уровня к нижнему и обратно - может колебаться: blood pressure may fluctuate several times in the course of the day кровяное давление может меняться несколько раз в течение дня; prices for some goods fluctuate a lot цены на некоторые товары очень часто то подскакивают, то падают/цены на некоторые товары колеблются.

    English-Russian combinatory dictionary > change

  • 5 drift

    1. штрек
    2. уход
    3. упорядоченное движение
    4. смещение показаний прибора
    5. смещение нуль-пункта (гравиметра)
    6. смещение (характеристики)
    7. расширять трубу с помощью пробойника
    8. пробойник
    9. пробивать отверстия
    10. остаточная деформация (металла)
    11. лобовое сопротивление
    12. ледниковое отложение
    13. инерционность измерительного прибора с термопарой
    14. дрейф скорости носителя записи [сигналограммы]
    15. дрейф показаний средства измерений
    16. дрейф показаний
    17. дрейф выходного сигнала тензорезистора
    18. дрейф (в течеискании)
    19. дрейф

     

    дрейф
    отклонение
    смещение


    [ http://www.dunwoodypress.com/148/PDF/Biotech_Eng-Rus.pdf]

    Тематики

    Синонимы

    EN

     

    дрейф
    В течеискании относительно медленное изменение уровня выходного фонового сигнала течеискателя, обусловленное измерительной системой.
    [Система неразрушающего контроля. Виды (методы) и технология неразрушающего контроля. Термины и определения (справочное пособие). Москва 2003 г.]

    Тематики

    EN

     

    дрейф выходного сигнала тензорезистора
    дрейф выходного сигнала

    Изменение выходного сигнала тензорезистора во времени при фиксированных значениях влияющих величин и отсутствии деформации тензорезистора.
    [ ГОСТ 20420-75

    Тематики

    Синонимы

    EN

    DE

    FR

     

    дрейф показаний средства измерений
    дрейф показаний

    Изменение показаний средства измерений во времени, обусловленное изменением влияющих величин или других факторов.
    Пример. Ход хронометра, определяемый как разность поправок к его показаниям, вычисленных в разное время. Обычно ход хронометра определяют за сутки (суточный ход)
    Примечание. Если происходит дрейф показаний нуля, то применяют термин дрейф нуля.
    [РМГ 29-99]

    Тематики

    • метрология, основные понятия

    Синонимы

    EN

    DE

    FR

     

    дрейф скорости носителя записи [сигналограммы]
    Непреднамеренное изменение средней скорости записи [воспроизведения] носителя записи [сигналограммы], обычно выражаемое в процентах от номинальной скорости носителя записи [сигналограммы].
    [ ГОСТ 13699-91]

    Тематики

    EN

    DE

    FR

     

    инерционность измерительного прибора с термопарой
    дрейф
    уход частоты
    сдвиг
    отклонение
    медленное смещение


    [Л.Г.Суменко. Англо-русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.]

    Тематики

    Синонимы

    EN

     

    ледниковое отложение
    нанос
    делювий
    моренный материал

    (геол.)
    [ http://slovarionline.ru/anglo_russkiy_slovar_neftegazovoy_promyishlennosti/]

    Тематики

    Синонимы

    EN

     

    пробойник
    1. Плоская заостренная стальная пластинка для удаления сверл других инструментов из их держателей.
    2. Заостренный стержень, используемый для совмещения просверленных отверстий для заклепок или болтов.
    [ http://www.manual-steel.ru/eng-a.html]

    Тематики

    EN

     

    смещение (характеристики)

    [Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.]

    Тематики

    • электротехника, основные понятия

    EN

     

    смещение нуль-пункта (гравиметра)
    Нрк. сползание нуль-пункта
    ход нуль-пункта
    Изменение нуль-пункта гравиметра за принятый интервал времени.
    [ ГОСТ Р 52334-2005 ]

    Недопустимые, нерекомендуемые

    Тематики

    EN

    DE

    FR

     

    смещение показаний прибора

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    упорядоченное движение

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    уход
    дрейф

    Процесс изменения во времени угловой погрешности измерения или стабилизации гироскопического устройства.
    [Сборник рекомендуемых терминов. Выпуск 118. Г ироскопия. Академия наук СССР. Комитет научно-технической терминологии. 1984 г.]

    Тематики

    Обобщающие термины

    Синонимы

    EN

     

    штрек
    Горизонтальная подземная горная выработка, не имеющая непосредственного выхода на поверхность земли
    [Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)]

    Тематики

    EN

    DE

    FR

    3.6.1 дрейф показаний (drift): Изменение показаний газоанализатора во времени при неизменных составе анализируемого газа (в том числе чистого воздуха) и условиях окружающей среды.

    Источник: ГОСТ Р 52350.29.1-2010: Взрывоопасные среды. Часть 29-1. Газоанализаторы. Общие технические требования и методы испытаний газоанализаторов горючих газов оригинал документа

    3.11 дрейф показаний (drift): Смещение показаний газоанализатора стечением времени при постоянной величине объемной доли газа (в том числе чистого воздуха) и неизменных условиях окружающей среды.

    Источник: ГОСТ Р 52350.29.2-2010: Взрывоопасные среды. Часть 29-2. Газоанализаторы. Требования к выбору, монтажу, применению и техническому обслуживанию газоанализаторов горючих газов и кислорода оригинал документа

    3.31 дрейф (drift): Изменение показаний (выходного сигнала) газоанализатора для заданного значения концентрации за заявленный период времени при неизменных условиях внешних воздействий (состояния окружающей среды) и без любых регулировок газоанализатора внешними средствами.

    Примечание - Норму изменения погрешности со временем задают линейной аппроксимацией.

    Источник: ГОСТ Р МЭК 61207-1-2009: Газоанализаторы. Выражение эксплуатационных характеристик. Часть 1. Общие положения оригинал документа

    3.7 дрейф показаний (drift): Изменение выходного сигнала измерительного канала или датчика, которое может возникать между калибровками и которое нельзя связать с изменениями технологических параметров или условий окружающей среды.

    Источник: ГОСТ Р МЭК 62385-2012: Атомные станции. Контроль и управление, важные для безопасности. Методы оценки рабочих характеристик измерительных каналов систем безопасности оригинал документа

    Англо-русский словарь нормативно-технической терминологии > drift

  • 6 change

    1. n перемена, изменение

    change of station — командировка, перевод в другую часть

    subject to change — могущий измениться; подлежащий изменению

    sea change — изменение, преображение, полная трансформация

    improvement change — изменение, направленное на улучшение

    a change of heart — смена настроения; изменение отношения

    2. n замена, смена; подмена; разнообразие
    3. n смена

    control change — смена режима управления; смена операции

    4. n размен
    5. n обмен
    6. n сдача
    7. n разменная монета; мелкие деньги, мелочь

    change machine — разменный автомат, разменник

    small change — мелкие деньги, мелочь

    8. n пересадка
    9. n спец. превращение
    10. n астр. новая фаза Луны, новолуние
    11. n обыкн. трезвон
    12. n «параграф»
    13. v менять, изменять; переделывать
    14. v меняться, изменяться

    change data — изменять данные; изменение данных

    15. v обменивать
    16. v обмениваться, меняться
    17. v переодеваться
    18. v превращать
    19. v превращаться
    20. v портиться
    21. v разг. портить
    22. v переходить в новую фазу
    23. n биржа
    Синонимический ряд:
    1. anomaly (noun) anomaly; deviation; exception
    2. conversion (noun) conversion; metamorphosis; transfiguration; transformation; translation; transmutation
    3. difference (noun) difference; fluctuation
    4. modification (noun) alteration; modification; movement; mutation; permutation; shift; transition; turn; variation
    5. money (noun) cash; coins; currency; money; pocket money; silver
    6. remodeling (noun) remodeling; reorganization; restyling
    7. trade (noun) bartering; commutation; conversion; exchange; interchange; substitution; switch; trade; transposition
    8. variety (noun) diversion; diversity; innovation; novelty; reformation; shifting; sport; turnabout; variance; variety; vicissitude; vicissitudes
    9. modify (verb) alter; convert; correct; modify; modulate; refashion; regulate; rotate; turn; vary
    10. shift (verb) fluctuate; replace; resolve; shift; vacillate
    11. sterilize (verb) castrate; desexualize; fix; geld; mutilate; neuter; sterilize; unsex
    12. substitute (verb) alternate; exchange; interchange; inverse; invert; reverse; revert; substitute; swap; switch; trade; transplace; transpose
    13. transform (verb) commute; metamorphize; metamorphose; mutate; transfer; transfigure; transform; translate; transmogrify; transmute; transubstantiate
    Антонимический ряд:
    constancy; durability; duration; endure; firmness; immutability; invariability; keep; monotony; permanence; remain; retain; stability; stay

    English-Russian base dictionary > change

  • 7 continuity

    1. целостность (электрической) цепи
    2. прослеживаемость (сейсм.)
    3. постоянство пласта (в структурном отношении)
    4. плавность изменения сопротивления переменного резистора
    5. плавность
    6. непрерывность электрического контактирования переменного резистора
    7. непрерывность

     

    непрерывность
    Способность системы функционировать без перерывов в обслуживании с заданными рабочими характеристиками.
    [Л.М. Невдяев. Телекоммуникационные технологии. Англо-русский толковый словарь-справочник. Под редакцией Ю.М. Горностаева. Москва, 2002]

    непрерывность
    Общее понятие математики и кибернетики, не имеющее, по-видимому, общепринятого определения. В математике непрерывная функция та, значения которой близки, если близки значения аргументов. Для кибернетики здесь важно, что при незначительных изменениях входов системы выходы ее также изменяются незначительно. (См. также Непрерывная система.) Координаты системы и параметры модели, способные принимать любые вещественные значения на том или ином интервале, называются непрерывными. Для экономико-математического моделирования важно, что Н. в каком-то смысле противоположна дискретности. Экономико-математические модели с непрерывным временем — те, переменные которых «пробегают» все возможные значения на временном интервале, в отличие от моделей с дискретным временем, показатели которых изменяются скачками — допустим, с интервалом в месяц, год и т.п. При моделировании часто возникает задача дискретизации непрерывных переменных, в частности, когда надо придать численные значения качественным признакам. Это достигается путем введения разного рода балльных оценок, шкал.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

     

    непрерывность электрического контактирования переменного резистора
    Наличие непрерывного электрического контакта между резистивным элементом и подвижным контактом переменного резистора при перемещении последнего
    [ ГОСТ 21414-75

    Тематики

    EN

    DE

    FR

     

    плавность

    [Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.]

    Тематики

    • электротехника, основные понятия

    EN

     

    плавность изменения сопротивления переменного резистора
    Монотонное изменение сопротивления переменного резистора при перемещении его подвижной системы
    [ ГОСТ 21414-75

    Тематики

    EN

    DE

    FR

     

    целостность (электрической) цепи

    [Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.]

    Тематики

    • электротехника, основные понятия

    EN

    56. Плавность изменения сопротивления переменного резистора

    D. Sprungfreie Widerstandsveränderung

    E. Continuity

    F. Continuité

    Монотонное изменение сопротивления переменного резистора при перемещении его подвижной системы

    Источник: ГОСТ 21414-75: Резисторы. Термины и определения оригинал документа

    61. Непрерывность электрического контактирования переменного резистора

    D. Kontaktierungsstetigkeit

    E. Continuity

    F. Continuity

    Наличие непрерывного электрического контакта между резистивным элементом и подвижным контактом переменного резистора при перемещении последнего

    Источник: ГОСТ 21414-75: Резисторы. Термины и определения оригинал документа

    Англо-русский словарь нормативно-технической терминологии > continuity

  • 8 instability

    1. неустойчивость (приема)
    2. нестабильность магнитной величины
    3. нестабильность (параметров)
    4. нестабильность

     

    нестабильность
    Постоянное изменение структуры хромосомы, ее отдельного локуса или группы локусов, возникающее спонтанно или под действием некоторых мутагенов; признаком Н. является сохранение потенциальной возможности таких изменений в ряду клеточных поколений; явление, вероятно, близкое к Н., проявляющееся спонтанно, было описано на кукурузе Б. Мак-Клинток при открытии системы активации-диссоциации.
    [Арефьев В.А., Лисовенко Л.А. Англо-русский толковый словарь генетических терминов 1995 407с.]

    Тематики

    EN

     

    нестабильность (параметров)
    Уход частоты или изменение коэффициента усиления вследствие воздействия различных дестабилизирующих факторов. См. long-termfrequency ~, short-term frequency ~.
    [Л.М. Невдяев. Телекоммуникационные технологии. Англо-русский толковый словарь-справочник. Под редакцией Ю.М. Горностаева. Москва, 2002]

    Тематики

    • электросвязь, основные понятия

    EN

     

    нестабильность магнитной величины
    Относительное изменение магнитной величины, вызванное воздействием на магнитный материал механических, климатических и других внешних факторов.
    [ ГОСТ 19693-74

    Тематики

    EN

    DE

    FR

     

    неустойчивость (приема)
    Неуверенный прием сигналов, когда качество связи становится ниже заданного уровня или нарушается устойчивость воспроизведения изображения.
    [Л.М. Невдяев. Телекоммуникационные технологии. Англо-русский толковый словарь-справочник. Под редакцией Ю.М. Горностаева. Москва, 2002]

    Тематики

    • электросвязь, основные понятия

    EN

    5.2.9 нестабильность (instability): Изменение результата измерения, включающее в себя дрейф и флуктуации, являющиеся результатом изменения градуировочной функции за установленный период необслуживаемой работы, для заданного значения характеристики качества воздуха, причем дрейф и флуктуации обусловливают соответственно монотонное и стохастическое изменение выходного сигнала со временем.

    Источник: ГОСТ Р ИСО 6879-2005: Качество воздуха. Характеристики и соответствующие им понятия, относящиеся к методам измерений качества воздуха оригинал документа

    Англо-русский словарь нормативно-технической терминологии > instability

  • 9 signal

    1. СИГНАЛЫ
    2. сигнал системы управления машины
    3. сигнал (в электросвязи)
    4. сигнал

     

    cигнал
    1. Материальный носитель информации, содержащий в себе информацию, кодированную определенным образом.
    2. Любая физическая величина (например, температура, давление воздуха, интенсивность света и т. п.), которая изменяется со временем. Именно благодаря этому изменению сигнал может нести в себе некую информацию.
    [ http://life-prog.ru/view_programmer.php?id=146&page=15]

    сигнал

    Визуальное, звуковое или осязательное обозначение передаваемой информации
    [ ГОСТ Р МЭК 60447-2000]

    сигнал

    Материальное воплощение сообщения, представляющее собой изменение некоторой физической величины.
    [ ГОСТ 23829-79]

    сигнал
    В области контроля технического состояния изделий используется понятие "сигнал", которое включает следующие компоненты:
    наличие физической величины (несущей величины), характеризующей материальный (энергетический) носитель воздействия;
    изменение значений данной физической величины содержит информацию об источнике воздействия и физической среде, взаимодействующей с отображаемым материальным носителем;
    изменение несущей величины во времени характеризуется совокупностью физических величин, взаимосвязь которых представляется определенной математической функцией.
    Пример
    Периодический сигнал в виде гармонического колебания тока.
    Несущая физическая величина - ток, как характеристика направленного движения электронов. Изменение тока в данном случае характеризуется зависимостью I (t) = A·cos(2π/T - φ) = A·cos(ωt - φ), т.е. связанной совокупностью физических величин A, T, ω, φ (амплитуда, период, угловая частота и начальная фаза соответственно).
    [ ГОСТ 19919-74]

    сигнал
    Форма представления данных, при которой данные рассматриваются в виде последовательности значений скалярной величины - записанной (измеренной) во времени.
    [ ГОСТ Р 50304-92]

    сигнал
    Форма представления информации для передачи по каналу.
    Примечание. В зависимости от множества возможных сигналов и области их определения во времени различают четыре вида сигналов: дискретные дискретного времени, дискретные непрерывного времени, непрерывные дискретного времени и непрерывные непрерывного времени; первые и последние соответственно именуются также «дискретными сигналами» и «непрерывными сигналами».
    [Сборник рекомендуемых терминов. Выпуск 94. Теория передачи информации. Академия наук СССР. Комитет технической терминологии. 1979 г.]

    сигнал
    Совокупность несущего воздействия и передаваемой им информации.
    [Сборник рекомендуемых терминов. Выпуск 107. Теория управления. Академия наук СССР. Комитет научно-технической терминологии. 1984 г.]

    сигнал
    Знак, физический процесс или явление, несущие информацию. В кибернетике выделяют четыре компонента С.: физический носитель (природа его может быть самой различной: звуковой, электрической и т.п.), форма выражения (см. Синтаксический аспект информации), интерпретация смысла (см. Семантический аспект информации), правила приписывания различного смысла одному и тому же С. (см. Прагматический аспект информации). Общие закономерности преобразования и передачи С. изучаются теорией информации.
    [ http://slovar-lopatnikov.ru/]

    EN

    signal
    unit of information conveyed from one object to another
    NOTE Messages (units of signals) may be sent in a communication network in the form of telegrams. Such messages may represent one or several signals
    [IEC 61175, ed. 2.0 (2005-09)]

    signal
    visual, acoustic or tactile message conveying information
    [IEC 60447, ed. 3.0 (2004-01)]

    signal
    variation of a physical quantity used to represent data
    NOTE A signal is represented by one or several parameters.
    [IEC 60706-5, ed. 2.0 (2007-09)]

    signal
    physical variable of which one or more parameters carry information about one or more variables represented by the signal
    [IEC 60770-2, ed. 3.0 (2010-11)]

    FR

    signal
    unité d'information transportée d'un objet vers un autre
    NOTE Des messages (unités de signaux) peuvent être envoyés dans un réseau de communication sous la forme de télégrammes. De tels messages peuvent représenter un ou plusieurs signaux.
    [IEC 61175, ed. 2.0 (2005-09)]

    signal
    message visuel, acoustique ou tactile véhiculant de l'information
    [IEC 60447, ed. 3.0 (2004-01)]

    signal
    variation d’une quantité physique utilisée pour représenter des données
    NOTE Un signal est représenté par un ou plusieurs paramètres.
    [IEC 60706-5, ed. 2.0 (2007-09)]

    signal
    variable physique dont un ou plusieurs paramètres contiennent des informations sur une ou plusieurs variables représentées par le signal
    [IEC 60770-2, ed. 3.0 (2010-11)]

    КЛАССИФИКАЦИЯ

    • По физической природой носителя информации:
      • электрические;
      • электромагнитные;
      • оптические;
      • акустические и др.;
    • По способу задания сигнала:
      • регулярные (детерминированные), заданные аналитической функцией;
      • нерегулярные (случайные), которые принимают произвольные значения в любой момент времени.
        Для описания таких сигналов используются средства теории вероятности;
    • В зависимости от функции, описывающей параметры сигнала, выделяют сигналы:

    [ Источник с изменениями]

    Тематики

    • автоматизация, основные понятия
    • виды (методы) и технология неразр. контроля
    • контроль автоматизир. тех. состояния авиац. техники
    • системы для сопряж. радиоэлектр. средств интерфейсные
    • теория передачи информации
    • экономика

    EN

    FR

     

    сигнал (в электросвязи)
    Физическая величина, одна или несколько характеристик которой могут изменяться для передачи и/или отображения информации (ОСТ 45.159-2000.1 Термины и определения (Минсвязи России)).
    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    Тематики

    • электросвязь, основные понятия

    EN

     

    сигнал системы управления машины
    сигнал системы управления
    сигнал

    Определенное значение физической величины (электрического тока, давления жидкости и газа, перемещения твердого тела), которое дает информацию о положении или требуемом изменении положения исполнительного органа или какого-либо другого твердого тела машины.
    [Сборник рекомендуемых терминов. Выпуск 99. Теория механизмов и машин. Академия наук СССР. Комитет научно-технической терминологии. 1984 г.]

    Тематики

    Обобщающие термины

    Синонимы

    EN

    FR

    3.4 сигнал (signal): Воздействие на органы чувств оператора, характеризующее состояние или изменение состояния производственного оборудования. Настоящий стандарт описывает сигналы, распознаваемые органами зрения (видеодисплей), слуха (акустический индикатор) или осязания (тактильный индикатор).

    Источник: ГОСТ Р ИСО 9355-2-2009: Эргономические требования к проектированию дисплеев и механизмов управления. Часть 2. Дисплеи оригинал документа

    Англо-русский словарь нормативно-технической терминологии > signal

  • 10 signal

    1. сигнал

     

    cигнал
    1. Материальный носитель информации, содержащий в себе информацию, кодированную определенным образом.
    2. Любая физическая величина (например, температура, давление воздуха, интенсивность света и т. п.), которая изменяется со временем. Именно благодаря этому изменению сигнал может нести в себе некую информацию.
    [ http://life-prog.ru/view_programmer.php?id=146&page=15]

    сигнал

    Визуальное, звуковое или осязательное обозначение передаваемой информации
    [ ГОСТ Р МЭК 60447-2000]

    сигнал

    Материальное воплощение сообщения, представляющее собой изменение некоторой физической величины.
    [ ГОСТ 23829-79]

    сигнал
    В области контроля технического состояния изделий используется понятие "сигнал", которое включает следующие компоненты:
    наличие физической величины (несущей величины), характеризующей материальный (энергетический) носитель воздействия;
    изменение значений данной физической величины содержит информацию об источнике воздействия и физической среде, взаимодействующей с отображаемым материальным носителем;
    изменение несущей величины во времени характеризуется совокупностью физических величин, взаимосвязь которых представляется определенной математической функцией.
    Пример
    Периодический сигнал в виде гармонического колебания тока.
    Несущая физическая величина - ток, как характеристика направленного движения электронов. Изменение тока в данном случае характеризуется зависимостью I (t) = A·cos(2π/T - φ) = A·cos(ωt - φ), т.е. связанной совокупностью физических величин A, T, ω, φ (амплитуда, период, угловая частота и начальная фаза соответственно).
    [ ГОСТ 19919-74]

    сигнал
    Форма представления данных, при которой данные рассматриваются в виде последовательности значений скалярной величины - записанной (измеренной) во времени.
    [ ГОСТ Р 50304-92]

    сигнал
    Форма представления информации для передачи по каналу.
    Примечание. В зависимости от множества возможных сигналов и области их определения во времени различают четыре вида сигналов: дискретные дискретного времени, дискретные непрерывного времени, непрерывные дискретного времени и непрерывные непрерывного времени; первые и последние соответственно именуются также «дискретными сигналами» и «непрерывными сигналами».
    [Сборник рекомендуемых терминов. Выпуск 94. Теория передачи информации. Академия наук СССР. Комитет технической терминологии. 1979 г.]

    сигнал
    Совокупность несущего воздействия и передаваемой им информации.
    [Сборник рекомендуемых терминов. Выпуск 107. Теория управления. Академия наук СССР. Комитет научно-технической терминологии. 1984 г.]

    сигнал
    Знак, физический процесс или явление, несущие информацию. В кибернетике выделяют четыре компонента С.: физический носитель (природа его может быть самой различной: звуковой, электрической и т.п.), форма выражения (см. Синтаксический аспект информации), интерпретация смысла (см. Семантический аспект информации), правила приписывания различного смысла одному и тому же С. (см. Прагматический аспект информации). Общие закономерности преобразования и передачи С. изучаются теорией информации.
    [ http://slovar-lopatnikov.ru/]

    EN

    signal
    unit of information conveyed from one object to another
    NOTE Messages (units of signals) may be sent in a communication network in the form of telegrams. Such messages may represent one or several signals
    [IEC 61175, ed. 2.0 (2005-09)]

    signal
    visual, acoustic or tactile message conveying information
    [IEC 60447, ed. 3.0 (2004-01)]

    signal
    variation of a physical quantity used to represent data
    NOTE A signal is represented by one or several parameters.
    [IEC 60706-5, ed. 2.0 (2007-09)]

    signal
    physical variable of which one or more parameters carry information about one or more variables represented by the signal
    [IEC 60770-2, ed. 3.0 (2010-11)]

    FR

    signal
    unité d'information transportée d'un objet vers un autre
    NOTE Des messages (unités de signaux) peuvent être envoyés dans un réseau de communication sous la forme de télégrammes. De tels messages peuvent représenter un ou plusieurs signaux.
    [IEC 61175, ed. 2.0 (2005-09)]

    signal
    message visuel, acoustique ou tactile véhiculant de l'information
    [IEC 60447, ed. 3.0 (2004-01)]

    signal
    variation d’une quantité physique utilisée pour représenter des données
    NOTE Un signal est représenté par un ou plusieurs paramètres.
    [IEC 60706-5, ed. 2.0 (2007-09)]

    signal
    variable physique dont un ou plusieurs paramètres contiennent des informations sur une ou plusieurs variables représentées par le signal
    [IEC 60770-2, ed. 3.0 (2010-11)]

    КЛАССИФИКАЦИЯ

    • По физической природой носителя информации:
      • электрические;
      • электромагнитные;
      • оптические;
      • акустические и др.;
    • По способу задания сигнала:
      • регулярные (детерминированные), заданные аналитической функцией;
      • нерегулярные (случайные), которые принимают произвольные значения в любой момент времени.
        Для описания таких сигналов используются средства теории вероятности;
    • В зависимости от функции, описывающей параметры сигнала, выделяют сигналы:

    [ Источник с изменениями]

    Тематики

    • автоматизация, основные понятия
    • виды (методы) и технология неразр. контроля
    • контроль автоматизир. тех. состояния авиац. техники
    • системы для сопряж. радиоэлектр. средств интерфейсные
    • теория передачи информации
    • экономика

    EN

    FR

    Франко-русский словарь нормативно-технической терминологии > signal

  • 11 AEVUM

    aeon - вечность; непрерывная длительность, неизменная в своей природе, имеющая начало, но не имеющая конца (Simplicius, Phys. IY, 154). Согласно Фоме (Quaest. Quodl. Y, q. 4, a.7 concl.): "Вечность (aeon) есть не что иное как причастие к божественной вечности, так что субстанциальная вечность является атрибутом самого Бога, но aeon означает причастие к вечности, духовным надвременным сущностям". Aeon есть посредник между временем и вечностью (eternity). Фома указывает (Sum. Theol. 1, q. 10, a. 5 concl.): "Так как вечность (eternity) есть мера непрерывного бытия, в том смысле, что все исходит из неизменного бытия, а следовательно из вечности, то конкретные вещи исходят из неизменности бытия таким образом, что их бытие является субъектом изменения и состоит из изменения, и вещи этого сорта измеряются временем, как например, движение и подобие составляют бытие всех изменяющихся вещей. С другой стороны, конкретные вещи менее исходят из неизменности бытия, так как этому бытию не присуще ни изменение, ни оно само не является субъектом изменения. Тем не менее, сами вещи ограничены в изменении как актуально, так и потенциально. Это особенно ясно в случае с божественными телами, чье субстанциальное бытие неизменно; хотя наряду с неизменным бытием они имеют способность изменяться в зависимости от места. Особенно это ясно в случае с ангелами, потому что они имеют вечное бытие наряду с изменчивостью в зависимости от предопределения, насколько это свойственно их природе и в согласии с их интеллектом, включенностью и местом в ангельской иерархии. Следовательно, вещи подобного рода имеют критерием или мерой вечность (aeon), которая является посредником между божественной вечностью (eternity) и временем. Бытие, измеряемое вечностью, как не является изменчивым, так и не имеет отношение к изменчивости. Так время бывает предшествующим и последующим: вечность не содержит в себе предшествования и последования, они объединены в нем; божественная вечность не имеет предшествования и последования и несовместима с вними."

    Латинские философские термины > AEVUM

  • 12 AEVUM (AEON)

    вечность, эра, зон; непрерывная длительность, неизменная в своей природе, имеющая начало, но не имеющая конца. Согласно Фоме: «Зон есть не что иное, как причастие к Божественной вечности, потому что субстанциальная вечность является атрибутом самого Бога, но aeon означает причастие к вечности, духовным надвременным сущностям» (Thomas Aquinas. Quaest. Quodl. V, q. 4, a. 7 concl.). Зон есть посредник между временем и вечностью (aeternitas). Фома пишет: «Так как вечность есть мера непрерывного бытия в том смысле, что все исходит из неизменного бытия, а следовательно, из вечности, то конкретные вещи исходят из неизменности бытия таким образом, что их бытие является субъектом изменения и состоит из изменения, и вещи этого рода измеряются временем, как, например, движение и подобие составляют бытие всех изменяющихся вещей. С другой стороны, конкретные вещи менее исходят из неизменности бытия, так как этому бытию не присуще изменение и оно само не является субъектом изменения. Тем не менее сами вещи ограничены в изменении как актуально, так и потенциально. Это особенно ясно в случае с божественными телами, чье субстанциальное бытие неизменно; хотя наряду с неизменным бытием они имеют способность изменяться в зависимости от места. Особенно это ясно в случае с ангелами, потому что они имеют вечное бытие наряду с изменчивостью в зависимости от предопределения, насколько это свойственно их природе и в согласии с их интеллектом, включенностью и местом в ангельской иерархии. Следовательно, вещи подобного рода имеют критерием или мерой [иную] вечность (aeon), которая является посредником между божественной вечностью и временем» (Thomas Aquinas. Sum. Theol. I, q. 10, a. 5 concl.).

    Латинский словарь средневековых философских терминов > AEVUM (AEON)

  • 13 time in economic system

    1. время в экономической системе

     

    время в экономической системе
    Фактор времени — компонент любой динамической экономико-математической модели. В учете фактора времени особое значение имеют соизмерение затрат и результатов, относящихся к разным периодам (см. Дисконтирование), лаги запаздывания эффектов по отношению к воздействиям, вызвавшим эти эффекты. Основная единица времени в экономических расчетах — год, но бывают модели с квартальным, месячным, суточным шагом. Это относится главным образом к моделям, которые предназначены для решения практических задач, их называют моделями с «дискретным (прерывным) временем». В теоретических же исследованиях часто используются модели с «непрерывным временем» (их переменные изменяются непрерывно, без «скачков» от года к году или деления на другие периоды). Впрочем, нередко и практические задачи решаются «в непрерывном времени». При этом недостающие значения, соответствующие моментам времени между известными моментами (например, началом и концом года), находят с помощью интерполирования. Математический аппарат для решения задач с дискретным и непрерывным временем различен. Для описания процессов развития в первом случае применяются разностные уравнения, во втором случае — дифференциальные уравнения. Обозначения. В дискретном анализе последовательные интервалы времени принято обозначать буквами t или q, например, t = 1, 2, …, n. Соответствующие значения переменных модели — подстрочными (или надстрочными) индексами; например, капиталовложения в году t обозначим Kt, в предшествующем году — Kt-1, в последующем Kt+1, и т.д. Функцией времени называется функция, которая отображает изменение экономического показателя (см. Переменная модели) в зависимости от времени — как аргумента. Следовательно, (в случае непрерывного анализа) скорость изменения показателя равна производной по времени, например, где V(c - скорость изменения себестоимости продукции c; t — время. См. также Временное предпочтение, Временной ряд, Долгосрочный период, Краткосрочный период, Лаг.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > time in economic system

  • 14 DP

    1. процессор для обработки данных
    2. проект предложения
    3. приоритет при отбрасывании
    4. предварительное сообщение
    5. порт пункта назначения
    6. перепад давлений
    7. обработка данных
    8. импульс набора номера
    9. дистанционная защита
    10. динамическое программирование
    11. выявленный загрязнитель воздуха, не имеющий установленных норм по предельно-допустимой концентрации

     

    выявленный загрязнитель воздуха, не имеющий установленных норм по предельно-допустимой концентрации

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    динамическое программирование

    [Е.С.Алексеев, А.А.Мячев. Англо-русский толковый словарь по системотехнике ЭВМ. Москва 1993]

    динамическое программирование
    Раздел математического программирования, совокупность приемов, позволяющих находить оптимальные решения, основанные на вычислении последствий каждого решения и выработке оптимальной стратегии для последующих решений. Процессы принятия решений, которые строятся по такому принципу, называются многошаговыми процессами. Математически оптимизационная задача строится в Д. п. с помощью таких соотношений, которые последовательно связаны между собой: например, полученный результат для одного года вводится в уравнение для следующего (или, наоборот, для предыдущего), и т.д. Таким образом, можно получить на вычислительной машине результаты решения задачи для любого избранного момента времени и «следовать» дальше. Д.п. применяется не обязательно для задач, связанных с течением времени. Многошаговым может быть и процесс решения вполне «статической» задачи. Таковы, например, некоторые задачи распределения ресурсов. Общим для задач Д.п. является то, что переменные в модели рассматриваются не вместе, а последовательно, одна за другой. Иными словами, строится такая вычислительная схема, когда вместо одной задачи со многими переменными строится много задач с малым числом (обычно даже одной) переменных в каждой. Это значительно сокращает объем вычислений. Однако такое преимущество достигается лишь при двух условиях: когда критерий оптимальности аддитивен, т.е. общее оптимальное решение является суммой оптимальных решений каждого шага, и когда будущие результаты не зависят от предыстории того состояния системы, при котором принимается решение. Все это вытекает из принципа оптимальности Беллмана (см. Беллмана принцип оптимальности), лежащего в основе теории Д.п. Из него же вытекает основной прием — нахождение правил доминирования, на основе которых на каждом шаге производится сравнение вариантов будущего развития и заблаговременное отсеивание заведомо бесперспективных вариантов. Когда эти правила обращаются в формулы, однозначно определяющие элементы последовательности один за другим, их называют разрешающими правилами. Процесс решения при этом складывается из двух этапов. На первом он ведется «с конца»: для каждого из различных предположений о том, чем кончился предпоследний шаг, находится условное оптимальное управление на последнем шаге, т.е. управление, которое надо применить, если предпоследний шаг закончился определенным образом. Такая процедура проводится до самого начала, а затем — второй раз — выполняется от начала к концу, в результате чего находятся уже не условные, а действительно оптимальные шаговые управления на всех шагах операции (см. пример в статье Дерево решений). Несмотря на выигрыш в сокращении вычислений при использовании подобных методов по сравнению с простым перебором возможных вариантов, их объем остается очень большим. Поэтому размерность практических задач Д.п. всегда незначительна, что ограничивает его применение. Можно выделить два наиболее общих класса задач, к которым в принципе мог бы быть применим этот метод, если бы не «проклятие размерности». (На самом деле на таких задачах, взятых в крайне упрощенном виде, пока удается лишь демонстрировать общие основы метода и анализировать экономико-математические модели). Первый — задачи планирования деятельности экономического объекта (предприятия, отрасли и т.п.) с учетом изменения потребности в производимой продукции во времени. Второй класс задач — оптимальное распределение ресурсов между различными направлениями во времени. Сюда можно отнести, в частности, такую интересную задачу: как распределить урожай зерна каждого года на питание и на семена, чтобы в сумме за ряд лет получить наибольшее количество хлеба?
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

     

    дистанционная защита
    -

    [В.А.Семенов Англо-русский словарь по релейной защите]

    дистанционная защита
    Защита с относительной селективностью, срабатывание и селективность которой зависят от измерения в месте ее установки электрических величин, по которым путем сравнения с уставками зон оценивается эквивалентная удаленность повреждения
    [Разработка типовых структурных схем микропроцессорных устройств РЗА на объектах ОАО "ФКС ЕЭС". Пояснительная записка. Новосибирск 2006 г.]

    дистанционная защита
    Защита, чье действие и селективность основаны на локальном измерении электрических величин, по которым рассчитываются эквивалентные расстояния до места повреждения в пределах установленных зон.
    [ http://docs.cntd.ru/document/1200069370]

    дистанционная защита
    Защита, принцип действия и селективность которой основаны на измерении в месте установки защиты электрических величин, характеризующих повреждение, и сравнении их с уставками зон.
    [Циглер Г. Цифровая дистанционная защита: принципы и применение. М.: Энергоиздат. 2005]

    EN

    distance protection
    distance relay (US)

    a non-unit protection whose operation and selectivity depend on local measurement of electrical quantities from which the equivalent distance to the fault is evaluated by comparing with zone settings
    [IEV ref 448-14-01]

    FR

    protection de distance
    protection à sélectivité relative de section dont le fonctionnement et la sélectivité dépendent de la mesure locale de grandeurs électriques à partir desquelles la distance équivalente du défaut est évaluée par comparaison avec des réglages de zones
    [IEV ref 448-14-01]

    Дистанционные защиты применяются в сетях сложной конфигурации, где по соображениям быстродействия и чувствительности не могут использоваться более простые максимальные токовые и токовые направленные защиты.
    Дистанционной защитой определяется сопротивление (или расстояние - дистанция) до места КЗ, и в зависимости от этого защита срабатывает с меньшей или большей выдержкой времени. Следует уточнить, что современные дистанционные защиты, обладающие ступенчатыми характеристиками времени, не измеряют каждый раз при КЗ значение указанного выше сопротивления на зажимах измерительного органа и не устанавливают в зависимости от этого большую или меньшую выдержку времени, а всего лишь контролируют зону, в которой произошло повреждение. Время срабатывания защиты при КЗ в любой точке рассматриваемой зоны остается неизменным. Каждая защита выполняется многоступенчатой, причем при КЗ в первой зоне, охватывающей 80-85% длины защищаемой линии, время срабатывания защиты не более 0,15 с. Для второй зоны, выходящей за пределы защищаемой линии, выдержка времени на ступень выше и колеблется в пределах 0,4-0,6 с. При КЗ в третьей зоне выдержка времени еще более увеличивается и выбирается так же, как и для направленных токовых защит.
    На рис. 7.15 показан участок сети с двухсторонним питанием и приведены согласованные характеристики выдержек времени дистанционных защит (ДЗ). При КЗ, например, в точке К1 - первой зоне действия защит ДЗ3 и ДЗ4 - они сработают с минимальным временем соответственно t I3 и t I4. Защиты ДЗ1 и ДЗ6 также придут в действие, но для них повреждение будет находиться в III зоне, и они могут сработать как резервные с временем t III1 и t III6 только в случае отказа в отключении линии БВ собственными защитами.


    4610
    Рис. 7.14. Размещение токовых направленных защит нулевой последовательности на участке сетей и характеристики выдержек времени защит:
    Р31-Р36 - комплекты токовых направленных защит нулевой последовательности


    4611
    Рис. 7.15. Защита участка сети дистанционными защитами и характеристики выдержек времени этих защит:
    ДЗ1-ДЗ6 - комплекты дистанционных защит; l3 и l4 - расстояния от мест установки защит до места повреждения


    При КЗ в точке К2 (шины Б) оно устраняется действием защит ДЗ1 и ДЗ4 с временем t II1 и t II4.
    Дистанционная защита - сложная защита, состоящая из ряда элементов (органов), каждый из которых выполняет определенную функцию. На рис. 7.16 представлена упрощенная схема дистанционной защиты со ступенчатой характеристикой выдержки времени. Схема имеет пусковой и дистанционный органы, а также органы направления и выдержки времени.
    Пусковой орган ПО выполняет функцию отстройки защиты от нормального режима работы и пускает ее в момент возникновения КЗ. В качестве такого органа в рассматриваемой схеме применено реле сопротивления, реагирующее на ток I р и напряжение U p на зажимах реле.
    Дистанционные (или измерительные) органы ДО1 и ДО2 устанавливают меру удаленности места КЗ.
    Каждый из них выполнен при помощи реле сопротивления, которое срабатывает при КЗ, если
    4612
    где Z p - сопротивление на зажимах реле; Z - сопротивление защищаемой линии длиной 1 км; l - длина участка линии до места КЗ, км; Z cp - сопротивление срабатывания реле.
    Из приведенного соотношения видно, что сопротивление на зажимах реле Z p пропорционально расстоянию l до места КЗ.
    Органы выдержки времени ОВ2 и ОВ3 создают выдержку времени, с которой защита действует на отключение линии при КЗ во второй и третьей зонах. Орган направления OHM разрешает работу защиты при направлении мощности КЗ от шин в линию.
    В схеме предусмотрена блокировка БН, выводящая защиту из действия при повреждениях цепей напряжения, питающих защиту. Дело в том, что если при повреждении цепей напряжение на зажимах защиты Uр=0, то Zp=0. Это означает, что и пусковой, и дистанционный органы могут сработать неправильно. Для предотвращения отключения линии при появлении неисправности в цепях напряжения блокировка снимает с защиты постоянный ток и подает сигнал о неисправности цепей напряжения. Оперативный персонал в этом случае обязан быстро восстановить нормальное напряжение на защите. Если по какой-либо причине это не удается выполнить, защиту следует вывести из действия переводом накладки в положение "Отключено".

    4613
    Рис. 7.16. Принципиальная схема дистанционной защиты со ступенчатой характеристикой выдержки времени

    Работа защиты.

    При КЗ на линии срабатывают реле пускового органа ПО и реле органа направления OHM. Через контакты этих реле плюс постоянного тока поступит на контакты дистанционных органов и на обмотку реле времени третьей зоны ОВ3 и приведет его в действие. Если КЗ находится в первой зоне, дистанционный орган ДО1 замкнет свои контакты и пошлет импульс на отключение выключателя без выдержки времени. При КЗ во второй зоне ДО1 работать не будет, так как значение сопротивления на зажимах его реле будет больше значения сопротивления срабатывания. В этом случае сработает дистанционный орган второй зоны ДО2, который запустит реле времени ОВ2. По истечении выдержки времени второй зоны от реле ОВ2 поступит импульс на отключение линии. Если КЗ произойдет в третьей зоне, дистанционные органы ДО1 и ДО2 работать не будут, так как значения сопротивления на их зажимах больше значений сопротивлений срабатывания. Реле времени ОВ3, запущенное в момент возникновения КЗ контактами реле OHM, доработает и по истечении выдержки времени третьей зоны пошлет импульс на отключение выключателя линии. Дистанционный орган для третьей зоны защиты, как правило, не устанавливается.
    В комплекты дистанционных защит входят также устройства, предотвращающие срабатывание защит при качаниях в системе.

    [ http://leg.co.ua/knigi/raznoe/obsluzhivanie-ustroystv-releynoy-zaschity-i-avtomatiki-4.html]

     

    Тематики

    Синонимы

    EN

    DE

    • Distanzschutz, m

    FR

     

    импульс набора номера

    [Л.Г.Суменко. Англо-русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.]

    Тематики

    EN

     

    обработка данных
    Систематическое осуществление операций над данными.
    [ИСО/МЭК 2382-1]
    [ ГОСТ Р 52292-2004]

    обработка данных
    Технологическая операция, в результате которой изменяет свое значение хотя бы один из показателей, характеризующих состояние данных (объем данных при этом не изменяется).
    [ ГОСТ Р 51170-98]

    обработка данных
    - Любое преобразование данных при решении конкретной задачи.
    - Работа, выполняемая компьютером.
    [ http://www.morepc.ru/dict/]

    обработка данных
    Процесс приведения данных к виду, удобному для использования. Независимо от вида информации, которая должна быть получена, и типа оборудования любая система О.д. выполняет три основные группы операций: подбор исходных, входных данных (см. Сбор данных), собственно их обработку (в процессе которой система оперирует промежуточными данными), получение и анализ результатов, т.е. выходных данных). Выполняет ли эти операции человек или машина (см. Автоматизированная система обработки данных), все равно они следуют при этом заданному алгоритму (для человека это могут быть инструкция, методика, а для ЭВМ — программа). Важным процессом О.д. является агрегирование, укрупнение их от одной к другой ступени хозяйственной иерархии. Проверка статистических данных, приведение их к сопоставимому виду, сложение, вычитание и другие арифметические операции — тоже процессы О.д. Можно назвать также выборку, отсечение ненужных данных, запоминание, изменение последовательности (упорядочение), классификацию и многие другие. О.д. предшествует во времени принятию решений. Она может производиться эпизодически, периодически (т.е. через заданные промежутки времени), в АСУ — также в реальном масштабе времени. Последнее означает, что О.д. производится с той же скоростью, с какой протекают описываемые ими события, иначе говоря — со скоростью, достаточной для анализа событий и управления их последующим ходом.
    [ http://slovar-lopatnikov.ru/]


    Тематики

    EN

     

    перепад давлений

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    порт пункта назначения
    (МСЭ-T G.7041/ Y.1303).
    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    Тематики

    • электросвязь, основные понятия

    EN

     

    предварительное сообщение

    [Е.С.Алексеев, А.А.Мячев. Англо-русский толковый словарь по системотехнике ЭВМ. Москва 1993]

    Тематики

    EN

     

    приоритет при отбрасывании
    (МСЭ-T G.8010/ Y.1306).
    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    Тематики

    • электросвязь, основные понятия

    EN

     

    проект предложения

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    процессор для обработки данных

    [Е.С.Алексеев, А.А.Мячев. Англо-русский толковый словарь по системотехнике ЭВМ. Москва 1993]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > DP

  • 15 drift

    смещение, изменение характеристик

    - 1. Изменение механических или электрических характеристик, связанных со временем, колебаниями температуры или и тем и другим совместно. 2. Перемещение носителей тока в проводниках под влиянием приложенного напряжения. 3. Изменение отношения «выход - вход» на период времени с нештатными входными характеристиками, влиянием окружающих условий и нагрузки. 4. В градирнях: потери воды за счет выноса капель уходящим воздухом. Последнее не связано с расходованием воды на испарение.

    Англо-русский словарь по кондиционированию и вентиляции > drift

  • 16 drift

    смещение, изменение характеристик

    - 1. Изменение механических или электрических характеристик, связанных со временем, колебаниями температуры или и тем и другим совместно. 2. Перемещение носителей тока в проводниках под влиянием приложенного напряжения. 3. Изменение отношения «выход - вход» на период времени с нештатными входными характеристиками, влиянием окружающих условий и нагрузки. 4. В градирнях: потери воды за счет выноса капель уходящим воздухом. Последнее не связано с расходованием воды на испарение.

    English-Russian dictionary of terms for heating, ventilation, air conditioning and cooling air > drift

  • 17 creep

    1. утечка по поверхности (изолятора)
    2. самопроизвольное вращение
    3. провисание (кровли)
    4. ползучесть тензорезистора
    5. ползучесть
    6. ползти
    7. оползание
    8. нарастание
    9. набегание
    10. медленное равномерное проскальзывание
    11. магнитное последействие
    12. десерпция
    13. вползание (электролита)

     

    вползание (электролита)

    [Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.]

    Тематики

    • электротехника, основные понятия

    EN

     

    десерпция
    крип
    сползание

    Медленное смещение или сползание рыхлых образований вниз по склону из-за колебаний объёма отложений при постоянном воздействии силы тяжести.
    [ Словарь геологических терминов и понятий. Томский Государственный Университет]

    Тематики

    • геология, геофизика

    Обобщающие термины

    Синонимы

    EN

     

    магнитное последействие

    [Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.]

    Тематики

    • электротехника, основные понятия

    EN

     

    набегание
    сползание
    ползучесть


    [Л.Г.Суменко. Англо-русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.]

    Тематики

    Синонимы

    EN

     

    нарастание
    (напряжённости поля в магнитопроводе)

    [Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва, 1999]

    Тематики

    • электротехника, основные понятия

    EN

     

    ползучесть
    Процесс непрерывного деформирования материала во времени при постоянной нагрузке.
    [Сборник рекомендуемых терминов. Выпуск 82. Строительная механика. Академия наук СССР. Комитет научно-технической терминологии. 1970 г.]

    ползучесть

    Изменение деформации и (или) прочности под воздействием постоянной растягивающей нагрузки.
    [ ГОСТ Р 53225-2008]

    ползучесть

    Способность материалов к медленному нарастанию во времени пластических деформаций при действии нагрузки или механического напряжения
    [Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)]

    Тематики

    EN

    DE

    FR

     

    ползучесть тензорезистора
    ползучесть

    Изменение выходного сигнала тензорезистора во времени при фиксированном значении деформации, вызвавшей этот сигнал, и при фиксированных значениях влияющих величин с учетом поправки на дрейф.
    [ ГОСТ 20420-75

    Тематики

    Синонимы

    EN

    DE

    FR

     

    самопроизвольное вращение
    самоход


    [Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.]

    Тематики

    • электротехника, основные понятия

    Синонимы

    EN

     

    утечка по поверхности (изолятора)

    [Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.]

    Тематики

    • электротехника, основные понятия

    EN

    3.1.27 ползучесть (creep): Изменение выходного сигнала датчика, происходящее со временем, тогда как нагрузка, окружающие условия и другие изменяемые показатели остаются постоянными.

    Источник: ГОСТ Р 8.726-2010: Государственная система обеспечения единства измерений. Датчики весоизмерительные. Общие технические требования. Методы испытаний оригинал документа

    3.2.14 ползучесть (creep): Медленное непрерывное удлинение образца под действием постоянной растягивающей нагрузки.

    Источник: ОДМ 218.5.006-2010: Рекомендации по методикам испытаний геосинтетических материалов в зависимости от области их применения в дорожной отрасли

    Англо-русский словарь нормативно-технической терминологии > creep

  • 18 SPD

    1. устройство защиты от импульсных перенапряжений

     

    устройство защиты от импульсных перенапряжений
    УЗИП

    Устройство, которое предназначено для ограничения переходных перенапряжений и отвода импульсных токов. Это устройство содержит по крайней мере один нелинейный элемент.
    [ ГОСТ Р 51992-2011( МЭК 61643-1: 2005)]

    устройство защиты от импульсных разрядов напряжения
    Устройство, используемое для ослабления действия импульсных разрядов перенапряжений и сверхтоков ограниченной длительности. Оно может состоять из одного элемента или иметь более сложную конструкцию. Наиболее распространенный тип SPD - газонаполненные разрядники.
    (МСЭ-Т K.44, МСЭ-Т K.46, МСЭ-Т K.57,, МСЭ-Т K.65, МСЭ-Т K.66)
    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    См. также:

    • импульсное перенапряжение
    • ГОСТ Р 51992-2011( МЭК 61643-1: 2005)
      Устройства защиты от импульсных перенапряжений низковольтные.
      Часть 1. Устройства защиты от импульсных перенапряжений в низковольтных силовых распределительных системах.
      Технические требования и методы испытаний

    КЛАССИФИКАЦИЯ  (по ГОСТ Р 51992-2011( МЭК 61643-1: 2005)) 
     


    ВОПРОС: ЧТО ТАКОЕ ТИПЫ И КЛАССЫ УЗИП ?

    Согласно классификации ГОСТ, МЭК а также немецкого стандарта DIN, Устройства Защиты от Импульсных Перенапряжений УЗИП делятся на разные категории по методу испытаний и месту установки.

    Класс 1 испытаний соответствует Типу 1 и Классу Требований B
    Класс 2 испытаний соответствует Типу 2 и Классу Требований C
    Класс 3 испытаний соответствует Типу 3 и Классу Требований D

    ВОПРОС: ЧЕМ УЗИП ТИП 1 ОТЛИЧАЕТСЯ ОТ УЗИП ТИП 2?

    УЗИП тип 1 устанавливаются на вводе в здание при воздушном вводе питания или при наличии системы внешней молниезащиты. УЗИП в схеме включения предназначен для отвода части прямого тока молнии. В соответствии с ГОСТ Р 51992-2002, УЗИП 1-го класса испытаний ( тип 1) испытываются импульсом тока с формой волны 10/350 мкс.
    УЗИП тип 2 служат для защиты от наведённых импульсов тока и устанавливаются либо после УЗИП тип 1, либо на вводе в здание при отсутствии вероятности попадания части тока молнии. УЗИП 2 класса испытаний (тип 2) испытываются импульсом тока с формой 8/20 мкс.
    ВОПРОС: ГДЕ ПРИМЕНЯЕТСЯ УЗИП ТИПА 3 ?

    Устройства для Защиты от Импульсных Перенапряжений Типа 3 предназначены для "тонкой" защиты наиболее ответственного и чувствительного электрооборудования, например медицинской аппаратуры, систем хранения данных и пр. УЗИП Типа 3 необходимо устанавливать не далее 5 метров по кабелю от защищаемого оборудования. Модификации УЗИП Типа 3 могут быть выполнены в виде адаптера сетевой розетки или смонтированы непосредственно в корпусе или на шасси защищаемого прибора. Для бытового применения доступна версия MSB06 скрытого монтажа, за обычной сетевой розеткой.

    ВОПРОС: ЗАЧЕМ НУЖЕН СОГЛАСУЮЩИЙ ДРОССЕЛЬ?

    Для правильного распределения мощности импульса между ступенями защиты ставят линию задержки в виде дросселя индуктивностью 15 мкГн или отрезок кабеля длиной не менее 15 м, имеющего аналогичную индуктивность. В этом случае сначала сработает УЗИП 1-го класса и возьмёт на себя основную энергию импульса, а затем устройство 2-го класса ограничит напряжение до безопасного уровня.

    ВОПРОС: ЗАЧЕМ СТАВИТЬ УЗИП, ЕСЛИ НА ВВОДЕ УЖЕ СТОИТ АВТОМАТ ЗАЩИТЫ И УЗО?

    Вводной автомат (например на 25, 40, 63 А) защищает систему электроснабжения от перегрузки и коротких замыканий со стороны потребителя. Устройство защитного отключения УЗО (например, с током отсечки 30 или 100 мА) защищает человека от случайного поражения электрическим током.
    Но ни одно из этих устройств не может защитить электрическую сеть и оборудование от микросекундных импульсов большой мощности. Такую защиту обеспечивает только Устройство Защиты от Импульсных Перенапряжений УЗИП со временем срабатывания в наносекундном диапазоне.

    ВОПРОС: КАКОЕ УСТРОЙСТВО ЛУЧШЕ ЗАЩИТИТ ОТ ГРОЗЫ: УЗИП ИЛИ ОПН ?

    УЗИП - это официальное (ГОСТ) наименование всего класса устройств для защиты от последствий токов молний и импульсных перенапряжений в сетях до 1000 В. В литературе, в публикациях в интернете до сих пор встречаются названия - ОПН (Ограничитель перенапряжения), Разрядник, Молниеразрядник, Грозоразрядник - которые применительно к сетям до 1000 Вольт означают по сути одно устройство - это УЗИП. Для организации эффективной молниезащиты необходимо обращать внимание не на название устройства, а на его характеристики.

    ВОПРОС: КАК СРАВНИТЬ УЗИП РАЗНЫХ ПРОИЗВОДИТЕЛЕЙ?

    Все УЗИП, продаваемые на территории России, должны производиться и испытываться в соответствии с ГОСТ Р 51992-2002( аналог международного стандарта МЭК 61643-1-98). ГОСТ Р 51992-2002 предусматривает наличие у каждого устройства ряда характеристик, которые производитель обязан указать в паспорте и на самом изделии.

    Класс испытаний (Тип) 1, 2 или 3
    Импульсный ток Iimp (10/350 мкс) для УЗИП 1 класса
    Номинальный импульсный ток In (8/20 мкс)
    Максимальный импульсный ток Imax (8/20 мкс)
    Уровень напряжения защиты Up, измеренный при In

    По этим характеристикам и происходит сравнение. Замечание: некоторые производители указывают значения импульсных токов на фазу (модуль), а другие - на устройство в целом. Для сравнения их надо приводить к одному виду.

    [ http://www.artterm-m.ru/index.php/zashitaseteji1/faquzip]


    ОСОБЕННОСТИ ЭКСПЛУАТАЦИИ УСТРОЙСТВ ЗАЩИТЫ ОТ
    ИМПУЛЬСНЫХ ПЕРЕНАПРЯЖЕНИЙ В НИЗКОВОЛЬТНЫХ СИЛОВЫХ РАСПРЕДЕЛИТЕЛЬНЫХ СЕТЯХ
    ЗОРИЧЕВ А.Л.,
    заместитель директора
    ЗАО «Хакель Рос»

    В предыдущих номерах журнала были изложены теоретические основы применения устройств защиты от импульсных перенапряжений (УЗИП) в низковольтных электрических сетях. При этом отмечалась необходимость отдельного более детального рассмотрения некоторых особенностей эксплуатации УЗИП, а также типовых аварийных ситуаций, которые могут возникнуть при этом.

    1. Диагностика устройств защиты от перенапряжения
    Конструкция и параметры устройств защиты от импульсных перенапряжения постоянно совершенствуются, повышается их надежность, снижаются требования по техническому обслуживанию и контролю. Но, не смотря на это, нельзя оставлять без внимания вероятность их повреждения, особенно при интенсивных грозах, когда может произойти несколько ударов молнии непосредственно в защищаемый объект или вблизи от него во время одной грозы. Устройства защиты, применяемые в низковольтных электрических сетях и в сетях передачи информации подвержены так называемому старению (деградации), т.е. постепенной потере своих способностей ограничивать импульсные перенапряжения. Интенсивнее всего процесс старения протекает при повторяющихся грозовых ударах в течении короткого промежутка времени в несколько секунд или минут, когда амплитуды импульсных токов достигают предельных максимальных параметров I max (8/20 мкс) или I imp (10/350 мкс) для конкретных типов защитных устройств.

    Повреждение УЗИП происходит следующим образом. Разрядные токи, протекающие при срабатывании защитных устройств, нагревают корпуса их нелинейных элементов до такой температуры, что при повторных ударах с той же интенсивностью (в не успевшее остыть устройство) происходит:

    −   у варисторов - нарушение структуры кристалла (тепловой пробой) или его полное разрушение;
    −   у металлокерамических газонаполненных разрядников (грозозащитных разрядников) - изменение свойств в результате утечки газов и последующее разрушение керамического корпуса;

    −  у разрядников на основе открытых искровых промежутков -за счет взрывного выброса ионизированных газов во внутреннее пространство распределительного щита могут возникать повреждения изоляции кабелей, клеммных колодок и других элементов электрического шкафа или его внутренней поверхности. На практике известны даже случаи значительной деформации металлических шкафов, сравнимые только с последствиями взрыва ручной гранаты. Важной особенностью при эксплуатации разрядников этого типа в распределительных щитах является также необходимость повышения мер противопожарной безопасности.

    По указанным выше причинам все изготовители устройств защиты от перенапряжения рекомендуют осуществлять их регулярный контроль, особенно после каждой сильной грозы. Проверку необходимо осуществлять с помощью специальных тестеров, которые обычно можно заказать у фирм, занимающихся техникой защиты от перенапряжений. Контроль, осуществляемый другими способами, например, визуально или с помощью универсальных измерительных приборов, в этом случае является неэффективным по следующим причинам:

    −  Варисторное защитное устройство может быть повреждёно, хотя сигнализация о выходе варистора из строя не сработала. Варистор может обладать искажённой вольтамперной характеристикой (более высокая утечка) в области токов до 1 мA (область рабочих токов при рабочем напряжении сети; настоящую область не возможно проверить с помощью обычно применяемых приборов). Проверка осуществляется минимально в 2-х точках характеристики, напр. при 10 и 1000 мкА, с помощью специального источника тока с высоким подъёмом напряжения (1 до 1,5 кВ).

    −    Металлокерамический газонаполненный (грозовой) разрядник - с помощью визуального контроля можно заметить только поврежденный от взрыва внешний декоративный корпус устройства (или его выводы). Что бы выяснить состояние самого разрядника необходимо разобрать внешний корпус, но даже при таком контроле практически нельзя обнаружить утечку его газового заряда. Контроль напряжения зажигания грозового разрядника с помощью обыкновенных измерительных приборов выполнить очень трудно, он осуществляется при помощи специализированных тестеров.

     −   Разрядник с открытым искровым промежутком - проверку исправной работы можно осуществить только после его демонтажа и измерения с помощью генератора грозового тока с характеристикой 10/350 мкс по заказу у изготовителя устройств для защиты от импульсных перенапряжений.
     

    2. Защита от токов утечки и короткого замыкания в устройствах защиты от импульсных перенапряжений

    Основным принципом работы устройства защиты от импульсных перенапряжений является выравнивание потенциалов между двумя проводниками, одним из которых является фазный (L) проводник, а другим нулевой рабочий (N) или (РЕN) проводник, т.е. устройство включается параллельно нагрузке. При этом, в случае выхода из строя УЗИП (пробой изоляции, пробой или разрушение нелинейного элемента) или невозможности гашения сопровождающего тока (в случае применения искровых разрядников или разрядников скользящего разряда) возможно возникновение режима короткого замыкания между данными проводниками, что может привести к повреждению электроустановки и даже возникновению пожара. Стандартами МЭК предусматривается два обязательных способа защиты электроустановок потребителя 220/380 В от подобного рода ситуаций.

    2.1. Устройство теплового отключения в варисторных устройствах защиты от импульсных перенапряжений

    Имеющееся в варисторных ограничителях перенапряжений устройство отключения при перегреве (тепловая защита), как правило, срабатывает в результате процесса старения варистора. Суть явления заключается в том, что при длительной эксплуатации, а также в результате воздействий импульсов тока большой амплитуды происходит постепенное разрушение p-n переходов в структуре варистора, что приводит к снижению значения такого важного параметра, как наибольшее длительно допустимое рабочее напряжение защитного устройства (максимальное рабочее напряжение) Uc. Этот параметр определяется для действующего напряжения электрической сети и указывается производителями защитных устройств в паспортных данных и, как правило, непосредственно на корпусе защитного устройства. Для примера: если на корпусе защитного устройства указано значение Uc = 275 В, это обозначает, что устройство будет нормально функционировать в электропитающей сети номиналом 220 В при увеличении действующего напряжения на его клеммах до 275 В включительно (значение взято с достаточным запасом при условии выполнения электроснабжающей организацией требований ГОСТ 13109 «Нормы качества электрической энергии в системах электроснабжения общего назначения»).

    В результате «старения» варистора значение Uc снижается и в определенный момент времени может оказаться меньше чем действующее напряжение в сети. Это приведет к возрастанию токов утечки через варистор и быстрому повышению его температуры, что может вызвать деформацию корпуса устройства, проплавление фазными клеммами пластмассы и, в конечном итоге, короткое замыкание на DIN-рейку и даже пожар.

    В связи с этим, для применения в электроустановках рекомендуются только те варисторные ограничители перенапряжения, которые имеют в своем составе устройство теплового отключения (терморазмыкатель). Конструкция данного устройства, как правило, очень проста и состоит из подпружиненного контакта, припаянного легкоплавким припоем к одному из выводов варистора, и связанной с ним системы местной сигнализации. В некоторых устройствах дополнительно применяются «сухие» контакты для подключения дистанционной сигнализации о выходе ограничителя перенапряжений из строя, позволяющие с помощью физической линии передавать информацию об этом на пульт диспетчера или на вход какой-либо системы обработки и передачи телеметрических данных. (См. рис. 1).

    5018

    2.2. Применение быстродействующих предохранителей для защиты от токов короткого замыкания

    Несколько другая ситуация возникает в случае установившегося длительного превышения действующего напряжения в сети над наибольшим длительно допустимым рабочим напряжением защитного устройства (Uc), определенным ТУ для данного УЗИП. Примером такой ситуации может быть повышение напряжения по вине поставщика электроэнергии или обрыв (отгорание) нулевого проводника при вводе в электроустановку (в трехфазной сети с глухозаземленной нейтралью трансформатора). Как известно, в последнем случае к нагрузке может оказаться приложенным межфазное напряжение 380 В. При этом устройство защиты от импульсных перенапряжений сработает, и через него начнет протекать ток. Величина этого тока будет стремиться к величине тока короткого замыкания (рассчитывается по общеизвестным методикам для каждой точки электроустановки) и может достигать нескольких сотен ампер. Практика показывает, что устройство тепловой защиты не успевает отреагировать в подобных ситуациях из-за инерционности конструкции. Варистор, как правило, разрушается в течение нескольких секунд, после чего режим короткого замыкания также может сохраняться через дугу (по продуктам разрушения и горения варистора). Как же как и в предыдущем случае, возникает вероятность замыкания клемм устройства на корпус шкафа или DIN-рейку при расплавлении пластмассы корпуса и возможность повреждения изоляции проводников в цепях включения защитных устройств. Сказанное выше относится не только к варисторным ограничителям, но и к УЗИП на базе разрядников, которые не имеют в своем составе устройства теплового отключения. На фотографии (рис. 2) показаны последствия подобной ситуации, в результате которой произошел пожар в распределительном щите.

    5019

    Рис.2 Выход из строя варисторного УЗИП привел к пожару в ГРЩ.

    На рисунке 3 показано варисторное УЗИП, которое в результате аварийной ситуации стало источником пожара в щите.

    5020

    Рис.3

    Для того чтобы предотвратить подобные последствия рекомендуется устанавливать последовательно с устройствами защиты от импульсных перенапряжений предохранители с характеристиками срабатывания gG или gL (классификация согласно требованиям стандартов ГОСТ Р 50339. 0-92 ( МЭК 60269-1-86) или VDE 0636 (Германия) соответственно).

    Практически все производители устройств защиты от импульсных перенапряжений в своих каталогах приводят требования по номинальному значению и типу характеристики срабатывания предохранителей дополнительной защиты от токов короткого замыкания. Как уже указывалось выше, для этих целей используются предохранители типа gG или gL, предназначенные для защиты проводок и распределительных устройств от перегрузок и коротких замыканий. Они обладают значительно меньшим (на 1-2 порядка) временем срабатывания по сравнению с автоматическими выключателями тех же номиналов. При этом предохранители имеют более высокую стойкость к импульсным токам значительных величин. Практический опыт и данные экспериментальных испытаний показывают, что автоматические выключатели очень часто повреждаются при воздействии импульсных перенапряжений. Известны случаи подгорания контактов или приваривания их друг к другу. И в том и в другом случае автоматический выключатель не сможет в дальнейшем выполнять свои функции.

    Возможны различные варианты применения предохранителей и, соответственно, существует ряд особенностей, которые необходимо учитывать еще на этапе проектирования схемы электроснабжения или при изготовлении щитовой продукции. Одна из таких особенностей заключается в том, что в случае, если в качестве защиты от токов короткого замыкания будет использоваться только общая защита (вводные предохранители), то при коротком замыкании в любом УЗИП (первой, второй или третьей ступени) всегда будет обесточиваться вся электроустановка в целом или какая-то ее часть. Применение предохранителей, включенных последовательно с каждым защитным устройством, исключает такую ситуацию. Но при этом встает вопрос подбора предохранителей с точки зрения селективности (очередности) их срабатывания. Решение этого вопроса осуществляется путем применения предохранителей тех типов и номиналов, которые рекомендованы производителем конкретных моделей устройств защиты от перенапряжений.

    Пример установки предохранителей F7-F12 приведен на рисунке 4.

     

    5021

    Рис.4 Установка защитных устройств в TN-S сеть 220/380 В

     

    ПРИМЕР: При использовании в схеме, приведенной на рисунке 4, разрядников HS55 в первой ступени защиты и варисторных УЗИП PIII280 во второй ступени применение предохранителей F5-F7 и F8-F10 будет обусловлено выбором номинального значения предохранителей F1-F3:

    ·         При значении F1-F3 более 315 А gG, значения F7-F9 и F10-F12 выбираются ­315 А gG и 160 А gG соответственно;

    ·         При значении F1-F3 менее 315 А gG, но более 160 А gG, предохранители F7-F9 можно не устанавливать, F10-F12 выбираются - 160 А gG;

    ·         При значении F1-F3 менее 160 А gG, предохранители F7-F12 можно не устанавливать.

     

    Иногда может потребоваться, чтобы в случае возникновения короткого замыкания в защитных устройствах не срабатывал общий предохранитель на вводе электропитающей установки. Для этого необходимо устанавливать в цепи каждого УЗИП предохранители с учетом коэффициента (1,6). Т.е. если предохранитель на входе электроустановки имеет номинальное значение 160 А gG, то предохранитель включенный последовательно с УЗИП должен иметь номинал 100 А gG.

    Применение для данных целей автоматических выключателей осложняется причинами, перечисленными выше, а также не соответствием их времятоковых характеристик характеристикам предохранителей.

    3. Часто встречающиеся недостатки в конструктивном исполнении устройств защиты от импульсных перенапряжений

    Многими фирмами-производителями предлагаются защитные устройства классов I и II, состоящие из базы, предназначенной для установки на DIN-рейку, и сменного модуля с нелинейным элементом (разрядником или варистором) с ножевыми вставными контактами. Такое конструктивное исполнение кажется на вид более выгодным и удобным для заказчика, чем монолитный корпус, в виду возможности более простого осуществления измерения сопротивления изоляции электропроводки (при измерениях повышенными напряжениями этот модуль можно просто изъять). Однако способность сконструированных таким способом контактов пропускать импульсные токи не превышает предел Imax = 25 kA для волны (8/20 мкс) и Iimp = 20 kA для волны (10/350 мкс).

    Несмотря на это, некоторые изготовители показывают в рекламных каталогах для таких защитных устройств максимальные разрядные способности величинами до Imax = 100 kA (8/20 мкс) или Iimp = 25 kA (10/350 мкс). К сожалению, это не подтверждается практическими данными. Уже при первом ударе испытательного импульса тока с такой амплитудой произойдут пережоги и разрушение не только ножевых контактов сменного модуля, но также и повреждение контактов клемм в базе. Разрушительное воздействие испытательного импульса тока Imax = 50 kA (8/20 мкс) на механическую часть такой системы и ножевой контакт показано на следующих фотографиях (рис. 5). Очевидно, что после такого воздействия сложным становится, собственно, сам вопрос извлечения вставки из базы, так как их контакты могут привариться друг к другу. Даже если вставку удастся отсоединить от базы, последнюю будет нельзя использовать далее из-за подгоревших контактов, которые приведут к резкому возрастанию переходного сопротивления и, соответственно, уровня защиты данного УЗИП.

    5022

     

    Для того чтобы избежать подобных последствий, защитные устройства модульной конструкции необходимо применять только тогда, когда существует гарантия, что ожидаемые импульсные воздействия не превысят указанных выше значений. Это может быть выполнено в случае правильного выбора типов и классов УЗИП для конкретной электроустановки и согласования их параметров между ступенями защиты.

    4. Использование УЗИП для защиты вторичных источников питания 

    Одним из наиболее часто используемых вторичных источников питания является выпрямитель. Следует отметить, что практика установки элементов защиты от перенапряжений (разрядников, варисторов и т.п.) на платах или внутри блоков выпрямителя, является не правильной с нашей точки зрения. Существующий опыт показывает, что эти варисторы как правило рассчитаны на токи 7 – 10 кА (форма импульса 8/20 мкС) и по своим параметрам соответствуют третьему классу защиты согласно ГОСТ Р 51992-2002( МЭК 61643-1-98). Как правило, эксплуатирующие организации считают данный тип защиты достаточным и никаких дополнительных мер для повышения надежности работы оборудования не принимают. Однако, при отсутствии дополнительных внешних устройств защиты от импульсных перенапряжений более высокого класса, а так же при возникновении длительных превышений рабочего напряжения питающей сети в данной ситуации возможно возникновение двух типовых аварийных ситуаций:

    a) Токи значительных величин, возникающие при срабатывании установленных внутри модуля варисторов, будут протекать по печатным проводникам плат или проводам внутри блоков выпрямителя по кратчайшему пути к заземляющей клемме стойки. Это может вызвать выгорание печатных проводников на платах и возникновению на параллельных незащищенных цепях наводок, которые в свою очередь приведут к выходу из строя электронных элементов блока выпрямителя. При превышении максимальных импульсных токов, определенных для данного варистора изготовителем, возможно, его возгорание и даже разрушение, что может привести к пожару и механическому повреждению самого выпрямителя (более подробно описано в п.п. 2.1).

    b) Несколько другая ситуация возникает в случае длительного установившегося превышения действующего напряжения в сети над максимальным допустимым рабочим напряжением Uc, определенным ТУ для данного варистора (как правило используются варисторы с Uc = 275 В). Подробно данная ситуация была описана выше (см п.п. 2.2). В результате описанного воздействия появляется вероятность возгорания печатных плат и внутренней проводки, а так же возникновения механических повреждений (при взрыве варистора), что подтверждается статистикой организаций, осуществляющих ремонт выпрямителей.

    Пример таких повреждений показан на рисунке 6.

    5023

    Рис.6

     С точки зрения решения проблем описанных в пункте (а), наиболее правильным является вариант установки защитных устройств, при котором они размещаются в отдельном защитном щитке или в штатных силовых и распределительных щитах электроустановки объекта. Применение внешних дополнительных устройств защиты позволяет защитить выпрямитель от импульсных перенапряжений величиной в сотни киловольт и соответственно снизить до допустимого (7 – 10 кА) значения величины импульсных токов, которые будут протекать через варисторы, встроенные в выпрямитель, или практически полностью исключить их.

    Для защиты оборудования от длительного установившегося превышения действующего напряжения в сети (пункт b) можно использовать устройства контроля напряжения фазы или подобные им (см. рис. 7).

    5024

    Рис. 7 Подключение устройства контроля фаз РКФ-3/1

    [ http://www.energo-montage.ru/pages/top/articles/osobennosti_ekspluatacii_uzip/index_76.html]

    Тематики

    Синонимы

    EN

    Англо-русский словарь нормативно-технической терминологии > SPD

  • 19 surge offering

    1. устройство защиты от импульсных перенапряжений

     

    устройство защиты от импульсных перенапряжений
    УЗИП

    Устройство, которое предназначено для ограничения переходных перенапряжений и отвода импульсных токов. Это устройство содержит по крайней мере один нелинейный элемент.
    [ ГОСТ Р 51992-2011( МЭК 61643-1: 2005)]

    устройство защиты от импульсных разрядов напряжения
    Устройство, используемое для ослабления действия импульсных разрядов перенапряжений и сверхтоков ограниченной длительности. Оно может состоять из одного элемента или иметь более сложную конструкцию. Наиболее распространенный тип SPD - газонаполненные разрядники.
    (МСЭ-Т K.44, МСЭ-Т K.46, МСЭ-Т K.57,, МСЭ-Т K.65, МСЭ-Т K.66)
    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    См. также:

    • импульсное перенапряжение
    • ГОСТ Р 51992-2011( МЭК 61643-1: 2005)
      Устройства защиты от импульсных перенапряжений низковольтные.
      Часть 1. Устройства защиты от импульсных перенапряжений в низковольтных силовых распределительных системах.
      Технические требования и методы испытаний

    КЛАССИФИКАЦИЯ  (по ГОСТ Р 51992-2011( МЭК 61643-1: 2005)) 
     


    ВОПРОС: ЧТО ТАКОЕ ТИПЫ И КЛАССЫ УЗИП ?

    Согласно классификации ГОСТ, МЭК а также немецкого стандарта DIN, Устройства Защиты от Импульсных Перенапряжений УЗИП делятся на разные категории по методу испытаний и месту установки.

    Класс 1 испытаний соответствует Типу 1 и Классу Требований B
    Класс 2 испытаний соответствует Типу 2 и Классу Требований C
    Класс 3 испытаний соответствует Типу 3 и Классу Требований D

    ВОПРОС: ЧЕМ УЗИП ТИП 1 ОТЛИЧАЕТСЯ ОТ УЗИП ТИП 2?

    УЗИП тип 1 устанавливаются на вводе в здание при воздушном вводе питания или при наличии системы внешней молниезащиты. УЗИП в схеме включения предназначен для отвода части прямого тока молнии. В соответствии с ГОСТ Р 51992-2002, УЗИП 1-го класса испытаний ( тип 1) испытываются импульсом тока с формой волны 10/350 мкс.
    УЗИП тип 2 служат для защиты от наведённых импульсов тока и устанавливаются либо после УЗИП тип 1, либо на вводе в здание при отсутствии вероятности попадания части тока молнии. УЗИП 2 класса испытаний (тип 2) испытываются импульсом тока с формой 8/20 мкс.
    ВОПРОС: ГДЕ ПРИМЕНЯЕТСЯ УЗИП ТИПА 3 ?

    Устройства для Защиты от Импульсных Перенапряжений Типа 3 предназначены для "тонкой" защиты наиболее ответственного и чувствительного электрооборудования, например медицинской аппаратуры, систем хранения данных и пр. УЗИП Типа 3 необходимо устанавливать не далее 5 метров по кабелю от защищаемого оборудования. Модификации УЗИП Типа 3 могут быть выполнены в виде адаптера сетевой розетки или смонтированы непосредственно в корпусе или на шасси защищаемого прибора. Для бытового применения доступна версия MSB06 скрытого монтажа, за обычной сетевой розеткой.

    ВОПРОС: ЗАЧЕМ НУЖЕН СОГЛАСУЮЩИЙ ДРОССЕЛЬ?

    Для правильного распределения мощности импульса между ступенями защиты ставят линию задержки в виде дросселя индуктивностью 15 мкГн или отрезок кабеля длиной не менее 15 м, имеющего аналогичную индуктивность. В этом случае сначала сработает УЗИП 1-го класса и возьмёт на себя основную энергию импульса, а затем устройство 2-го класса ограничит напряжение до безопасного уровня.

    ВОПРОС: ЗАЧЕМ СТАВИТЬ УЗИП, ЕСЛИ НА ВВОДЕ УЖЕ СТОИТ АВТОМАТ ЗАЩИТЫ И УЗО?

    Вводной автомат (например на 25, 40, 63 А) защищает систему электроснабжения от перегрузки и коротких замыканий со стороны потребителя. Устройство защитного отключения УЗО (например, с током отсечки 30 или 100 мА) защищает человека от случайного поражения электрическим током.
    Но ни одно из этих устройств не может защитить электрическую сеть и оборудование от микросекундных импульсов большой мощности. Такую защиту обеспечивает только Устройство Защиты от Импульсных Перенапряжений УЗИП со временем срабатывания в наносекундном диапазоне.

    ВОПРОС: КАКОЕ УСТРОЙСТВО ЛУЧШЕ ЗАЩИТИТ ОТ ГРОЗЫ: УЗИП ИЛИ ОПН ?

    УЗИП - это официальное (ГОСТ) наименование всего класса устройств для защиты от последствий токов молний и импульсных перенапряжений в сетях до 1000 В. В литературе, в публикациях в интернете до сих пор встречаются названия - ОПН (Ограничитель перенапряжения), Разрядник, Молниеразрядник, Грозоразрядник - которые применительно к сетям до 1000 Вольт означают по сути одно устройство - это УЗИП. Для организации эффективной молниезащиты необходимо обращать внимание не на название устройства, а на его характеристики.

    ВОПРОС: КАК СРАВНИТЬ УЗИП РАЗНЫХ ПРОИЗВОДИТЕЛЕЙ?

    Все УЗИП, продаваемые на территории России, должны производиться и испытываться в соответствии с ГОСТ Р 51992-2002( аналог международного стандарта МЭК 61643-1-98). ГОСТ Р 51992-2002 предусматривает наличие у каждого устройства ряда характеристик, которые производитель обязан указать в паспорте и на самом изделии.

    Класс испытаний (Тип) 1, 2 или 3
    Импульсный ток Iimp (10/350 мкс) для УЗИП 1 класса
    Номинальный импульсный ток In (8/20 мкс)
    Максимальный импульсный ток Imax (8/20 мкс)
    Уровень напряжения защиты Up, измеренный при In

    По этим характеристикам и происходит сравнение. Замечание: некоторые производители указывают значения импульсных токов на фазу (модуль), а другие - на устройство в целом. Для сравнения их надо приводить к одному виду.

    [ http://www.artterm-m.ru/index.php/zashitaseteji1/faquzip]


    ОСОБЕННОСТИ ЭКСПЛУАТАЦИИ УСТРОЙСТВ ЗАЩИТЫ ОТ
    ИМПУЛЬСНЫХ ПЕРЕНАПРЯЖЕНИЙ В НИЗКОВОЛЬТНЫХ СИЛОВЫХ РАСПРЕДЕЛИТЕЛЬНЫХ СЕТЯХ
    ЗОРИЧЕВ А.Л.,
    заместитель директора
    ЗАО «Хакель Рос»

    В предыдущих номерах журнала были изложены теоретические основы применения устройств защиты от импульсных перенапряжений (УЗИП) в низковольтных электрических сетях. При этом отмечалась необходимость отдельного более детального рассмотрения некоторых особенностей эксплуатации УЗИП, а также типовых аварийных ситуаций, которые могут возникнуть при этом.

    1. Диагностика устройств защиты от перенапряжения
    Конструкция и параметры устройств защиты от импульсных перенапряжения постоянно совершенствуются, повышается их надежность, снижаются требования по техническому обслуживанию и контролю. Но, не смотря на это, нельзя оставлять без внимания вероятность их повреждения, особенно при интенсивных грозах, когда может произойти несколько ударов молнии непосредственно в защищаемый объект или вблизи от него во время одной грозы. Устройства защиты, применяемые в низковольтных электрических сетях и в сетях передачи информации подвержены так называемому старению (деградации), т.е. постепенной потере своих способностей ограничивать импульсные перенапряжения. Интенсивнее всего процесс старения протекает при повторяющихся грозовых ударах в течении короткого промежутка времени в несколько секунд или минут, когда амплитуды импульсных токов достигают предельных максимальных параметров I max (8/20 мкс) или I imp (10/350 мкс) для конкретных типов защитных устройств.

    Повреждение УЗИП происходит следующим образом. Разрядные токи, протекающие при срабатывании защитных устройств, нагревают корпуса их нелинейных элементов до такой температуры, что при повторных ударах с той же интенсивностью (в не успевшее остыть устройство) происходит:

    −   у варисторов - нарушение структуры кристалла (тепловой пробой) или его полное разрушение;
    −   у металлокерамических газонаполненных разрядников (грозозащитных разрядников) - изменение свойств в результате утечки газов и последующее разрушение керамического корпуса;

    −  у разрядников на основе открытых искровых промежутков -за счет взрывного выброса ионизированных газов во внутреннее пространство распределительного щита могут возникать повреждения изоляции кабелей, клеммных колодок и других элементов электрического шкафа или его внутренней поверхности. На практике известны даже случаи значительной деформации металлических шкафов, сравнимые только с последствиями взрыва ручной гранаты. Важной особенностью при эксплуатации разрядников этого типа в распределительных щитах является также необходимость повышения мер противопожарной безопасности.

    По указанным выше причинам все изготовители устройств защиты от перенапряжения рекомендуют осуществлять их регулярный контроль, особенно после каждой сильной грозы. Проверку необходимо осуществлять с помощью специальных тестеров, которые обычно можно заказать у фирм, занимающихся техникой защиты от перенапряжений. Контроль, осуществляемый другими способами, например, визуально или с помощью универсальных измерительных приборов, в этом случае является неэффективным по следующим причинам:

    −  Варисторное защитное устройство может быть повреждёно, хотя сигнализация о выходе варистора из строя не сработала. Варистор может обладать искажённой вольтамперной характеристикой (более высокая утечка) в области токов до 1 мA (область рабочих токов при рабочем напряжении сети; настоящую область не возможно проверить с помощью обычно применяемых приборов). Проверка осуществляется минимально в 2-х точках характеристики, напр. при 10 и 1000 мкА, с помощью специального источника тока с высоким подъёмом напряжения (1 до 1,5 кВ).

    −    Металлокерамический газонаполненный (грозовой) разрядник - с помощью визуального контроля можно заметить только поврежденный от взрыва внешний декоративный корпус устройства (или его выводы). Что бы выяснить состояние самого разрядника необходимо разобрать внешний корпус, но даже при таком контроле практически нельзя обнаружить утечку его газового заряда. Контроль напряжения зажигания грозового разрядника с помощью обыкновенных измерительных приборов выполнить очень трудно, он осуществляется при помощи специализированных тестеров.

     −   Разрядник с открытым искровым промежутком - проверку исправной работы можно осуществить только после его демонтажа и измерения с помощью генератора грозового тока с характеристикой 10/350 мкс по заказу у изготовителя устройств для защиты от импульсных перенапряжений.
     

    2. Защита от токов утечки и короткого замыкания в устройствах защиты от импульсных перенапряжений

    Основным принципом работы устройства защиты от импульсных перенапряжений является выравнивание потенциалов между двумя проводниками, одним из которых является фазный (L) проводник, а другим нулевой рабочий (N) или (РЕN) проводник, т.е. устройство включается параллельно нагрузке. При этом, в случае выхода из строя УЗИП (пробой изоляции, пробой или разрушение нелинейного элемента) или невозможности гашения сопровождающего тока (в случае применения искровых разрядников или разрядников скользящего разряда) возможно возникновение режима короткого замыкания между данными проводниками, что может привести к повреждению электроустановки и даже возникновению пожара. Стандартами МЭК предусматривается два обязательных способа защиты электроустановок потребителя 220/380 В от подобного рода ситуаций.

    2.1. Устройство теплового отключения в варисторных устройствах защиты от импульсных перенапряжений

    Имеющееся в варисторных ограничителях перенапряжений устройство отключения при перегреве (тепловая защита), как правило, срабатывает в результате процесса старения варистора. Суть явления заключается в том, что при длительной эксплуатации, а также в результате воздействий импульсов тока большой амплитуды происходит постепенное разрушение p-n переходов в структуре варистора, что приводит к снижению значения такого важного параметра, как наибольшее длительно допустимое рабочее напряжение защитного устройства (максимальное рабочее напряжение) Uc. Этот параметр определяется для действующего напряжения электрической сети и указывается производителями защитных устройств в паспортных данных и, как правило, непосредственно на корпусе защитного устройства. Для примера: если на корпусе защитного устройства указано значение Uc = 275 В, это обозначает, что устройство будет нормально функционировать в электропитающей сети номиналом 220 В при увеличении действующего напряжения на его клеммах до 275 В включительно (значение взято с достаточным запасом при условии выполнения электроснабжающей организацией требований ГОСТ 13109 «Нормы качества электрической энергии в системах электроснабжения общего назначения»).

    В результате «старения» варистора значение Uc снижается и в определенный момент времени может оказаться меньше чем действующее напряжение в сети. Это приведет к возрастанию токов утечки через варистор и быстрому повышению его температуры, что может вызвать деформацию корпуса устройства, проплавление фазными клеммами пластмассы и, в конечном итоге, короткое замыкание на DIN-рейку и даже пожар.

    В связи с этим, для применения в электроустановках рекомендуются только те варисторные ограничители перенапряжения, которые имеют в своем составе устройство теплового отключения (терморазмыкатель). Конструкция данного устройства, как правило, очень проста и состоит из подпружиненного контакта, припаянного легкоплавким припоем к одному из выводов варистора, и связанной с ним системы местной сигнализации. В некоторых устройствах дополнительно применяются «сухие» контакты для подключения дистанционной сигнализации о выходе ограничителя перенапряжений из строя, позволяющие с помощью физической линии передавать информацию об этом на пульт диспетчера или на вход какой-либо системы обработки и передачи телеметрических данных. (См. рис. 1).

    5018

    2.2. Применение быстродействующих предохранителей для защиты от токов короткого замыкания

    Несколько другая ситуация возникает в случае установившегося длительного превышения действующего напряжения в сети над наибольшим длительно допустимым рабочим напряжением защитного устройства (Uc), определенным ТУ для данного УЗИП. Примером такой ситуации может быть повышение напряжения по вине поставщика электроэнергии или обрыв (отгорание) нулевого проводника при вводе в электроустановку (в трехфазной сети с глухозаземленной нейтралью трансформатора). Как известно, в последнем случае к нагрузке может оказаться приложенным межфазное напряжение 380 В. При этом устройство защиты от импульсных перенапряжений сработает, и через него начнет протекать ток. Величина этого тока будет стремиться к величине тока короткого замыкания (рассчитывается по общеизвестным методикам для каждой точки электроустановки) и может достигать нескольких сотен ампер. Практика показывает, что устройство тепловой защиты не успевает отреагировать в подобных ситуациях из-за инерционности конструкции. Варистор, как правило, разрушается в течение нескольких секунд, после чего режим короткого замыкания также может сохраняться через дугу (по продуктам разрушения и горения варистора). Как же как и в предыдущем случае, возникает вероятность замыкания клемм устройства на корпус шкафа или DIN-рейку при расплавлении пластмассы корпуса и возможность повреждения изоляции проводников в цепях включения защитных устройств. Сказанное выше относится не только к варисторным ограничителям, но и к УЗИП на базе разрядников, которые не имеют в своем составе устройства теплового отключения. На фотографии (рис. 2) показаны последствия подобной ситуации, в результате которой произошел пожар в распределительном щите.

    5019

    Рис.2 Выход из строя варисторного УЗИП привел к пожару в ГРЩ.

    На рисунке 3 показано варисторное УЗИП, которое в результате аварийной ситуации стало источником пожара в щите.

    5020

    Рис.3

    Для того чтобы предотвратить подобные последствия рекомендуется устанавливать последовательно с устройствами защиты от импульсных перенапряжений предохранители с характеристиками срабатывания gG или gL (классификация согласно требованиям стандартов ГОСТ Р 50339. 0-92 ( МЭК 60269-1-86) или VDE 0636 (Германия) соответственно).

    Практически все производители устройств защиты от импульсных перенапряжений в своих каталогах приводят требования по номинальному значению и типу характеристики срабатывания предохранителей дополнительной защиты от токов короткого замыкания. Как уже указывалось выше, для этих целей используются предохранители типа gG или gL, предназначенные для защиты проводок и распределительных устройств от перегрузок и коротких замыканий. Они обладают значительно меньшим (на 1-2 порядка) временем срабатывания по сравнению с автоматическими выключателями тех же номиналов. При этом предохранители имеют более высокую стойкость к импульсным токам значительных величин. Практический опыт и данные экспериментальных испытаний показывают, что автоматические выключатели очень часто повреждаются при воздействии импульсных перенапряжений. Известны случаи подгорания контактов или приваривания их друг к другу. И в том и в другом случае автоматический выключатель не сможет в дальнейшем выполнять свои функции.

    Возможны различные варианты применения предохранителей и, соответственно, существует ряд особенностей, которые необходимо учитывать еще на этапе проектирования схемы электроснабжения или при изготовлении щитовой продукции. Одна из таких особенностей заключается в том, что в случае, если в качестве защиты от токов короткого замыкания будет использоваться только общая защита (вводные предохранители), то при коротком замыкании в любом УЗИП (первой, второй или третьей ступени) всегда будет обесточиваться вся электроустановка в целом или какая-то ее часть. Применение предохранителей, включенных последовательно с каждым защитным устройством, исключает такую ситуацию. Но при этом встает вопрос подбора предохранителей с точки зрения селективности (очередности) их срабатывания. Решение этого вопроса осуществляется путем применения предохранителей тех типов и номиналов, которые рекомендованы производителем конкретных моделей устройств защиты от перенапряжений.

    Пример установки предохранителей F7-F12 приведен на рисунке 4.

     

    5021

    Рис.4 Установка защитных устройств в TN-S сеть 220/380 В

     

    ПРИМЕР: При использовании в схеме, приведенной на рисунке 4, разрядников HS55 в первой ступени защиты и варисторных УЗИП PIII280 во второй ступени применение предохранителей F5-F7 и F8-F10 будет обусловлено выбором номинального значения предохранителей F1-F3:

    ·         При значении F1-F3 более 315 А gG, значения F7-F9 и F10-F12 выбираются ­315 А gG и 160 А gG соответственно;

    ·         При значении F1-F3 менее 315 А gG, но более 160 А gG, предохранители F7-F9 можно не устанавливать, F10-F12 выбираются - 160 А gG;

    ·         При значении F1-F3 менее 160 А gG, предохранители F7-F12 можно не устанавливать.

     

    Иногда может потребоваться, чтобы в случае возникновения короткого замыкания в защитных устройствах не срабатывал общий предохранитель на вводе электропитающей установки. Для этого необходимо устанавливать в цепи каждого УЗИП предохранители с учетом коэффициента (1,6). Т.е. если предохранитель на входе электроустановки имеет номинальное значение 160 А gG, то предохранитель включенный последовательно с УЗИП должен иметь номинал 100 А gG.

    Применение для данных целей автоматических выключателей осложняется причинами, перечисленными выше, а также не соответствием их времятоковых характеристик характеристикам предохранителей.

    3. Часто встречающиеся недостатки в конструктивном исполнении устройств защиты от импульсных перенапряжений

    Многими фирмами-производителями предлагаются защитные устройства классов I и II, состоящие из базы, предназначенной для установки на DIN-рейку, и сменного модуля с нелинейным элементом (разрядником или варистором) с ножевыми вставными контактами. Такое конструктивное исполнение кажется на вид более выгодным и удобным для заказчика, чем монолитный корпус, в виду возможности более простого осуществления измерения сопротивления изоляции электропроводки (при измерениях повышенными напряжениями этот модуль можно просто изъять). Однако способность сконструированных таким способом контактов пропускать импульсные токи не превышает предел Imax = 25 kA для волны (8/20 мкс) и Iimp = 20 kA для волны (10/350 мкс).

    Несмотря на это, некоторые изготовители показывают в рекламных каталогах для таких защитных устройств максимальные разрядные способности величинами до Imax = 100 kA (8/20 мкс) или Iimp = 25 kA (10/350 мкс). К сожалению, это не подтверждается практическими данными. Уже при первом ударе испытательного импульса тока с такой амплитудой произойдут пережоги и разрушение не только ножевых контактов сменного модуля, но также и повреждение контактов клемм в базе. Разрушительное воздействие испытательного импульса тока Imax = 50 kA (8/20 мкс) на механическую часть такой системы и ножевой контакт показано на следующих фотографиях (рис. 5). Очевидно, что после такого воздействия сложным становится, собственно, сам вопрос извлечения вставки из базы, так как их контакты могут привариться друг к другу. Даже если вставку удастся отсоединить от базы, последнюю будет нельзя использовать далее из-за подгоревших контактов, которые приведут к резкому возрастанию переходного сопротивления и, соответственно, уровня защиты данного УЗИП.

    5022

     

    Для того чтобы избежать подобных последствий, защитные устройства модульной конструкции необходимо применять только тогда, когда существует гарантия, что ожидаемые импульсные воздействия не превысят указанных выше значений. Это может быть выполнено в случае правильного выбора типов и классов УЗИП для конкретной электроустановки и согласования их параметров между ступенями защиты.

    4. Использование УЗИП для защиты вторичных источников питания 

    Одним из наиболее часто используемых вторичных источников питания является выпрямитель. Следует отметить, что практика установки элементов защиты от перенапряжений (разрядников, варисторов и т.п.) на платах или внутри блоков выпрямителя, является не правильной с нашей точки зрения. Существующий опыт показывает, что эти варисторы как правило рассчитаны на токи 7 – 10 кА (форма импульса 8/20 мкС) и по своим параметрам соответствуют третьему классу защиты согласно ГОСТ Р 51992-2002( МЭК 61643-1-98). Как правило, эксплуатирующие организации считают данный тип защиты достаточным и никаких дополнительных мер для повышения надежности работы оборудования не принимают. Однако, при отсутствии дополнительных внешних устройств защиты от импульсных перенапряжений более высокого класса, а так же при возникновении длительных превышений рабочего напряжения питающей сети в данной ситуации возможно возникновение двух типовых аварийных ситуаций:

    a) Токи значительных величин, возникающие при срабатывании установленных внутри модуля варисторов, будут протекать по печатным проводникам плат или проводам внутри блоков выпрямителя по кратчайшему пути к заземляющей клемме стойки. Это может вызвать выгорание печатных проводников на платах и возникновению на параллельных незащищенных цепях наводок, которые в свою очередь приведут к выходу из строя электронных элементов блока выпрямителя. При превышении максимальных импульсных токов, определенных для данного варистора изготовителем, возможно, его возгорание и даже разрушение, что может привести к пожару и механическому повреждению самого выпрямителя (более подробно описано в п.п. 2.1).

    b) Несколько другая ситуация возникает в случае длительного установившегося превышения действующего напряжения в сети над максимальным допустимым рабочим напряжением Uc, определенным ТУ для данного варистора (как правило используются варисторы с Uc = 275 В). Подробно данная ситуация была описана выше (см п.п. 2.2). В результате описанного воздействия появляется вероятность возгорания печатных плат и внутренней проводки, а так же возникновения механических повреждений (при взрыве варистора), что подтверждается статистикой организаций, осуществляющих ремонт выпрямителей.

    Пример таких повреждений показан на рисунке 6.

    5023

    Рис.6

     С точки зрения решения проблем описанных в пункте (а), наиболее правильным является вариант установки защитных устройств, при котором они размещаются в отдельном защитном щитке или в штатных силовых и распределительных щитах электроустановки объекта. Применение внешних дополнительных устройств защиты позволяет защитить выпрямитель от импульсных перенапряжений величиной в сотни киловольт и соответственно снизить до допустимого (7 – 10 кА) значения величины импульсных токов, которые будут протекать через варисторы, встроенные в выпрямитель, или практически полностью исключить их.

    Для защиты оборудования от длительного установившегося превышения действующего напряжения в сети (пункт b) можно использовать устройства контроля напряжения фазы или подобные им (см. рис. 7).

    5024

    Рис. 7 Подключение устройства контроля фаз РКФ-3/1

    [ http://www.energo-montage.ru/pages/top/articles/osobennosti_ekspluatacii_uzip/index_76.html]

    Тематики

    Синонимы

    EN

    Англо-русский словарь нормативно-технической терминологии > surge offering

  • 20 surge protective device

    1. устройство защиты от импульсных перенапряжений

     

    устройство защиты от импульсных перенапряжений
    УЗИП

    Устройство, которое предназначено для ограничения переходных перенапряжений и отвода импульсных токов. Это устройство содержит по крайней мере один нелинейный элемент.
    [ ГОСТ Р 51992-2011( МЭК 61643-1: 2005)]

    устройство защиты от импульсных разрядов напряжения
    Устройство, используемое для ослабления действия импульсных разрядов перенапряжений и сверхтоков ограниченной длительности. Оно может состоять из одного элемента или иметь более сложную конструкцию. Наиболее распространенный тип SPD - газонаполненные разрядники.
    (МСЭ-Т K.44, МСЭ-Т K.46, МСЭ-Т K.57,, МСЭ-Т K.65, МСЭ-Т K.66)
    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    См. также:

    • импульсное перенапряжение
    • ГОСТ Р 51992-2011( МЭК 61643-1: 2005)
      Устройства защиты от импульсных перенапряжений низковольтные.
      Часть 1. Устройства защиты от импульсных перенапряжений в низковольтных силовых распределительных системах.
      Технические требования и методы испытаний

    КЛАССИФИКАЦИЯ  (по ГОСТ Р 51992-2011( МЭК 61643-1: 2005)) 
     


    ВОПРОС: ЧТО ТАКОЕ ТИПЫ И КЛАССЫ УЗИП ?

    Согласно классификации ГОСТ, МЭК а также немецкого стандарта DIN, Устройства Защиты от Импульсных Перенапряжений УЗИП делятся на разные категории по методу испытаний и месту установки.

    Класс 1 испытаний соответствует Типу 1 и Классу Требований B
    Класс 2 испытаний соответствует Типу 2 и Классу Требований C
    Класс 3 испытаний соответствует Типу 3 и Классу Требований D

    ВОПРОС: ЧЕМ УЗИП ТИП 1 ОТЛИЧАЕТСЯ ОТ УЗИП ТИП 2?

    УЗИП тип 1 устанавливаются на вводе в здание при воздушном вводе питания или при наличии системы внешней молниезащиты. УЗИП в схеме включения предназначен для отвода части прямого тока молнии. В соответствии с ГОСТ Р 51992-2002, УЗИП 1-го класса испытаний ( тип 1) испытываются импульсом тока с формой волны 10/350 мкс.
    УЗИП тип 2 служат для защиты от наведённых импульсов тока и устанавливаются либо после УЗИП тип 1, либо на вводе в здание при отсутствии вероятности попадания части тока молнии. УЗИП 2 класса испытаний (тип 2) испытываются импульсом тока с формой 8/20 мкс.
    ВОПРОС: ГДЕ ПРИМЕНЯЕТСЯ УЗИП ТИПА 3 ?

    Устройства для Защиты от Импульсных Перенапряжений Типа 3 предназначены для "тонкой" защиты наиболее ответственного и чувствительного электрооборудования, например медицинской аппаратуры, систем хранения данных и пр. УЗИП Типа 3 необходимо устанавливать не далее 5 метров по кабелю от защищаемого оборудования. Модификации УЗИП Типа 3 могут быть выполнены в виде адаптера сетевой розетки или смонтированы непосредственно в корпусе или на шасси защищаемого прибора. Для бытового применения доступна версия MSB06 скрытого монтажа, за обычной сетевой розеткой.

    ВОПРОС: ЗАЧЕМ НУЖЕН СОГЛАСУЮЩИЙ ДРОССЕЛЬ?

    Для правильного распределения мощности импульса между ступенями защиты ставят линию задержки в виде дросселя индуктивностью 15 мкГн или отрезок кабеля длиной не менее 15 м, имеющего аналогичную индуктивность. В этом случае сначала сработает УЗИП 1-го класса и возьмёт на себя основную энергию импульса, а затем устройство 2-го класса ограничит напряжение до безопасного уровня.

    ВОПРОС: ЗАЧЕМ СТАВИТЬ УЗИП, ЕСЛИ НА ВВОДЕ УЖЕ СТОИТ АВТОМАТ ЗАЩИТЫ И УЗО?

    Вводной автомат (например на 25, 40, 63 А) защищает систему электроснабжения от перегрузки и коротких замыканий со стороны потребителя. Устройство защитного отключения УЗО (например, с током отсечки 30 или 100 мА) защищает человека от случайного поражения электрическим током.
    Но ни одно из этих устройств не может защитить электрическую сеть и оборудование от микросекундных импульсов большой мощности. Такую защиту обеспечивает только Устройство Защиты от Импульсных Перенапряжений УЗИП со временем срабатывания в наносекундном диапазоне.

    ВОПРОС: КАКОЕ УСТРОЙСТВО ЛУЧШЕ ЗАЩИТИТ ОТ ГРОЗЫ: УЗИП ИЛИ ОПН ?

    УЗИП - это официальное (ГОСТ) наименование всего класса устройств для защиты от последствий токов молний и импульсных перенапряжений в сетях до 1000 В. В литературе, в публикациях в интернете до сих пор встречаются названия - ОПН (Ограничитель перенапряжения), Разрядник, Молниеразрядник, Грозоразрядник - которые применительно к сетям до 1000 Вольт означают по сути одно устройство - это УЗИП. Для организации эффективной молниезащиты необходимо обращать внимание не на название устройства, а на его характеристики.

    ВОПРОС: КАК СРАВНИТЬ УЗИП РАЗНЫХ ПРОИЗВОДИТЕЛЕЙ?

    Все УЗИП, продаваемые на территории России, должны производиться и испытываться в соответствии с ГОСТ Р 51992-2002( аналог международного стандарта МЭК 61643-1-98). ГОСТ Р 51992-2002 предусматривает наличие у каждого устройства ряда характеристик, которые производитель обязан указать в паспорте и на самом изделии.

    Класс испытаний (Тип) 1, 2 или 3
    Импульсный ток Iimp (10/350 мкс) для УЗИП 1 класса
    Номинальный импульсный ток In (8/20 мкс)
    Максимальный импульсный ток Imax (8/20 мкс)
    Уровень напряжения защиты Up, измеренный при In

    По этим характеристикам и происходит сравнение. Замечание: некоторые производители указывают значения импульсных токов на фазу (модуль), а другие - на устройство в целом. Для сравнения их надо приводить к одному виду.

    [ http://www.artterm-m.ru/index.php/zashitaseteji1/faquzip]


    ОСОБЕННОСТИ ЭКСПЛУАТАЦИИ УСТРОЙСТВ ЗАЩИТЫ ОТ
    ИМПУЛЬСНЫХ ПЕРЕНАПРЯЖЕНИЙ В НИЗКОВОЛЬТНЫХ СИЛОВЫХ РАСПРЕДЕЛИТЕЛЬНЫХ СЕТЯХ
    ЗОРИЧЕВ А.Л.,
    заместитель директора
    ЗАО «Хакель Рос»

    В предыдущих номерах журнала были изложены теоретические основы применения устройств защиты от импульсных перенапряжений (УЗИП) в низковольтных электрических сетях. При этом отмечалась необходимость отдельного более детального рассмотрения некоторых особенностей эксплуатации УЗИП, а также типовых аварийных ситуаций, которые могут возникнуть при этом.

    1. Диагностика устройств защиты от перенапряжения
    Конструкция и параметры устройств защиты от импульсных перенапряжения постоянно совершенствуются, повышается их надежность, снижаются требования по техническому обслуживанию и контролю. Но, не смотря на это, нельзя оставлять без внимания вероятность их повреждения, особенно при интенсивных грозах, когда может произойти несколько ударов молнии непосредственно в защищаемый объект или вблизи от него во время одной грозы. Устройства защиты, применяемые в низковольтных электрических сетях и в сетях передачи информации подвержены так называемому старению (деградации), т.е. постепенной потере своих способностей ограничивать импульсные перенапряжения. Интенсивнее всего процесс старения протекает при повторяющихся грозовых ударах в течении короткого промежутка времени в несколько секунд или минут, когда амплитуды импульсных токов достигают предельных максимальных параметров I max (8/20 мкс) или I imp (10/350 мкс) для конкретных типов защитных устройств.

    Повреждение УЗИП происходит следующим образом. Разрядные токи, протекающие при срабатывании защитных устройств, нагревают корпуса их нелинейных элементов до такой температуры, что при повторных ударах с той же интенсивностью (в не успевшее остыть устройство) происходит:

    −   у варисторов - нарушение структуры кристалла (тепловой пробой) или его полное разрушение;
    −   у металлокерамических газонаполненных разрядников (грозозащитных разрядников) - изменение свойств в результате утечки газов и последующее разрушение керамического корпуса;

    −  у разрядников на основе открытых искровых промежутков -за счет взрывного выброса ионизированных газов во внутреннее пространство распределительного щита могут возникать повреждения изоляции кабелей, клеммных колодок и других элементов электрического шкафа или его внутренней поверхности. На практике известны даже случаи значительной деформации металлических шкафов, сравнимые только с последствиями взрыва ручной гранаты. Важной особенностью при эксплуатации разрядников этого типа в распределительных щитах является также необходимость повышения мер противопожарной безопасности.

    По указанным выше причинам все изготовители устройств защиты от перенапряжения рекомендуют осуществлять их регулярный контроль, особенно после каждой сильной грозы. Проверку необходимо осуществлять с помощью специальных тестеров, которые обычно можно заказать у фирм, занимающихся техникой защиты от перенапряжений. Контроль, осуществляемый другими способами, например, визуально или с помощью универсальных измерительных приборов, в этом случае является неэффективным по следующим причинам:

    −  Варисторное защитное устройство может быть повреждёно, хотя сигнализация о выходе варистора из строя не сработала. Варистор может обладать искажённой вольтамперной характеристикой (более высокая утечка) в области токов до 1 мA (область рабочих токов при рабочем напряжении сети; настоящую область не возможно проверить с помощью обычно применяемых приборов). Проверка осуществляется минимально в 2-х точках характеристики, напр. при 10 и 1000 мкА, с помощью специального источника тока с высоким подъёмом напряжения (1 до 1,5 кВ).

    −    Металлокерамический газонаполненный (грозовой) разрядник - с помощью визуального контроля можно заметить только поврежденный от взрыва внешний декоративный корпус устройства (или его выводы). Что бы выяснить состояние самого разрядника необходимо разобрать внешний корпус, но даже при таком контроле практически нельзя обнаружить утечку его газового заряда. Контроль напряжения зажигания грозового разрядника с помощью обыкновенных измерительных приборов выполнить очень трудно, он осуществляется при помощи специализированных тестеров.

     −   Разрядник с открытым искровым промежутком - проверку исправной работы можно осуществить только после его демонтажа и измерения с помощью генератора грозового тока с характеристикой 10/350 мкс по заказу у изготовителя устройств для защиты от импульсных перенапряжений.
     

    2. Защита от токов утечки и короткого замыкания в устройствах защиты от импульсных перенапряжений

    Основным принципом работы устройства защиты от импульсных перенапряжений является выравнивание потенциалов между двумя проводниками, одним из которых является фазный (L) проводник, а другим нулевой рабочий (N) или (РЕN) проводник, т.е. устройство включается параллельно нагрузке. При этом, в случае выхода из строя УЗИП (пробой изоляции, пробой или разрушение нелинейного элемента) или невозможности гашения сопровождающего тока (в случае применения искровых разрядников или разрядников скользящего разряда) возможно возникновение режима короткого замыкания между данными проводниками, что может привести к повреждению электроустановки и даже возникновению пожара. Стандартами МЭК предусматривается два обязательных способа защиты электроустановок потребителя 220/380 В от подобного рода ситуаций.

    2.1. Устройство теплового отключения в варисторных устройствах защиты от импульсных перенапряжений

    Имеющееся в варисторных ограничителях перенапряжений устройство отключения при перегреве (тепловая защита), как правило, срабатывает в результате процесса старения варистора. Суть явления заключается в том, что при длительной эксплуатации, а также в результате воздействий импульсов тока большой амплитуды происходит постепенное разрушение p-n переходов в структуре варистора, что приводит к снижению значения такого важного параметра, как наибольшее длительно допустимое рабочее напряжение защитного устройства (максимальное рабочее напряжение) Uc. Этот параметр определяется для действующего напряжения электрической сети и указывается производителями защитных устройств в паспортных данных и, как правило, непосредственно на корпусе защитного устройства. Для примера: если на корпусе защитного устройства указано значение Uc = 275 В, это обозначает, что устройство будет нормально функционировать в электропитающей сети номиналом 220 В при увеличении действующего напряжения на его клеммах до 275 В включительно (значение взято с достаточным запасом при условии выполнения электроснабжающей организацией требований ГОСТ 13109 «Нормы качества электрической энергии в системах электроснабжения общего назначения»).

    В результате «старения» варистора значение Uc снижается и в определенный момент времени может оказаться меньше чем действующее напряжение в сети. Это приведет к возрастанию токов утечки через варистор и быстрому повышению его температуры, что может вызвать деформацию корпуса устройства, проплавление фазными клеммами пластмассы и, в конечном итоге, короткое замыкание на DIN-рейку и даже пожар.

    В связи с этим, для применения в электроустановках рекомендуются только те варисторные ограничители перенапряжения, которые имеют в своем составе устройство теплового отключения (терморазмыкатель). Конструкция данного устройства, как правило, очень проста и состоит из подпружиненного контакта, припаянного легкоплавким припоем к одному из выводов варистора, и связанной с ним системы местной сигнализации. В некоторых устройствах дополнительно применяются «сухие» контакты для подключения дистанционной сигнализации о выходе ограничителя перенапряжений из строя, позволяющие с помощью физической линии передавать информацию об этом на пульт диспетчера или на вход какой-либо системы обработки и передачи телеметрических данных. (См. рис. 1).

    5018

    2.2. Применение быстродействующих предохранителей для защиты от токов короткого замыкания

    Несколько другая ситуация возникает в случае установившегося длительного превышения действующего напряжения в сети над наибольшим длительно допустимым рабочим напряжением защитного устройства (Uc), определенным ТУ для данного УЗИП. Примером такой ситуации может быть повышение напряжения по вине поставщика электроэнергии или обрыв (отгорание) нулевого проводника при вводе в электроустановку (в трехфазной сети с глухозаземленной нейтралью трансформатора). Как известно, в последнем случае к нагрузке может оказаться приложенным межфазное напряжение 380 В. При этом устройство защиты от импульсных перенапряжений сработает, и через него начнет протекать ток. Величина этого тока будет стремиться к величине тока короткого замыкания (рассчитывается по общеизвестным методикам для каждой точки электроустановки) и может достигать нескольких сотен ампер. Практика показывает, что устройство тепловой защиты не успевает отреагировать в подобных ситуациях из-за инерционности конструкции. Варистор, как правило, разрушается в течение нескольких секунд, после чего режим короткого замыкания также может сохраняться через дугу (по продуктам разрушения и горения варистора). Как же как и в предыдущем случае, возникает вероятность замыкания клемм устройства на корпус шкафа или DIN-рейку при расплавлении пластмассы корпуса и возможность повреждения изоляции проводников в цепях включения защитных устройств. Сказанное выше относится не только к варисторным ограничителям, но и к УЗИП на базе разрядников, которые не имеют в своем составе устройства теплового отключения. На фотографии (рис. 2) показаны последствия подобной ситуации, в результате которой произошел пожар в распределительном щите.

    5019

    Рис.2 Выход из строя варисторного УЗИП привел к пожару в ГРЩ.

    На рисунке 3 показано варисторное УЗИП, которое в результате аварийной ситуации стало источником пожара в щите.

    5020

    Рис.3

    Для того чтобы предотвратить подобные последствия рекомендуется устанавливать последовательно с устройствами защиты от импульсных перенапряжений предохранители с характеристиками срабатывания gG или gL (классификация согласно требованиям стандартов ГОСТ Р 50339. 0-92 ( МЭК 60269-1-86) или VDE 0636 (Германия) соответственно).

    Практически все производители устройств защиты от импульсных перенапряжений в своих каталогах приводят требования по номинальному значению и типу характеристики срабатывания предохранителей дополнительной защиты от токов короткого замыкания. Как уже указывалось выше, для этих целей используются предохранители типа gG или gL, предназначенные для защиты проводок и распределительных устройств от перегрузок и коротких замыканий. Они обладают значительно меньшим (на 1-2 порядка) временем срабатывания по сравнению с автоматическими выключателями тех же номиналов. При этом предохранители имеют более высокую стойкость к импульсным токам значительных величин. Практический опыт и данные экспериментальных испытаний показывают, что автоматические выключатели очень часто повреждаются при воздействии импульсных перенапряжений. Известны случаи подгорания контактов или приваривания их друг к другу. И в том и в другом случае автоматический выключатель не сможет в дальнейшем выполнять свои функции.

    Возможны различные варианты применения предохранителей и, соответственно, существует ряд особенностей, которые необходимо учитывать еще на этапе проектирования схемы электроснабжения или при изготовлении щитовой продукции. Одна из таких особенностей заключается в том, что в случае, если в качестве защиты от токов короткого замыкания будет использоваться только общая защита (вводные предохранители), то при коротком замыкании в любом УЗИП (первой, второй или третьей ступени) всегда будет обесточиваться вся электроустановка в целом или какая-то ее часть. Применение предохранителей, включенных последовательно с каждым защитным устройством, исключает такую ситуацию. Но при этом встает вопрос подбора предохранителей с точки зрения селективности (очередности) их срабатывания. Решение этого вопроса осуществляется путем применения предохранителей тех типов и номиналов, которые рекомендованы производителем конкретных моделей устройств защиты от перенапряжений.

    Пример установки предохранителей F7-F12 приведен на рисунке 4.

     

    5021

    Рис.4 Установка защитных устройств в TN-S сеть 220/380 В

     

    ПРИМЕР: При использовании в схеме, приведенной на рисунке 4, разрядников HS55 в первой ступени защиты и варисторных УЗИП PIII280 во второй ступени применение предохранителей F5-F7 и F8-F10 будет обусловлено выбором номинального значения предохранителей F1-F3:

    ·         При значении F1-F3 более 315 А gG, значения F7-F9 и F10-F12 выбираются ­315 А gG и 160 А gG соответственно;

    ·         При значении F1-F3 менее 315 А gG, но более 160 А gG, предохранители F7-F9 можно не устанавливать, F10-F12 выбираются - 160 А gG;

    ·         При значении F1-F3 менее 160 А gG, предохранители F7-F12 можно не устанавливать.

     

    Иногда может потребоваться, чтобы в случае возникновения короткого замыкания в защитных устройствах не срабатывал общий предохранитель на вводе электропитающей установки. Для этого необходимо устанавливать в цепи каждого УЗИП предохранители с учетом коэффициента (1,6). Т.е. если предохранитель на входе электроустановки имеет номинальное значение 160 А gG, то предохранитель включенный последовательно с УЗИП должен иметь номинал 100 А gG.

    Применение для данных целей автоматических выключателей осложняется причинами, перечисленными выше, а также не соответствием их времятоковых характеристик характеристикам предохранителей.

    3. Часто встречающиеся недостатки в конструктивном исполнении устройств защиты от импульсных перенапряжений

    Многими фирмами-производителями предлагаются защитные устройства классов I и II, состоящие из базы, предназначенной для установки на DIN-рейку, и сменного модуля с нелинейным элементом (разрядником или варистором) с ножевыми вставными контактами. Такое конструктивное исполнение кажется на вид более выгодным и удобным для заказчика, чем монолитный корпус, в виду возможности более простого осуществления измерения сопротивления изоляции электропроводки (при измерениях повышенными напряжениями этот модуль можно просто изъять). Однако способность сконструированных таким способом контактов пропускать импульсные токи не превышает предел Imax = 25 kA для волны (8/20 мкс) и Iimp = 20 kA для волны (10/350 мкс).

    Несмотря на это, некоторые изготовители показывают в рекламных каталогах для таких защитных устройств максимальные разрядные способности величинами до Imax = 100 kA (8/20 мкс) или Iimp = 25 kA (10/350 мкс). К сожалению, это не подтверждается практическими данными. Уже при первом ударе испытательного импульса тока с такой амплитудой произойдут пережоги и разрушение не только ножевых контактов сменного модуля, но также и повреждение контактов клемм в базе. Разрушительное воздействие испытательного импульса тока Imax = 50 kA (8/20 мкс) на механическую часть такой системы и ножевой контакт показано на следующих фотографиях (рис. 5). Очевидно, что после такого воздействия сложным становится, собственно, сам вопрос извлечения вставки из базы, так как их контакты могут привариться друг к другу. Даже если вставку удастся отсоединить от базы, последнюю будет нельзя использовать далее из-за подгоревших контактов, которые приведут к резкому возрастанию переходного сопротивления и, соответственно, уровня защиты данного УЗИП.

    5022

     

    Для того чтобы избежать подобных последствий, защитные устройства модульной конструкции необходимо применять только тогда, когда существует гарантия, что ожидаемые импульсные воздействия не превысят указанных выше значений. Это может быть выполнено в случае правильного выбора типов и классов УЗИП для конкретной электроустановки и согласования их параметров между ступенями защиты.

    4. Использование УЗИП для защиты вторичных источников питания 

    Одним из наиболее часто используемых вторичных источников питания является выпрямитель. Следует отметить, что практика установки элементов защиты от перенапряжений (разрядников, варисторов и т.п.) на платах или внутри блоков выпрямителя, является не правильной с нашей точки зрения. Существующий опыт показывает, что эти варисторы как правило рассчитаны на токи 7 – 10 кА (форма импульса 8/20 мкС) и по своим параметрам соответствуют третьему классу защиты согласно ГОСТ Р 51992-2002( МЭК 61643-1-98). Как правило, эксплуатирующие организации считают данный тип защиты достаточным и никаких дополнительных мер для повышения надежности работы оборудования не принимают. Однако, при отсутствии дополнительных внешних устройств защиты от импульсных перенапряжений более высокого класса, а так же при возникновении длительных превышений рабочего напряжения питающей сети в данной ситуации возможно возникновение двух типовых аварийных ситуаций:

    a) Токи значительных величин, возникающие при срабатывании установленных внутри модуля варисторов, будут протекать по печатным проводникам плат или проводам внутри блоков выпрямителя по кратчайшему пути к заземляющей клемме стойки. Это может вызвать выгорание печатных проводников на платах и возникновению на параллельных незащищенных цепях наводок, которые в свою очередь приведут к выходу из строя электронных элементов блока выпрямителя. При превышении максимальных импульсных токов, определенных для данного варистора изготовителем, возможно, его возгорание и даже разрушение, что может привести к пожару и механическому повреждению самого выпрямителя (более подробно описано в п.п. 2.1).

    b) Несколько другая ситуация возникает в случае длительного установившегося превышения действующего напряжения в сети над максимальным допустимым рабочим напряжением Uc, определенным ТУ для данного варистора (как правило используются варисторы с Uc = 275 В). Подробно данная ситуация была описана выше (см п.п. 2.2). В результате описанного воздействия появляется вероятность возгорания печатных плат и внутренней проводки, а так же возникновения механических повреждений (при взрыве варистора), что подтверждается статистикой организаций, осуществляющих ремонт выпрямителей.

    Пример таких повреждений показан на рисунке 6.

    5023

    Рис.6

     С точки зрения решения проблем описанных в пункте (а), наиболее правильным является вариант установки защитных устройств, при котором они размещаются в отдельном защитном щитке или в штатных силовых и распределительных щитах электроустановки объекта. Применение внешних дополнительных устройств защиты позволяет защитить выпрямитель от импульсных перенапряжений величиной в сотни киловольт и соответственно снизить до допустимого (7 – 10 кА) значения величины импульсных токов, которые будут протекать через варисторы, встроенные в выпрямитель, или практически полностью исключить их.

    Для защиты оборудования от длительного установившегося превышения действующего напряжения в сети (пункт b) можно использовать устройства контроля напряжения фазы или подобные им (см. рис. 7).

    5024

    Рис. 7 Подключение устройства контроля фаз РКФ-3/1

    [ http://www.energo-montage.ru/pages/top/articles/osobennosti_ekspluatacii_uzip/index_76.html]

    Тематики

    Синонимы

    EN

    3.1.45 устройство защиты от импульсных перенапряжений (surge protective device); SPD: Устройство, предназначенное для ограничения перенапряжения и скачков напряжения; устройство содержит, по крайней мере, один нелинейный компонент.

    Источник: ГОСТ Р МЭК 62305-2-2010: Менеджмент риска. Защита от молнии. Часть 2. Оценка риска оригинал документа

    3.53 устройство защиты от импульсных перенапряжений (surge protective device); SPD: Устройство, предназначенное для ограничения перенапряжения и скачков напряжения; устройство содержит по крайней мере один нелинейный компонент.

    Источник: ГОСТ Р МЭК 62305-1-2010: Менеджмент риска. Защита от молнии. Часть 1. Общие принципы оригинал документа

    Англо-русский словарь нормативно-технической терминологии > surge protective device

См. также в других словарях:

  • Изменение согласных в сочетании с j в праславянском языке — История русского языка …   Википедия

  • Изменение — Процесс (от лат. processus продвижение), последовательная смена состояний объекта во времени. Природа объекта может быть произвольной: материальный (природный или искусственный) или идеальный (понятие, теория и т.п.) объект порождает… …   Википедия

  • Изменение α-активности со временем при определении актинона в струе воздуха — Время, мин. Метод определения α активности I II 0 1,0 1,0 …   Химический справочник

  • Защита временем — уменьшение вредного действия неблагоприятных факторов производственной среды и трудового процесса на работающих за счет снижения времени их действия: введение внутрисменных перерывов, сокращение рабочего дня, увеличение продолжительности отпуска …   Российская энциклопедия по охране труда

  • ЗВЁЗДНАЯ ЭВОЛЮЦИЯ — изменение со временем физ. характеристик и хим. состава звёзд. Изучают 3. э. на основе сопоставления физ. характеристик множества звёзд, находящихся на разных стадиях эволюции. Осн. этапы 3. э. образование протозвезды из межзвёздного газа и пыли… …   Естествознание. Энциклопедический словарь

  • Звездная эволюция — изменение со временем физических характеристик и химического состава звезд. Изучают звездную эволюцию на основе сопоставления физических характеристик множества звезд, находящихся на разных стадиях эволюции. Основные этапы звездной эволюции… …   Астрономический словарь

  • Звездная эволюция — изменение со временем физических характеристик и химического состава звезд. Основные этапы звездной эволюции образование прото звезды из межзвездного газа и пыли, возникновение в центре сжимающейся звезды термоядерного источника энергии,… …   Начала современного естествознания

  • Уравнения Максвелла —     Классическая электродинамика …   Википедия

  • ЭВОЛЮЦИЯ ЗВЁЗД — изменение со временем физ. параметров и наблюдаемых характеристик звёзд в результате. протекания ядерных реакций, излучения энергии и потери массы. Для звёзд в тесных двойных системах существ, роль играет обмен веществом между компаньонами. Об… …   Физическая энциклопедия

  • повреждение — 3.12 повреждение: Телесное повреждение или угроза здоровью человека или ущерб имуществу или окружающей среде. Источник: ГОСТ Р 52985 2008: Экологическая безопасность ракетно космической техники. Общие технические требования …   Словарь-справочник терминов нормативно-технической документации

  • ХАОС — сложное, нерегулярное (апериодическое) изменение состояния физ. системы в пространстве и/или во времени. Происхождение хаотического поведения может быть обусловлено разл. причинами. X. может представлять собой нек рое многопериодическое движение …   Физическая энциклопедия

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»