Перевод: со всех языков на все языки

со всех языков на все языки

изготовл

  • 1 висмут

    1. bismuth

     

    висмут
    Bi

    Элемент V группы Периодич. системы; ат. н. 83, ат. м. 208,980; серебристо-серый металл с розоватым оттенком. Природный Bi состоит из одного стабильного изотопа 209Bi.
    Содержание Bi в земной коре 2 • 10~5 мас. %, встречается в самородном виде и в виде соединений с кислородом (бисмит Bi2O3), с серой (висмутовый блеск Bi2S3), теллуром (тетрадимит Bi2Te2S). В большом кол-ве, но в малых концентрациях Bi встречается как изоморфная примесь в Pb-Zn-, Cu-, Mo-Co и Sn-W-рудах.
    Bi имеет ромбоэдрич. решетку с периодом а = 0,47457 нм и углом а = 57° 14'13"; у = = 9,80 г/см3; /1И= 271,3 оС, /.„,, = 1560 оС; С2(ГС = 123,5 ДжДкг • К); а20.с = 1 3,3 • 10"'; Х20.с= 8,37 Вт/(м • К); рм.с= 106,8 • 10~8 Ом • м. Bi - самый диамагнитный металл. Уд. магнитная восприимчивость х = 1,35 • 10"' А/м. При комн. темп-ре Bi хрупок, но при 120—150 °С может подвергаться пластич. деформации; горячим прессованием (при 240—250 °С) из него можно изготовить проволоку диаметром до 0,1 мм, а также полосу толщиной 0,2—0,3 мм; тв. по Бринеллю измеряется в пределах 72— 93 МПа. При плавлении Bi уменьшается в объеме на 3,27 %.
    В сухом виде Bi устойчив, во влажном постепенно покрывается буроватой пленкой оксидов. Заметное окисление начинается с 500 оС. Выше 1000 оС Bi горит голубоватым пламенем с образованием Bi2O3; не реагирует с Н2, С, N2, Si. С большинством металлов при сплавлении образует интерметаллич. соединения - висмутиды, напр. Na3Bi, Mg3Bi.
    Bi не реагирует с НСl и разбавл. H2SO4; с HN03 образует нитрат. Соли Bi легко гидро-лизуются.
    Около 90 % мирового потребления Bi покрывается его попутной добычей при переработке полиметаллич. руд. В свинцовом производстве Bi получают по классич. схеме: агломерирующий обжиг концентратов, шахтная восстановительная плавка свинцового Bi-содержащего агломерата с извлечением из чернового свинца (стадия обезвисмучива-ния) с выделением Bi в дроссы (висмутовые съемы) и затем электролитич. разделение висмутистого свинца с получением шла-мов и рафиниров. Bi. При плавке Cu-Bi- концентратов Bi концентрируется в пылях плавильных печей и конвертеров, из к-рых его извлекают восстановительной плавкой содой и углем. Cu-Bi-концентраты перерабатываются также гидрометаллургич. способом. Выщелачивание проводится при 105 °С НСl или H2SO4 с добавл. хлоридов металлов. Bi выделяют из р-ров либо гидролитич. осаждением в виде окси- или гидрооксихлоридов, либо восстановлением железом в виде металла (цементация). Идя отделения Bi от сопутств. металлов могут быть использованы экстракция или ионный обмен.
    Извлечение Bi в свинцовом произ-ве составляет 86—95 %, в медном и оловянном — 73—80 %. Собственно Bi-концентраты (содер-жащ. обычно 3-5 мае. %, в редких случаях до 6 %) получают обогащением висмутовых руд флотацией и др. способами. Перерабатывают концентраты путем восстановительной плавки с добавлением металлич. железа. Известны содовая плавка, а также щелочная с NaOH.
    Рафинирование Bi заключается в после-доват. обработке его расплавл. серой с добавл. угля (для удаления Fe и Сu); щелочью с добавл. окислителя или продувкой воздухом (для удаления Ag, Sb и Sn); цинком (для удаления Аu и Ag) и др. Применяют также электролитич. рафинирование как в водных р-рах BiCl2, Bi2(SiF6)3, так и в солевых расплавах. Для получения Bi высокой чистоты (не менее Ю"6— 10"'°%) используют комбинацию разных методов: электролиз, электрорафинирование с твердыми электродами в электролитах разной природы, методы дистилляции в глубоком вакууме, кристаллофиз. методы и пирометал-лургич. процессы, включающие хлорирование, обработку щелочами и др. реагентами, а также электрохим. переработку Bi-содержащих сплавов в ионных расплавах.
    Значит, кол-во Bi идет для получения легкоплавких сплавов, содержащих Pb, Sn, Cd (см., напр., Сплав Вуда), к-рые применяют в зубоврачебном протезировании, для изготовл. клише, в автоматич. противопожарных устр-вах и т.п. Быстро увеличивается потребление Bi в соединениях с Те для термоэлектрогенераторов. Добавка Bi к нерж. сталям улучшает их обрабатываемость резанием. Соединения Bi применяют в стекловарении и эмалировании. Наиб, кол-во Bi потребляет фармацевтическая пром-сть для изготовл. обеззараж. и подсушивающих средств.
    [ http://metaltrade.ru/abc/a.htm]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > висмут

  • 2 галлий

    1. gallium

     

    галлий
    Ga

    Элемент III группы Периодич. системы, ат. н. 31, ат. м. 69,72; серебристо-белый легкий металл. Состоит из двух стабильных изотопов с массовыми числами 69 (60,5 %) и 71 (39,5 %). Существование Ga («экаалюминия») и осн. его св-ва были предсказаны в 1870 г. Д. И. Менделеевым. Элемент был открыт спектральным анализом в пиренейской цинковой обманке и выделен в 1875 г. франц. химиком П. Э. Лекоком де Буабодраном; назван в честь Франции (лат. Gallia). Среднее содержание Ga в земной коре относительно высокое, 1,5 • 10~3 мае. %, что равно содержанию РЬ и Mo. Ga - типичный рассеянный элемент. Единственный минерал Ga -галлит 52 очень редок. Основная часть Ga в литосфере заключена в минералах алюминия. Содержание Ga в бокситах и нефелинах колеблется от 0,002 до 0,01 %.
    Ga имеет ромбич. (псевдотетрагон.) решетку с параметрами а = 0,45197 нм, Ь = 0,76601 нм, с = 0,45257 нм. Плотность, г/см3, тв. Ga 5,904 (20 оС), жидкого 6,095 (29,8 оС), т.е. при затвердевании объем увеличивается; / = = 29,8 °С, 1ШЛ = 2230 °С. Удельная теплоемкость, ДжДкг • К), тв. Ga 376, жидкого 410 в интервале 29—100 °С. Уд. электрич. сопротивление, Ом • см, тв. Ga 53,4 • 10"' (20 °С), жидкого 27,2 • 10~6 (30 оС). На воздухе при обычной температуре Ga стоек. Выше 260 оС - в сухом кислороде наблюдается медленное окисление (оксидная пленка защищает металл). В H2SO4 и НСl Ga растворяется медленно, в HF — быстро, в HNOj на холоду Ga устойчив. В горячих р-рах щелочей медленно растворяется. Сl и Вг реагируют с Ga на холоду, I — при нагревании. Расплавленный Ga при / > 300 °С взаимодействует со всеми конструкционными металлами и сплавами.
    Из солей Ga наиб. значение имеют GaCl3 (tm= 78 °С, /гап = 200 °С) и Ga2(SO,)r Последний с сульфатами щелочных металлов и аммония образует двойные соли типа квасцов, напр. (NH4)Ga(SO4)2 • 12Н20. Ga образует малорастворимый в воде и к-тах ферроцианид Ga<[Fe(CN)6]3, что используется для его отделения от Аl и ряда элементов.
    Осн. источник получения Ga — алюминиевое произ-во. Ga при переработке бокситов по способу Байера концентрируется в оборотных маточных р-рах после выделения Аl(ОН)3. Из таких р-ров Ga выделяют электролизом на Hg-катоде. Из щелочного р-ра, полученного после обработки амальгамы водой, осаждают Ga(OH)5, к-рый р-ряют в щелочи, и выделяют Ga электролизом. При содово-известковом способе переработки бокситовой или нефелиновой руды Ga концентрируется в последних фракциях осадков, выделяемых в процессе карбонизации. Для дополнит. обогащения осадок гидрооксидов обрабатывают известковым молоком. При этом большая часть Аl остается в осадке, a Ga переходит в р-р, из к-рого пропусканием СО2 выделяют галлиевый концентрат (6-8 % Ga2O3); последний растворяют в щелочи и выделяют Ga электролитически. Полученный электролизом щелочного раствора жидкий Ga, промытый водой и кислотами (НСl, HNO3), содержит 99,9-99,95 % Ga. Более чистый металл получают плавкой в вакууме, зонной плавкой или вытягиванием кристалла из расплава.
    Широкого промышл. применения Ga пока не имеет. Потенциально возможные масштабы попутного получения Ga в произ-ве Аl до сих пор значительно превосходят спрос на металл. Наиб. перспективно применение Ga в виде хим. соединений типа GaAs, GaP, GaSb, обладающих полупроводниковыми св-вами. Ga можно использовать для изготовл. оптических зеркал, отличающихся высокой отражательной способностью. Жидкий Ga и его сплавы предложено использовать для изготовл. высокотемп-рных термометров (600-1300 °С). Сплав на основе Ga (с In, Sn, Zn или Al), наз. галламой, применяют в кач-ве теплоносителей яд. реакторов, для устр-ва гидравлич. затворов, плавких предохранителей и т.п.
    [ http://metaltrade.ru/abc/a.htm]

    Тематики

    Синонимы

    • Ga

    EN

    Русско-английский словарь нормативно-технической терминологии > галлий

  • 3 жесть двойной прокатки

    1. DR tin-plate
    2. double-reduced tin-plate

     

    жесть двойной прокатки
    Тонкая и особотонкая, изготовл. холодной прокаткой отожж. жести обычной толщины. После прокатки на специализир. двух- или трехклетевых непрер. станах с ev 30—50 % на неотожж. наклеп. полосу наносят защитное покрытие. Ж. д. п. отличается от обычной (одинарной прокатки) меньшей толщиной, более высокой прочностью и лучшим сочетанием упругих, прочностных и технологич. св-в, поэтому изготовл. из нее тара и изделия имеют меньшую массу при высокой жесткости и меньшую стоимость. Мин. толщина ж. д. п. 0,08-0,10 мм.
    [ http://metaltrade.ru/abc/a.htm]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > жесть двойной прокатки

  • 4 bismuth

    1. висмут

     

    висмут
    Bi

    Элемент V группы Периодич. системы; ат. н. 83, ат. м. 208,980; серебристо-серый металл с розоватым оттенком. Природный Bi состоит из одного стабильного изотопа 209Bi.
    Содержание Bi в земной коре 2 • 10~5 мас. %, встречается в самородном виде и в виде соединений с кислородом (бисмит Bi2O3), с серой (висмутовый блеск Bi2S3), теллуром (тетрадимит Bi2Te2S). В большом кол-ве, но в малых концентрациях Bi встречается как изоморфная примесь в Pb-Zn-, Cu-, Mo-Co и Sn-W-рудах.
    Bi имеет ромбоэдрич. решетку с периодом а = 0,47457 нм и углом а = 57° 14'13"; у = = 9,80 г/см3; /1И= 271,3 оС, /.„,, = 1560 оС; С2(ГС = 123,5 ДжДкг • К); а20.с = 1 3,3 • 10"'; Х20.с= 8,37 Вт/(м • К); рм.с= 106,8 • 10~8 Ом • м. Bi - самый диамагнитный металл. Уд. магнитная восприимчивость х = 1,35 • 10"' А/м. При комн. темп-ре Bi хрупок, но при 120—150 °С может подвергаться пластич. деформации; горячим прессованием (при 240—250 °С) из него можно изготовить проволоку диаметром до 0,1 мм, а также полосу толщиной 0,2—0,3 мм; тв. по Бринеллю измеряется в пределах 72— 93 МПа. При плавлении Bi уменьшается в объеме на 3,27 %.
    В сухом виде Bi устойчив, во влажном постепенно покрывается буроватой пленкой оксидов. Заметное окисление начинается с 500 оС. Выше 1000 оС Bi горит голубоватым пламенем с образованием Bi2O3; не реагирует с Н2, С, N2, Si. С большинством металлов при сплавлении образует интерметаллич. соединения - висмутиды, напр. Na3Bi, Mg3Bi.
    Bi не реагирует с НСl и разбавл. H2SO4; с HN03 образует нитрат. Соли Bi легко гидро-лизуются.
    Около 90 % мирового потребления Bi покрывается его попутной добычей при переработке полиметаллич. руд. В свинцовом производстве Bi получают по классич. схеме: агломерирующий обжиг концентратов, шахтная восстановительная плавка свинцового Bi-содержащего агломерата с извлечением из чернового свинца (стадия обезвисмучива-ния) с выделением Bi в дроссы (висмутовые съемы) и затем электролитич. разделение висмутистого свинца с получением шла-мов и рафиниров. Bi. При плавке Cu-Bi- концентратов Bi концентрируется в пылях плавильных печей и конвертеров, из к-рых его извлекают восстановительной плавкой содой и углем. Cu-Bi-концентраты перерабатываются также гидрометаллургич. способом. Выщелачивание проводится при 105 °С НСl или H2SO4 с добавл. хлоридов металлов. Bi выделяют из р-ров либо гидролитич. осаждением в виде окси- или гидрооксихлоридов, либо восстановлением железом в виде металла (цементация). Идя отделения Bi от сопутств. металлов могут быть использованы экстракция или ионный обмен.
    Извлечение Bi в свинцовом произ-ве составляет 86—95 %, в медном и оловянном — 73—80 %. Собственно Bi-концентраты (содер-жащ. обычно 3-5 мае. %, в редких случаях до 6 %) получают обогащением висмутовых руд флотацией и др. способами. Перерабатывают концентраты путем восстановительной плавки с добавлением металлич. железа. Известны содовая плавка, а также щелочная с NaOH.
    Рафинирование Bi заключается в после-доват. обработке его расплавл. серой с добавл. угля (для удаления Fe и Сu); щелочью с добавл. окислителя или продувкой воздухом (для удаления Ag, Sb и Sn); цинком (для удаления Аu и Ag) и др. Применяют также электролитич. рафинирование как в водных р-рах BiCl2, Bi2(SiF6)3, так и в солевых расплавах. Для получения Bi высокой чистоты (не менее Ю"6— 10"'°%) используют комбинацию разных методов: электролиз, электрорафинирование с твердыми электродами в электролитах разной природы, методы дистилляции в глубоком вакууме, кристаллофиз. методы и пирометал-лургич. процессы, включающие хлорирование, обработку щелочами и др. реагентами, а также электрохим. переработку Bi-содержащих сплавов в ионных расплавах.
    Значит, кол-во Bi идет для получения легкоплавких сплавов, содержащих Pb, Sn, Cd (см., напр., Сплав Вуда), к-рые применяют в зубоврачебном протезировании, для изготовл. клише, в автоматич. противопожарных устр-вах и т.п. Быстро увеличивается потребление Bi в соединениях с Те для термоэлектрогенераторов. Добавка Bi к нерж. сталям улучшает их обрабатываемость резанием. Соединения Bi применяют в стекловарении и эмалировании. Наиб, кол-во Bi потребляет фармацевтическая пром-сть для изготовл. обеззараж. и подсушивающих средств.
    [ http://metaltrade.ru/abc/a.htm]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > bismuth

  • 5 gallium

    1. галлий

     

    галлий
    Ga

    Элемент III группы Периодич. системы, ат. н. 31, ат. м. 69,72; серебристо-белый легкий металл. Состоит из двух стабильных изотопов с массовыми числами 69 (60,5 %) и 71 (39,5 %). Существование Ga («экаалюминия») и осн. его св-ва были предсказаны в 1870 г. Д. И. Менделеевым. Элемент был открыт спектральным анализом в пиренейской цинковой обманке и выделен в 1875 г. франц. химиком П. Э. Лекоком де Буабодраном; назван в честь Франции (лат. Gallia). Среднее содержание Ga в земной коре относительно высокое, 1,5 • 10~3 мае. %, что равно содержанию РЬ и Mo. Ga - типичный рассеянный элемент. Единственный минерал Ga -галлит 52 очень редок. Основная часть Ga в литосфере заключена в минералах алюминия. Содержание Ga в бокситах и нефелинах колеблется от 0,002 до 0,01 %.
    Ga имеет ромбич. (псевдотетрагон.) решетку с параметрами а = 0,45197 нм, Ь = 0,76601 нм, с = 0,45257 нм. Плотность, г/см3, тв. Ga 5,904 (20 оС), жидкого 6,095 (29,8 оС), т.е. при затвердевании объем увеличивается; / = = 29,8 °С, 1ШЛ = 2230 °С. Удельная теплоемкость, ДжДкг • К), тв. Ga 376, жидкого 410 в интервале 29—100 °С. Уд. электрич. сопротивление, Ом • см, тв. Ga 53,4 • 10"' (20 °С), жидкого 27,2 • 10~6 (30 оС). На воздухе при обычной температуре Ga стоек. Выше 260 оС - в сухом кислороде наблюдается медленное окисление (оксидная пленка защищает металл). В H2SO4 и НСl Ga растворяется медленно, в HF — быстро, в HNOj на холоду Ga устойчив. В горячих р-рах щелочей медленно растворяется. Сl и Вг реагируют с Ga на холоду, I — при нагревании. Расплавленный Ga при / > 300 °С взаимодействует со всеми конструкционными металлами и сплавами.
    Из солей Ga наиб. значение имеют GaCl3 (tm= 78 °С, /гап = 200 °С) и Ga2(SO,)r Последний с сульфатами щелочных металлов и аммония образует двойные соли типа квасцов, напр. (NH4)Ga(SO4)2 • 12Н20. Ga образует малорастворимый в воде и к-тах ферроцианид Ga<[Fe(CN)6]3, что используется для его отделения от Аl и ряда элементов.
    Осн. источник получения Ga — алюминиевое произ-во. Ga при переработке бокситов по способу Байера концентрируется в оборотных маточных р-рах после выделения Аl(ОН)3. Из таких р-ров Ga выделяют электролизом на Hg-катоде. Из щелочного р-ра, полученного после обработки амальгамы водой, осаждают Ga(OH)5, к-рый р-ряют в щелочи, и выделяют Ga электролизом. При содово-известковом способе переработки бокситовой или нефелиновой руды Ga концентрируется в последних фракциях осадков, выделяемых в процессе карбонизации. Для дополнит. обогащения осадок гидрооксидов обрабатывают известковым молоком. При этом большая часть Аl остается в осадке, a Ga переходит в р-р, из к-рого пропусканием СО2 выделяют галлиевый концентрат (6-8 % Ga2O3); последний растворяют в щелочи и выделяют Ga электролитически. Полученный электролизом щелочного раствора жидкий Ga, промытый водой и кислотами (НСl, HNO3), содержит 99,9-99,95 % Ga. Более чистый металл получают плавкой в вакууме, зонной плавкой или вытягиванием кристалла из расплава.
    Широкого промышл. применения Ga пока не имеет. Потенциально возможные масштабы попутного получения Ga в произ-ве Аl до сих пор значительно превосходят спрос на металл. Наиб. перспективно применение Ga в виде хим. соединений типа GaAs, GaP, GaSb, обладающих полупроводниковыми св-вами. Ga можно использовать для изготовл. оптических зеркал, отличающихся высокой отражательной способностью. Жидкий Ga и его сплавы предложено использовать для изготовл. высокотемп-рных термометров (600-1300 °С). Сплав на основе Ga (с In, Sn, Zn или Al), наз. галламой, применяют в кач-ве теплоносителей яд. реакторов, для устр-ва гидравлич. затворов, плавких предохранителей и т.п.
    [ http://metaltrade.ru/abc/a.htm]

    Тематики

    Синонимы

    • Ga

    EN

    Англо-русский словарь нормативно-технической терминологии > gallium

  • 6 double-reduced tin-plate

    1. жесть двойной прокатки

     

    жесть двойной прокатки
    Тонкая и особотонкая, изготовл. холодной прокаткой отожж. жести обычной толщины. После прокатки на специализир. двух- или трехклетевых непрер. станах с ev 30—50 % на неотожж. наклеп. полосу наносят защитное покрытие. Ж. д. п. отличается от обычной (одинарной прокатки) меньшей толщиной, более высокой прочностью и лучшим сочетанием упругих, прочностных и технологич. св-в, поэтому изготовл. из нее тара и изделия имеют меньшую массу при высокой жесткости и меньшую стоимость. Мин. толщина ж. д. п. 0,08-0,10 мм.
    [ http://metaltrade.ru/abc/a.htm]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > double-reduced tin-plate

  • 7 DR tin-plate

    1. жесть двойной прокатки

     

    жесть двойной прокатки
    Тонкая и особотонкая, изготовл. холодной прокаткой отожж. жести обычной толщины. После прокатки на специализир. двух- или трехклетевых непрер. станах с ev 30—50 % на неотожж. наклеп. полосу наносят защитное покрытие. Ж. д. п. отличается от обычной (одинарной прокатки) меньшей толщиной, более высокой прочностью и лучшим сочетанием упругих, прочностных и технологич. св-в, поэтому изготовл. из нее тара и изделия имеют меньшую массу при высокой жесткости и меньшую стоимость. Мин. толщина ж. д. п. 0,08-0,10 мм.
    [ http://metaltrade.ru/abc/a.htm]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > DR tin-plate

  • 8 изготовление

    ср. production, manufacture;
    making
    изготовл|ение - с. manufacture;
    ~ять, изготовить (вн.) manufacture (smth.), make* (smth.).

    Большой англо-русский и русско-английский словарь > изготовление

  • 9 машинный

    1) (относ. к машинам) машинний, машиновий; (о частях машины, машинки ещё) до машини, до машинки. [Топільник з машинового відділу (Тур. Охор. роб.). В машиновій праці з багатьма робітниками один робить тільки одну працю (Екон. Наука)]. -ный зал - машинарня. -ное колесо - колесо до машини. -ное масло - см. Масло 3. -ный мастер - см. Механик;
    2) (изготовл. при помощи машин) машиновий. -ная работа - машинова робота, машиновий вироб (-бу). -ное производство - машинове виробництво, машинова продукція. [Коли розвинулась машинова продукція (Доман.)]. Изделия -ного производства - машинові вироби. -ная индустрия - машинова індустрія, машинництво. [Розвиток машинництва (Екон. Наука)].
    * * *
    маши́нний

    Русско-украинский словарь > машинный

  • 10 балка (металлургия)

    1. beam

     

    балка
    Фасонный профиль, элементы к-рого — стенка и располож. по ее сторонам перпендикулярно и симметрично ей полки. Б. подразделяются по конфигурации, напр, двутавровые нормальные и широкополочные, с прямыми полками, тавровые, коробч.; по способу изготовления — катаные, сварные, клепаные, холодногнутые; по исполнению — обычные и облегч., тонкост.; по назначению - общего и отраслевого. Осн. вид — стальные двутавровые, изготовл. горячей прокаткой на рельсобалочных и сортовых станах.
    [ http://metaltrade.ru/abc/a.htm]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > балка (металлургия)

  • 11 бетон огнеупорный

    1. refractory concrete

     

    бетон огнеупорный
    Безобжиговый композиц. материал с огнеупорностью > 1580 °С, изготовл. в виде сухих бетонных смесей и готовых к употреблению масс, а также изделий-блоков, панелей и т.п. Связующими в б. о. м. б. глиноземистый или высокоглиноземистый цемент, жидкое стекло, фосфатные вяжущие, периклаз. цемент, кремний-органич. соединения, высококонцентрир. керамич. вяжущие суспензии и др., а заполнителями - огнеупорные порошки с крупностью от 60 мкм до > 40 мм в завис-ти от назначения б. о. По химико-минеральному составу б. о. классифицируют аналогично огнеупорам.
    Св-ва б. о. определяются природой заполнителя и связующего. Открытая пористость в сухом состоянии 15-25 %, ав= 40-60 МПа. Макс. темп-pa применения: динасокварцитового на жидком стекле - 1500 °С, шамотного на глиноземистом цементе - 1300—1350 °С, муллитового на высокоглиноземистом цементе — 1400-1450 °С, корундового на том же цементе — 1700 °С, периклазохромитового с полифосфатом натрия — 1700 °С. Б. о. применяют в виде готовых блоков в кладке шлаковиков мартен. печей, в нагреват. колодцах, печах и др., а также в монолитных футеровках крышек завалочных окон сталеплавильных и дверей кокс. печей, машин для обжига окатышей и др. агрегатов.
    [ http://metaltrade.ru/abc/a.htm]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > бетон огнеупорный

  • 12 булат

    1. damascus steel

     

    булат
    Высокоуглерод. литая сталь, которая благодаря особому способу изготовления отличается своеобразной структурой и видом («узором») поверхности, высокой твердостью и упругостью. Узорчатость булатной стали связана с особенностями выплавки и кристаллизации. С древнейших времен идет на изготовл. мечей, сабель, кинжалов и др. холодного оружия исключит. стойкости и остроты. Б. производили в Индии, странах Ср. Азии, в Иране и Сирии. Впервые в Европе литой б., аналогичный лучшим старинным восточным образцам, получен на Златоустовском металлургич. з-де инж. П. П. Аносовым в 1830-х гг.
    [ http://metaltrade.ru/abc/a.htm]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > булат

  • 13 выращивание монокристаллов

    1. single crystals growing
    2. monocrystals growing

     

    выращивание монокристаллов
    Получение (изготовл.) вещ-в в виде объемных монокристаллов или монокристаллич. эпитаксиальных слоев и пленок кристаллизацией расплавов или из паровой (газовой) фазы.
    В основе методов в. м.из расплавов — кристаллизация в тепловом поле, имеющем заданный градиент темп-ры, к-рый определяет направление потока тепла и, соответственно, направление кристаллизации. Такая кристаллизация называется направленной кристаллизацией.
    На рис. 1, а приведена схема вертик. устр-ва для выращивания монокристаллов методом Бриджмена. Процесс направленной кристаллизации ведется в герметичных ампулах-контейнерах, в к-рых создан или вакуум, или атмосфера инертного газа. Обычно в кач-ве зародыша кристаллизации используют небольшой монокристалл вещ-ва необходимой кристаллографич. ориентации, который получил название затравки 5. Для направленной кристаллизации перемещают ампулу 2 относит, градиентного темп-рного поля. Такое перемещение достигается или опусканием ампулы 2, или подъемом узла нагрева 1. Диам. монокристалла определяется геометрич. размерами ампулы. При использовании ампул из кварца наиб. размер монокристаллов в попереч. сечении редко превышает 50 мм.
    [ http://metaltrade.ru/abc/a.htm]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > выращивание монокристаллов

  • 14 высадка (металлургия)

    1. upset
    2. heading

     

    высадка
    Технологич. операция горячей и холодной обработки металлов давлением, заключающаяся в увеличении поперечного размера части заготовки в результате ее деформации осадкой. Горячую в. для получения поковок шестерен, клапанов, полуосей, валиков и т.п. осуществляют, как правило, на горизонтально-ковочных и электровысадочных машинах. Для горячей в. крепежных изделий используют разные способы. Болты, винты и заклепки диам. 16—42 мм высаживают на фрикц. прессах, однопозиц. горячевысадочных автоматах и многопозиц. роторных автоматах. Гайки высаживают на многопозиц. гаечных автоматах. Процесс произ-ва болтов М16-М42 из среднеуглерод. и легиров. сталей включает: отрезку заготовки, нагрев до 900-1150 °С идущей на высадку части заготовки, высадку головки с облоем и обсечку его. Холодная в. — наиб. распростран. способ изготовл. метизов диам. до 24 мм (болтов, винтов, шпилек, гаек, шурупов, заклепок и т.п.) с точными размерами, хорошим кач-вом поверхности и не требующих дополнительной механич. обработки. Стержневые резьбовые изделия производят холодной в. калиброванного проката на автоматах-комбайнах или поточных линиях, где производится отрезка заготовки, высадка головки, редуцирование стержня, накатка резьбы.
    [ http://metaltrade.ru/abc/a.htm]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > высадка (металлургия)

  • 15 гвозди

    1. nails

     

    гвозди
    Простейшие крепежные детали, изготовл. в наст. время, как правило, из проволоки; один из основных видов металлопродукции метизной пром-ти. Первые металлич. литые и кованые г. появились в эпоху бронзовой культуры. Позднее г. стали изготовлять из медной и железной проволоки. На Руси специалисты-гвоздари известны с XIII в. Произ-во г. оставалось ручным до нач. XIX в., когда были созданы первые машины для изготовления кованых г. Примерно тогда же появились станки для получения г. из проволоки. Современное произ-во г. ведут, как правило, на прессах-автоматах ротац. типа. Наиболее распространены автоматы с горизонтальным инструментом. Современные автоматы производят г. длиной от 6 до 250 мм, диам. от 0,8 до 8 мм строительные, толевые, кровельные и др. Последующая обработка г. (снятие заусенцев, термообработка, гальванич. и противокорроз. покрытия) ведется на спец. оборудовании с механизир. загрузкой и выгрузкой. Большинство операций в производстве гвоздей автоматизировано.
    [ http://metaltrade.ru/abc/a.htm]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > гвозди

  • 16 грануляция

    1. nodulizing
    2. granulation

     

    грануляция
    гранулирование

    Формиров. тв. частиц (гранул) определ. размеров и формы с задан, св-вами. Размер гранул зависит от вида материала, способа его дальнейшей переработки или применения и составляет 0,2—25 мм. Формирование < 1мм гранул назыв. микрогранулированием. Г. основано на уплотнении порошкообразных или измельченных материалов с использов. связ. или без него, диспергировании и послед, кристаллизации металлич. и шлаковых расплавов или р-ров. Показатели г. — выход кондиц. фракции, кач-во гранул (форма, прочность, насыпная масса), однородность гранулометрич. состава. Промышл. способы г.: распыление жидких расплавов, окомкование (смачивание частиц материала связ., уплотнение агломератов в движущемся слое материала), диспергирование жидкостей (в псевдоожиж. слое или в свободном объеме башенных устр-в), прессование (брикетирование), экструзия.
    В металлургии гранулируют шихтовые материалы и жидкие продукты плавки: шлаки, штейны (для переработки в измельч. состоянии и удаления частиц серы); нек-рые металлы, стали, сплавы (для получ. металлич. порошков и изготовл. из них полуфабрикатов и изделий методами порошковой металлургии) и ферросплавы.
    [ http://metaltrade.ru/abc/a.htm]

    Тематики

    Синонимы

    EN

    Русско-английский словарь нормативно-технической терминологии > грануляция

  • 17 графит (металлургия)

    1. graphite

     

    графит
    1. Минерал, гексагон. кристаллич. модификация чистого углерода, наиб, устойчивая в земной коре. Кристаллич. решетка г. — слоистого типа, в слоях атомы С расположены в узлах гексаген. ячеек слоя. Каждый атом С окружен тремя соседними на расстоянии 0,14 нм. Слои параллельны на расстоянии 0,355 нм. Связь м-ду атомами С в слое прочная, ковалентного типа; между слоями - слабая, остат.-металлич. типа. Особенности структуры г. и разные типы связей обусловливают анизотропию физ. и механ. св-в. у = 2,23 г/см3. Твердость по минералог. шкале равна 1, в слое > 5,5, tm = (3850 ± ± 50 °С), хорошие электропроводность, Р.ФИСТ = 0.42- 10"* Ом-м), кислотоупорность и сопротивл. окислению, малое сечение захвата тепловых нейтронов, легко обрабатывается.
    Различают месторожд. кристаллич. г., связ. с магматич. горными породами или кристаллич. сланцами, и месторожд. скрытнокрис-таллич. г., образовавш. при метаморфизме углей. Наряду с природным г. к кристаллич. разновидности принадлежат также искусств, (домен, и карбидный г.). Домен, г. выделяется при медл. охлажд. больших масс чугуна, карбидный - при термич. разлож. карбидов. К скрытнокристаллич. разновидности относится г., получ. в электрич. печах при нагрев, углей до > 2200 °С.
    Г. применяют во многих областях соврем, промышл.: для изготовления огнеупорных материалов и изделий, литейных форм, плавильных тиглей и т.п. Искусств. кусковой г. применяют как эрозионностойкое покрытие сопел ракетных двигателей, камер сгорания, носовых конусов и для нек-рых деталей ракет. Вследствие высокой электропроводности его широко используют для электротехнич. изделий и материалов (электродов, щелочных аккумуляторов, скользящих контактов, проводящих покрытий и пр.). Благодаря хим. стойкости, г. широко применяют как конструкц. материал в хим. машиностроении и др. областях. Малый коэфф. трения позволяет использовать г. для изготовл. смазочных антифрикц. изделий. Блоки из очень чистого искусств, г. используют в яд. технике как замедлители нейтронов.
    2. Составл. структуры чугуна или стали, формир. при кристаллизации или термич. обработке (см. Графитизирующий отжиг) имеет ту же гексаген. кристаллич. решетку слоистого типа, что и природный г. В завис-ти от формы включений различают: пластинчатый (ПГ), вермикулярный — червеобразный (ВГ), хлопьевидный (ХГ) и шаровидный г. (ШГ). Эти формы свобод. г. определяют основные типы чугунов: серый чугун (СЧ), чугун с вермикулярным г. (ЧВГ), ковкий чугун (КЧ), высокопрочный чугун с шаровидным графитом (ВЧШ Г).
    [ http://metaltrade.ru/abc/a.htm]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > графит (металлургия)

  • 18 декстрин (металлургия)

    1. starch gum
    2. dextrin

     

    декстрин
    Связующий материал, отвсрждаемый тепловой сушкой; водорастворим. Получают при нагрев, сух. крахмала с разбавл. минеральными кислотами или сульфатом аммония, использ. в кач-ве катализатора. Декстрин в завис-ти от вида крахмала делится на картофельный и кукурузный. В литейном произ-ве применяется картофельный декстрин первого сорта белый и желтый при изготовл. стержней III—IV классов сложности, а также для приготовл. клеев и красок.
    [ http://metaltrade.ru/abc/a.htm]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > декстрин (металлургия)

  • 19 дефект (металлургия)

    1. defect

     

    дефект
    1. Отклонение от предусмотр. технич. условиями кач-ва готового металлоизделия или полупродукта, частично или полностью наруш. совокупность св-в изделия данного вида (хим. состав, структура, сплошность и др.), к-рыми определяется его потребительская ценность. В завис-ти от линейных размеров (/) различают три вида дефектов металла: макродефекты (/ > 50 мкм); микродефекты (/ = 10*50 мкм) и субмикродефекты (/ < 10 мкм). Макродефекты обнаруж. визуально (на поверхности деталей и полуфабрикатов), макрошлифах, хим. обработ, поверхностях, на поверхности макроизломов. Микродефекты выявляются при изучении микрошлифов и микроизломов с помощью световых микроскопов. Субмикродефекты могут быть выявлены только при электронно-микроскопич. анализе.
    По природе выделяют дефекты металла: поверхностные; несплошности разных формы и размеров; включения нежелат. фаз недопуст. формы и размеров; искажения геометрич. формы; несоответствие технич. условиям ср. и локального хим. состава по осн. легир. эл-там и примесям, включая ликвац. неоднородность.
    По происхождению различают металлургич. и неметаллургич. дефекты. Металлургич. дефекты подразд. на 4 вида: дефекты литейного происхожд. (неслитины, гор. и хол. трещины, раковины, пористость, ликвация и т.п.); дефекты деформац. происхождения (трещины, пузыри, плены, расслоение, полосчатость и др.); дефекты порошковой и гранульной технологии (включения инородных металлов, неметаллич. включения, пористость, несплошности и др.) и дефекты тер-мич. обработки (нагрев, пережог, обезуглерож., трещины, коробление и др.).
    Неметаллургич. дефекты образуются при изготовл. деталей и изделий из фасонных отливок и деформиров. полуфабрикатов (дефекты сварки и пайки, механич. обработки, термин, обработки и т.д.).
    2. Нарушение периодич. расположения (чередования) частиц (атомов, ионов, молекул) в кристаллич. решетке металла или сплава, изменяющее их физич. и др. св-ва.
    [ http://metaltrade.ru/abc/a.htm]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > дефект (металлургия)

  • 20 желобная масса

    1. runner clay

     

    желобная масса
    Пастичная огнеупорная масса для изготовл. желобов домен. печи.
    [ http://metaltrade.ru/abc/a.htm]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > желобная масса

См. также в других словарях:

  • Мегарские сосуды —         изготовл. в эллинистич. период вазы из обожж. глины с рельефными изображениями, покрытыми черным, серым или красным лаком. Изготовление этих сосудов, условно называемых мегарскими, производилось в спец. формовочных чашах, начиная с сер. 3 …   Словарь античности

  • изготовление — изготовл ение, я …   Русский орфографический словарь

  • изготовлять — изготовл ять, яю, яет …   Русский орфографический словарь

  • изготовляться — изготовл яться, яюсь, яется …   Русский орфографический словарь

  • Хрисоэлефантинная техника —          изготовл. статуй и статуэток (большей частью культового хар ра) на дерев. основе, причем видимые части тела выполнены в слоновой кости, а платье, волосы и т.п. в золоте. К знаменитейшим творениям античности в Х. т. относят статую Зевса… …   Древний мир. Энциклопедический словарь

  • Мелийские рельефы —         изготовл. на о. Мелос, расписанные яркими красками терракотовые рельефы, относящиеся преим. к 1 й пол. 5 в. до н. э. В них ощущается воздействие аттич. искусства. Эти рельефные изображения встречаются главным образом на стенках ларей.… …   Словарь античности

  • Текстиль —          материал, изготовл. к рого занимались хозяйка, ее рабыни или дочери (роспись на вазе изготовл. в 560 до н.э., иллюстрирует осн. этапы процесса произ ва Т.). Что касается более детал. представл. об этом роде деятельности, то он почти не… …   Древний мир. Энциклопедический словарь

  • Бронза —          в 12 11 вв. до н.э. на смену древ. бронзовым культурам в эгейском и италийском регионах пришли культуры железного века. Однако Б., как и технологич. приемы ее обработки (ковка, чеканка, гравировка и пр.), находила широкое применение в… …   Древний мир. Энциклопедический словарь

  • Стекло —          естеств. С. известно человеку с древнейших времен. Наконеч. стрел, ножки и т.п., изготовл. перво бытным человеком из природ. вулканич. С. (обсидиана), были найдены в самых различ. местах земного шара. Возникн. стеклоделия связано, по… …   Древний мир. Энциклопедический словарь

  • Керамика —          в 7 6 вв. до н.э. греки изготавливали не только посуду, применяя при этом гончар. круг, но и плоские керамич. плиты, предназначавш. для облицовки зданий, к рые в архаич. эпоху строились из дерева и песчанистой глины. Об этом свидет.… …   Древний мир. Энциклопедический словарь

  • Свинец —          греки широко применяли С. для приготовл. скреп. шипов и скоб в стр ве монументал. сооруж. С. по луч. путем выделения свинц. блеска (галенита) из свинцовой руды; его произ во было разверн. в Лаврионе с кон. 6 в. до н.э. Согл. строит.… …   Древний мир. Энциклопедический словарь

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»