Перевод: со всех языков на все языки

со всех языков на все языки

вспомогательных+цепей

  • 81 switchgear unit

    1. функциональный блок (в НКУ)
    2. коммутационный аппарат

     

    коммутационный аппарат
    Аппарат, предназначенный для включения или отключения тока в одной или нескольких электрических цепях.
    МЭК 60050(441-14-01).
    Примечание.  Коммутационный аппарат может совершать одну из этих операций или обе
    [ ГОСТ Р 50030. 1-2000 ( МЭК 60947-1-99)]

    коммутационный аппарат
    Электрический аппарат, предназначенный для коммутации электрической цепи и снятия напряжения с части электроустановки (выключатель, выключатель нагрузки, отделитель, разъединитель, автомат, рубильник, пакетный выключатель, предохранитель и т.п.).
    [ПОТ Р М-016-2001]
    [РД 153-34.0-03.150-00]

    EN

    switching device
    a device designed to make or break the current in one or more electric circuits
    [IEV number 441-14-01]

    FR

    appareil de connexion
    appareil destiné à établir ou à interrompre le courant dans un ou plusieurs circuits électriques
    [IEV number 441-14-01]

    Тематики

    • аппарат, изделие, устройство...

    EN

    DE

    FR

     

    функциональный блок
    Часть НКУ, содержащая электрические и механические элементы и обеспечивающая выполнение одной функции.
    [ ГОСТ Р 51321. 1-2000 ( МЭК 60439-1-92)]

    функциональный блок
    Часть взаимосвязанных аппаратов ВРУ или панели (многопанельного ВРУ), обеспечивающая выполнение определенной функции по 3.1.1.
    Примечание — Аппараты блока могут быть не объединены единой съемной конструктивной основой
    [ ГОСТ Р 51732-2001]

    функциональный блок
    Часть НКУ, содержащая электрические и механические элементы, включая коммутационные устройства, и обеспечивающая выполнение одной функции.
    Примечание — Проводники, соединенные с функциональным блоком, но являющиеся внешними по отношению к его отсеку или к оболочке защищенного пространства (например кабели вспомогательных цепей, соединенные с общим отсеком), не являются частью функционального блока.
    [ ГОСТ Р МЭК 61439.1-2013]

    EN

    functional unit (of an assembly)
    a part of an assembly of switchgear and controlgear comprising all the components of the main circuits and auxiliary circuits that contribute to the fulfilment of a single function
    NOTE – Functional units may be distinguished according to the function for which they are intended e.g.: incoming unit, through which electrical energy is normally fed into the assembly, outgoing unit through which electrical energy is normally supplied to one or more external circuits.
    [IEV number 441-13-04 ]

    FR

    unité fonctionnelle (d'un ensemble)
    partie d'un ensemble comprenant tous les éléments des circuits principaux et des circuits auxiliaires qui concourent à l'exécution d'une seule fonction
    NOTE – Les unités fonctionnelles peuvent se différencier selon la fonction pour laquelle elles sont prévues, par exemple: unité d'arrivée par laquelle l'énergie électrique est normalement fournie à un ensemble, unité de départ par laquelle l'énergie électrique est normalement fournie à un ou plusieurs circuits externes.
    [IEV number 441-13-04 ]

    0072

    Пример функционального блока

    Тематики

    • НКУ (шкафы, пульты,...)

    Классификация

    >>>

    EN

    DE

    FR

    Англо-русский словарь нормативно-технической терминологии > switchgear unit

  • 82 lighting distribution

    1. осветительный шинопровод

     

    шинопровод осветительный
    Шинопровод, предназначенный для питания светильников, а также мелких токоприемников.
    [ОСТ 36-115-85]

    4999

    Рис. Schneider Electric

    1 - Кожух
    2 - Вводная секция
    3 - Крепежная система
    4 - Ответвительное устройство
    5 - Короб для прокладки кабелей( вспомогательных цепей, например, телефонных линий, аварийного освещения и т.д.)
    6 - Светильник

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > lighting distribution

  • 83 cable area

    1. сечение жилы кабеля

     

    сечение жилы кабеля
    -
    [Интент]


    Рис. ABB

    Cable area 2.5 - 6 mm2

    [ABB]

    Сечение жилы кабеля 2,5 - 6 мм2

    [Перевод Интент]

    Параллельные тексты EN-RU

    Unless otherwise stated in specifications, the following cable cross sections are recommended for auxiliary wirings.
    [Schneider Electric]

    При отсутствии в технических требованиях других указаний для выбора сечения жил кабелей вспомогательных цепей, следует пользоваться приведенными ниже рекомендациями.
    [Перевод Интент]


    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > cable area

  • 84 cable cross section

    1. сечение жилы кабеля

     

    сечение жилы кабеля
    -
    [Интент]


    Рис. ABB

    Cable area 2.5 - 6 mm2

    [ABB]

    Сечение жилы кабеля 2,5 - 6 мм2

    [Перевод Интент]

    Параллельные тексты EN-RU

    Unless otherwise stated in specifications, the following cable cross sections are recommended for auxiliary wirings.
    [Schneider Electric]

    При отсутствии в технических требованиях других указаний для выбора сечения жил кабелей вспомогательных цепей, следует пользоваться приведенными ниже рекомендациями.
    [Перевод Интент]


    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > cable cross section

  • 85 conductor area

    1. сечение жилы кабеля

     

    сечение жилы кабеля
    -
    [Интент]


    Рис. ABB

    Cable area 2.5 - 6 mm2

    [ABB]

    Сечение жилы кабеля 2,5 - 6 мм2

    [Перевод Интент]

    Параллельные тексты EN-RU

    Unless otherwise stated in specifications, the following cable cross sections are recommended for auxiliary wirings.
    [Schneider Electric]

    При отсутствии в технических требованиях других указаний для выбора сечения жил кабелей вспомогательных цепей, следует пользоваться приведенными ниже рекомендациями.
    [Перевод Интент]


    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > conductor area

  • 86 size of the cable

    1. сечение жилы кабеля

     

    сечение жилы кабеля
    -
    [Интент]


    Рис. ABB

    Cable area 2.5 - 6 mm2

    [ABB]

    Сечение жилы кабеля 2,5 - 6 мм2

    [Перевод Интент]

    Параллельные тексты EN-RU

    Unless otherwise stated in specifications, the following cable cross sections are recommended for auxiliary wirings.
    [Schneider Electric]

    При отсутствии в технических требованиях других указаний для выбора сечения жил кабелей вспомогательных цепей, следует пользоваться приведенными ниже рекомендациями.
    [Перевод Интент]


    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > size of the cable

  • 87 functional part

    1. функциональный прибор
    2. функциональный блок (в НКУ)

     

    функциональный блок
    Часть НКУ, содержащая электрические и механические элементы и обеспечивающая выполнение одной функции.
    [ ГОСТ Р 51321. 1-2000 ( МЭК 60439-1-92)]

    функциональный блок
    Часть взаимосвязанных аппаратов ВРУ или панели (многопанельного ВРУ), обеспечивающая выполнение определенной функции по 3.1.1.
    Примечание — Аппараты блока могут быть не объединены единой съемной конструктивной основой
    [ ГОСТ Р 51732-2001]

    функциональный блок
    Часть НКУ, содержащая электрические и механические элементы, включая коммутационные устройства, и обеспечивающая выполнение одной функции.
    Примечание — Проводники, соединенные с функциональным блоком, но являющиеся внешними по отношению к его отсеку или к оболочке защищенного пространства (например кабели вспомогательных цепей, соединенные с общим отсеком), не являются частью функционального блока.
    [ ГОСТ Р МЭК 61439.1-2013]

    EN

    functional unit (of an assembly)
    a part of an assembly of switchgear and controlgear comprising all the components of the main circuits and auxiliary circuits that contribute to the fulfilment of a single function
    NOTE – Functional units may be distinguished according to the function for which they are intended e.g.: incoming unit, through which electrical energy is normally fed into the assembly, outgoing unit through which electrical energy is normally supplied to one or more external circuits.
    [IEV number 441-13-04 ]

    FR

    unité fonctionnelle (d'un ensemble)
    partie d'un ensemble comprenant tous les éléments des circuits principaux et des circuits auxiliaires qui concourent à l'exécution d'une seule fonction
    NOTE – Les unités fonctionnelles peuvent se différencier selon la fonction pour laquelle elles sont prévues, par exemple: unité d'arrivée par laquelle l'énergie électrique est normalement fournie à un ensemble, unité de départ par laquelle l'énergie électrique est normalement fournie à un ou plusieurs circuits externes.
    [IEV number 441-13-04 ]

    0072

    Пример функционального блока

    Тематики

    • НКУ (шкафы, пульты,...)

    Классификация

    >>>

    EN

    DE

    FR

     

    функциональный прибор
    функциональный узел


    [Л.Г.Суменко. Англо-русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.]

    Тематики

    Синонимы

    EN

    Англо-русский словарь нормативно-технической терминологии > functional part

  • 88 functional unit (of an assembly)

    1. функциональный блок (в НКУ)

     

    функциональный блок
    Часть НКУ, содержащая электрические и механические элементы и обеспечивающая выполнение одной функции.
    [ ГОСТ Р 51321. 1-2000 ( МЭК 60439-1-92)]

    функциональный блок
    Часть взаимосвязанных аппаратов ВРУ или панели (многопанельного ВРУ), обеспечивающая выполнение определенной функции по 3.1.1.
    Примечание — Аппараты блока могут быть не объединены единой съемной конструктивной основой
    [ ГОСТ Р 51732-2001]

    функциональный блок
    Часть НКУ, содержащая электрические и механические элементы, включая коммутационные устройства, и обеспечивающая выполнение одной функции.
    Примечание — Проводники, соединенные с функциональным блоком, но являющиеся внешними по отношению к его отсеку или к оболочке защищенного пространства (например кабели вспомогательных цепей, соединенные с общим отсеком), не являются частью функционального блока.
    [ ГОСТ Р МЭК 61439.1-2013]

    EN

    functional unit (of an assembly)
    a part of an assembly of switchgear and controlgear comprising all the components of the main circuits and auxiliary circuits that contribute to the fulfilment of a single function
    NOTE – Functional units may be distinguished according to the function for which they are intended e.g.: incoming unit, through which electrical energy is normally fed into the assembly, outgoing unit through which electrical energy is normally supplied to one or more external circuits.
    [IEV number 441-13-04 ]

    FR

    unité fonctionnelle (d'un ensemble)
    partie d'un ensemble comprenant tous les éléments des circuits principaux et des circuits auxiliaires qui concourent à l'exécution d'une seule fonction
    NOTE – Les unités fonctionnelles peuvent se différencier selon la fonction pour laquelle elles sont prévues, par exemple: unité d'arrivée par laquelle l'énergie électrique est normalement fournie à un ensemble, unité de départ par laquelle l'énergie électrique est normalement fournie à un ou plusieurs circuits externes.
    [IEV number 441-13-04 ]

    0072

    Пример функционального блока

    Тематики

    • НКУ (шкафы, пульты,...)

    Классификация

    >>>

    EN

    DE

    FR

    Англо-русский словарь нормативно-технической терминологии > functional unit (of an assembly)

  • 89 electrical characteristics of assemblies

    1. электрические характеристики НКУ

     

    электрические характеристики НКУ
    -
    [Интент]

    Параллельные тексты EN-RU

    The Standard IEC 60439-1 identifies the nominal characteristics to be assigned to each assembly, defines the environmental service conditions, establishes the mechanical requirements and gives prescriptions about:
    • insulation
    • thermal behaviour
    • short-circuit withstand strength
    • protection against electrical shock
    • degree of protection of the enclosure
    • installed components, internal separation and connections inside the assembly
    • electronic equipment supply circuits.

    Information specified under items a) and b) shall be given on the nameplate according to the Standard.
    Information from items c) to t), where applicable, shall be given either on the nameplates or in the technical documentation of the manufacturer:
    a) manufacturer ’s name or trade mark;
    b) type designation or identification number, or any other means of identification making it possible to obtain relevant information from the manufacturer;
    c) IEC 60439-1;
    d) type of current (and frequency, in the case of a.c.);
    e) rated operational voltages;
    f) rated insulation voltages (rated impulse withstand voltage, when declared by the manufacturer);
    g) rated voltages of auxiliary circuits, if applicable;
    h) limits of operation;
    j) rated current of each circuit, if applicable;
    k) short-circuit withstand strength;
    l) degree of protection;
    m) measures for protection of persons;
    n) service conditions for indoor use, outdoor use or special use, if different from the usual service conditions.
    Pollution degree when declared by the manufacturer;
    o) types of system earthing (neutral conductor) for which the ASSEMBLY is designed;
    p) dimensions given preferably in the order of height, width (or length), depth;
    q) weight;
    r) form of internal separation;
    s) types of electrical connections of functional units;
    t) environment 1 or 2.

    [ABB]

    Стандарт МЭК 60439-1 определяет номинальные характеристики НКУ, условия эксплуатации, требования к механической части конструкции, а также следующие параметры:
    • изоляция;
    • превышение температуры;
    • прочность к воздействию тока короткого замыкания;
    защита от поражения электрическим током;
    степень защиты, обеспечиваемая оболочкой;
    • комплектующие элементы, внутреннее разделение НКУ ограждениями и перегородками, электрические соединения внутри НКУ;
    • требования к цепям питания электронного оборудования.

    Информация, относящаяся к пунктам а) и b), должна быть указана на паспортной табличке, соответствующей данному стандарту.
    Информация, приведенная в пунктах с) … d), должна быть указана либо на паспортной табличке, либо в технической документации изготовителя:
    a) наименование изготовителя или товарный знак;
    b) обозначение типа, условного номера или другого знака, позволяющих получить необходимую информацию от изготовителя;
    c) МЭК 60439-1;
    d) род тока (а для переменно тока и частота.);
    e) номинальные рабочие напряжения;
    f) номинальное напряжение изоляции (или указываемое изготовителем номинальное импульсное выдерживаемое напряжение);
    g) номинальное напряжение вспомогательных цепей, если таковые имеются;
    h) предельные отклонения параметров;
    j) номинальный ток каждой цепи, если таковые приводят;
    k) прочность к воздействию короткого замыкания;
    l) степень защиты;
    m) меры защиты персонала;
    n) нормальные условия эксплуатации при внутренней или наружной установке, а также специальные условия эксплуатации, если они отличаются от нормальных.
    Степень загрязнения, если она указывается изготовителем;
    o) вид системы заземления (режим нейтрали), который был принят при проектировании НКУ;
    p) размеры, приводимые в следующей последовательности: высота, ширина (или длина), глубина;
    q) масса;
    r) вид внутреннего разделения;
    s) типы электрических соединений функциональных блоков;
    t) окружающая среда 1 или 2.

    [Перевод Интент]

    Тематики

    • НКУ (шкафы, пульты,...)

    EN

    Англо-русский словарь нормативно-технической терминологии > electrical characteristics of assemblies

  • 90 cos j

    1. Защита от короткого замыкания и прочность при коротком замыкании

    7.5. Защита от короткого замыкания и прочность при коротком замыкании

    Примечание. В настоящее время требования этого пункта применимы главным образом к устройствам переменного тока. Требования к устройствам постоянного тока находятся в стадии рассмотрения.

    7.5.1. Общие положения

    НКУ должны иметь конструкцию, способную выдерживать тепловые и электродинамические нагрузки, возникающие при значениях токов короткого замыкания, не превышающих установленных.

    Примечание. Нагрузки, возникающие вследствие короткого замыкания, могут быть уменьшены при помощи токоограничивающих устройств (индуктивностей, токоограничивающих плавких предохранителей или других токоограничивающих коммутационных устройств).

    НКУ должны быть защищены от токов короткого замыкания, например, автоматическими выключателями, плавкими предохранителями или тем и другим вместе, которые могут быть частью НКУ или располагаться за его пределами.

    Примечание. Если НКУ предназначены для использования в системах IT*, то аппарат защиты в каждой фазе должен иметь достаточную отключающую способность относительно междуфазного напряжения при двухфазном замыкании на землю.

    * См title="Электроустановки зданий. Часть 3. Основные характеристики".

    Потребитель, заказывая НКУ, должен определить условия короткого замыкания на месте его установки.

    Примечание. Желательно, чтобы в случае повреждения, ведущего к образованию дуги внутри НКУ, обеспечивалась максимально возможная степень защиты персонала, хотя главной целью является предупреждение образования такой дуги принятием соответствующих мер при проектировании или ограничение длительности горения дуги.

    Для ЧИ НКУ рекомендуется использовать устройства, прошедшие типовые испытания, например, системы сборных шин, если на них не распространяются исключения пп. 8.2.3.1.1 - 8.2.3.1.3. В случаях, когда применение устройств, прошедших типовые испытания, не представляется возможным, прочность этих частей при коротком замыкании проверяют путем экстраполяции, исходя из устройств, испытанных в соответствии с типовыми испытаниями.

    7.5.2. Сведения, касающиеся прочности при коротком замыкании

    7.5.2.1. Для НКУ, в котором имеется только один блок ввода, изготовитель обязан представлять сведения о прочности при коротком замыкании следующим образом:

    7.5.2.1.1. Для НКУ с устройством защиты от короткого замыкания, включенным в блок ввода, указанием максимально допустимого значения ожидаемого тока короткого замыкания на зажимах блока ввода. Эта величина не должна превышать номинальные значения (см. пп. 4.3 - 4.7). Коэффициент мощности и пиковые значения должны соответствовать указанным в п. 7.5.3.

    Если устройством защиты от короткого замыкания является плавкий предохранитель, то изготовитель обязан указать характеристики плавкой вставки (номинальный ток, отключающую способность, ток отключения, I2t и т.д.).

    Если используют автоматический выключатель с расцепителем, имеющим выдержку времени, то может потребоваться указание максимальной выдержки времени и значения тока уставки, соответствующих ожидаемому току короткого замыкания.

    7.5.2.1.2. Для НКУ, в которых защитное устройство от короткого замыкания не входит в блок ввода, прочность при коротком замыкании указывают с помощью следующих способов (одного или нескольких):

    а) номинальный кратковременно выдерживаемый ток (п. 4.3) и номинальный ударный ток (п. 4.4) вместе с соответствующим временем, если оно отличается от 1 с. Отношение пикового значения к действующему должно соответствовать указанному в табл. 5.

    Примечание. Для периодов времени с максимальным значением до 3 с соотношение между кратковременно выдерживаемым током и соответствующим временем представляется формулой

    i2t = const

    при условии, что пиковое значение не превышает значение номинального ударного тока;

    b) номинальный ожидаемый ток короткого замыкания на зажимах блока ввода НКУ, а также соответствующее время, если оно отличается от 1 с. Соотношение между пиковым и действующим значением должно быть таким, как указано в табл. 5;

    с) номинальный условный ток короткого замыкания (п. 4.6);

    d) номинальный ток короткого замыкания, отключаемый плавким предохранителем (п. 4.7).

    Для подпунктов с) и d) изготовитель обязан указывать характеристики (номинальный ток, отключающая способность, ток отключения, I2t и т.д.) токоограничивающих коммутационных устройств (например, автоматических выключателей или плавких предохранителей), необходимых для защиты НКУ.

    Примечание. При замене плавких вставок должны использоваться вставки с такими же характеристиками.

    7.5.2.2. Для НКУ с несколькими блоками ввода, одновременная работа которых маловероятна, прочность при коротком замыкании может указываться для каждого из блоков в соответствии с п. 7.5.2.1.

    7.5.2.3. Для НКУ с несколькими блоками ввода, которые могут работать одновременно, а также для НКУ с одним блоком ввода и одним или несколькими блоками вывода для вращающихся машин большой мощности, могущих повлиять на величину тока короткого замыкания, должно быть заключено специальное соглашение о величинах ожидаемого тока короткого замыкания в каждом блоке ввода или вывода и на шинах.

    7.5.3. Зависимость между пиковыми и действующим и значениями тока короткого замыкания

    Пиковое значение тока короткого замыкания (пиковое значение первой волны тока короткого замыкания, включая постоянную составляющую) для определения электродинамических усилий, получается умножением действующего значения тока короткого замыкания на коэффициент п. Стандартные значения коэффициента n и соответствующего коэффициента мощности даны в табл. 5.

    Таблица 5

    Действующее значение тока короткого замыкания

    cos j

    n

    I £ 5 кА

    0,7

    1,5

    5 кА < I £ 10 кА

    0,5

    1,7

    10 кА < I £ 20 кА

    0,3

    2

    20 кА < I £ 50 кА

    0,25

    2,1

    50 кА < I

    0,2

    2,2

    Примечание. Значения, приведенные в табл. 5, соответствуют большинству случаев применения. В специальных местах, например, вблизи трансформаторов или генераторов, коэффициент мощности может иметь более низкие значения; таким образом, максимальное пиковое значение ожидаемого тока станет предельным значением вместо действующего значения тока короткого замыкания.

    7.5.4. Координация устройств защиты от короткого замыкания

    7.5.4.1. Координация устройств защиты должна являться предметом согласования между потребителем и изготовителем. Вместо такого соглашения можно использовать сведения, приводимые в каталоге предприятия-изготовителя.

    7.5.4.2. Если по условиям эксплуатации необходима непрерывность питания, то уставки или выбор устройств защиты от короткого замыкания внутри НКУ должны производиться таким образом, чтобы короткое замыкание, возникающее в любой отходящей цепи ответвления, могло быть устранено с помощью отключающего устройства, установленного в поврежденной цепи ответвления без какого-либо воздействия на другие отходящие ответвления, чем гарантируется селективность системы защиты.

    7.5.5. Внутренние цепи НКУ

    7.5.5.1. Главные цепи

    7.5.5.1.1. Шины (оголенные или с изоляцией) должны располагаться таким образом, чтобы при нормальных условиях эксплуатации исключалась возможность внутреннего короткого замыкания. При отсутствии других указаний их выбирают согласно сведениям о прочности при коротком замыкании (п. 7.5.2) и должны выдерживать по крайней мере воздействия коротких замыканий, ограниченных устройствами защиты на стороне подачи питания на шины.

    7.5.5.1.2. Проводники между главными шинами и стороной питания отдельного функционального блока, также как и комплектующие, входящие в этот блок, могут быть выбраны, исходя из уменьшенных воздействий короткого замыкания со стороны присоединения нагрузки к устройству защиты от короткого замыкания в этом блоке, при условии такого расположения этих проводников, при котором в нормальных рабочих условиях внутреннее короткое замыкание между фазами и/или между фазами и землей является маловероятным, например, если проводники имеют соответствующую изоляцию или оболочку. Это также относится к проводникам со стороны питания отдельных функциональных блоков внутри НКУ, не содержащих главных шин.

    7.5.5.2. Вспомогательные цепи

    Обычно вспомогательные цепи должны быть защищены от воздействия коротких замыканий. Однако защитное устройство, предохраняющее от короткого замыкания, не следует применять в случае, если его срабатывание может иметь опасные последствия. В этом случае проводники вспомогательных цепей должны располагаться таким образом, чтобы в нормальных условиях работы исключалась возможность возникновения короткого замыкания.

    Источник: ГОСТ 28668-90 Э: Низковольтные комплектные устройства распределения и управления. Часть 1. Требования к устройствам, испытанным полностью или частично оригинал документа

    Англо-русский словарь нормативно-технической терминологии > cos j

  • 91 transmission line

    1. транспортирующий трубопровод
    2. ЛЭП
    3. линия электропередачи
    4. линия передачи ЕАСС
    5. линия передачи

     

    ЛЭП

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    линия передачи
    Совокупность линейных трактов систем передачи и (или) типовых физических цепей, имеющих общие линейные сооружения, устройства их обслуживания и одну и ту же среду распространения в пределах действия устройств обслуживания (Нормы на электрические параметры сетевых трактов магистральной и внутризоновых первичных сетей. I часть,
    1996 г.)
    [ОСТ 45.121-97]

    Тематики

    • линии, соединения и цепи электросвязи

    EN

     

    линия передачи ЕАСС
    линия передачи

    Совокупность линейных трактов систем передачи ЕАСС и (или) типовых физических цепей, имеющих общие линейные сооружения, устройства их обслуживания и одну и ту же среду распространения в пределах действия устройств обслуживания.
    Примечание
    1. Линии передачи присваивают названия в зависимости:
    от первичной сети, к которой она принадлежит: магистральная, внутризоновая, местная;
    от среды распространения например: кабельная, радиорелейная, спутниковая.
    2. Линии передачи, представляющие собой последовательное соединение разных по среде распространения линий передачи в пределах действия устройств обслуживания, присваивается название комбинированной линии передачи.
    [ ГОСТ 22348-86]

    Тематики

    Обобщающие термины

    Синонимы

    EN

     

    линия электропередачи
    Электрическая линия, выходящая за пределы электростанции или подстанции и предназначенная для передачи электрической энергии на расстояние.
    [ ГОСТ 19431-84]

    линия электропередачи
    Электроустановка, состоящая из проводов, кабелей, изолирующих элементов и несущих конструкций, предназначенная для передачи электрической энергии между двумя пунктами энергосистемы с возможным промежуточным отбором по ГОСТ 19431
    [ ГОСТ 24291-90]

    линия электропередачи
    Электроустановка для передачи на расстояние электрической энергии, состоящая из проводников тока - проводов, кабелей, а также вспомогательных устройств и конструкций
    [Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)]

    <> линия передачи (в электроэнергетических системах)
    -
    [IEV number 151-12-31]

    линия электропередачи (ЛЭП)
    Сооружение, состоящее из проводов и вспомогательных устройств, предназначенное для передачи или распределения электрической энергии.
    [БСЭ]

    EN

    electric line
    an arrangement of conductors, insulating materials and accessories for transferring electricity between two points of a system
    [IEV ref 601-03-03]

    transmission line (in electric power systems)
    line for transfer of electric energy in bulk
    Source: 466-01-13 MOD
    [IEV number 151-12-31]

    FR

    ligne électrique
    ensemble constitué de conducteurs, d'isolants et d'accessoires destiné au transfert d'énergie électrique d'un point à un autre d'un réseau
    [IEV ref 601-03-03]

    ligne de transport, f
    ligne destinée à un transfert massif d'énergie électrique
    Source: 466-01-13 MOD
    [IEV number 151-12-31]

    Параллельные тексты EN-RU

    Most transmission lines operate with three-phase alternating current (ac).

    Большинство линий электропередачи являются трехфазными и передают энергию на переменном токе.
    [Перевод Интент]

    КЛАССИФИКАЦИЯ

    Линии электропередачи называются совокупность сооружений, служащих для передачи электроэнергии от электростанции до потребителей. К ним относятся электроприемники, понижающие и повышающие электростанции и подстанции, также они являются составом электрической сети.
    Линии электропередачи бывают как воздушными, так и кабельными. Для кабельных характерно напряжение до 35кВ, а для воздушных до 750 кВ. В зависимости от того какую мощность передаёт ЛЭП могут быть Межсистемными и Распределительными. Межсистемные соединяющие крупные электрические системы для транспортировки больших потоков мощности на большие расстояния.

    Распределительные служат для передачи электроэнергии в самой электрической системе при низких напряжениях. Правилами устройства электроустановок и СНиПами определяются параметры Линий электропередач и её элементы. Значение тока, величину напряжения, количество цепей, из какого материала должны состоять опоры, сечение и конструкция проводов относят к основным характеристикам ЛЭП.
    Для переменного тока существуют табличные значения напряжения: 2 кВ., 3 кВ., 6 кВ., 10 кВ., 20 кВ., 35 кВ., 220 кВ., 330 кВ., 500 кВ.,750 кВ.
    Воздушные линии электрических сетей (ВЛ) это линии которые находятся на воздухе и используются для транспортировки электроэнергии на большие территории по проводам. Соединительные провода, грозозащитные троса, опоры(железобетонные, металлические), изоляторы(фарфоровые, стеклянные) служат построения воздушных линий.

    Классификация воздушных линий

    • По роду тока:
      • ВЛ переменного тока,
      • ВЛ постоянного тока.

    В большинстве случаев, ВЛ служат для транспортировки переменного тока лишь иногда в особых случаях применяются линии постоянного тока (например, для питание контактной сети или связи энергосистем). Ёмкостные и индуктивные потери у линии постоянного тока меньше чем у линий переменного тока. Всё же большого распространения такие линии не получили.

    • По назначению
      • Сверхдальние ВЛ
        предназначены для соединения отдельных энергосистем номиналом 500 кВ и выше
      • Магистральные ВЛ
        предназначены для транспортировки энергии от крупных электростанций, и для соединения энергосистем друг с другом, и соединения электростанций внутри энергосистем номиналом 220 и 330 кВ
      • Распределительные ВЛ
        служат для снабжения предприятий и потребителей крупных районов и для соединения пунктов распределения электроэнергии с потребителями классом напряжения 35, 110 и 150 кВ ВЛ 20 кВ и ниже, передающие энергию к потребителям.
         
    • По напряжению
    • По режиму работы нейтралей
      • Сети трёхфазные с изолированными (незаземлёнными) нейтралями
        т.е. нейтраль не присоединена к устройству заземленному или присоединена через прибор с высоким сопротивлением к нему. У нас такой режим нейтрали применяется в электросетях напряжением 3—35 кВ с низкими токами однофазных заземлений.
      • Трёхфазные сети с резонансно-заземлёнными (компенсированными) нейтральная шина соединена с заземлением через индуктивность. Обычно используется в сетях с высокими токами однофазных заземлений напряжением 3–35 кВ
      • Трёхфазные сети с эффективно-заземлёнными нейтралями это сети высокого и сверхвысокого напряжения, нейтрали которых заземлены через маленькое активное сопротивление или напрямую. В таких сетях применяются трансформаторы напряжением 110 или 150 и иногда 220 кВ,
      • Сети с глухозаземлённой нейтралью это когда нейтраль трансформатора или генератора заземляется через малое сопротивление или напрямую. Эти сети имеют напряжение менее 1 кВ, или сети 220 кВ и больше.

     


    Кабельная линия электропередачи (КЛ) — это линия которая служит для транспортировки электроэнергии, в неё входит один или несколько кабелей (проложенных параллельно) которые соединяются соединительными муфтами и заканчиваются при помощи стопорных и концевых муфт (заделками) и деталей для крепления, а для линий использующие масло, кроме того, с подпитывающими приборами и датчиком давления масла.
    Кабельные лини можно разделить на 3 класса в зависимости от прокладки кабеля:
    - воздушные,
    - подземные
    - подводные.
    кабельные линии протянутые воздушным способом это линии в которых кабель цепляют стальным тросом на опорах, стойках, кронштейнах.
    Подземные кабельные линии — кабель прокладываемый в кабельных траншее, тоннелях, коллекторах.
    Подводные кабельные линии это линии в которых кабель проходит через водную преграду по её дну.

    [ Источник]

    Тематики

    Синонимы

    EN

    DE

    FR

    10. Линия передачи ЕАСС

    Линия передачи

    Transmission line

    Совокупность линейных трактов систем передачи ЕАСС и (или) типовых физических цепей, имеющих общие линейные сооружения, устройства их обслуживания и одну и ту же среду распространения в пределах действия устройств обслуживания.

    Примечание.

    1. Линии передачи присваивают названия в зависимости:

    от первичной сети, к которой она принадлежит: магистральная, внутризоновая, местная;

    от среды распространения например: кабельная, радиорелейная, спутниковая.

    2. Линии передачи, представляющие собой последовательное соединение разных по среде распространения линий передачи в пределах действия устройств обслуживания, присваивается название комбинированной линии передачи.

    (Измененная ред.,).

    Источник: ГОСТ 22348-86: Сеть связи автоматизированная единая. Термины и определения оригинал документа

    Англо-русский словарь нормативно-технической терминологии > transmission line

  • 92 power line

    1. силовая цепь
    2. питающая электрическая сеть
    3. передаточная тяга от группового привода
    4. линия электроснабжения
    5. линия электропитания
    6. линия электропередачи

     

    линия электропередачи
    Электрическая линия, выходящая за пределы электростанции или подстанции и предназначенная для передачи электрической энергии на расстояние.
    [ ГОСТ 19431-84]

    линия электропередачи
    Электроустановка, состоящая из проводов, кабелей, изолирующих элементов и несущих конструкций, предназначенная для передачи электрической энергии между двумя пунктами энергосистемы с возможным промежуточным отбором по ГОСТ 19431
    [ ГОСТ 24291-90]

    линия электропередачи
    Электроустановка для передачи на расстояние электрической энергии, состоящая из проводников тока - проводов, кабелей, а также вспомогательных устройств и конструкций
    [Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)]

    <> линия передачи (в электроэнергетических системах)
    -
    [IEV number 151-12-31]

    линия электропередачи (ЛЭП)
    Сооружение, состоящее из проводов и вспомогательных устройств, предназначенное для передачи или распределения электрической энергии.
    [БСЭ]

    EN

    electric line
    an arrangement of conductors, insulating materials and accessories for transferring electricity between two points of a system
    [IEV ref 601-03-03]

    transmission line (in electric power systems)
    line for transfer of electric energy in bulk
    Source: 466-01-13 MOD
    [IEV number 151-12-31]

    FR

    ligne électrique
    ensemble constitué de conducteurs, d'isolants et d'accessoires destiné au transfert d'énergie électrique d'un point à un autre d'un réseau
    [IEV ref 601-03-03]

    ligne de transport, f
    ligne destinée à un transfert massif d'énergie électrique
    Source: 466-01-13 MOD
    [IEV number 151-12-31]

    Параллельные тексты EN-RU

    Most transmission lines operate with three-phase alternating current (ac).

    Большинство линий электропередачи являются трехфазными и передают энергию на переменном токе.
    [Перевод Интент]

    КЛАССИФИКАЦИЯ

    Линии электропередачи называются совокупность сооружений, служащих для передачи электроэнергии от электростанции до потребителей. К ним относятся электроприемники, понижающие и повышающие электростанции и подстанции, также они являются составом электрической сети.
    Линии электропередачи бывают как воздушными, так и кабельными. Для кабельных характерно напряжение до 35кВ, а для воздушных до 750 кВ. В зависимости от того какую мощность передаёт ЛЭП могут быть Межсистемными и Распределительными. Межсистемные соединяющие крупные электрические системы для транспортировки больших потоков мощности на большие расстояния.

    Распределительные служат для передачи электроэнергии в самой электрической системе при низких напряжениях. Правилами устройства электроустановок и СНиПами определяются параметры Линий электропередач и её элементы. Значение тока, величину напряжения, количество цепей, из какого материала должны состоять опоры, сечение и конструкция проводов относят к основным характеристикам ЛЭП.
    Для переменного тока существуют табличные значения напряжения: 2 кВ., 3 кВ., 6 кВ., 10 кВ., 20 кВ., 35 кВ., 220 кВ., 330 кВ., 500 кВ.,750 кВ.
    Воздушные линии электрических сетей (ВЛ) это линии которые находятся на воздухе и используются для транспортировки электроэнергии на большие территории по проводам. Соединительные провода, грозозащитные троса, опоры(железобетонные, металлические), изоляторы(фарфоровые, стеклянные) служат построения воздушных линий.

    Классификация воздушных линий

    • По роду тока:
      • ВЛ переменного тока,
      • ВЛ постоянного тока.

    В большинстве случаев, ВЛ служат для транспортировки переменного тока лишь иногда в особых случаях применяются линии постоянного тока (например, для питание контактной сети или связи энергосистем). Ёмкостные и индуктивные потери у линии постоянного тока меньше чем у линий переменного тока. Всё же большого распространения такие линии не получили.

    • По назначению
      • Сверхдальние ВЛ
        предназначены для соединения отдельных энергосистем номиналом 500 кВ и выше
      • Магистральные ВЛ
        предназначены для транспортировки энергии от крупных электростанций, и для соединения энергосистем друг с другом, и соединения электростанций внутри энергосистем номиналом 220 и 330 кВ
      • Распределительные ВЛ
        служат для снабжения предприятий и потребителей крупных районов и для соединения пунктов распределения электроэнергии с потребителями классом напряжения 35, 110 и 150 кВ ВЛ 20 кВ и ниже, передающие энергию к потребителям.
         
    • По напряжению
    • По режиму работы нейтралей
      • Сети трёхфазные с изолированными (незаземлёнными) нейтралями
        т.е. нейтраль не присоединена к устройству заземленному или присоединена через прибор с высоким сопротивлением к нему. У нас такой режим нейтрали применяется в электросетях напряжением 3—35 кВ с низкими токами однофазных заземлений.
      • Трёхфазные сети с резонансно-заземлёнными (компенсированными) нейтральная шина соединена с заземлением через индуктивность. Обычно используется в сетях с высокими токами однофазных заземлений напряжением 3–35 кВ
      • Трёхфазные сети с эффективно-заземлёнными нейтралями это сети высокого и сверхвысокого напряжения, нейтрали которых заземлены через маленькое активное сопротивление или напрямую. В таких сетях применяются трансформаторы напряжением 110 или 150 и иногда 220 кВ,
      • Сети с глухозаземлённой нейтралью это когда нейтраль трансформатора или генератора заземляется через малое сопротивление или напрямую. Эти сети имеют напряжение менее 1 кВ, или сети 220 кВ и больше.

     


    Кабельная линия электропередачи (КЛ) — это линия которая служит для транспортировки электроэнергии, в неё входит один или несколько кабелей (проложенных параллельно) которые соединяются соединительными муфтами и заканчиваются при помощи стопорных и концевых муфт (заделками) и деталей для крепления, а для линий использующие масло, кроме того, с подпитывающими приборами и датчиком давления масла.
    Кабельные лини можно разделить на 3 класса в зависимости от прокладки кабеля:
    - воздушные,
    - подземные
    - подводные.
    кабельные линии протянутые воздушным способом это линии в которых кабель цепляют стальным тросом на опорах, стойках, кронштейнах.
    Подземные кабельные линии — кабель прокладываемый в кабельных траншее, тоннелях, коллекторах.
    Подводные кабельные линии это линии в которых кабель проходит через водную преграду по её дну.

    [ Источник]

    Тематики

    Синонимы

    EN

    DE

    FR

     

    линия электропитания
    -
    [Интент]

    Оборудование связи может быть подвергнуто воздействию электромагнитных помех различных видов, наводимых линиями электропитания, сигнальными линиями или непосредственно излучаемых окружающей средой.
    [ ГОСТ Р 54835-2011/IEC/TR 61850-1:2003]

    Подготовка производства монтажных работ включает в себя: изучение проектно-сметной документации или материалов актов обследования; подготовку необходимых строительных работ на объекте; монтаж слаботочных электрических соединительных линий постоянного тока; монтаж силовых линий электропитания;...
    [ ГОСТ Р 53704-2009]

     

    Тематики

    • электротехника, основные понятия

    EN

     

    линия электроснабжения
    питающая линия


    [Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.]

    Тематики

    • электротехника, основные понятия

    Синонимы

    EN

     

    питающая электрическая сеть (1)
    Трехфазная распределительная электрическая сеть с глухозаземленной нейтралью, обеспечивающая подвод питания к ВРУ от внешнего источника
    [ ГОСТ Р 51732-2001]

    питающая сеть (1)
    Сеть от распределительного устройства подстанции или ответвления от воздушных линий электропередачи до ВУ, ВРУ, ГРЩ
    [ПУЭ]

    сеть электрическая питающая (1)
    Электрическая сеть от подстанции или ответвления от распределительных пунктов до вводных устройств, а также от вводных устройств до щитов (пунктов или щитков)
    [Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)]

    питающая электрическая сеть (2)
    Питающей сетью называют электрическую сеть (линию), подводящую электроэнергию к распределительным пунктам или подстанциям.
    [ http://www.eti.su/articles/over/over_690.html]

    питающая электрическая сеть (2)
    Питающие сети предназначены для передачи электрической энергии от системообразующей сети и частично от шин 110-220 кВ электрических станций к центрам питания (ЦП) распределительных сетей – районным ПС.
    Питающие сети обычно замкнутые. Напряжение этих сетей ранее было 110-220 кВ. По мере роста нагрузок, мощности электрических станций и протяженности электрических сетей увеличивается напряжением сетей. В последнее время напряжение питающих сетей иногда бывает 330-500 кВ. Сети 110-220 кВ обычно административно подчиняются РЭУ. Их режимом управляет диспетчер РЭУ.
    [ http://esis-kgeu.ru/piree/178-piree]

    1.2 Стандарт распространяется на ВРУ, присоединяемые к питающим электрическим сетям напряжением 380/220 В переменного тока частотой 50—60 Гц с глухозаземленной нейтралью.
    [ ГОСТ Р 51732-2001]


    5.1.4 Электроприводы должны обеспечивать нормальную безаварийную работу с сохранением номинальной мощности при:
    - отклонениях напряжения питающей сети от номинального значения до ±10 %;
    - отклонениях напряжения питания внутренних систем от +10 до -15 %;
    - отклонениях частоты питающей сети до ±2,5 %,
    ....
    Проверка работы при отклонении параметров питающей сети.

    [ ГОСТ Р 51137-98]


    5.1. Питание энергоемких предприятий от сетей энергосистемы следует осуществлять на напряжении 110, 220 или 380 кВ. Выбор напряжения питающей сети зависит от потребляемой предприятием мощности и от напряжения сетей энергосистемы в данном районе.
    ...
    6.1.10.... Выбор схем питающей сети (магистральные или радиальные) и их конструктивного исполнения (воздушные или кабельные) питающих линий 110-220 кВ определяется технико-экономическими сопоставлениями с учетом генплана и особенностей данного предприятия, взаимного расположения районных подстанций и пунктов ввода, ожидаемой перспективы развития существующей схемы электроснабжения, степени загрязнения атмосферы.
    6.5.1. Электрические сети напряжением до 1 кВ переменного тока на промышленных предприятиях подразделяются на питающие сети до 1 кВ (от цеховых ТП до распределительных устройств до 1 кВ) и распределительные сети до 1 кВ (от РУ до 1 кВ до электроприемников).
    6.5.2. Питающие силовые сети до 1 кВ прокладываются как внутри зданий и сооружений, так и вне их.
    6.5.3. Внутрицеховые питающие силовые сети могут выполняться как магистральными, так и радиальными. Выбор вида сети зависит от планировки технологического оборудования, требований по бесперебойности электроснабжения, условий окружающей среды, вероятности изменения технологического процесса, вызывающего замену технологического оборудования, размещения цеховых ТП. Каждый вид прокладки имеет свою предпочтительную область применения
    .
    [ПРОЕКТИРОВАНИЕ ЭЛЕКТРОСНАБЖЕНИЯ ПРОМЫШЛЕННЫХ ПРЕДПРИЯТИЙ. Нормы технологического проектирования. НТП ЭПП-94]


    Тематики

    Классификация

    >>>

    Синонимы

    EN

    DE

    FR

     

    силовая цепь
    Цепь, передающая энергию от сети к элементам оборудования, используемым для выполнения производственных операций, а также к трансформаторам, питающим цепи управления.
    [ГОСТ ЕН 1070-2003]

    силовая цепь
    Цепь, передающая энергию от сети к элементам оборудования, используемым непосредственно для выполнения производственных операций, а также к трансформаторам, питающим цепи управления.
    [ ГОСТ Р МЭК 60204-1-2007]

    силовая электрическая цепь
    Электрическая цепь, содержащая элементы, функциональное назначение которых состоит в производстве или передаче основной части электрической энергии, ее распределении, преобразовании в другой вид энергии или в электрическую энергию с другими значениями параметров.
    [ ГОСТ 18311-80]

    EN

    power circuit
    circuit that supplies power from the supply network to units of equipment used for productive operation and to transformers supplying control circuits
    [IEC 60204-32, ed. 2.0 (2008-03)]

    FR

    circuit de puissance
    circuit qui transmet l'énergie du réseau aux éléments d'équipement utilisés directement pour le travail effectué par la machine et aux transformateurs alimentant les circuits de commande
    [IEC 60204-32, ed. 2.0 (2008-03)]

    0232_1

    1 - Силовая цепь электродвигателя
    2 - Цепь управления электродвигателем

    LS Tri-MEC vacuum contactors are mainly used for the switching of motors, transformers, capacitors in AC power lines.
    [LS Industrial Systems]

    Вакуумные контакторы LS Tri-MEC предназначены в основном для коммутации силовых цепей переменного тока электродвигателей, трансформаторов, конденсаторов.
    [Перевод Интент]

    Тематики

    Синонимы

    EN

    DE

    FR

    Англо-русский словарь нормативно-технической терминологии > power line

  • 93 поперечная дифференциальная защита

    1. Querdifferentialschutz, m

     

    поперечная дифференциальная защита
    Защита, применяемая для цепей, соединенных параллельно, срабатывание которой зависит от несбалансированного распределения токов между ними.
    [Разработка типовых структурных схем микропроцессорных устройств РЗА на объектах ОАО "ФКС ЕЭС". Пояснительная записка. Новосибирск 2006 г.]

    EN

    transverse differential protection
    protection applied to parallel connected circuits and in which operation depends on unbalanced distribution of currents between them.
    [IEV ref 448-14-17]

    FR

    protection différentielle transversale
    protection pour circuits en parallèle, dont le fonctionnement dépend du déséquilibre des courants entre ces circuits
    [IEV ref 448-14-17]


    Поперечная дифференциальная токовая направленная защита линий

    Защита применяется на параллельных линиях, имеющих одинаковое сопротивление и включенных на одну рабочую систему шин или на разные системы шин при включенном шиносоединительном выключателе. Для ее выполнения вторичные обмотки трансформаторов тока ТА защищаемых линий соединяются между собой разноименными зажимами (рис. 7.21). Параллельно вторичным обмоткам трансформаторов тока включаются токовый орган ТО и токовые обмотки органа направления мощности OHM.

    5316
    Рис. 7.20. Упрощенная схема контроля исправности соединительных проводов дифференциальной токовой защиты линии

    Токовый орган в схеме выполняет функцию пускового органа ПО, а орган направления мощности OHM служит для определения поврежденной линии. В зависимости от того, какая линия повреждена, OHM замыкает левый или правый контакт и подает импульс на отключение выключателя Q1 или Q2 соответственно.
    Напряжение к OHM подводится от трансформаторов напряжения той системы шин, на которую включены параллельные линии.
    Для двухстороннего отключения поврежденной линии с обеих сторон защищаемых цепей устанавливаются одинаковые комплекты защит.
    Рассмотрим работу защиты, предположив для простоты, что параллельные линии имеют одностороннее питание.
    При нормальном режиме работы и внешнем КЗ (точка К1 на рис. 7.22, а) вторичные токи I 1 и I 2 равны по значению и совпадают по фазе. Благодаря указанному выше соединению вторичных обмоток трансформаторов тока токи в обмотке ТО I p на подстанциях 1 и 2 близки к нулю и защиты не приходят в действие.

    5317
    Рис. 7.21. Принципиальная схема поперечной токовой направленной защиты двух параллельных линий

    При КЗ на одной из защищаемых линий (например, на линии в точке К2 на рис. 7.22, б) токи I 1 и I 2 не равны (I 1>I 2). На подстанции 1 ток в ТО I р=I 1-I 2>0, а на подстанции 2 I р=2I 2. Если I р>I сз, пусковые органы защит сработают и подведут оперативный ток к органам направления мощности, которые выявят поврежденную цепь и замкнут контакты на ее отключение.
    При повреждении на линии вблизи шин подстанции (например, в точке КЗ на рис. 7.22, в) токи КЗ в параллельных линиях со стороны питания близки по значению и совпадают по фазе. В этом случае разница вторичных токов незначительна и может оказаться, что на подстанции 1 ток в ТО I р<I сз и защита не придет в действие. Однако имеются все условия для срабатывания защиты на подстанции 2, где I р=2I 1. После отключения выключателя поврежденной цепи на подстанции 2 ток в защите на подстанции 1 резко возрастет, и защита подействует на отключение выключателя линии W2. Такое поочередное действие защит называют каскадным, а зона, в которой I р<I сз, - зоной каскадного действия.
    В случае двухстороннего питания параллельных линий защиты будут действовать аналогичным образом, отключая только повредившуюся цепь.
    К недостаткам следует отнести наличие у защиты так называемой "мертвой" зоны по напряжению, когда при КЗ на линии у шин подстанции напряжение, подводимое к органу направления мощности, близко к нулю и защита отказывает в действии. Протяженность мертвой зоны невелика, и отказы защит в действии по этой причине крайне редки.
    В эксплуатации отмечены случаи излишнего срабатывания защиты. При обрыве провода с односторонним КЗ на землю (рис. 7.23) защита излишне отключала выключатель Q2 исправной линии, поскольку мощность КЗ в ней была направлена от шин, а в поврежденной линии ток отсутствовал.
    Отметим характерные особенности защиты. На рис. 7.21 оперативный ток к защите подводится через два вспомогательных последовательно включенных контакта выключателей Q1 и Q2. Эти вспомогательные контакты при отключении любого выключателя (Q1 или Q2) автоматически разрывают цепь оперативного тока и выводят защиту из работы для предотвращения неправильного ее действия в следующих случаях:
    - при КЗ на линии, например W1, и отключении выключателя Q1 раньше Q3 (в промежуток времени между отключения ми обоих выключателей линии W1 на подстанции 1 создадутся условия для отключения неповрежденной линии W2);
    - в нормальном режиме работы при плановом отключении выключателей одной из линий защита превратится в максимальную токовую направленную защиту мгновенного действия и может неправильно отключить выключатель другой линии при внешнем КЗ.
    Подчеркнем в связи со сказанным, что перед плановым отключением одной из параллельных линий (например, со стороны подстанции 2) предварительно следует отключить защиту накладками SX1 и SX2 на подстанции 1, так как при включенном положении выключателей на подстанции 1 защита на этой подстанции автоматически из работы не выводится и при внешнем КЗ отключит выключатель линии, находящейся под нагрузкой.
    Когда одна из параллельных линий находится под нагрузкой, а другая опробуется напряжением (или включена под напряжение), накладки на защите должны находиться в положении "Отключение" - на линии, опробуемой напряжением, "Сигнал" - на линии, находящейся под нагрузкой. При таком положении накладок защита подействует на отключение опробуемой напряжением линии, если в момент подачи напряжения на ней возникнет КЗ.

    5318
    Рис. 7.22. Распределение тока в схемах поперечных токовых направленных защит при КЗ:
    а - во внешней сети; б - в зоне действия защиты; в - в зоне каскадного действия; КД - зона каскадного действия
    5319
    Рис. 7.23. Срабатывание защиты при обрыве провода линии с односторонним КЗ на землю

    При обслуживании защит необходимо проверять исправность цепей напряжения, подключенных к OHM, так как в случае их обрыва к зажимам OHM будет подведено искаженное по фазе и значению напряжение, вследствие чего он может неправильно сработать при КЗ. Если быстро восстановить нормальное питание OHM не удастся, защиту необходимо вывести из работы.

    [ http://leg.co.ua/knigi/raznoe/obsluzhivanie-ustroystv-releynoy-zaschity-i-avtomatiki-6.html]

    Тематики

    EN

    DE

    • Querdifferentialschutz, m

    FR

    Русско-немецкий словарь нормативно-технической терминологии > поперечная дифференциальная защита

  • 94 электрическая цепь

    1. Stromkreis

     

    электрическая цепь
    Совокупность устройств и объектов, образующих путь для электрического тока, электромагнитные процессы в которых могут быть описаны с помощью понятий об электродвижущей силе, электрическом токе и электрическом напряжении.
    [ ГОСТ Р 52002-2003]

    Цепь состоит из проводников, находящихся под напряжением, защитных проводников (при их наличии), защитного устройства и соответствующей коммутационной аппаратуры, аппаратуры управления и вспомогательных устройств.
    Защитный проводник может быть общим для нескольких цепей
    [ ГОСТ Р 50571. 1-2009 ( МЭК 60364-1: 2005)]

    электрическая цепь (электроустановки здания)
    Совокупность электрооборудования, образующего путь для протекания электрического тока.
    Любая электроустановка здания состоит из частей, называемых электрическими цепями, которые включают в себя электрически соединённое электрооборудование, имеющее согласованные характеристики и предназначенное выполнять определённые функции. Электроустановка большого здания может иметь сотни электрических цепей. Электрические цепи подключают к низковольтным распределительным устройствам электроустановки здания. На уровне электрических цепей в электроустановке здания обычно выполняют защиту от сверхтока, а также осуществляют защиту от поражения электрическим током. По своему назначению и выполняемым функциям все электрические цепи в электроустановке здания условно разбиты на две группы: распределительные электрические цепи и групповые электрические цепи.
    [ http://www.volt-m.ru/glossary/letter/%DD/view/93/]

    EN

    electric circuit
    arrangement of devices, media, or both, forming one or more conductive paths and where these devices and media can have capacitive and inductive coupling
    NOTE – In IEC 60050-131, the term "electric circuit" has another meaning relative to circuit theory.
    Source: 702-09-04 MOD
    [IEV number 151-12-01]

    FR

    circuit électrique, m
    ensemble de dispositifs ou de milieux formant un ou plusieurs chemins conducteurs et pouvant comporter des couplages capacitifs et inductifs
    NOTE – Dans la CEI 60050-131, le terme "circuit électrique" a un sens approprié à la théorie des circuits.
    Source: 702-09-04 MOD
    [IEV number 151-12-01]

    ... предназначены для работы в электрических цепях переменного тока частотой 50 Гц...
    [ ГОСТ 1983-2001]

    ... предназначенны для работы только в трехфазной цепи...

    [ ГОСТ 17242-86( СТ СЭВ 3242-81)]

    ... но не предназначенный для пропускания электрического тока в нормальных режимах работы электрической цепи.
    [ ГОСТ РМЭК 60050-2005]

     

    Тематики

    • электротехника, основные понятия

    Действия

    Сопутствующие термины

    EN

    DE

    FR

    Русско-немецкий словарь нормативно-технической терминологии > электрическая цепь

  • 95 protection différentielle transversale

    1. поперечная дифференциальная защита

     

    поперечная дифференциальная защита
    Защита, применяемая для цепей, соединенных параллельно, срабатывание которой зависит от несбалансированного распределения токов между ними.
    [Разработка типовых структурных схем микропроцессорных устройств РЗА на объектах ОАО "ФКС ЕЭС". Пояснительная записка. Новосибирск 2006 г.]

    EN

    transverse differential protection
    protection applied to parallel connected circuits and in which operation depends on unbalanced distribution of currents between them.
    [IEV ref 448-14-17]

    FR

    protection différentielle transversale
    protection pour circuits en parallèle, dont le fonctionnement dépend du déséquilibre des courants entre ces circuits
    [IEV ref 448-14-17]


    Поперечная дифференциальная токовая направленная защита линий

    Защита применяется на параллельных линиях, имеющих одинаковое сопротивление и включенных на одну рабочую систему шин или на разные системы шин при включенном шиносоединительном выключателе. Для ее выполнения вторичные обмотки трансформаторов тока ТА защищаемых линий соединяются между собой разноименными зажимами (рис. 7.21). Параллельно вторичным обмоткам трансформаторов тока включаются токовый орган ТО и токовые обмотки органа направления мощности OHM.

    5316
    Рис. 7.20. Упрощенная схема контроля исправности соединительных проводов дифференциальной токовой защиты линии

    Токовый орган в схеме выполняет функцию пускового органа ПО, а орган направления мощности OHM служит для определения поврежденной линии. В зависимости от того, какая линия повреждена, OHM замыкает левый или правый контакт и подает импульс на отключение выключателя Q1 или Q2 соответственно.
    Напряжение к OHM подводится от трансформаторов напряжения той системы шин, на которую включены параллельные линии.
    Для двухстороннего отключения поврежденной линии с обеих сторон защищаемых цепей устанавливаются одинаковые комплекты защит.
    Рассмотрим работу защиты, предположив для простоты, что параллельные линии имеют одностороннее питание.
    При нормальном режиме работы и внешнем КЗ (точка К1 на рис. 7.22, а) вторичные токи I 1 и I 2 равны по значению и совпадают по фазе. Благодаря указанному выше соединению вторичных обмоток трансформаторов тока токи в обмотке ТО I p на подстанциях 1 и 2 близки к нулю и защиты не приходят в действие.

    5317
    Рис. 7.21. Принципиальная схема поперечной токовой направленной защиты двух параллельных линий

    При КЗ на одной из защищаемых линий (например, на линии в точке К2 на рис. 7.22, б) токи I 1 и I 2 не равны (I 1>I 2). На подстанции 1 ток в ТО I р=I 1-I 2>0, а на подстанции 2 I р=2I 2. Если I р>I сз, пусковые органы защит сработают и подведут оперативный ток к органам направления мощности, которые выявят поврежденную цепь и замкнут контакты на ее отключение.
    При повреждении на линии вблизи шин подстанции (например, в точке КЗ на рис. 7.22, в) токи КЗ в параллельных линиях со стороны питания близки по значению и совпадают по фазе. В этом случае разница вторичных токов незначительна и может оказаться, что на подстанции 1 ток в ТО I р<I сз и защита не придет в действие. Однако имеются все условия для срабатывания защиты на подстанции 2, где I р=2I 1. После отключения выключателя поврежденной цепи на подстанции 2 ток в защите на подстанции 1 резко возрастет, и защита подействует на отключение выключателя линии W2. Такое поочередное действие защит называют каскадным, а зона, в которой I р<I сз, - зоной каскадного действия.
    В случае двухстороннего питания параллельных линий защиты будут действовать аналогичным образом, отключая только повредившуюся цепь.
    К недостаткам следует отнести наличие у защиты так называемой "мертвой" зоны по напряжению, когда при КЗ на линии у шин подстанции напряжение, подводимое к органу направления мощности, близко к нулю и защита отказывает в действии. Протяженность мертвой зоны невелика, и отказы защит в действии по этой причине крайне редки.
    В эксплуатации отмечены случаи излишнего срабатывания защиты. При обрыве провода с односторонним КЗ на землю (рис. 7.23) защита излишне отключала выключатель Q2 исправной линии, поскольку мощность КЗ в ней была направлена от шин, а в поврежденной линии ток отсутствовал.
    Отметим характерные особенности защиты. На рис. 7.21 оперативный ток к защите подводится через два вспомогательных последовательно включенных контакта выключателей Q1 и Q2. Эти вспомогательные контакты при отключении любого выключателя (Q1 или Q2) автоматически разрывают цепь оперативного тока и выводят защиту из работы для предотвращения неправильного ее действия в следующих случаях:
    - при КЗ на линии, например W1, и отключении выключателя Q1 раньше Q3 (в промежуток времени между отключения ми обоих выключателей линии W1 на подстанции 1 создадутся условия для отключения неповрежденной линии W2);
    - в нормальном режиме работы при плановом отключении выключателей одной из линий защита превратится в максимальную токовую направленную защиту мгновенного действия и может неправильно отключить выключатель другой линии при внешнем КЗ.
    Подчеркнем в связи со сказанным, что перед плановым отключением одной из параллельных линий (например, со стороны подстанции 2) предварительно следует отключить защиту накладками SX1 и SX2 на подстанции 1, так как при включенном положении выключателей на подстанции 1 защита на этой подстанции автоматически из работы не выводится и при внешнем КЗ отключит выключатель линии, находящейся под нагрузкой.
    Когда одна из параллельных линий находится под нагрузкой, а другая опробуется напряжением (или включена под напряжение), накладки на защите должны находиться в положении "Отключение" - на линии, опробуемой напряжением, "Сигнал" - на линии, находящейся под нагрузкой. При таком положении накладок защита подействует на отключение опробуемой напряжением линии, если в момент подачи напряжения на ней возникнет КЗ.

    5318
    Рис. 7.22. Распределение тока в схемах поперечных токовых направленных защит при КЗ:
    а - во внешней сети; б - в зоне действия защиты; в - в зоне каскадного действия; КД - зона каскадного действия
    5319
    Рис. 7.23. Срабатывание защиты при обрыве провода линии с односторонним КЗ на землю

    При обслуживании защит необходимо проверять исправность цепей напряжения, подключенных к OHM, так как в случае их обрыва к зажимам OHM будет подведено искаженное по фазе и значению напряжение, вследствие чего он может неправильно сработать при КЗ. Если быстро восстановить нормальное питание OHM не удастся, защиту необходимо вывести из работы.

    [ http://leg.co.ua/knigi/raznoe/obsluzhivanie-ustroystv-releynoy-zaschity-i-avtomatiki-6.html]

    Тематики

    EN

    DE

    • Querdifferentialschutz, m

    FR

    Франко-русский словарь нормативно-технической терминологии > protection différentielle transversale

  • 96 circuit électrique

    1. электрическая цепь

     

    электрическая цепь
    Совокупность устройств и объектов, образующих путь для электрического тока, электромагнитные процессы в которых могут быть описаны с помощью понятий об электродвижущей силе, электрическом токе и электрическом напряжении.
    [ ГОСТ Р 52002-2003]

    Цепь состоит из проводников, находящихся под напряжением, защитных проводников (при их наличии), защитного устройства и соответствующей коммутационной аппаратуры, аппаратуры управления и вспомогательных устройств.
    Защитный проводник может быть общим для нескольких цепей
    [ ГОСТ Р 50571. 1-2009 ( МЭК 60364-1: 2005)]

    электрическая цепь (электроустановки здания)
    Совокупность электрооборудования, образующего путь для протекания электрического тока.
    Любая электроустановка здания состоит из частей, называемых электрическими цепями, которые включают в себя электрически соединённое электрооборудование, имеющее согласованные характеристики и предназначенное выполнять определённые функции. Электроустановка большого здания может иметь сотни электрических цепей. Электрические цепи подключают к низковольтным распределительным устройствам электроустановки здания. На уровне электрических цепей в электроустановке здания обычно выполняют защиту от сверхтока, а также осуществляют защиту от поражения электрическим током. По своему назначению и выполняемым функциям все электрические цепи в электроустановке здания условно разбиты на две группы: распределительные электрические цепи и групповые электрические цепи.
    [ http://www.volt-m.ru/glossary/letter/%DD/view/93/]

    EN

    electric circuit
    arrangement of devices, media, or both, forming one or more conductive paths and where these devices and media can have capacitive and inductive coupling
    NOTE – In IEC 60050-131, the term "electric circuit" has another meaning relative to circuit theory.
    Source: 702-09-04 MOD
    [IEV number 151-12-01]

    FR

    circuit électrique, m
    ensemble de dispositifs ou de milieux formant un ou plusieurs chemins conducteurs et pouvant comporter des couplages capacitifs et inductifs
    NOTE – Dans la CEI 60050-131, le terme "circuit électrique" a un sens approprié à la théorie des circuits.
    Source: 702-09-04 MOD
    [IEV number 151-12-01]

    ... предназначены для работы в электрических цепях переменного тока частотой 50 Гц...
    [ ГОСТ 1983-2001]

    ... предназначенны для работы только в трехфазной цепи...

    [ ГОСТ 17242-86( СТ СЭВ 3242-81)]

    ... но не предназначенный для пропускания электрического тока в нормальных режимах работы электрической цепи.
    [ ГОСТ РМЭК 60050-2005]

     

    Тематики

    • электротехника, основные понятия

    Действия

    Сопутствующие термины

    EN

    DE

    FR

    Франко-русский словарь нормативно-технической терминологии > circuit électrique

  • 97 Querdifferentialschutz, m

    1. поперечная дифференциальная защита

     

    поперечная дифференциальная защита
    Защита, применяемая для цепей, соединенных параллельно, срабатывание которой зависит от несбалансированного распределения токов между ними.
    [Разработка типовых структурных схем микропроцессорных устройств РЗА на объектах ОАО "ФКС ЕЭС". Пояснительная записка. Новосибирск 2006 г.]

    EN

    transverse differential protection
    protection applied to parallel connected circuits and in which operation depends on unbalanced distribution of currents between them.
    [IEV ref 448-14-17]

    FR

    protection différentielle transversale
    protection pour circuits en parallèle, dont le fonctionnement dépend du déséquilibre des courants entre ces circuits
    [IEV ref 448-14-17]


    Поперечная дифференциальная токовая направленная защита линий

    Защита применяется на параллельных линиях, имеющих одинаковое сопротивление и включенных на одну рабочую систему шин или на разные системы шин при включенном шиносоединительном выключателе. Для ее выполнения вторичные обмотки трансформаторов тока ТА защищаемых линий соединяются между собой разноименными зажимами (рис. 7.21). Параллельно вторичным обмоткам трансформаторов тока включаются токовый орган ТО и токовые обмотки органа направления мощности OHM.

    5316
    Рис. 7.20. Упрощенная схема контроля исправности соединительных проводов дифференциальной токовой защиты линии

    Токовый орган в схеме выполняет функцию пускового органа ПО, а орган направления мощности OHM служит для определения поврежденной линии. В зависимости от того, какая линия повреждена, OHM замыкает левый или правый контакт и подает импульс на отключение выключателя Q1 или Q2 соответственно.
    Напряжение к OHM подводится от трансформаторов напряжения той системы шин, на которую включены параллельные линии.
    Для двухстороннего отключения поврежденной линии с обеих сторон защищаемых цепей устанавливаются одинаковые комплекты защит.
    Рассмотрим работу защиты, предположив для простоты, что параллельные линии имеют одностороннее питание.
    При нормальном режиме работы и внешнем КЗ (точка К1 на рис. 7.22, а) вторичные токи I 1 и I 2 равны по значению и совпадают по фазе. Благодаря указанному выше соединению вторичных обмоток трансформаторов тока токи в обмотке ТО I p на подстанциях 1 и 2 близки к нулю и защиты не приходят в действие.

    5317
    Рис. 7.21. Принципиальная схема поперечной токовой направленной защиты двух параллельных линий

    При КЗ на одной из защищаемых линий (например, на линии в точке К2 на рис. 7.22, б) токи I 1 и I 2 не равны (I 1>I 2). На подстанции 1 ток в ТО I р=I 1-I 2>0, а на подстанции 2 I р=2I 2. Если I р>I сз, пусковые органы защит сработают и подведут оперативный ток к органам направления мощности, которые выявят поврежденную цепь и замкнут контакты на ее отключение.
    При повреждении на линии вблизи шин подстанции (например, в точке КЗ на рис. 7.22, в) токи КЗ в параллельных линиях со стороны питания близки по значению и совпадают по фазе. В этом случае разница вторичных токов незначительна и может оказаться, что на подстанции 1 ток в ТО I р<I сз и защита не придет в действие. Однако имеются все условия для срабатывания защиты на подстанции 2, где I р=2I 1. После отключения выключателя поврежденной цепи на подстанции 2 ток в защите на подстанции 1 резко возрастет, и защита подействует на отключение выключателя линии W2. Такое поочередное действие защит называют каскадным, а зона, в которой I р<I сз, - зоной каскадного действия.
    В случае двухстороннего питания параллельных линий защиты будут действовать аналогичным образом, отключая только повредившуюся цепь.
    К недостаткам следует отнести наличие у защиты так называемой "мертвой" зоны по напряжению, когда при КЗ на линии у шин подстанции напряжение, подводимое к органу направления мощности, близко к нулю и защита отказывает в действии. Протяженность мертвой зоны невелика, и отказы защит в действии по этой причине крайне редки.
    В эксплуатации отмечены случаи излишнего срабатывания защиты. При обрыве провода с односторонним КЗ на землю (рис. 7.23) защита излишне отключала выключатель Q2 исправной линии, поскольку мощность КЗ в ней была направлена от шин, а в поврежденной линии ток отсутствовал.
    Отметим характерные особенности защиты. На рис. 7.21 оперативный ток к защите подводится через два вспомогательных последовательно включенных контакта выключателей Q1 и Q2. Эти вспомогательные контакты при отключении любого выключателя (Q1 или Q2) автоматически разрывают цепь оперативного тока и выводят защиту из работы для предотвращения неправильного ее действия в следующих случаях:
    - при КЗ на линии, например W1, и отключении выключателя Q1 раньше Q3 (в промежуток времени между отключения ми обоих выключателей линии W1 на подстанции 1 создадутся условия для отключения неповрежденной линии W2);
    - в нормальном режиме работы при плановом отключении выключателей одной из линий защита превратится в максимальную токовую направленную защиту мгновенного действия и может неправильно отключить выключатель другой линии при внешнем КЗ.
    Подчеркнем в связи со сказанным, что перед плановым отключением одной из параллельных линий (например, со стороны подстанции 2) предварительно следует отключить защиту накладками SX1 и SX2 на подстанции 1, так как при включенном положении выключателей на подстанции 1 защита на этой подстанции автоматически из работы не выводится и при внешнем КЗ отключит выключатель линии, находящейся под нагрузкой.
    Когда одна из параллельных линий находится под нагрузкой, а другая опробуется напряжением (или включена под напряжение), накладки на защите должны находиться в положении "Отключение" - на линии, опробуемой напряжением, "Сигнал" - на линии, находящейся под нагрузкой. При таком положении накладок защита подействует на отключение опробуемой напряжением линии, если в момент подачи напряжения на ней возникнет КЗ.

    5318
    Рис. 7.22. Распределение тока в схемах поперечных токовых направленных защит при КЗ:
    а - во внешней сети; б - в зоне действия защиты; в - в зоне каскадного действия; КД - зона каскадного действия
    5319
    Рис. 7.23. Срабатывание защиты при обрыве провода линии с односторонним КЗ на землю

    При обслуживании защит необходимо проверять исправность цепей напряжения, подключенных к OHM, так как в случае их обрыва к зажимам OHM будет подведено искаженное по фазе и значению напряжение, вследствие чего он может неправильно сработать при КЗ. Если быстро восстановить нормальное питание OHM не удастся, защиту необходимо вывести из работы.

    [ http://leg.co.ua/knigi/raznoe/obsluzhivanie-ustroystv-releynoy-zaschity-i-avtomatiki-6.html]

    Тематики

    EN

    DE

    • Querdifferentialschutz, m

    FR

    Немецко-русский словарь нормативно-технической терминологии > Querdifferentialschutz, m

  • 98 Stromkreis

    1. электрическая цепь

     

    электрическая цепь
    Совокупность устройств и объектов, образующих путь для электрического тока, электромагнитные процессы в которых могут быть описаны с помощью понятий об электродвижущей силе, электрическом токе и электрическом напряжении.
    [ ГОСТ Р 52002-2003]

    Цепь состоит из проводников, находящихся под напряжением, защитных проводников (при их наличии), защитного устройства и соответствующей коммутационной аппаратуры, аппаратуры управления и вспомогательных устройств.
    Защитный проводник может быть общим для нескольких цепей
    [ ГОСТ Р 50571. 1-2009 ( МЭК 60364-1: 2005)]

    электрическая цепь (электроустановки здания)
    Совокупность электрооборудования, образующего путь для протекания электрического тока.
    Любая электроустановка здания состоит из частей, называемых электрическими цепями, которые включают в себя электрически соединённое электрооборудование, имеющее согласованные характеристики и предназначенное выполнять определённые функции. Электроустановка большого здания может иметь сотни электрических цепей. Электрические цепи подключают к низковольтным распределительным устройствам электроустановки здания. На уровне электрических цепей в электроустановке здания обычно выполняют защиту от сверхтока, а также осуществляют защиту от поражения электрическим током. По своему назначению и выполняемым функциям все электрические цепи в электроустановке здания условно разбиты на две группы: распределительные электрические цепи и групповые электрические цепи.
    [ http://www.volt-m.ru/glossary/letter/%DD/view/93/]

    EN

    electric circuit
    arrangement of devices, media, or both, forming one or more conductive paths and where these devices and media can have capacitive and inductive coupling
    NOTE – In IEC 60050-131, the term "electric circuit" has another meaning relative to circuit theory.
    Source: 702-09-04 MOD
    [IEV number 151-12-01]

    FR

    circuit électrique, m
    ensemble de dispositifs ou de milieux formant un ou plusieurs chemins conducteurs et pouvant comporter des couplages capacitifs et inductifs
    NOTE – Dans la CEI 60050-131, le terme "circuit électrique" a un sens approprié à la théorie des circuits.
    Source: 702-09-04 MOD
    [IEV number 151-12-01]

    ... предназначены для работы в электрических цепях переменного тока частотой 50 Гц...
    [ ГОСТ 1983-2001]

    ... предназначенны для работы только в трехфазной цепи...

    [ ГОСТ 17242-86( СТ СЭВ 3242-81)]

    ... но не предназначенный для пропускания электрического тока в нормальных режимах работы электрической цепи.
    [ ГОСТ РМЭК 60050-2005]

     

    Тематики

    • электротехника, основные понятия

    Действия

    Сопутствующие термины

    EN

    DE

    FR

    Немецко-русский словарь нормативно-технической терминологии > Stromkreis

  • 99 поперечная дифференциальная защита

    1. transverse differential protection

     

    поперечная дифференциальная защита
    Защита, применяемая для цепей, соединенных параллельно, срабатывание которой зависит от несбалансированного распределения токов между ними.
    [Разработка типовых структурных схем микропроцессорных устройств РЗА на объектах ОАО "ФКС ЕЭС". Пояснительная записка. Новосибирск 2006 г.]

    EN

    transverse differential protection
    protection applied to parallel connected circuits and in which operation depends on unbalanced distribution of currents between them.
    [IEV ref 448-14-17]

    FR

    protection différentielle transversale
    protection pour circuits en parallèle, dont le fonctionnement dépend du déséquilibre des courants entre ces circuits
    [IEV ref 448-14-17]


    Поперечная дифференциальная токовая направленная защита линий

    Защита применяется на параллельных линиях, имеющих одинаковое сопротивление и включенных на одну рабочую систему шин или на разные системы шин при включенном шиносоединительном выключателе. Для ее выполнения вторичные обмотки трансформаторов тока ТА защищаемых линий соединяются между собой разноименными зажимами (рис. 7.21). Параллельно вторичным обмоткам трансформаторов тока включаются токовый орган ТО и токовые обмотки органа направления мощности OHM.

    5316
    Рис. 7.20. Упрощенная схема контроля исправности соединительных проводов дифференциальной токовой защиты линии

    Токовый орган в схеме выполняет функцию пускового органа ПО, а орган направления мощности OHM служит для определения поврежденной линии. В зависимости от того, какая линия повреждена, OHM замыкает левый или правый контакт и подает импульс на отключение выключателя Q1 или Q2 соответственно.
    Напряжение к OHM подводится от трансформаторов напряжения той системы шин, на которую включены параллельные линии.
    Для двухстороннего отключения поврежденной линии с обеих сторон защищаемых цепей устанавливаются одинаковые комплекты защит.
    Рассмотрим работу защиты, предположив для простоты, что параллельные линии имеют одностороннее питание.
    При нормальном режиме работы и внешнем КЗ (точка К1 на рис. 7.22, а) вторичные токи I 1 и I 2 равны по значению и совпадают по фазе. Благодаря указанному выше соединению вторичных обмоток трансформаторов тока токи в обмотке ТО I p на подстанциях 1 и 2 близки к нулю и защиты не приходят в действие.

    5317
    Рис. 7.21. Принципиальная схема поперечной токовой направленной защиты двух параллельных линий

    При КЗ на одной из защищаемых линий (например, на линии в точке К2 на рис. 7.22, б) токи I 1 и I 2 не равны (I 1>I 2). На подстанции 1 ток в ТО I р=I 1-I 2>0, а на подстанции 2 I р=2I 2. Если I р>I сз, пусковые органы защит сработают и подведут оперативный ток к органам направления мощности, которые выявят поврежденную цепь и замкнут контакты на ее отключение.
    При повреждении на линии вблизи шин подстанции (например, в точке КЗ на рис. 7.22, в) токи КЗ в параллельных линиях со стороны питания близки по значению и совпадают по фазе. В этом случае разница вторичных токов незначительна и может оказаться, что на подстанции 1 ток в ТО I р<I сз и защита не придет в действие. Однако имеются все условия для срабатывания защиты на подстанции 2, где I р=2I 1. После отключения выключателя поврежденной цепи на подстанции 2 ток в защите на подстанции 1 резко возрастет, и защита подействует на отключение выключателя линии W2. Такое поочередное действие защит называют каскадным, а зона, в которой I р<I сз, - зоной каскадного действия.
    В случае двухстороннего питания параллельных линий защиты будут действовать аналогичным образом, отключая только повредившуюся цепь.
    К недостаткам следует отнести наличие у защиты так называемой "мертвой" зоны по напряжению, когда при КЗ на линии у шин подстанции напряжение, подводимое к органу направления мощности, близко к нулю и защита отказывает в действии. Протяженность мертвой зоны невелика, и отказы защит в действии по этой причине крайне редки.
    В эксплуатации отмечены случаи излишнего срабатывания защиты. При обрыве провода с односторонним КЗ на землю (рис. 7.23) защита излишне отключала выключатель Q2 исправной линии, поскольку мощность КЗ в ней была направлена от шин, а в поврежденной линии ток отсутствовал.
    Отметим характерные особенности защиты. На рис. 7.21 оперативный ток к защите подводится через два вспомогательных последовательно включенных контакта выключателей Q1 и Q2. Эти вспомогательные контакты при отключении любого выключателя (Q1 или Q2) автоматически разрывают цепь оперативного тока и выводят защиту из работы для предотвращения неправильного ее действия в следующих случаях:
    - при КЗ на линии, например W1, и отключении выключателя Q1 раньше Q3 (в промежуток времени между отключения ми обоих выключателей линии W1 на подстанции 1 создадутся условия для отключения неповрежденной линии W2);
    - в нормальном режиме работы при плановом отключении выключателей одной из линий защита превратится в максимальную токовую направленную защиту мгновенного действия и может неправильно отключить выключатель другой линии при внешнем КЗ.
    Подчеркнем в связи со сказанным, что перед плановым отключением одной из параллельных линий (например, со стороны подстанции 2) предварительно следует отключить защиту накладками SX1 и SX2 на подстанции 1, так как при включенном положении выключателей на подстанции 1 защита на этой подстанции автоматически из работы не выводится и при внешнем КЗ отключит выключатель линии, находящейся под нагрузкой.
    Когда одна из параллельных линий находится под нагрузкой, а другая опробуется напряжением (или включена под напряжение), накладки на защите должны находиться в положении "Отключение" - на линии, опробуемой напряжением, "Сигнал" - на линии, находящейся под нагрузкой. При таком положении накладок защита подействует на отключение опробуемой напряжением линии, если в момент подачи напряжения на ней возникнет КЗ.

    5318
    Рис. 7.22. Распределение тока в схемах поперечных токовых направленных защит при КЗ:
    а - во внешней сети; б - в зоне действия защиты; в - в зоне каскадного действия; КД - зона каскадного действия
    5319
    Рис. 7.23. Срабатывание защиты при обрыве провода линии с односторонним КЗ на землю

    При обслуживании защит необходимо проверять исправность цепей напряжения, подключенных к OHM, так как в случае их обрыва к зажимам OHM будет подведено искаженное по фазе и значению напряжение, вследствие чего он может неправильно сработать при КЗ. Если быстро восстановить нормальное питание OHM не удастся, защиту необходимо вывести из работы.

    [ http://leg.co.ua/knigi/raznoe/obsluzhivanie-ustroystv-releynoy-zaschity-i-avtomatiki-6.html]

    Тематики

    EN

    DE

    • Querdifferentialschutz, m

    FR

    Русско-английский словарь нормативно-технической терминологии > поперечная дифференциальная защита

  • 100 электрическая цепь

    1. potential
    2. electric circuit

     

    электрическая цепь
    Совокупность устройств и объектов, образующих путь для электрического тока, электромагнитные процессы в которых могут быть описаны с помощью понятий об электродвижущей силе, электрическом токе и электрическом напряжении.
    [ ГОСТ Р 52002-2003]

    Цепь состоит из проводников, находящихся под напряжением, защитных проводников (при их наличии), защитного устройства и соответствующей коммутационной аппаратуры, аппаратуры управления и вспомогательных устройств.
    Защитный проводник может быть общим для нескольких цепей
    [ ГОСТ Р 50571. 1-2009 ( МЭК 60364-1: 2005)]

    электрическая цепь (электроустановки здания)
    Совокупность электрооборудования, образующего путь для протекания электрического тока.
    Любая электроустановка здания состоит из частей, называемых электрическими цепями, которые включают в себя электрически соединённое электрооборудование, имеющее согласованные характеристики и предназначенное выполнять определённые функции. Электроустановка большого здания может иметь сотни электрических цепей. Электрические цепи подключают к низковольтным распределительным устройствам электроустановки здания. На уровне электрических цепей в электроустановке здания обычно выполняют защиту от сверхтока, а также осуществляют защиту от поражения электрическим током. По своему назначению и выполняемым функциям все электрические цепи в электроустановке здания условно разбиты на две группы: распределительные электрические цепи и групповые электрические цепи.
    [ http://www.volt-m.ru/glossary/letter/%DD/view/93/]

    EN

    electric circuit
    arrangement of devices, media, or both, forming one or more conductive paths and where these devices and media can have capacitive and inductive coupling
    NOTE – In IEC 60050-131, the term "electric circuit" has another meaning relative to circuit theory.
    Source: 702-09-04 MOD
    [IEV number 151-12-01]

    FR

    circuit électrique, m
    ensemble de dispositifs ou de milieux formant un ou plusieurs chemins conducteurs et pouvant comporter des couplages capacitifs et inductifs
    NOTE – Dans la CEI 60050-131, le terme "circuit électrique" a un sens approprié à la théorie des circuits.
    Source: 702-09-04 MOD
    [IEV number 151-12-01]

    ... предназначены для работы в электрических цепях переменного тока частотой 50 Гц...
    [ ГОСТ 1983-2001]

    ... предназначенны для работы только в трехфазной цепи...

    [ ГОСТ 17242-86( СТ СЭВ 3242-81)]

    ... но не предназначенный для пропускания электрического тока в нормальных режимах работы электрической цепи.
    [ ГОСТ РМЭК 60050-2005]

     

    Тематики

    • электротехника, основные понятия

    Действия

    Сопутствующие термины

    EN

    DE

    FR

    7. Электрическая цепь

    Electric circuit

    (Измененная редакция, Изм. № 2).

    По ГОСТ 19880*

    * На территории Российской Федерации действует ГОСТ Р 52002-2003( здесь и далее).

    8. Силовая электрическая цепь

    Силовая цепь

    Электрическая цепь, содержащая элементы, функциональное назначение которых состоит в производстве или передаче основной части электрической энергии, ее распределении, преобразовании в другой вид энергии или в электрическую энергию с другими значениями параметров

    Источник: ГОСТ 18311-80: Изделия электротехнические. Термины и определения основных понятий оригинал документа

    Русско-английский словарь нормативно-технической терминологии > электрическая цепь

См. также в других словарях:

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»